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Dépôt légal – Bibliothèque et Archives nationales du Québec,
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Abstract: Short-term mine production scheduling optimization is developed as a single formulation where
mining considerations, production constraints, uncertainty in the orebody metal quantity and quality as well
as fleet availability are evaluated together to define a well-informed sequence of mining that results in high
performance during a mine’s operation. A stochastic integer program is developed for the above. However, it
is noted that partly- informed and ultimately costly decisions can be taken in the above development because
of imperfect geological knowledge and information available during the actual ore control stage, affecting
the performance of short-term schedules. To address this issue, orebody uncertainty models are updated
by simulated future ore control data to account for local scale material type and grade variability affecting
grade control classification of materials being extracted and sent to different ore/waste destinations. This
updating leads to substantially improved short-term schedules accounting for better potential classifications
of ore and waste materials. In general, the updating of multi-element orebody uncertainty models is based
on the correlation of exploration data and past ore control data; the updated orebody uncertainty models are
then used to optimize, while accounting for uncertainties, the short-term production scheduling, leading to
better performance in terms of matching ore quality targets and delivering recoverable reserves anticipated.
The above is demonstrated in a case study at an iron-ore deposit.

Key Words: Production scheduling, mining equipment fleet, stochastic simulation, future data, uncertainty
in equipment availability.
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1 Introduction

Short-term production scheduling defines a sequence of materials to be extracted over months, weeks, or days

based on orebody models generated from exploration drilling data and accounts for mining considerations,

production constraints, and so on. Typically, the optimization of the mining fleet available is a separate step.

To improve this two-step approach and limited use of information, short-term mine production scheduling

optimization is developed as a single formulation where mining considerations, production constraints, un-

certainty in the orebody metal quantity and quality, as well as fleet availability are evaluated together. This

aims to define a well-informed sequence of mining that results in high performance during a mine’s operation.

Additionally and more importantly, in order to account for potential future ore control information, past ore

control data are used to simulate future ore control data and inform the definition of waste and ore categories

assessed during the optimization of a short-term schedule.

Stochastic integer programming provides an optimization framework for formulating scheduling ap-

proaches that explicitly account for uncertainty in their parameters, as opposed to the traditional determin-

istic optimization models that are formulated assuming certainty in their input parameters. The stochastic

short-term production scheduling mathematical programming formulation herein not only accounts for un-

certainty in all related input parameters, but additionally proposes to update the orebody uncertainty with

stochastically simulated future multi-element ore control data. At the same time, it accounts for all mining

considerations and uncertainty in all related mining fleet parameters into their formulation.

The simulation of future grade control data is shown first in Guardiano et al. (1997) where the production

schedule of a gold mine is assessed by simulating future grade control data. The latter data is generated by

adding to a simulated realization of the deposit (based on exploration drilling) randomly generated errors from

a distribution of blasthole errors assumed to represent the deposit. The variance of this error corresponds to

the difference between exploration data nugget effect variogram and grade control data nugget effect variogram

(Knudsen 1992). This technique is conceptually interesting but simplistic and arbitrary. Khosrowshahi et

al. (2007) propose a simulation of the chain of mining to identify errors in every stage of the mining process

to forecast the recoverable reserves during mining and with the expected short-term plans. Sampling and

assaying errors, mining selectivity and movement due to blasting are incorporated into the evaluation of

several chains of mining to determine the parameters that may match the current mining performance of

the mine. Two sampling errors due to the shape of the blasthole cone and the impacts of the blasthole

subdrill were used to define distributions of the errors. However, a drawback of this study is that a local

normal distribution error is used to simulate future ore control data through the domain. Journel and

Kyriakidis (2004) show that the difference between ore control data and exploration data are not constant

errors through the deposit. A more elaborate study is presented in Peattie and Dimitrakopoulos (2013) based

on the spatial variability of the blasthole error. The errors are calculated from the difference of estimation

based on exploration data and estimation based on ore control at block scale. The spatial variability of these

errors is modeled to simulate the error at the same grid where only an orebody model based on exploration

data is available. The ore control data map is calculated from the orebody model available plus the error

simulated.

The use of simulated future grade control data for long-term mine production scheduling is shown in

Dimitrakopoulos and Jewbali (2013), who present an approach to forecast ore control data of a single element

base on the spatial correlation between ore control data and exploration of a mined out sector. A pseudo cross

variogram is used to evaluate the cross spatial variability of two data that are not at the exact same location.

This pseudo cross variogram is used at the ore control sector where only exploration data is available to

perform a co-simulation of grade control errors conditioned to the available data. The study also shows the

performance improvement from integrating future ore control data, including meeting production expectations

and higher NPV. Past approaches, such as the above, are implemented for single element deposits. To extend

the approach to multi-element deposits, techniques available to simulate multiple correlated variables such

as Minimum/Maximum Autocorrelation Factors (MAF) (Desbarats and Dimitrakopoulos 2000) can be used

to simulate spatial multi-element errors at the mining sector considered.
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In the following sections, the method used here is presented and includes (a) the simulation of future multi-

element ore control data, and (b) the stochastic short-term scheduling formulation used. An application at an

iron ore deposit shows the practical aspects of the proposed approach and conclusions are drawn thereafter

2 Method

The proposed approach herein considers possible short-scale information that better assists in the classifica-

tion of the material in Stage 1, where the future data is simulated. In the second Stage, short-term mine

production scheduling is stochastically optimized.

2.1 Stage 1: Future multi-element ore control data

The multivariate technique Minimum/Maximum Autocorrelation Factors (MAF) assists to simulate multi-

element deposits by transforming correlated variables to de-correlated factors, simulating them and recon-

structing the simulated original variables (Desbarats and Dimitrakopoulos 2000). The MAF approach con-

siders the multivariate observation vector as Y (x) = (Y1 (x) , . . . , Yq (x))
T

and their q orthogonal lineal

combinations or MAF Fi (x) = aTi Y (x) , i = 1, . . . , q. Y (x) are de-correlated as follows:

• Decompose the variance-covariance symmetric matrix of Y (x). Their spectral decomposition HDHT

provides orthonormal eigenvectors matrix H and diagonal matrix of eigenvalues D.

• Compute the conventional principal components factors as WT = HD−1/2.

• Calculate the variogram matrix ΓY (∆) and their spectral decomposition into orthonormal eigenvectors

C matrix and eigenvalues Λ diagonal matrix.

• Then, the MAF transformation matrix is HD−1/2C.

• The MAF factors will be F (x) = Y (x)

WT︷ ︸︸ ︷
HD−1/2 C.

The MAF non-correlated factors F (x) are simulated independently where their spatial relationship is

modeled and sequential Gaussian simulation is carried out. The output of the simulations is re-correlated

using the inverse of the MAF transformation matrix (WTC)−1.

An approach to jointly simulate future multi-element ore control data featured herein is based on MAF.

The approach considers the spatial relationship of the errors between exploration data and ore control data

from a mined sector so as to forecast ore control data where only exploration data is available. It is assumed

that mined sector A has similar geology as sector B, where it is required to simulate future ore control data.

The joint simulation of errors requires a map of errors per element from the mined out sector A and to

then de-correlate these errors. Next, the spatial correlation of these de-correlated errors is modeled to be

used in the joint simulation at the grid of sector B. The simulated maps of errors are added to the orebody

realizations at sector B to forecast the map of the future ore control data. The details of the approach are

as follows:

• Calculate the error ebh−ddh between exploration data and ore control data per element.

• Standard normal score transformation per error for sector A, YA (x).

• MAF transformation F (x) = YA (x)WTC is executed to de-correlate error variables of sector A to

permit simulating the error of the elements independently.

• The variogram γAF (x) (h) of the MAF non-correlated factors F (x) are modeled.

• Simulation is performed for each MAF at sector B using the modeled variograms γAF (x) (h) of mined

sector A.

• The inverse of the MAF transformation matrix (WTC)−1 is applied to MAF variables simulation at

Sector B to recover the correlation among errors.

• The normal score simulated errors are back transformed into the original space.

• Error maps are added to the available realizations based on exploration data at sector B.
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The approach requires modeling variograms as the number of elements is evaluated. The steps are shown

in Figure 1.
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Figure 1: Schematic representation of simulated future multi-element ore control data  
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nodes are simulated sequentially following a path that changes from one realization to 

another. Once all the MAF non-correlated factors are simulated, back MAF 

transformation is applied to recover the correlation among variables. These variables are 

the errors and the simulation of multi-element map errors is added to the multi-element 

simulation at sector B to obtain the maps of the future ore control data.   

 

2.2 Stage 2: Stochastic short-term production scheduling  

The short-term mine production scheduling discussed above is formulated as a stochastic 

integer programming model with recourse (Birge and Louveaux 1997), accounting for 

Figure 1: Schematic representation of simulated future multi-element ore control data.

The MAF transformation permits the resulting MAF non-correlated factors to be simulated independently.

For the simulation, the sector B is discretized by nodes and each node is simulated in the Gaussian space,

conditioned to previous nodes simulated. These nodes are simulated sequentially following a path that

changes from one realization to another. Once all the MAF non-correlated factors are simulated, back MAF

transformation is applied to recover the correlation among variables. These variables are the errors and the

simulation of multi-element map errors is added to the multi-element simulation at sector B to obtain the

maps of the future ore control data.

2.2 Stage 2: Stochastic short-term production scheduling

The short-term mine production scheduling discussed above is formulated as a stochastic integer programming

model with recourse (Birge and Louveaux 1997), accounting for uncertainty in input parameters. The solution

aims to minimize the total mining cost along with deviations from production targets, considers operational

aspects, such as mining direction and minimum width, and maximizes fleet utilization. In the formulation

presented herein, the first-stage decisions are made before the uncertainty is revealed, then the second-stage

decisions or recourse actions are made after uncertainty is considered.

The notation used to formulate short-term scheduling follows. Note that indexes relate to the set of

trucks, shovels, sectors, blocks, periods and realizations of uncertain parameters.



4 G–2015–88 Les Cahiers du GERAD

• j: a sector or bench, where j = 1, . . . , J

• i: an shovel, where i = 1, . . . , I

• k: a block at sector, where k = 1, . . . ,K(j)

• l: a truck model, where l = 1, . . . , L

• p: a period of a production schedule, where p = 1, . . . , P

• ε: an element grade of k block that have economical value, where ε = 1, . . . , E

• δ: a deleterious element grade of k block, where δ = 1, . . . , D

• s: simulated grade realization or scenario, where s = 1, . . . , S

• α: realization of shovel mechanical availability given historical data, where α = 1, . . . , A

• r: truck cycle trip and mechanical availability realization, where r = 1, . . . , R

The parameters used at the fleet allocation, cost and penalties at objective function, production target

and multi-element quality and tonnage are explained as follows:

• hfleet: fleet operation hours by period p

• ι: maximum number of shovels allowed by sector

• Qshi : hourly production of shovel i

• ωi(µi, σi): mean and standard deviation of historical mechanical availability by shovel i

• ap−1
ij′ : binary parameter, if shovel i is or not allocated to sector j′ at previous period p− 1

• cExcMj′j : cost of moving shovel from p− 1 allocation sector j′ to new allocation sector j

• cprodExc−: penalty cost for tonnage not produced regarding to the expected productivity

• Qtrk
l

: capacity of truck l

• ϕjl(µjl, σjl): mean and standard deviation of cycle time by truck l at sector j

• ψl(µl, σl): mean and standard deviation of historical mechanical availability by truck l

• cϕ: time cycle cost per ϕ units

• cm−, cm+: penalty cost for shortage and surplus total mining tonnage respect to the targets

• co−, co+: penalty cost for shortage and surplus ore mining tonnage respect to the targets

• cε−, cε+, cδ+, cδ−: penalty cost for deviation from main elements and contaminants limits

• Pmin, Pmax: minimum and maximum mining tonnage target

• Omin, Omax: minimum and maximum ore tonnage target

• Gε−, Gε+, Gδ−, Gδ+: quality or grade requirements for ore tonnage produced %Tolo−, %Tolo+,

%Tolm−, %Tolm+, %Tolε−, %Tolε+, %Tolδ−, %Tolδ+: allowed percentage of tonnage and grade

deviation from targets

• Bjk: block tonnage k at sector j

• bh, ddh: Ore control data and exploration data at mined sector A

• BH,DDH: Ore control data and exploration data at not mined sector B

• cm: mining cost by Bjk unit

• gε
jks
, gδ

jks
: grade block k of main elements and deleterious in scenario s at sector j

• Ojks: binary parameter flagging the block k at j sector for scenario s that has the minimum quality to

be used at the blending process; otherwise, the block is flagged as waste.

• ϕrjl: truck cycle time r of truck l at sector j given cycle time distribution

• θrjl: maximum number of trips of truck l at sector j for cycle hauling realization r and mechanical

availability realization r

θjlr =
ψlr × hfleet

ϕjlr
∀r = 1, . . . , R, ∀j = 1, . . . , J, ∀l = 1, . . . , L
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• Qshiα : maximum production rate of shovel i per mechanic availability realization αand each realization

ωiαis drawn from the available mechanical availability distribution, and it is

Qshiα = ωiα × hfleet ×Qshi ∀α = 1, . . . , A, ∀i = 1, . . . , I

The decision variables used are as follows:

• xpjk: binary variable, if block k at sector j is mined or not at period p

• epij : binary variable, if shovel i is or not allocated to sector j at period p

• npjilr: number of trips of truck l to sector j, shovel i at period p for cycle time realization and mechanical

availability realization r

• fpjiα: deviation of shovel i at sector j from expected shovel productionQshiα
• ypjk: number of blocks that were not scheduled at period p to mine block k at sector j to match mining

width requirements.

• dm−p , dm+
p : shortage tonnage to match lower production limit and surplus tonnage to match upper

production limit at period p

• do−sp , do+sp : shortage of ore mining to match lower bound and the surplus to match upper bound at period

p accounting for grade scenario s

• dε−sp , dε+sp : deviation from ε grade targets at period p for grade scenario s

• dδ−sp , dδ+sp : deviation from δ deleterious grade targets at period p for grade scenario s

2.3 Objective function

Decision variables xpjk, ypjk and epij are related with the first-stage and remaining decision variables are related

with the second-stage. The first-stage decisions include minimizing the costs of extraction of materials,

movement of shovels, production shortage, and matching mining width. In the second-stage, these costs are

minimized over a range of possibilities of a recourse cost associated with deviations from ore production and

quality targets, hauling cost, and lack of mining with maximum shovel productivity. The formulation of the

stochastic short-term production scheduling considers eight components in the objective function. The first,

fourth, fifth and eighth components depend on deterministic parameters. The cost of extracting every ton of

the pit is reduced directly in the first term, and this cost does not include hauling cost. The hauling cost is

covered and minimized in the second component in order to efficiently allocate the trucks. This component

considers the possible fluctuations of two parameters: cycle trip and mechanic availability of each truck. The

fourth component considers uncertainty in the mechanic availability of each shovel and the loading cost is

indirectly reduced where the lack of mining expected digging rate is minimized to maximize the utilization

of the shovels. The third component avoids inefficient excessive shovel movements and the fifth component

avoids unrealistic short-term production patterns.

Minimize =

1st︷ ︸︸ ︷
P∑
p=1

J∑
j=1

K(j)∑
k=1

cmBjkx
p
jk +

2nd︷ ︸︸ ︷
1

R

P∑
p=1

R∑
r=1

J∑
j=1

L∑
l=1

I∑
i=1

ϕjlrc
ϕnpjilr

+

3rd︷ ︸︸ ︷
P∑
p=1

I∑
i=1

J∑
j′=1

J∑
j=1

(
cExcMj′j epija

p−1
ij′

)
+

4th︷ ︸︸ ︷
1

A

P∑
p=1

J∑
j=1

I∑
i=1

A∑
α=1

(
cprodExc−fpjiα

)
+

5th︷ ︸︸ ︷
P∑
p=1

J∑
j=1

K(j)∑
k=1

(
csmoth−ypjk

)

+

6th︷ ︸︸ ︷
1

S

{
S∑
s=1

P∑
p=1

E∑
ε=1

(
cε−dε−sp + cε+dε+sp

)
+

S∑
s=1

P∑
p=1

D∑
δ=1

(
cδ+dδ+sp + cδ−dδ−sp

)}

+

7th︷ ︸︸ ︷
1

S

S∑
s=1

P∑
p=1

(
co+do+sp + co−do−sp

)
+

8th︷ ︸︸ ︷
P∑
p=1

(
cm−dm−p + cm+dm+

p

)
(1)
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Components six and seven account directly for the updated orebody uncertainty; however, the short-

scale information of the multi-elements may influence indirectly the rest of the decision variables of others

components.

2.3.1 Constraints for Production and fleet allocation

The constraints below link the fleet allocation decision variables with mined block decision variables, to

guarantee that the short-term production schedule accounts for fleet allocations and production targets.

P∑
p=1

xpjk ≤ 1, ∀j = 1, . . . , J, ∀k = 1, . . . ,K(j) (2)

Constraint (2) ensures that a block of material may be mined once at any period. The block is a selective

mining unit that may be mined in one period assuming that the time period may be from weeks to months.

I∑
i=1

epij ≤ ι, ∀p = 1, . . . , P, ∀j = 1, . . . , J (3)

J∑
j=1

epij ≤ 1, ∀p = 1, . . . , P, ∀i = 1, . . . , I (4)

xpjk −
I∑
i=1

epij ≤ 0, ∀p = 1, . . . , P, ∀j = 1, . . . , J, ∀k = 1, . . . ,K(j) (5)

I∑
i=1

J∑
j=1

ϕjlr × npjilr ≤ hfleet × ψlr ∀p = 1, . . . , P, ∀l = 1, . . . , L, ∀r = 1, . . . , R (6)

npjilr − θjlre
p
ij ≤ 0, ∀p = 1, . . . , P, ∀r = 1, . . . , R, ∀j = 1, . . . , J,

∀l = 1, . . . , L, ∀i = 1, . . . , I (7)

L∑
l=1

(
Qtruckl × npjilr

)
−Qshiα × e

p
ij + fpjiα = 0 ∀p = 1, . . . , P, ∀j = 1, . . . , J, ∀i = 1, . . . , I,

∀α = 1, . . . , A, ∀r = 1, . . . , R (8)

I∑
i=1

L∑
l=1

(
Qtruckl × npjilr

)
−
K(j)∑
k=1

(
Bjk × xpjk

)
= 0, ∀p = 1, . . . , P,∀j = 1, . . . , J, ∀r = 1, . . . , R (9)

The mining equipment can be placed in a given number of locations. A possible path of the locations

of each piece of equipment is provided as part of a short-term plan. Shovels are allocated to available

sectors or remain in the current sector previously allocated. A sector must be mined at some period and a

shovel must be allocated to the sector that has a lower cost of hauling and provides the material to match

quality requirements. Constraints (3) ensure that each sector is allocated with less equal than ι shovels at

sector j per period p. The parameter ι is the maximum number of shovels that can be allocated in each

sector. Constraint (4) ensures that each shovel i may be assigned to one sector, while the cost of movement

is minimized in the objective function to prevent excessive shovel movement among sectors. Inequality

constraints are used for the fleet allocation because not all the available shovels or trucks are allocated in

scenarios where there is more equipment than the production requires in accounting for hauling distance.

Constraint (5) guarantees that a mining block in sector j is mined only if a shovel is allocated to sector j.

Variable npjilr decides the optimal number of trips for truck l to sector j and shovel i per period p, thus

accounting for fluctuations of truck cycle time and mechanical availability. The number of trips decision

variable npjilr also supports in the allocation of each truck l to shovel i to sector j for mechanical availability

and hauling realization r per period p. The formulation considers that a truck can be allocated to more than

one shovel at the same sector j or different sectors. Constraint (6) limits the number of trips of a truck to
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its scheduled time per period as the operation progresses by extracting minerals and continuously extending

the access. Indeed, the roads change dynamically. This implies uncertainty in the hauling time. The trip

cycle time ϕjlr of truck l to sector j is drawn from distribution R times.

The decision variable npjilr is also subject to the maximum number of trips that a truck l can haul

from each sector j. The maximum number of trips θjlr per truck l is a preprocessed parameter because

its components are not decision variables. Then, the number of total trips to each sector is restricted to

a maximum number of trips times the epij binary decision variable. The decision variable epij is relevant in

the Constraints (7) because not all the sectors will be allocated with a shovel and a sector without a shovel

cannot have number of trips. Decision variables npjilr and epij are linked. The inequality Constraint (7) also

ensures that only an allocated sector with a shovel is assigned with trucks, and not all trucks are allocated

at some scenarios. The link of truck l, shovel i and sectors j in the constraints ensure that all assignment

possibilities for the trucks, shovel and sectors are taken into account.

There are capacity limits for each truck Qtrkl and shovel Qshi . The available fleet and their respective

capacity are included in the formulation. The production of each shovel assigned to sector j is constrained to

the maximum production of each shovel Qshiα . The epij binary decision variable helps to formulate the shovel

capacity constraints (8) because not all of the shovels may be allocated. The lack of expected production by

each shovel is stored by the decision variable fpjiα, which is minimized at the objective function.

There are J sectors and each sector has K(j) blocks to be evaluated. The tonnage of block k is Bjk and

each block may be hauled from an in-situ location to a blending area or waste dump, taking into account

the fleet capacity constraints. The decision variables at operational and production constraints are linked to

fleet allocation constraints. Indeed, Constraint (9) links the number of trips npjilr of truck l from sector j and

shovel i given mechanic availability and hauling time realization r with the mined block decision variable xpjk.

The hauling tonnage by the trucks from sector j for mechanical availability and hauling time realization r

must be equal to scheduled blocks tonnage at sector j.

I∑
i=1

L∑
l=1

J∑
j=1

Qtrkl × npjilr ≥M
min ∀p = 1, . . . , P, ∀r = 1, . . . , R (10)

0 ≤ dm−p ≤ %Tolm− ×Mmin ∀p = 1, . . . , P (11)

I∑
i=1

L∑
l=1

J∑
j=1

Qtrkl × npjilr − d
m+
p ≤Mmax ∀p = 1, . . . , P, ∀r = 1, . . . , R (12)

0 ≤ dm+
p ≤ %Tolm+ ×Mmax ∀p = 1, . . . , P (13)

J∑
j=1

K(j)∑
k=1

(
Ojks ×Bjk × xpjk

)
+ do−sp ≥ Omin ∀p = 1, . . . , P, ∀s = 1, . . . , S (14)

J∑
j=1

K(j)∑
k=1

(
Ojks ×Bjk × xpjk

)
− do+sp ≤ Omax ∀p = 1, . . . , P, ∀s = 1, . . . , S (15)

0 ≤ do−sp ≤ %Tolo− ×Omin ∀p = 1, . . . , P, ∀s = 1, . . . , S (16)

0 ≤ do+sp ≤ %Tolo+ ×Omax ∀p = 1, . . . , P, ∀s = 1, . . . , S (17)

Production per time period p is constrained to the production targets (10). The production includes ore

tons plus the waste tons. The ore tonnage is the material that has a positive economic value, while the

waste tonnage is the material without a positive economic value that needs to be extracted to allow access

to ore and ensure the continuity of ore production in the following periods. The number of trip decision

variables and truck capacities are used to calculate the total tonnage extracted per period. The proposed

model considers strict constraints for early periods and can be relaxed for the latest periods. To relax the

production constraints, the shortage dm−p with respect to the target planned is considered, along with their

respective tolerance of deviation (11).
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Traditionally, an upper bound is not used in production formulation because the cost of mining will limit

overproduction; however, in the current formulation the production must be limited because the capacity

shovel constraints maximize the production by sector to increase the utilization of the shovel (12). The upper

bound limits this maximization to keep close to the production targets. The deviation dm+
p with respect to the

upper bound total production is penalized in the objective function and their tolerance is considered (13).

As a production constraint, the ore tonnage should match the target ore production given by long-term

production schedules (14, 15). The shortage do−sp respects the target planned and the surplus do+sp , respects

the upper bound ore processing and are penalized in the objective function. The deviations are limited

by a percentage of ore production %Tol (16, 17). The upper bound is directly related to the ore tonnage

scheduled plus the maximum capacity pile of ore next to the delivering location. The exceeding material

from the upper bound may be considered as material that goes to the stockpile, and its tonnage is penalized

by the corresponding re-handled cost.

Ore production must match certain quality constraints, that is, the expected grades or quality of the

material at the end of the week or month must fit into specific ranges. This range depends on long-term

production schedule specifications. To meet this demand, a block xpjk is mined only if their grade helps to

satisfy the required quality given the available fleet. Assuming that the study case has E elements that

have economic value and D elements as deleterious elements, 2(E + D) quality constraints are needed to

meet quality conditions. The grade of the main commodity for ore tonnage should satisfy the constraints

(18, 19) and the quality deviations have tolerance (20, 21) to ensure a production schedule with low variable

average quality.

Ore production cannot have more than the required limits of contaminants because this contains D

deleterious elements. The constraints (22, 23) ensure that the ore delivered by period given S scenarios of

the grades have average grades less than Gδ+ and more than Gδ− for deleterious element δ = 1, . . . , D. The

quality deviations related with contaminants are also constrained to tolerance (24, 25) to ensure production

schedule with low variable average quality.

Blending of ore from sectors is carried out based on cutoffs that define the minimum quality that a block

k must have to be included in the blending process. If a block k has the chance of being used for blending

Ojks = 1; otherwise, the block k is allocated to the waste dump directly Ojks = 0. The quality constraints

are satisfied when the total ore production meets the required quality conditions set as targets.

2.3.2 Constraints for operational considerations

Operational considerations relate to the size of the equipment and accessibility restrictions that may require

feasible (in a mining sense) production schedule patterns that allow the available equipment to work efficiently

and streamline movements for safety reasons. The first operation consideration is the mining direction that

facilitates access to the sectors to be mined and it is:

xpjk −
p∑
τ=1

xτjk′ ≤ 0, ∀p = 1, . . . , P, ∀j = 1, . . . , J, ∀k = 1, . . . ,K(j), k′ ∈ Ωk′ (18)

where Ωk′ is the set of indexes representing blocks that are horizontal predecessors which must be mined

before block k to match the mining direction. A sector could be mined following eight directions, as shown

in Figure 2.

The second operational consideration is the mining width, which relates to the minimum width the

patterns of a short-term schedule period has that permits fleet access to the orebody and materials to be

extracted. Production schedules that do not account for mining width may deliver schedule patterns with

singular blocks of early periods surrounded by blocks from later period, as shown in Figure 3. This production

scheduling cannot be implemented as the blocks scheduled for Period 1, (blue squares) cannot be mined before

some blocks belonging to Period 2 (orange squares) are extracted.
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where 
'k is the set of indexes representing blocks that are horizontal predecessors which 

must be mined before block k to match the mining direction. A sector could be mined 

following eight directions, as shown in Figure 2. 

 

Figure 2: Eight mining directions considered by the formulation 
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Figure 3: Production scheduling without mining width constraints 

 

The following mining width constraints account for feasible extraction patterns and may 

force the mining of some blocks before a given block k as shown in Figure 3. 
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where 
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The following mining width constraints account for feasible extraction patterns and may 

force the mining of some blocks before a given block k as shown in Figure 3. 
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Figure 3: Production scheduling without mining width constraints.

The following mining width constraints account for feasible extraction patterns and may force the mining

of some blocks before a given block k as shown in Figure 3.

−2× xpjk′ − x
p
jk′′ + (2× v + υ)× xpjk − y

p
jk ≤ 0, ∀p = 1, . . . , P, ∀j = 1, . . . , J , ∀k = 1, . . . ,K(j)

k
′
∈ Ψk′ , k

′′
∈ Ψk′′ (19)

The mining width is discretized into υ blocks where Ψk′′ is its set of indexes. To mine a block k, υ

blocks may be mined at the same period or have been mined at previous periods. Ψk′ is the set of indexes

representing the adjacent blocks and priority of mining adjacent blocks ν is considered to avoid single blocks

from some periods being surrounded by blocks from different periods. Indeed, the blocks ν that surround

block k must be mined with twice the priority than the second term at Constraints (27) to avoid infeasible

mining patterns. The adjacent ν blocks belong to the inner window and the υ blocks belong to the outer

window in smooth constraints (Dimitrakopoulos and Ramazan 2004). These smooth mining constraints are

linked to mining width to provide feasible mining sequences that the fleet requires to operate efficiently. It is

important to remark that υ number of blocks that match mining width are variable through the sector. The

blocks that are located close to the border will require less υ blocks to be moved because some blocks were

already mined or are ‘air’ (non-physically existing) blocks.

The mining width constraints are relaxed because at some locations feasible solutions will require mining

only some υ blocks. The discrete decision variable ypjk will store the lack of mining blocks that match the

mining width considerations. This decision variable is penalized and minimized at the objective function.
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3 Application at an iron ore mine

The implementation of the proposed stochastic short-term mine production schedule formulation accounting

for future ore control data is the goal of this case study. The future ore control data is simulated, the orebody

uncertainty is updated with simulated future ore control data, and the influence of short-scale information in

the mine production scheduling and in the fleet allocation are evaluated. The proposed formulation is applied

at an iron deposit. Iron ore deposits are typical examples of a multi-element environment, where the main

production objective is to satisfy the customer quality requirement at a lower cost by optimally blending the

different sectors of a mine. More specifically, when the iron content is evaluated and must be within customer

specified limits there are also specific restrictions on the content of the so-called deleterious elements, such

as phosphorous (P), silica (SiO2), alumina (Al2O3) and the water and organic content measured as “loss

on ignition” (LOI). These deleterious elements influence the physical and chemical properties of the iron

ore product, significantly varies from customer to customer and contractual agreement to be met, and the

performance of the process it will be used for. For instance, phosphorous affects steel quality (added cost),

high silica and high alumina affect furnace efficiency, and the LOI affect fuel use and water in a hot furnace

for steel making.

The stochastic long-term production scheduling (SLTPS) is a relevant input parameter used to define the

target production of the short-term production scheduling (SSTPS). From the given long-term production

schedule of five periods (years), the sector that correspond to the first period will be used to schedule the

short-term mining sequence. This period or annual production is optimized into short time periods of twelve

months and the quality targets and tonnage of the SSTPS are given in Table 1.

Table 1: First year production quantity and quality requirements.

Period Ore Tonage Fe2O3 (%) P (%) SiO2 (%) Al2O3 (%) LOI (%)
1.00 14,000,000 57.1–59.4 0.032–0.038 4.6–5.2 0.9–1.05 9.5–11

Note: Ore/Waste cus-off grade is Fe>= 56%

From the first year tonnage in Table 1, the mine must produce iron ore of about 1.16 million iron tons

each month. The average grade of the related elements per month may be in the intervals of the first year

long-term ore quality plan; however, the spatial variability of these grades varies when monthly increments

are considered and along the mining direction and width. Ore quality intervals correspond to the upper

bound and lower bound per element over the total year. In practice, the spatial variability of the grade, the

mining direction and mining width make these quality targets hard to match on a monthly basis; however,

the total annual production should satisfy these upper and lower bounds per element. The twelve months

production may be extracted from 734 blocks of 25 meters by 25 meters of 3,525 to 21,150 tons, located

at three consecutive benches of twelve meters height each. The orebody uncertainty based on exploration

data is an input data for the sector to be extracted (sector B). S = 10 equally probable scenarios of the

multi-element grades are considered and filtered inside the limits of the given long-term first year production

schedule.

Additionally, two sets of data are provided from another sector that has similar geological domains and

was mined out (sector A), for exploration data and ore past control data. The information of the exploration

data contains 922 drillholes, the depth of which fluctuate from 6 meters to 108 meters and has the median

space distance of 48 meters. The information of ore control data has 18,181 blastholes with lengths of 6 m

and the median space distance of approximately 15 meters.

Besides the input data sets used to simulate future ore control data, the parameters related to the fleet are

required. The size of the fleet, mechanical availability and hauling time from in situ orebody to destination

are parameters used to allocated shovels and trucks at orebody sectors. For this case study i = 2 shovels and

l = 10 trucks are given as a fleet. The hour productivity or digging rate of each shovel fluctuates between 1

180 and 1 400 tonnes and each truck can haul from 100 to 136 tonnes each trip. The mechanical availability

of the fleet is considered as an uncertain parameter into the short-term production schedule formulation. The

distribution of mechanical availability per truck and per shovel is given as input parameters from historical
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is an input data for the sector to be extracted (Sector B). S = 10 equally probable 

scenarios of the multi-element grades are considered and filtered inside the limits of the 

given long-term first year production schedule.  

Additionally, two sets of data are provided from another sector that has similar geological 

domains and was mined out (sector A), for exploration data and ore past control data. The 

information of the exploration data contains 922 drillholes, the depth of which fluctuate 

from 6 meters to 108 meters and has the median space distance of 48 meters. The 

information of ore control data has 18 181 blastholes with lengths of 6 m and the median 

space distance of approximately 15 meters. 

 

 

Figure 4: Location of drillholes (sparse data) and blastholes (dense data) at sector A 
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tonnes and each truck can haul from 100 to 136 tonnes each trip. The mechanical 
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production schedule formulation. The distribution of mechanical availability per truck 

and per shovel is given as input parameters from historical data. Short-term production 

scheduling has the advantage of having some relevant information related to daily 

Length (m) 

Figure 4: Location of drillholes (sparse data) and blastholes (dense data) at sector A.

data. Short-term production scheduling has the advantage of having some relevant information related to

daily production that long-term production scheduling does not have. The hauling distance and the speed per

truck are important parameters that are available and support the allocation of the trucks; the truck hauling

time for each sector to the blending pad location or another destination may be calculated and are considered

as uncertain parameters into the short-term production schedule formulation. The shovel model, digging

rate and mechanical availability parameter distributions are given along with the track model, capacity and

mechanical availability parameter distribution per truck.

Table 2: Shovel model and mechanical availability parameter distribution.

Mechanical
Availability (%)

Model Shovel (iii) Production (Tonnes/hour) Mean Std.Dev.

HS6020 1 1180 83 4.5
HS6030 2 1400 83 4

Table 3: Truck model and mechanical availability parameter distribution.

Mechanical
Availability (%)

Model Truck (lll) Tonnes Mean Std.Dev.

Cat785D 501 1 136 83 5
Cat785D 502 2 136 83 4

: : : :
Cat785D 510 8 136 83 4
Cat77G 511 9 100 83 5
Cat77G 512 10 100 83 5

Short-term evaluation has the advantage of accounting for additional short-term information such as the

hauling distance that is available at the short-term evaluation. This supports the allocation of trucks because

the past records of speed per truck, truck hauling time per sector in a mine and blending pad location are

available. Additionally, the parameter distribution of the time that spends l truck from the sector j to the

destination is calculated as shown in Table 4.
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Table 4: Trucks cycle time and parameter distribution (ϕjlr).

Cycle time (minutes)

Sector (jjj) Truck (lll) Mean Std.Dev.

1 1 32 2.8
1 : : :
1 10 32 3.3
2 1 25 2.6
2 : : :
2 10 25 3.1
3 1 20 2.5
3 : : :
3 10 20 3

The cycle time ϕjlr from sector j to destination will be drawn r times from the respective distribution

and the maximum trips are calculated given the mechanical availability per truck and finally the target

production used at the short-term constraints formulation is given in Figure 5.
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Table 4: Trucks cycle time and parameter distribution ( jlr ) 

 

 

The cycle time jlr from sector j to destination will be drawn r times from the respective 

distribution and the maximum trips are calculated given the mechanical availability per 

truck and finally the target production used at the short-term constraints formulation is 

given in Figure . 

 

 

Figure 5: Target month production and parameters. 

Sector (j ) Truck (l ) Mean Std.Dev.

1 1 32 2.8

1 : : :

1 10 32 3.3

2 1 25 2.6

2 : : :

2 10 25 3.1

3 1 20 2.5

3 : : :

3 10 20 3

Cycle time (minutes)

Production Target Parameter Value Unit Penalty

Max production                  1,210,000 Tonnes 160

Min production                  1,100,000 Tonnes 160

Max Ore production                  1,210,000 Tonnes 16

Min Ore  production                  1,000,000 Tonnes 4

Allowed deviation tolerance <=10 %

Quality Requirement Iron Ore(Fe2O3) 57.1- 59.4 % 1

Phosphorous 0.032 - 0.038 % 10

Silica 4.6 - 5.2 % 10

Alumina 0.9 - 1.05 % 10

Loss on ignition 9.5 - 11 % 1

Allowed deviation tolerance <=10 %

Ore Definition Parameter Value Unit

Fe2O3 >= 56 %

Economic Parameters Parameter Value Unit

Mining Cost* 40 $/Tonne

Cycle time Cost 120 $/hour

Shovel Moving Cost 1000 $/100 meters

* Not include hauling cost

Figure 5: Target month production and parameters.

The total tonnage to be mined after twelve months of production is approximately 14,400,000 iron ore

tons, and given the ore cut-off >= 56% Fe2O3 almost all the material will be mined as ore. The targets of

production and actual ore production are quite similar. Note that a high penalty is applied to the lack of

mining from the expected monthly production because all material scheduled for the twelve months must be

mined to align the short-term production with the long-term planning expectations.

3.1 Joint-simulation of future ore control data

The mined out sector A has exploration data and past ore control data, used to joint-simulate the future ore

control data at sector B where only an orebody model based on exploration data is available. The six meters
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exploration data composites may be located at different locations than the dense ore control data, the height

of which is six meters. However, some composites of the exploration data may coincide at the same locations

of the ore control data, or be close enough to be considered “co-located”. The ore control data that intersect

or are located <= 1 meter close to the exploration data location is filtered, 411 “co-located” samples are

found.
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The total tonnage to be mined after twelve months of production is approximately 

14,400,000 iron ore tons, and given the ore cut-off >=56% Fe2O3 almost all the material 

will be mined as ore. The targets of production and actual ore production are quite 

similar. Note that a high penalty is applied to the lack of mining from the expected 

monthly production because all material scheduled for the twelve months must be mined 

to align the short-term production with the long-term planning expectations.  

3.1 Joint-simulation of future ore control data  

The mined out sector A has exploration data and past ore control data, used to joint-

simulate the future ore control data at sector B where only an orebody model based on 

exploration data is available. The six meters exploration data composites may be located 

at different locations than the dense ore control data, the height of which is six meters. 

However, some composites of the exploration data may coincide at the same locations of 

the ore control data, or be close enough to be considered “co-located”. The ore control 

data that intersect or are located <=1 meter close to the exploration data location is 

filtered, 411 “co-located” samples are found.  

 

 

Figure 6: Iron histogram of exploration data (left) and ore control data (right) 

 

The previous distributions show the Fe2O3 % data of the mined out sector A where 

exploration data and ore control data is available. The exploration data contains Fe2O3 

from 33.36% to 60.71%, P from 0.018% to 0.043%, SiO2 from 1.86% to 21.51%, Al2O3 

from 0.23% to 16.61% and LOI from 9.07% to 12.69%. On the other hand, the ore 

Figure 6: Iron histogram of exploration data (left) and ore control data (right).

The previous distributions show the Fe2O3 % data of the mined out sector A where exploration data and

ore control data is available. The exploration data contains Fe2O3 from 33.36% to 60.71%, P from 0.018%

to 0.043%, SiO2 from 1.86% to 21.51%, Al2O3 from 0.23% to 16.61% and LOI from 9.07% to 12.69%. On

the other hand, the ore control data contains grades of Fe2O3 that fluctuate from 34.67% to 60.67%, P from

0.016% to 0.05%, SiO2 from 1.9% to 23.01%, Al2O3 from 0.26% to 14.23% and LOI from 9.37% to 11.84%.

The spatial location of the co-located data is shown in Figure 7.
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control data contains grades of Fe2O3 that fluctuate from 34.67% to 60.67%, P from 

0.016% to 0.05%, SiO2 from 1.9% to 23.01%, Al2O3 from 0.26% to 14.23% and LOI 

from 9.37% to 11.84%. The spatial location of the co-located data is shown in Figure . 

 

 

Figure 7: Co-located iron element of exploration data (right) and ore control data (left) 

The difference between ore control data and exploration data per element is modeled and 

used to simulate future ore control data at similar geological domains. These differences 

will be named errors in this approach. The univariate distributions of these differences or 

errors are illustrated in Figure. The source of these errors are variable. For instance, the 

collar coordinates of the exploration data is usually well-measured; however, the survey 

angle that defines the location of each sample through the drillhole could be miss-

measured. In consequence, the exploration data may differ from the ore control data at 

closest location. The other source of difference between both data is the quality of 

sampling; the core sample of exploration data have more precise information about the 

structures, mineralogy, grade and alterations. On the other hand, the sampling of 

blastholes for ore control data cannot provide precise samples because the reverse 

circulation drilling may contaminate the samples and the quality of the collection of 

samples is subject to the team expertise and time sampling available (Pitard 2008).  
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Scale 1:400 m. Iron content (Fe2O3 %) 

 

Figure 7: Co-located iron element of exploration data (right) and ore control data (left).
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The difference between ore control data and exploration data per element is modeled and used to simulate

future ore control data at similar geological domains. These differences will be named errors in this approach.

The univariate distributions of these differences or errors are illustrated in Figure 8. The source of these errors

are variable. For instance, the collar coordinates of the exploration data is usually well-measured; however,

the survey angle that defines the location of each sample through the drillhole could be miss-measured. In

consequence, the exploration data may differ from the ore control data at closest location. The other source

of difference between both data is the quality of sampling; the core sample of exploration data have more

precise information about the structures, mineralogy, grade and alterations. On the other hand, the sampling

of blastholes for ore control data cannot provide precise samples because the reverse circulation drilling may
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Figure 8: Univariate distribution of errors at mined out sector A 

 

The errors are transformed into standard normal score and their correlation matrix for lag 

zero show that only three sets of errors have reasonable correlation. These correspond to 

Fe2O3, SiO2 and Al2O3 elements; otherwise, the set of errors that correspond to P and LOI 

elements show low correlation between them as well as to the previous set of elements. 

 

 

 

Figure 8: Univariate distribution of errors at mined out sector A.
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contaminate the samples and the quality of the collection of samples is subject to the team expertise and

time sampling available (Pitard 2008).

The errors are transformed into standard normal score and their correlation matrix for lag zero show that

only three sets of errors have reasonable correlation. These correspond to Fe2O3, SiO2 and Al2O3 elements;

otherwise, the set of errors that correspond to P and LOI elements show low correlation between them as

well as to the previous set of elements.

Figure 9 shows the illustration of the correlation between elements, the shadow part of Table 5 is considered

by the scatter plot graphs which are in original units.

Table 5: Correlation matrix of the multi-element error.

NS e Fe2O3 NS e P NS e Si02 NS e Al2O3 NS e LOI

NS e Fe2O3 1 0.1757 -0.9135 -0.7373 -0.1677
NS e P 0.1757 1 -0.2859 0.0596 0.0756
NS e Si02 -0.9135 -0.2859 1 0.4941 -0.092
NS e Al2O3 -0.7373 0.0596 0.4941 1 0.278
NS e LOI -0.1677 0.0756 -0.092 0.278 1
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Table 5: Correlation matrix of the multi-element error. 

 

 

The next figure shows the illustration of the correlation between elements, the shadow 

part of Table 5 is considered by the scatter plot graphs which are in original units.  

 

 

Figure 1: Scatter between errors  

The scatter plot maps show a negative slope, or negative correlation, between 

Fe2O3 and the deleterious elements SiO2 and Al2O3, that is, more iron quality by tonnage 

imply less silica and alumina quality by tonnage. The MAF procedure de-correlates this 

normal score errors at all lags and the back MAF transformation matrix is used to re-

NS e_Fe2O3 NS e_P NS e_SiO2 NS e_Al2O3 NS e_LOI

NS e_Fe2O3 1 0.1757 -0.9135 -0.7373 -0.1677

NS e_P 0.1757 1 -0.2859 0.0596 0.0756

NS e_SiO2 -0.9135 -0.2859 1 0.4941 -0.092

NS e_Al2O3 -0.7373 0.0596 0.4941 1 0.278

NS e_LOI -0.1677 0.0756 -0.092 0.278 1

Figure 9: Scatter between errors.

The scatter plot maps show a negative slope, or negative correlation, between Fe2O3 and the deleterious

elements SiO2 and Al2O3, that is, more iron quality by tonnage imply less silica and alumina quality by

tonnage. The MAF procedure de-correlates this normal score errors at all lags and the back MAF transfor-

mation matrix is used to re-correlate these errors. Then, the simulation of these MAF non-correlated factors
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are performed independently. The lag used is 48 meters which corresponds to the median spacing among

the data location. The spatial correlation of the MAF non-correlated factors is modeled to perform joint

simulation at sector B where only exploration data is available. The set of simulations per error element

recover their correlation by using the back MAF transformation matrix. The scatter plots of the errors at

sector B after the joint simulation are as follows:
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correlate these errors. Then, the simulation of these MAF non-correlated factors are 

performed independently. The lag used is 48 meters which corresponds to the median 

spacing among the data location. The spatial correlation of the MAF non-correlated 

factors is modeled to perform joint simulation at sector B where only exploration data is 

available. The set of simulations per error element recover their correlation by using the 

back MAF transformation matrix. The scatter plots of the errors at sector B after the joint 

simulation are as follows: 

 

 

Figure 10: Scatter between errors corresponding to realization 1 

 

The comparison of the input scatter plot between the errors of mined sector A ( Figure 1) 

and the scatter plot between the joint simulation errors of sector B (Figure ) show that the 

input correlation between errors are reproduced by the MAF simulation. Indeed, the 

spatial correlation between multi-element errors of exploration data and ore control data 

Figure 10: Scatter between errors corresponding to realization 1.

The comparison of the input scatter plot between the errors of mined sector A (Figure 9) and the scatter

plot between the joint simulation errors of sector B (Figure 10) show that the input correlation between

errors are reproduced by the MAF simulation. Indeed, the spatial correlation between multi-element errors

of exploration data and ore control data of historical data was used to generate the possible error that may

happen in the sector B where only exploration data is available.

The joint simulation of errors at nodes is scaled up to the block size. These error maps are added to the

simulation based on exploration data used to generate the map of possible ore control data at sector B per

element and update the orebody uncertainty. The simulation based on exploration data and the updated

orebody simulation that considers the correlation of the errors of mined sector are compared. The future ore

control data orebody model shows higher entropy than exploration data orebody model.

The mean of the iron increases slightly from 58.58 to 58.85 % and the future iron ore control data

distribution is wider than the available simulation based on exploration data. The mean of the phosphorous

increases from 0.032% to 0.034% and the resulting future phosphorous ore control data distribution obtains

a longer right tail of 0.047% than 0.038% for the available simulation based on exploration data. The silica

grade mean decreases from 5.12% to 5.03% and the silica future ore control data distribution becomes wider

than the available simulation based on exploration data. The alumina grade mean decreases from 0.96 to
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of historical data was used to generate the possible error that may happen in the sector B 

where only exploration data is available. 

The joint simulation of errors at nodes is scaled up to the block size. These error maps are 

added to the simulation based on exploration data used to generate the map of possible 

ore control data at sector B per element and update the orebody uncertainty. The 

simulation based on exploration data and the updated orebody simulation that considers 

the correlation of the errors of mined sector are compared. The future ore control data 

orebody model shows higher entropy than exploration data orebody model. 

 

 

 

Figure 2: Realization 1 upper bench Fe2O3 map of sector B base of exploration data 

(right) and future ore control data map (left) 

 

 

 

Figure 3: Realization 1 upper bench phosphorous map of sector B base of exploration 

data (right) and future ore control data map (left) 

 

The mean of the iron increases slightly from 58.58 to 58.85 % and the future iron ore 

control data distribution is wider than the available simulation based on exploration data. 

The mean of the phosphorous increases from 0.032% to 0.034% and the resulting future 

Iron content (Fe2O3 %) 

 

Phosphorous content (P %) 

Figure 11: Realization 1 upper bench Fe2O3 map of sector B base of exploration data (right) and future ore
control data map (left).
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of historical data was used to generate the possible error that may happen in the sector B 

where only exploration data is available. 

The joint simulation of errors at nodes is scaled up to the block size. These error maps are 

added to the simulation based on exploration data used to generate the map of possible 

ore control data at sector B per element and update the orebody uncertainty. The 

simulation based on exploration data and the updated orebody simulation that considers 

the correlation of the errors of mined sector are compared. The future ore control data 

orebody model shows higher entropy than exploration data orebody model. 

 

 

 

Figure 2: Realization 1 upper bench Fe2O3 map of sector B base of exploration data 

(right) and future ore control data map (left) 

 

 

 

Figure 3: Realization 1 upper bench phosphorous map of sector B base of exploration 

data (right) and future ore control data map (left) 

 

The mean of the iron increases slightly from 58.58 to 58.85 % and the future iron ore 

control data distribution is wider than the available simulation based on exploration data. 

The mean of the phosphorous increases from 0.032% to 0.034% and the resulting future 

Iron content (Fe2O3 %) 

 

Phosphorous content (P %) 

Figure 12: Realization 1 upper bench phosphorous map of sector B base of exploration data (right) and future
ore control data map (left).
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phosphorous ore control data distribution obtains a longer right tail of 0.047% than 

0.038% for the available simulation based on exploration data.  The silica grade mean 

decreases from 5.12% to 5.03% and the silica future ore control data distribution 

becomes wider than the available simulation based on exploration data.  The alumina 

grade mean decreases from 0.96 to 0.91% and the alumina future ore control data 

distribution becomes wider than the available simulation based on exploration data.  The 

grade mean of the loss of ignition increases from 9.99% to 10.02% and their distribution 

becomes wider than the available simulation based on exploration data. 

 

 

 

 

Figure 4: Realization 1 upper bench SiO2 map of sector B base of exploration data (right) 

and future ore control data map (left). 

 

 

 

Figure 5: Realization 1 upper bench Al2O3 map of sector B base of exploration data 

(right) and future ore control data map (left). 
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) 

Figure 13: Realization 1 upper bench SiO2 map of sector B base of exploration data (right) and future ore
control data map (left).

0.91% and the alumina future ore control data distribution becomes wider than the available simulation

based on exploration data. The grade mean of the loss of ignition increases from 9.99% to 10.02% and their

distribution becomes wider than the available simulation based on exploration data.
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phosphorous ore control data distribution obtains a longer right tail of 0.047% than 

0.038% for the available simulation based on exploration data.  The silica grade mean 

decreases from 5.12% to 5.03% and the silica future ore control data distribution 

becomes wider than the available simulation based on exploration data.  The alumina 

grade mean decreases from 0.96 to 0.91% and the alumina future ore control data 

distribution becomes wider than the available simulation based on exploration data.  The 

grade mean of the loss of ignition increases from 9.99% to 10.02% and their distribution 

becomes wider than the available simulation based on exploration data. 

 

 

 

 

Figure 4: Realization 1 upper bench SiO2 map of sector B base of exploration data (right) 

and future ore control data map (left). 

 

 

 

Figure 5: Realization 1 upper bench Al2O3 map of sector B base of exploration data 

(right) and future ore control data map (left). 
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Figure 14: Realization 1 upper bench Al2O3 map of sector B base of exploration data (right) and future ore
control data map (left).

 

 

 

 

168  

 

 

Figure 6: Realization 1 upper bench LOI map of sector B base of exploration data (right) 

and future ore control data map (left) 

  

3.2 Simulated future multi-element ore control data in 

stochastic short-term production scheduling and risk 

analysis 

The short-term production scheduling proposed incorporates operational considerations 

in order to deliver recoverable reserves for each period. Besides these considerations, the 

orebody model used in the short-term production evaluation must account for grade 

control process prior to production.   

The short-term production scheduling must consider relevant short-scale information to 

efficiently match target production. The orebody uncertainty based on sparse exploration 

data is updated using future multi-element ore control data. Then, ten simulations of the 

future multi-element ore control data and the e-type of these realizations per element are 

used as the input data for the monthly production scheduling. The influence of possible 

short-scale information in the stochastic short-term production scheduling is evaluated.  

  

LOI % 

Figure 15: Realization 1 upper bench LOI map of sector B base of exploration data (right) and future ore
control data map (left).

3.2 Simulated future multi-element ore control data in stochastic short-term produc-
tion scheduling and risk analysis

The short-term production scheduling proposed incorporates operational considerations in order to deliver

recoverable reserves for each period. Besides these considerations, the orebody model used in the short-term

production evaluation must account for grade control process prior to production.

The short-term production scheduling must consider relevant short-scale information to efficiently match

target production. The orebody uncertainty based on sparse exploration data is updated using future multi-

element ore control data. Then, ten simulations of the future multi-element ore control data and the e-type

of these realizations per element are used as the input data for the monthly production scheduling. The

influence of possible short-scale information in the stochastic short-term production scheduling is evaluated.

The patterns of the production schedule based on exploration data orebody uncertainty is quite different

from the production schedule patterns based on the future ore control data orebody uncertainty, that is, a

change in the quality of the multi-elements made a relevant impact on the decision of which sector to mine

per month, as expected.

It is important to remark that the stochastic production scheduling considers four source of uncertainty:

orebody uncertainty, shovel mechanic availability uncertainty, truck mechanic availability uncertainty and

hauling time uncertainty. The iron monthly average of the six first months does not match the upper bound;

however, the remaining six months do match the upper bound. The other two elements of phosphorous and

loss on ignition satisfy both upper bounds and lower bounds. Variable production schedule monthly average

grade is observed for all the elements because the future ore control data map simulations show an increase

of entropy or spatial variability of the grades.
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Figure 7: Stochastic production schedule upper bench accounting for ore body 

uncertainty based on exploration data (left) and based on future ore control data (right) 

 

The patterns of the production schedule based on exploration data orebody uncertainty is 

quite different from the production schedule patterns based on the future ore control data 

orebody uncertainty, that is, a change in the quality of the multi-elements made a relevant 

impact on the decision of which sector to mine per month, as expected.  

It is important to remark that the stochastic production scheduling considers four source 

of uncertainty: orebody uncertainty, shovel mechanic availability uncertainty, truck 

mechanic availability uncertainty and hauling time uncertainty. The iron monthly average 

of the six first months does not match the upper bound; however, the remaining six 

months do match the upper bound. The other two elements of phosphorous and loss on 

ignition satisfy both upper bounds and lower bounds. Variable production schedule 

monthly average grade is observed for all the elements because the future ore control data 

map simulations show an increase of entropy or spatial variability of the grades. 

  

Figure 16: Stochastic production schedule upper bench accounting for ore body uncertainty based on explo-
ration data (left) and based on future ore control data (right). 
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Figure 8: Short-term schedule solution for iron (top), phosphorous (middle) and LOI 

(bottom) where (red lines: upper and lower bounds; black line: deterministic solution; 

blue lines stochastic solution and risk profile) 
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Figure 17: Short-term schedule solution for iron (top), phosphorous (middle) and LOI (bottom) where (red
lines: upper and lower bounds; black line: deterministic solution; blue lines stochastic solution and risk
profile).
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Figure 9: Short-term schedule solution for silica (top) and alumina (middle) where (red 

lines: upper and lower bounds; black line: deterministic solution; blue lines stochastic 

solution and risk profile) 

 

 

Figure 109: Short-term schedule solution for ore tonnes (red lines: upper and lower 

bounds; black line: deterministic solution; blue lines stochastic solution and risk profile) 
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Figure 18: Short-term schedule solution for silica (top) and alumina (middle) where (red lines: upper and
lower bounds; black line: deterministic solution; blue lines stochastic solution and risk profile).
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Figure 9: Short-term schedule solution for silica (top) and alumina (middle) where (red 

lines: upper and lower bounds; black line: deterministic solution; blue lines stochastic 

solution and risk profile) 

 

 

Figure 109: Short-term schedule solution for ore tonnes (red lines: upper and lower 

bounds; black line: deterministic solution; blue lines stochastic solution and risk profile) 
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Figure 19: Short-term schedule solution for ore tonnes (red lines: upper and lower bounds; black line:
deterministic solution; blue lines stochastic solution and risk profile).

The silica and alumina quality of the monthly production schedule barely match their quality targets.

The same effect was observed by the production schedule based on exploration data orebody uncertainty

with the same elements; however, the average grade of the monthly production taking into account future

data is more variable.

The monthly ore tonnage of the stochastic production schedule accounting for future ore control data

orebody uncertainty and fleet parameters source of uncertainty are less variable than the deterministic one

that does not consider any source of uncertainty. The possible lack of matching quality targets in some periods

is expected since the upper and lower bounds provided by the long-term production schedule was determined

based on the exploration of sparse data orebody uncertainty where the short-scale information was not taken
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The silica and alumina quality of the monthly production schedule barely match 

their quality targets. The same effect was observed by the production schedule based on 

exploration data orebody uncertainty with the same elements; however, the average grade 

of the monthly production taking into account future data is more variable.  

The monthly ore tonnage of the stochastic production schedule accounting for 

future ore control data orebody uncertainty and fleet parameters source of uncertainty are 

less variable than the deterministic one that does not consider any source of uncertainty. 

The possible lack of matching quality targets in some periods is expected since the upper 

and lower bounds provided by the long-term production schedule was determined based 

on the exploration of sparse data orebody uncertainty where the short-scale information 

was not taken into account. The utilization of the fleet when the source of uncertainty 

related to the multi-element grade considers the future ore control data is showed in 

Figure . 

 

 

Figure 20: The risk profiles of the stochastic production schedule fleet utilization (blue) 

and the deterministic production schedule fleet utilization (black) 
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Figure 20: The risk profiles of the stochastic production schedule fleet utilization (blue) and the deterministic
production schedule fleet utilization (black).

into account. The utilization of the fleet when the source of uncertainty related to the multi-element grade

considers the future ore control data is showed in Figure 20.

The utilization of the trucks and shovels accounting for future ore control data orebody uncertainty

and fleet parameters source of uncertainty is slightly higher and less variable than the utilization of the

deterministic production schedule that does not account for any source of uncertainty. When the local

grade variability of the multi-elements is higher, the stochastic production schedule formulation allocates

more efficiently than the deterministic one, which allocates one or three more trucks per month with lower

utilization. The allocation of an optimal number of trucks will reduce the overall mining cost.

Testing performance of the stochastic short-term production scheduling that account for future short-scale

information (blue) against the production scheduling without any source of uncertainty (black).

The fleet utilization of the stochastic production schedule which account for future ore control data

orebody uncertainty is higher and less variable than the stochastic production schedule fleet utilization that

accounts for exploration data orebody uncertainty. The stochastic production scheduling seems more robust

than the deterministic one in handling high local variability of the multi-elements that was provided by the

simulation of the future ore control data. Less variable monthly cost is observed.

The cumulated cost of the stochastic monthly production schedule is around 15 million CAD dollars less

than that of the production schedule without any source of uncertainty accounted for. This proportion of

difference was also observed for a stochastic production schedule that accounts for orebody uncertainty based

on exploration data.
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The utilization of the trucks and shovels accounting for future ore control data 

orebody uncertainty and fleet parameters source of uncertainty is slightly higher and less 

variable than the utilization of the deterministic production schedule that does not 

account for any source of uncertainty. When the local grade variability of the multi-

elements is higher, the stochastic production schedule formulation allocates more 

efficiently than the deterministic one, which allocates one or three more trucks per month 

with lower utilization. The allocation of an optimal number of trucks will reduce the 

overall mining cost. 

 

Figure 21: Available trucks (red), number of trucks allocated accounting for four sources 

of uncertainty (blue) and without accounting for uncertainty (black) 

 

Figure 11: Testing performance of the stochastic short-term production scheduling that 

account for future short-scale information (blue) against the production scheduling 

without any source of uncertainty (black). 
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Figure 21: Available trucks (red), number of trucks allocated accounting for four sources of uncertainty (blue)
and without accounting for uncertainty (black).
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The fleet utilization of the stochastic production schedule which account for future ore 

control data orebody uncertainty is higher and less variable than the stochastic production 

schedule fleet utilization that accounts for exploration data orebody uncertainty. The 

stochastic production scheduling seems more robust than the deterministic one in 

handling high local variability of the multi-elements that was provided by the simulation 

of the future ore control data. Less variable monthly cost is observed. 

 

 

Figure 12: Cumulative cost of the short-term production scheduling that account for 

orebody uncertainty based on exploration data (left) and orebody uncertainty based on 

future ore control data (right). 

 

The cumulated cost of the stochastic monthly production schedule is around 15 million 

CAD dollars less than that of the production schedule without any source of uncertainty 

accounted for. This proportion of difference was also observed for a stochastic 

production schedule that accounts for orebody uncertainty based on exploration data.. 

4 Conclusions  
The orebody uncertainty is updated by simulated future ore control data to account for 

short-scale information. The alternative, based on the errors between exploration data and 

historical ore control data used to simulate future ore control data at a similar domain 

where only exploration data is available, was implemented. The updated orebody 

uncertainty was used to optimize the short-term production to better match the ore quality 

targets at the time of production. 
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Figure 22: Cumulative cost of the short-term production scheduling that account for orebody uncertainty
based on exploration data (left) and orebody uncertainty based on future ore control data (right).

4 Conclusions

The orebody uncertainty is updated by simulated future ore control data to account for short-scale infor-

mation. The alternative, based on the errors between exploration data and historical ore control data used

to simulate future ore control data at a similar domain where only exploration data is available, was imple-

mented. The updated orebody uncertainty was used to optimize the short-term production to better match

the ore quality targets at the time of production.

The local spatial variability or entropy of the future ore control data orebody model maps is higher than

the exploration data orebody model maps. When the spatial variability of the multi-element grade is higher,

the proposed stochastic production scheduling approach delivers high fleet utilization, more efficient truck

allocation and low variable production monthly average in: grade, ore tonnage and cost than the deterministic

production scheduling, which does not account for any source of uncertainty.

References
Alarie, S., and M. Gamache. Overview of Solution Strategies Used in truck Dispatching Systems for Open Pit Mines.

International Journal of Surface Mining, Reclamation and Environment, 16(1), 2002, 59–76.

Benndorf, J. Efficient Sequential Simulation Methods with Implications to Long Term Production Sheduling. MPhil
Thesis. The University of Queensland, 2005.

Birge, J.R., and F. Louveaux. Introduction to Stochastic Programming. Springer, New York, 1997.

David, M. Geostatistical Ore Reserve Estimation. Elsevier Scientific Publishing Company, Netherland, 1977.



Les Cahiers du GERAD G–2015–88 23

Desbarats, A.J., and R. Dimitrakopoulos. Geostatistical simulation of regionalized pore-size distribution using
min/max autocorrelation factors. Mathematical Geology, 2000, 919–941.

Deutsch, C.V., and A. Journel. GSLIB: Geostatistical Softare Library and User’s Guide. 2nd Edition. Oxford
University Press, New York, 1998.

Dimitrakopoulos, R., and A. Jewbali. Joint stochastic optimisation of short and long term mine production planning:
Method and application in a large operating gold mine. Mining Technology, 122(2), 2013, 101–109.

Dimitrakopoulos, R., and S. Ramazan. Stochastic integer programming for optimizing long-term production sched-
ules of open pit mines: Methods, application and value of stochastic solutions. IMM Transactions, Mining
Technology, 117, 2008, 155–160.

Dimitrakopoulos, R., and S. Ramazan. Uncertainty-based production scheduling in open pit mining. Transactions
of the Society for Mining, Metallurgy, and Exploration, Inc., 316, 2004, 106–112.

Dowd, P.A. Risk in minerals projects: Analysis, perception and management. Transactions of the Institution of
Mining and Metallurgy, Section A Mining Technology, 106, 1997, 9–18.

Eivazy, H., and H. Askari-Nasab. A mixed integer linear programming model for short-term open pit mine operation
scheduling. Transactions of the Institution of Mining and Metallurgy, 121, 2012, 97–108.

Fytas, K., and P.N. Calder. A computerized model of open pit short and long range production scheduling. 19th
International Symposium 1986 – Application of Computers and Operations Research. SME, 1986, 11.

Gershon, M.E. Mine scheduling optimization with mixed integer programming. Society of Mining Engineers of
AIME, 82 324, 1982, 1–6.

Godoy, M., and R. Dimitrakopoulos. Managing risk and waste mining in long-term. SME Transactions, 2004, 43–45.

Goovaerts, P. Geostatistics for Natural Resources Evaluation. Oxford University Press, New York, 1997.

Guardiano, F.B., H. Parker, and E.H. Isaaks. Recoverable reserves and conditional simulation – A case study at
Fort Knox gold project. MRDI, 1997.

Hustrulid, W., and M. Kuchta. Open Pit Mine Planning & Design. Taylor & Francis/Balkema, London, 1995.

IBM. http://publib.boulder.ibm.com. 2010. (accessed April 19, 2012)

Isaaks, E.H., and R.M. Srivastava. An introduction to Applied Geostatistics. Oxford University Press, New York,
1989.

Jewbali, A. Modeling Geological Uncertainty for Stochastic Short-Term Production Scheuling in Open Pit Metal
Mines. PhD. Thesis, University of Queensland, 2006.

Johnson, R.A., and D.W. Wichern. Applied Multivariate Statisticsl Analysis. Pearson Education, Inc., Toronto,
2007.

Johnson, T.B. Optimum Open-Pit Mine Production Scheduling. International Symposium on Computer Applications
and Operations Research in the Mining Industry. American Institute of Mining, Metallurgical, and Petroleum
Engineers, New York, 1969, 24.

Journel, A.G. Resampling from Stochastic Simulation. Environmental and Ecological Statistics, 1, 1994, 63–91.

Journel, A.G., and P.C. Kyriakidis. Evaluation of Mineral Reserves: A Simulation Approach. Oxford University
Press, Inc., New York, 2004.

Kahle, M.B., and F.J. Scheafter. Open Pit Mine Planning and Design. AIME, 1979.

Khosrowshahi, S., W.J. Shaw, and G.A. Yeates. Quantification of risk using simulation of the chain of mining –
Case study at Escondida copper Chile. Orebody modelling and strategic mine planning: Uncertainty and risk
management models, Spectrum Series 14, The Australasian Institute of Mining and Metallurgy, 2007, 33–41.

Knudsen, H.P. Blathole samples – A source of bias? Mining Engineering, 1992, 251–253.

Kumral, M., and P. Dowd. Short term mine production scheduling for industrial minerals using multi-objective
simulated annealing. SME Transactions, 2002, 731–742.

Lane, K.F. The Economic Definition of Ore: Cut Off Grades in Theory and Practice. Mining Journal Books, London,
1991.

L’Heureux, G., M. Gamache, and F. Soumis. Mixed integer programming model for short-term planning in open-pit
mines. Mining Technology, 122(2), 2013, 101–109.

Peattie, R. Future data and recoverable reserve estimation. MPhil Thesis, University of Queensland, 2007.

Peattie, R., and R. Dimitrakopoulos. Forecasting recoverable ore reserves and their uncertainty at Morila Gold
Deposit, Mali: An efficient simulation approach and future grade control drilling. Mathematical Geosciences,
45(8), 2013, 1005–1020.

http://publib.boulder.ibm.com


24 G–2015–88 Les Cahiers du GERAD

Pitard, F. Blathole sampling for grade control-The many problems and solutions. Sampling Conference. Perth, 2008,
15–21.

Ramazan, S., and R. Dimitrakopoulos. Recent applications of operations research in open pit mining. SME Trans-
action, 316, 2004, 73–78.

Ramazan, S., and R. Dimitrakopoulos. Traditional and new MIP models for production scheduling with in-situ
grade variability. International Journal of Surface Mining, Reclamation and Environment, 18, 2004, 85–98.

Ravenscroft, P.J. Risk analysis for mine scheduling by conditional simulation. Trans. Instn. Min. Metall., 1992,
104–108.

Rendu, J-M. Orebody modelling, mine planning, reserve evaluation and the regulatory environment. In proceedings,
Orebody modelling and strategic mine planning: Uncertainty and risk management models, Spectrum Series
14, 117, AusIMM, 2007, 385–392.

Schleifer, J. Short range planning: from scheduling to sequencing. 26th Proceedings of the Application of Computers
and Operations Research in the Mineral Industry, 1996, 183–188.

Schrijver, A. Theory of Linear and Integer Programming. John Wiley & Sons, Inc., Chichester, 1986.

Souza, M.J.F., I.M. Coelho, S. Ribas, H.G. Santos, and L.H.C. Merschmann. A hybrid heuristic algorithm for
the open pit mining operational planning problem. European Journal of Operational Research, 207(2), 2010,
1041–1051.

Strunk Jr., W., and E.B. White. The Elements of Style. Fiftieth Anniversary. Pearson Education, Inc., New York,
2009.

Switzer, P., and A.A. Green. Min/Max autocorrelataion factors for multivariate spatial imaging. Technical Report
No 6, Dept. of Statistics, Stanford University, 1984, 14 p.

Topal, E., and S. Ramazan. A new MIP model for mine equipment scheduling by minimizing maintenance cost.
European Journal of Operational Research, 207(2), 2010, 1065–1071.

Topal, E., and S. Ramazan. Mining trucks scgeduling with stochastic maitenance cost. Journal of Coal Science &
Engineering, 18(3), 2012, 313–319.

Vallée, M. Mineral resource + engineering, economic and legal feasbility = ore reserve. CIM Bulletin, 93(1038),
2000, 53–61.

Vargas, M., N. Morales, E. Rubio, and P. Mora. Optimal open pit short term planning under uncertainty and
blending constraints. University of Chile, Santiago, Internal Report, 2008.

Wackernagel, H. Multivariate Geostatistics: An Introduction with Application. Springer-Verlag, Berlin, Heidelberg,
2003.

Wilke, F.L, and W. Woehrle. A model for short-range planning and monitoring of mining in potassium deposits of
level formation. 16th Application of Computers and Operations Research in the Mineral Industry – 1979, SME,
1979, 304–312.

Wilke, F.L., and Th. Reimer. Optimization the short term production schedule for an open pit iron mining operation.
15th APCOM Symposium, Brisbane, Australia, 1977, 425–433.

Wolsey, L.A. Integer Programming. John Wiley & Sons, Inc., 1998.


	Introduction
	Method
	Stage 1: Future multi-element ore control data
	Stage 2: Stochastic short-term production scheduling 
	Objective function
	 Constraints for Production and fleet allocation
	Constraints for operational considerations 


	 Application at an iron ore mine
	 Joint-simulation of future ore control data 
	Simulated future multi-element ore control data in stochastic short-term production scheduling and risk analysis

	Conclusions

