
Les Cahiers du GERAD ISSN: 0711–2440

Random forests for non-homogeneous
Poisson processes with excess zeros

W. Mathlouthi, D. Larocque,
M. Fredette

G–2015–77

August 2015
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auteurs.

La publication de ces rapports de recherche est rendue possible
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Abstract: We propose a method to build trees and forests when the response is a non-homogeneous Poisson
process with excess zeros, based on two forests. The first one is used to estimate the probability of having a
zero. The second forest is used to estimate the Poisson parameter using trees built with a splitting criterion
derived from the zero truncated non-homogeneous Poisson likelihood. Simulation studies show that the
proposed method performs well in hurdle (zero-altered) and zero-inflated settings.
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1 Introduction

It is often of interest to model the number of times that an event occurs during a given period of time. Such

count data, taking only non-negative integer values are encountered in many situations. Some examples are

the number of visits to the emergency unit in a hospital, the number or purchases made by a client, and the

number of accidents on a road. Many parametric models are available to study the impact of covariates on

the count response, including the Poisson and negative binomial models; see Cook and Lawless (2007) and

Hilbe (2011). Sometimes, the number of zeros in the response is large and cannot be adequately accounted

by the usual models and the available covariates. Hurdle models, also called zero-altered models (Mullahy,

1986), and zero-inflated models (Lambert, 1992) were designed to handle such situations.

In this paper, we are interested in tree-based methods (Breiman et al., 1984) and more particularly in

random forests (Breiman, 2001). The main advantage of these methods is their flexibility, meaning they can

adapt to the data at hand without having to specify a parametric form. Within the CART (Classification and

Regression Tree) paradigm, Poisson regression trees can be fitted in R (R Core Team, 2015) with the package

rpart (Therneau et al., 2014). The GUIDE approach (Loh, 2002) provides another way to build Poisson trees

using the splitting rule of Chaudhuri et al. (1995). But these methods are not aimed at handling excess zeros

in the response. Lee and Jin (2006) proposed a tree-based method for the excess zero case. They use the zero-

inflated Poisson distribution to derive a splitting criterion. However, all the methods discussed above work

under the basic assumption that the Poisson process generating these count data is homogeneous with respect

to time. That is, the rate function of the response, given the covariates, does not vary with time. Mathlouthi,

Fredette and Larocque (2015) developed tree-based methods for a response from a non–homogeneous Poisson

process, but their method is not aimed at the excess zero case. In this paper, we present a method that

extends both the Lee and Jin (2006) and Mathlouthi, Fredette and Larocque (2015) methods. We propose

a method to build trees and forests for a non-homogeneous Poisson response with excess zeros. Hence, the

method can handle simultaneously a non-homogeneous rate function and excess zeros in the response.

The paper is organized as follows. Section 2 describes the usual parametric models for a Poisson response

with excess zeros. Section 3 describes the basic tree and forest methodology and the method of Lee and

Jin (2006). Section 4 presents the proposed methods. The results from a simulation study are presented in

Section 5. Concluding remarks and possibilities for future work are given in Section 6.

2 Zero-altered Poisson (ZAP) and zero-inflated Poisson (ZIP) regres-
sion model

We are interesting in modeling a count response Y with a set of q covariates X = (X1, . . . , Xq)
′. In Poisson

hurdle, or zero-altered Poisson (ZAP), and zero-inflated Poisson (ZIP) models, it is assumed that Y follows a

Poisson distribution modified to account for an excess number of zeros. We will denote by λ, the parameter of

the Poisson distribution, by p, the probability of having an excess (with respect to the Poisson distribution)

0, and by θ, the total probability of having a 0. These parameters can depend on the covariates and it will

be clear form the context whether we are talking about the generic parameters or the covariate dependent

parameters. We note that the Poisson variable used in this section could also represent the total number of

events obtained from a Poisson process. The parameter λ then represents the integral of the corresponding

rate function over a given time interval.

In the ZAP regression model, it is assumed that Y = 0 with probability θ (0 ≤ θ < 1), and that Y follows

a zero truncated Poisson distribution with parameter λ, (λ > 0), given that Y > 0. Consequently,

P (Y = y) =

{
θ y = 0
(1−θ) exp(−λ)λy

(1−exp(−λ))y! y = 1, 2, . . .
(1)
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Many possibilities are available to link the covariates to the response, through p and θ. The common link

functions are given by:

log(λ) = X′β and log

(
θ

1− θ

)
= X′γ, (2)

where β, γ are vectors of parameters to be estimated.

In the ZIP regression model, it is assumed that Y = 0 with probability p, (0 ≤ p < 1) and that Y follows

a Poisson distribution with parameter λ, (λ > 0), with probability 1 − p. Hence, there are two sources for

the zeros. Consequently,

P (Y = y) =

{
p+ (1− p) exp(−λ) y = 0
(1− p) exp(−λ)λy/y! y = 1, 2, . . .

(3)

Again, many possibilities are available to link the covariates to the response. The common link functions

are the same as for the ZAP model:

log(λ) = X′β and log

(
p

1− p

)
= X′γ, (4)

where β, γ are vectors of parameters to be estimated. Note that different covariates can be used for the

(excess) zero part and the Poisson part of these models, but we use this notation for simplicity.

Note that, without covariates, models (1) and (3) are just two parameterizations of the same model. The

difference between the two approaches lies in the way the covariates are linked to the parameters. In the

ZAP model, the covariates are linked directly to the total probability of having a 0 while, for the ZIP model,

they are linked directly to the probability of having an excess 0 with respect to the Poisson distribution.

One key observation is that the ZAP model is formed by two models. Consequently, the covariates can

have different effects on the zero and the Poisson parts. The same is true for the ZIP model, except that this

time, the covariates can have different effects on the excess zero and the Poisson parts.

Assume that a sample of size n is available. Namely, (Yi,Xi), i = 1, . . . , n, where Xi = (X1i, . . . , Xqi)
′.

Then the parameters of the ZAP and ZIP regression models can be estimated with maximum likelihood. It

is straightforward to do it with the ZAP model because the likelihood for the zero and the zero truncated

Poisson parts can be factored. Hence, the two models can be fitted separately. Things are a slightly more

complex with the ZIP model but Lambert (1992) proposed an estimation method based on the EM algorithm.

3 Trees and forests

3.1 Basic tree and forest methodology

We assume the reader is familiar with the CART paradigm (Breiman et al., 1984) as only a brief description

is given here. Tree-based methods partition the covariates space by splitting it recursively with rules based

on covariates. The basic ingredient for building a tree is the splitting criterion, which is problem dependent.

For example, the least-squares splitting criterion is the usual one when the response is continuous. Suppose

we are at a given node t and we want to split it into two children nodes, tL (left node) and tR (right node).

The best split is chosen among all possible binary splits obtained from a covariate. If x is continuous (or at

least ordinal), the possible splits take the form I(x ≤ c). If x is categorical, the possible splits take the form

x ∈ {c1, . . . , cs} where {c1, . . . , cs} is a subset of the possible values of x. The best split is the one maximizing

the splitting criterion. If a single tree is required, than the usual procedure builds a large tree and then uses

a pruning algorithm to avoid over-fitting. However, it is now well-established that using an ensemble of trees

is generally preferable to a single tree. One the most popular ensemble method is random forests, introduced

by Breiman (2001). Here we describe the generic random forest algorithm that will be used in this paper:
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1. Draw B bootstrap samples from the original data.

2. For each bootstrap sample, grow a tree with the selected splitting criterion. At each node, randomly

select q0 out of q covariates where q0 ≤ q and is a user-specified parameter. Splitting ends when

a stopping criterion is reached; for instance, when a node has less than a predetermined number of

observations. No pruning is performed.

3. To obtain an estimation of a parameter (or a prediction) for a new observation, take the average

estimates (predictions) from the B trees.

3.2 Maximum likelihood splitting criterion

A simple method for deriving a splitting criterion is to use the log-likelihood of an adequate two-node model;

see Su, Wang and Fan (2004) and Bou-Hamad et al. (2009) for some examples. Basically, the best split at

a given node is the one that maximizes the observed log-likelihood, i.e. the one evaluated at the maximum

likelihood estimates, among all allowable splits. Moreover, if the parameters are estimated separately in the

two children nodes, then the best split is the one that maximizes

L̂L(left node) + L̂L(right node), (5)

where L̂L(left node) and L̂L(right node) are the observed log-likelihood in the left and right nodes, respec-

tively.

3.3 ZIP tree of Lee and Jin (2006)

Lee and Jin (2006) proposed a decision tree method for zero-inflated count data based on the CART paradigm.

They call it a ZIP tree. They basically fit the ZIP distribution (3) separately in the two children nodes, and use

(5) as the splitting criterion. Let N+ denote the number of observations such that Yi > 0. The log-likelihood

function in that case is

LLZIP = (n−N+) log(p+ (1− p) exp(−λ)) +N+(log(1− p)− λ)

+
∑
Yi>0

Yi log(λ)−
∑
Yi>0

log(Yi!). (6)

One crucial observation is that the covariates are used to find the tree structure for both the excess zero

part and the Poisson part jointly. Hence a single model is used to model both parts and a single tree is built.

But as we just saw, the ZIP regression model (3) uses two models, one for the excess zero part and one for

the Poisson part. Hence the covariates can have different effects on both parts. This is why we propose in

this paper a new approach, more in the spirit of the ZIP and ZAP models, where two models are used.

4 Random forests for Poisson data with excess zeros

In the ZAP model, assume that, instead of a rigid parametric model like (2), we use a general nonparametric

model given by

θ = fθ(X) and λ = fλ(X), (7)

where fθ and fλ are general unknown link functions. Similarly, assume a same general setup for the ZIP

model, given by

p = gp(X) and λ = gλ(X), (8)

where gp and gλ are general unknown link functions. Since θ = gp(X)+(1−gp(X)) exp(−gλ(X)), we see that

in this general nonparametric framework, the ZIP and ZAP models are again only different parameterizations

of the same model. Indeed, we can just define fθ(X) = gp(X) + (1 − gp(X)) exp(−gλ(X)) in (7). Hence,

it does not matter whether we specify model (7) or (8). Namely, if a general nonparametric and flexible

procedure is used to estimate fθ and fλ in (7), it can be used to obtain estimates

θ̂ = f̂θ(X) and λ̂ = f̂λ(X), (9)
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for a given value of X. But it can also be used to estimate p through the equation θ̂ = p̂+ (1− p̂) exp(−λ̂).

Solving for p̂ gives p̂ = (θ̂ − exp(−λ̂))/(1 − exp(−λ̂)). However, since this value can be less than 0, we will

use p̂ = max(0, (θ̂ − exp(−λ̂))/(1− exp(−λ̂))), in this paper. The key point is that the method proposed in

this paper is valid for both the ZAP and the ZIP settings.

4.1 Description of the basic method

The basic idea is to fit two random forests, one for the zero part to estimate fθ, and one for the observations

that are greater than 0 to estimate fλ. More specifically, for the zero part, the response is I(Y > 0), that

is the binary variable taking a value of 1 if Y > 0 and the value 0 if Y = 0. This is a standard problem

and many implementations are available in R, for example through the packages randomForest (Liaw and

Wiener, 2002) and randomForestSRC (Ishwaran, Kogalur, Blackstone and Lauer 2008, Ishwaran and Kogalur,

2015). For the the observations that are greater than 0, we propose a forest of trees built using a splitting

criterion derived from the zero truncated Poisson likelihood. Only the observations where Y > 0 are used.

Assume there are N+ such observations denoted by Y +
1 , . . . , Y

+
N+ . The probability mass function from the

truncated Poisson distribution is

P (Y + = y) = P (Y = y|Y > 0) =
exp(−λ)λy

y!(1− exp(−λ))
y = 1, 2, . . . (10)

Hence, the log-likelihood function for the sample is

LL+ = −N+ log(1− exp(−λ)) + log(λ)

N+∑
i=1

Y +
i −N

+λ−
N+∑
i=1

log(Y +
i !). (11)

The estimated λ is obtained by solving ∂LL+/∂λ = 0 which reduces to∑N+

i=1 Y
+
i

N+
=

λ

1− exp(−λ)
. (12)

For a given candidate split, the zero truncated Poisson model is fitted separately in the two children nodes

and the splitting criterion is given by (5) with (11) as the log-likelihood function.

4.2 Extension to the non-homogeneous case

Mathlouthi, Fredette and Larocque (2015) proposed tree and random forest methods for non-homogeneous

Poisson processes. It was achieved by considering a model with a piecewise constant rate function. Here

we extend this method to the case of a non-homogeneous Poisson process with excess zeros. We are again

interested in a count response but this time we want to allow the rate function to vary over time. Assume

we have a fixed time period T and assume that it is partitioned into K subperiods, T1, . . . , TK , such that

K⋃
k=1

Tk = T and Ti ∩ Tj = ∅ for all i 6= j.

Each subperiod Tk may be an interval or a finite union of disjoint intervals. Denote byNk the number of events

in subperiod Tk. We assume that Nk follows a Poisson distribution with parameter λk and that all the Nk’s

are independent. The K subperiods can be adjacent time intervals (a0, a1], (a1, a2], . . . , (aK−1, aK ] covering

the whole period T = (a0, aK ]. But the above formulation is more general than that and the subperiods

can represent non–adjacent periods. For example, they could represent days (T1=all the Mondays in a year,

T2=all the Tuesdays in a year and so on). The total number of events observed over T is denoted by Y ,

that is

Y =

K∑
k=1

Nk.

We are interested in allowing Y to have excess zeros with respect to the non-homogeneous Poisson process

described above. Once again, the idea is to fit two random forests, one to estimate P (Y = 0), that is the
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probability that no events at all occurred, and one for the observations with at least one event. For the

zero part, the binary response is I(Y > 0), which can be fitted by standard algorithm as described in the

preceding section. For the the observations with at least one event, we propose a forest of trees built using

a splitting criterion derived from a zero truncated non-homogeneous Poisson model likelihood, as described

next. Let (n1, . . . , nK) be non-negative integers such that at least one of them is greater than 0. The joint

probability mass function of (N1, . . . , NK) given that at least one event occurred is

P (N1 = n1, . . . , NK = nk|Y > 0) =
1

(1− exp(−λ))

K∏
k=1

exp(−λk)λnk

k /nk! (13)

where λ =
∑K
k=1 λk.

For a sample, (Ni1, . . . , NiK), i = 1, . . . , N , assume we have N+ observations such that Yi =
∑K
k=1Nik >

0, then the log-likelihood function for those observations is

LL+
NH = −N+ log(1− exp(−λ)) +

K∑
k=1

log(λk)

N+∑
i=1

Nik −N+λ−
K∑
k=1

N+∑
i=1

log(Nik!). (14)

Note that if we have a single time period, i.e., K = 1, then Yi = Ni1 and we fall back to the setting of

Section 4.1. The estimated λk’s are obtained by solving the K equations ∂LL+
NH/∂λk = 0, giving

N+∑
i=1

Nik
N+

=
λk

1− exp
(
−
∑K
j=1 λj

) , k = 1, . . . ,K.

This system can be solved with the Newton-Raphson algorithm. For a given candidate split, the zero

truncated non-homogeneous Poisson model is fitted separately in the two children nodes and the splitting

criterion is given by (5) with (14) as the log-likelihood function.

5 Simulation study

In this section, we investigate the performance of the proposed method compared to various competitors

including parametric models and forests. In the first set of simulations, the data generating process (DGP)

is homogeneous. This will allow comparisons with the usual parametric ZIP and ZAP models, with a forest

of Poisson trees but also with a forest built with the Lee and Jin (2006) ZIP tree approach. Then, in the

second set of simulations, non-homogeneous DGPs will be considered. This will allow a comparison with the

approach of Mathlouthi et al. (2015).

5.1 Description of the simulation study

In all cases, nine covariates X1, ..., X9, are available. They are independent and uniformly distributed over

the interval [0, 10] . X1, X2, and X3 are related to the Poisson intensity parameter, while X1, X4, and X5 are

related to zero part of the model. Hence X6, X7, X8 and X9 are noise covariates unrelated to the outcome.

DGPs from ZAP and ZIP settings with varying proportions of zeros are considered. Consider first the

following logistic regression DGP that will be used to generate either the zeros (ZAP) or excess zeros (ZIP):

DGP zero

log

(
1− τ
τ

)
= c− 3 log(X1 + 0.5) + 0.2(10X4 −X2

4 ) + 0.4X5.

The choices of intercepts c = 2.6, c = 0.55 and c = −1.1 produce approximately 15%, 35% and 55% of zeros

for this DGP. The parameter τ represents either θ, the total probability of having a 0, for a ZAP DGP or p,

the probability of having an excess 0, for a ZIP DGP.

Consider the following three models for the Poisson part of the outcome, governed by the parameter λ.
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DGP A: Poisson model with main effects only

ln(λ) = −0.105 + 0.1X1 − 0.1X2 + 0.1X3.

DGP B: Poisson model with more complicated effects

ln(λ) = −0.7 + 0.05X1 + 2(X2 > 5) + 0.05(10X3 −X2
3 ) + 0.04(X2 > 5)(X1 − 5)2.

DGP C: Poisson model with a tree structure

Leaf 1. If X1 ≤ 5 and X2 ≤ 5 then λ = 1.5.

Leaf 2. If X1 ≤ 5 and X2 > 5 then λ = 3.0.

Leaf 3. If X1 > 5 and X3 ≤ 5 then λ = 2.5.

Leaf 4. If X1 > 5 and X3 > 5 then λ = 2.0.

Nine scenarios are considered for the ZAP DGPs, by crossing the three Poisson DGPs with the three

different probabilities of zero. For these scenarios, a binary outcome is first generated from DGP zero. If a

0 is generated, then this is the value of Y . If not, then Y is generated by using the Poisson model (either A,

B or C) but truncated at zero. Indeed, for a ZAP DGP, the total probability of having a 0 is governed only

by DGP zero. Hence, for these scenarios, the total proportions of zeros are going to be approximately 15%,

35% or 55%.

Nine scenarios are also considered for the ZIP DGPs, again by crossing the three Poisson DGPs with the

three different probabilities of zero. For these scenarios, a binary outcome is first generated from DGP zero.

If a 0 is generated, then this is the value of Y . If not then Y is generated by using the Poisson model (either

A, B or C). This time, a 0 can also be generated from the Poisson part. The binary outcome model only

generates excess zeros with respect to the Poisson model. Hence, for these scenarios, the total proportions

of zeros are going to be higher than 15%, 35% or 55%.

Nine other scenarios are considered for the non-homogeneous ZAP case. Using the notation of Section 4.2,

we have K = 12 subperiods. The probability that no event at all occurred is still given by DGP zero above.

The three following non-homogeneous Poisson DPGs are used for the Poisson part. This time, 12 parameters,

Λ = (λ1, . . . , λ12) are required.

DGP D: Non-Homogeneous Poisson model with main effects only

ln(λk) = log(0.1 ∗ k)− 0.3 + 0.1X1 − 0.1X2 + 0.1X3, k = 1, . . . , 12.

DGP E: Non-Homogeneous Poisson model with more complicated effects

ln(λk) = −0.5 ∗ k + 0.05X1 + 2(X2 > 5) + 0.05(10X3 −X2
3 ) + 0.04(X2 > 5)(X1 − 5)2, k = 1, . . . , 12.

DGP F: Non-Homogeneous Poisson model with a tree structure

Leaf 1. If X1 ≤ 5 and X2 ≤ 5 then Λ = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2) .

Leaf 2. If X1 ≤ 5 and X2 > 5 then Λ = (1.2, 1.2, 1.2, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 1.2, 1.2, 1.2) .

Leaf 3. If X1 > 5 and X3 ≤ 5 then Λ = (0.1, 0.1, 0.1, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 0.1, 0.1, 0.1) .

Leaf 4. If X1 > 5 and X3 > 5 then Λ = (1.2, 1.1, 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1) .

For the homogeneous DGP’s, five models are compared. They are

1. Parametric ZAP model described in (1) and (2). The nine covariates are used as main effects only both

for the zero and Poisson parts of the model.
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2. Parametric ZIP model described in (3) and (4). The nine covariates are used as main effects only both

for the excess zero and Poisson parts of the model.

3. Poisson forest. A forest of basic Poisson trees is built.

4. Lee-Jin forest. A forest with the ZIP tree approach of Lee and Jin (2006).

5. Proposed approach, the ZAP forest (Section 4.1).

For the non-homogeneous DGP’s, two models are compared. They are the NHPPF method of Mathlouthi

et al. (2015), and the proposed non-homogeneous ZAP forest (Section 4.2).

The parametric models were fitted with the R package pcsl (Jackman, 2015, and Zeileis, Kleiber and Jack-

man, 2008). The Poisson parts of the forests were implemented in C. However, the R package randomForest

was used to build the forest for the zero part of the proposed ZAP forest. All forest are built with 500 trees.

Three out of the nine covariates are randomly selected at each node of each tree. This comes from the value√
q typically used to build a regression random forest. Thirty observations are needed to attempt splitting

and the resulting nodes must have at least ten observations. The models are estimated with a training sample

of size 1000. Parameter estimates are then obtained for each observation in a test sample of size 5000. The

number of simulation runs is 100.

The mean absolute error (MAE) is used as the performance criterion. It is defined by

MAE =
1

T

T∑
t=1

|γt − γ̂t|,

where T is the size of the test set (5000 here), γt and γ̂t are the true and estimated values of the parameter

of interest for the tth test observation. Here γ represents one of the three parameters of interests which are

λ, θ and p.

5.2 Results

The results are presented in Tables 1 to 3. Table 1 presents the average MAE, over the 100 simulation runs,

of all methods for the three parameters of interests, λ, θ, p, for the nine ZAP DGPs. For each line in the

table, the value of the best (smallest) MAE is in bold. The values between parentheses are the standard

deviations of the MAE over the simulation runs. It is striking that the proposed method has the smallest

MAE in all but three of the 27 cases. For DGP A, the Poisson part is a main effect DGP. Hence, the Poisson

part of the parametric ZAP model contains the true effects. It is then not surprising that it has the smallest

MAE for estimating λ whatever the proportion of zeros is. However, the zero part of the parametric ZAP

model is not well-specified and thus the proposed method is better to estimate both θ and p. The Lee-Jin

forest is better than a Poisson forest for estimating λ and p but the opposite is true for estimating θ.

Table 2 presents the MAE for the nine ZIP DGPs. This time, the proposed method has the smallest

MAE in 20 cases and is close to the best one in four other cases. Similarly to what we saw with the ZAP

DGPs, the parametric model is the best one when the poisson part of the model contains main effects only,

that is for DGP A. The parametric ZIP model is then the best one for estimating λ in these three cases (with

either 5%, 35% and 55% of excess zeros). There are four instances where the Lee-Jin forest is slightly better

than the proposed method. But apart from that, the proposed method is globally the best one for the DGPs

considered.

Table 3 presents the results for the non-homogeneous ZAP DGPs. This time only the proposed method and

the NHPPF method of Mathlouthi et al. (2015) are compared. The NHPPF fits a forest of non-homogeneous

Poisson trees but does not account for excess zeros. The proposed method has the smallest MAE in all 27

cases. This, combined with the fact that it is also always better than a Poisson forest in Tables 1 and 2,

clearly shows the importance of modeling the potential excess zeros.
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Table 1: Simulation results for the homogeneous ZAP DGPs. The average MAE are reported for the three
parameters of interest: λ, the Poisson intensity; θ, the probability of zero; p, the probability of an excess
zero. Standard deviations of the MAE are reported between parentheses. The smallest value of the MAE for
a given scenario is in bold. In the first column, the percentage corresponds to the total probability of having
a 0.

DGP Parameter Parametric Zap Parametric Zip Poisson forest Lee-Jin forest Zap Forest

λ
0.1304
(0.0295)

0.3984
(0.0365)

0.5222
(0.0261)

0.3989
(0.0315)

0.2703
(0.0244)

A(15%) θ
0.1190
(0.0040)

0.1787
(0.0143)

0.1714
(0.0044)

0.2136
(0.0072)

0.0719
(0.0045)

p
0.0889
(0.0032)

0.0799
(0.0117)

0.0991
(0.0027)

0.0817
(0.0030)

0.0496
(0.0039)

λ
0.1651
(0.0402)

0.3470
(0.0661)

0.7264
(0.0295)

0.4365
(0.0429)

0.3260
(0.0368)

A(35%) θ
0.1741
(0.0032)

0.2163
(0.0084)

0.1994
(0.0078)

0.2303
(0.0066)

0.1016
(0.0055)

p
0.1575
(0.0034)

0.1672
(0.0040)

0.2738
(0.0048)

0.1820
(0.0076)

0.0927
(0.0064)

λ
0.2098
(0.0506)

0.3260
(0.0488)

1.0019
(0.0313)

0.6341
(0.0584)

0.4397
(0.0565)

A(55%) θ
0.1656
(0.0028)

0.1916
(0.0036)

0.1863
(0.0099)

0.2489
(0.0097)

0.1049
(0.0050)

p
0.1653
(0.0030)

0.1772
(0.0037)

0.4689
(0.0054)

0.3285
(0.0134)

0.1165
(0.0081)

λ
0.4748
(0.0167)

0.5919
(0.0220)

0.4672
(0.0261)

0.2994
(0.0343)

0.2857
(0.0249)

B(15%) θ
0.1190
(0.0040)

0.1447
(0.0097)

0.1551
(0.0051)

0.1992
(0.0081)

0.0718
(0.0046)

p
0.0852
(0.0033)

0.0671
(0.0072)

0.0906
(0.0026)

0.0747
(0.0027)

0.0490
(0.0038)

λ
0.4868
(0.0232)

0.5639
(0.0491)

0.6225
(0.0284)

0.3615
(0.0348)

0.3243
(0.0315)

B(35%) θ
0.1741
(0.0032)

0.1848
(0.0181)

0.1729
(0.0078)

0.2043
(0.0067)

0.1015
(0.0055)

p
0.1678
(0.0039)

0.1716
(0.0063)

0.2649
(0.0047)

0.1807
(0.0074)

0.0979
(0.0065)

λ
0.5095
(0.0292)

0.5374
(0.0414)

0.8870
(0.0302)

0.5356
(0.0496)

0.4008
(0.0420)

B(55%) θ
0.1656
(0.0028)

0.1754
(0.0038)

0.1659
(0.0094)

0.2254
(0.0089)

0.1050
(0.0050)

p
0.1813
(0.0035)

0.1885
(0.0089)

0.4682
(0.0054)

0.3314
(0.0116)

0.1233
(0.0084)

λ
0.4748
(0.0167)

0.5919
(0.0220)

0.4672
(0.0261)

0.2994
(0.0343)

0.2857
(0.0249)

C(15%) θ
0.1190
(0.0040)

0.1447
(0.0097)

0.1551
(0.0051)

0.1992
(0.0081)

0.0718
(0.0046)

p
0.0852
(0.0033)

0.0671
(0.0072)

0.0906
(0.0026)

0.0747
(0.0027)

0.0490
(0.0038)

λ
0.4868
(0.0232)

0.5639
(0.0491)

0.6225
(0.0284)

0.3615
(0.0348)

0.3243
(0.0315)

C(35%) θ
0.1741
(0.0032)

0.1848
(0.0181)

0.1729
(0.0078)

0.2043
(0.0067)

0.1015
(0.0055)

p
0.1678
(0.0039)

0.1716
(0.0063)

0.2649
(0.0047)

0.1807
(0.0074)

0.0979
(0.0065)

λ
0.5095
(0.0292)

0.5374
(0.0414)

0.8870
(0.0302)

0.5356
(0.0496)

0.4008
(0.0420)

C(55%) θ
0.1656
(0.0028)

0.1754
(0.0038)

0.1659
(0.0094)

0.2254
(0.0089)

0.1050
(0.0050)

p
0.1813
(0.0035)

0.1885
(0.0089)

0.4682
(0.0054)

0.3314
(0.0116)

0.1233
(0.0084)
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Table 2: Simulation results for the homogeneous ZIP DGPs. The average MAE are reported for the three
parameters of interest: λ, the Poisson intensity; θ, the probability of zero; p, the probability of an excess
zero. Standard deviations of the MAE are reported between parentheses. The smallest value of the MAE for
a given scenario is in bold. In the first column, the percentage corresponds to the probability of having an
excess 0.

DGP Parameter Parametric Zap Parametric Zip Poisson forest Lee-Jin forest Zap Forest

λ
0.1469
(0.0348)

0.1467
(0.0480)

0.4248
(0.0326)

0.3067
(0.0234)

0.2857
(0.0263)

A(15%) θ
0.1237
(0.0047)

0.1022
(0.0075)

0.1044
(0.0057)

0.1014
(0.0053)

0.1035
(0.0052)

p
0.1401
(0.0110)

0.1237
(0.0107)

0.1520
(0.0029)

0.1225
(0.0086)

0.1212
(0.0110)

λ
0.1817
(0.0480)

0.1783
(0.0460)

0.7471
(0.0330)

0.4152
(0.0433)

0.3474
(0.0419)

A(35%) θ
0.1565
(0.0028)

0.1398
(0.0044)

0.1470
(0.0083)

0.1511
(0.0053)

0.1082
(0.0059)

p
0.1881
(0.0072)

0.1799
(0.0082)

0.3515
(0.0045)

0.2184
(0.0094)

0.1437
(0.0101)

λ
0.2385
(0.0594)

0.2384
(0.0578)

1.0627
(0.0336)

0.6572
(0.0614)

0.4721
(0.0614)

A(55%) θ
0.1353
(0.0024)

0.1268
(0.0035)

0.1427
(0.0108)

0.1947
(0.0107)

0.0992
(0.0056)

p
0.1729
(0.0054)

0.1710
(0.0064)

0.5493
(0.0048)

0.3715
(0.0141)

0.1485
(0.0102)

λ
0.4999
(0.0296)

0.5015
(0.0277)

0.3880
(0.0270)

0.3002
(0.0236)

0.3062
(0.0252)

B(15%) θ
0.1259
(0.0040)

0.1184
(0.0057)

0.0992
(0.0056)

0.0982
(0.0060)

0.0976
(0.0053)

p
0.1494
(0.0134)

0.1397
(0.0166)

0.1520
(0.0029)

0.1188
(0.0088)

0.1153
(0.0106)

λ
0.5109
(0.0328)

0.5127
(0.0325)

0.6636
(0.0325)

0.3833
(0.0357)

0.3446
(0.0314)

B(35%) θ
0.1544
(0.0026)

0.1472
(0.0031)

0.1363
(0.0092)

0.1458
(0.0055)

0.1059
(0.0058)

p
0.1918
(0.0083)

0.1875
(0.0088)

0.3515
(0.0045)

0.2194
(0.0107)

0.1406
(0.0093)

λ
0.5310
(0.0332)

0.5368
(0.0352)

0.9655
(0.0334)

0.5822
(0.0514)

0.4230
(0.0430)

B(55%) θ
0.1386
(0.0021)

0.1341
(0.0022)

0.1385
(0.0104)

0.1927
(0.0104)

0.1011
(0.0055)

p
0.1750
(0.0051)

0.1731
(0.0052)

0.5493
(0.0048)

0.3741
(0.0145)

0.1454
(0.0115)

λ
0.4124
(0.0124)

0.4158
(0.0183)

0.4583
(0.0322)

0.2988
(0.0271)

0.3210
(0.0265)

C(15%) θ
0.1303
(0.0040)

0.1221
(0.0063)

0.1049
(0.0054)

0.0941
(0.0053)

0.0956
(0.0057)

p
0.1339
(0.0082)

0.1253
(0.0092)

0.1520
(0.0029)

0.1033
(0.0068)

0.0983
(0.0078)

λ
0.4274
(0.0185)

0.4305
(0.0192)

0.8384
(0.0368)

0.4070
(0.0415)

0.3664
(0.0303)

C(35%) θ
0.1660
(0.0026)

0.1596
(0.0030)

0.1630
(0.0103)

0.1535
(0.0051)

0.1082
(0.0061)

p
0.1825
(0.0055)

0.1797
(0.0055)

0.3515
(0.0045)

0.1936
(0.0089)

0.1208
(0.0078)

λ
0.4519
(0.0295)

0.4580
(0.0363)

1.2576
(0.0378)

0.6704
(0.0591)

0.4479
(0.0444)

C(55%) θ
0.1504
(0.0024)

0.1475
(0.0027)

0.1766
(0.0121)

0.2165
(0.0078)

0.1041
(0.0054)

p
0.1695
(0.0040)

0.1692
(0.0040)

0.5493
(0.0048)

0.3363
(0.0136)

0.1214
(0.0067)
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Table 3: Simulation results for the non-homogeneous ZAP DGPs. The average MAE are reported for the
parameters of interest: Λ = (λ1, . . . , λ12), the Poisson intensities; θ, the probability of zero; p, the probability
of an excess zero. Standard deviations of the MAE are reported between parentheses. The smallest value of
the MAE for a given scenario is in bold. Note that in the case of Λ, the average MAE over the 12 parameters
are reported. In the first column, the percentage corresponds to the total probability of having a 0.

DGP Parameter NHPPF Non-homogeneous Zap Forest

Λ
0.2216
(0.0118)

0.1334
(0.0055)

D(15%) θ
0.1511
(0.0037)

0.0721
(0.0040)

p
0.1515
(0.0038)

0.0721
(0.0040)

Λ
0.3962
(0.0135)

0.1462
(0.0073)

D(35%) θ
0.3334
(0.0055)

0.1012
(0.0056)

p
0.3499
(0.0050)

0.1016
(0.0056)

Λ
0.5656
(0.0143)

0.1724
(0.0105)

D(55%) θ
0.4534
(0.0126)

0.1053
(0.0054)

p
0.5476
(0.0057)

0.1059
(0.0054)

Λ
0.2274
(0.0132)

0.1481
(0.0062)

E(15%) θ
0.1517
(0.0038)

0.0721
(0.0041)

p
0.1524
(0.0038)

0.0721
(0.0041)

Λ
0.4131
(0.0141)

0.1627
(0.0063)

E(35%) θ
0.3363
(0.0055)

0.1011
(0.0056)

p
0.3512
(0.0051)

0.1011
(0.0056)

Λ
0.6093
(0.0143)

0.1885
(0.0096)

E(55%) θ
0.4682
(0.0114)

0.1053
(0.0055)

p
0.5490
(0.0057)

0.1054
(0.0055)

Λ
0.1414
(0.0072)

0.0923
(0.0043)

F(15%) θ
0.1492
(0.0037)

0.0721
(0.0040)

p
0.1522
(0.0038)

0.0721
(0.0040)

Λ
0.2496
(0.0082)

0.1079
(0.0045)

F(35%) θ
0.3182
(0.0066)

0.1012
(0.0056)

p
0.3510
(0.0051)

0.1012
(0.0056)

Λ
0.3677
(0.0087)

0.1376
(0.0079)

F(55%) θ
0.4164
(0.0128)

0.1052
(0.0055)

p
0.5489
(0.0058)

0.1053
(0.0055)
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6 Concluding remarks

We proposed a method to build trees and forests for a non-homogeneous Poisson response with excess zeros,

based on two forests. Unlike the ZIP tree proposed by Lee and Jin (2006), our method has two parts, like the

usual parametric ZAP and ZIP models. This allows for different covariates effects for the zero part and the

Poisson part. Any flexible method to model the probability for a binary response can be used for the zero

part. Here we used the traditional random forest for a binary response. For the Poisson part, we used a forest

of trees built with a splitting criterion derived from the zero truncated non-homogeneous Poisson likelihood.

Our method extends the work of Lee and Jin (2006) in the sense that it can handle a non-homogeneous rate

function. Our method also extends the work of Mathlouthi, Fredette and Larocque (2015) by allowing for

excess zeros.

The results from extensive simulation studies clearly show the merits of the proposed method. A mix of

homogeneous and non-homogeneous ZAP and ZIP models were used to generate artificial data. The proposed

method was compared to parametric ZAP and ZIP models, to a basic Poisson forest and to a forest built

with the Lee and Jin (2006) ZIP tree approach. The proposed method had the smallest mean absolute error

for 71 out of the 81 estimation problems considered, and it was a close second for four others. The six cases

where the proposed method was not the best or a close second was for estimating the Poisson intensity when

the parametric model was correctly specified for this parameter.

Our approach is very general and many extensions are possible. Firstly, if the Poisson assumption is

not appropriate, other models, like the negative binomial, could be used. This could be useful in cases

where extra-Poisson variation is observed, for instance with clustered data. Secondly, we only considered

covariates that do not vary with time. It would be interesting to generalize our approach to be able to

include time-varying covariates.
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