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Canada, H3C 2A7

franklin.djeumou-fomeni@polymtl.ca

July 2015

Les Cahiers du GERAD

G–2015–71

Copyright c© 2015 GERAD



ii G–2015–71 Les Cahiers du GERAD

Abstract: This paper considers a family of cutting planes, recently developed for mixed 0-1 polynomial
programs and shows that they define facets for the maximum edge-weighted clique problem. There exists a
polynomial time exact separation algorithm for these inequalities. The result of this paper may contribute to
the development of more efficient algorithms for the maximum edge-weighted clique problem that use cutting
planes.
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1 Introduction

The maximum edge-weighted clique problem (MEWCP) is a well known combinatorial optimisation problem

which consists of finding a maximum weight clique with no more than b nodes in a node- and edge-weighted

complete graph. The weight of a clique is defined as the sum of the weights of all its nodes and edges. More

formally, the MEWCP is defined as follows. Given a complete undirected graph G = (N,E) with node set

N , edge set E, an integer number b, weights wi ∈ R associated with each node i ∈ N and weights ce ∈ R
associated with each edge e ∈ E, the MEWCP consists of finding a sub-clique C = (U,F ) of G such that the

sum of the weights of nodes in U and edges in F is maximised and |U | ≤ b. It can be formulated as follows:

max
∑
i∈N

wixi +
∑
e∈E

ceye (1a)

s.t.
∑
i∈N

xi ≤ b (1b)

yij ≤ xi for (i, j) ∈ E (1c)

yij ≤ xj for (i, j) ∈ E (1d)

xi + xj ≤ yij + 1 for (i, j) ∈ E (1e)

xi ∈ {0, 1} for i ∈ N (1f)

ye ∈ {0, 1} for e ∈ E (1g)

Note that due to the McCormick inequalities [12] (1c)–(1e) and the constraint (1f), the variables ye, e ∈ E
can be assumed to be continuous between 0 and 1.

The MEWCP has many applications, especially in certain facility location problems, see [3, 10, 17, 18].

Other important applications of the MEWCP that arise in molecular biology are given in Hunting [6]. The

MEWCP is a generalization of the well studied maximum clique problem, which is known to be NP-hard,

see [20] for a review of solution approaches for the maximum clique problem. On the other hand, the above

formulation of the MEWCP can also be seen as a particular case of the quadratic knapsack problem for which

plenty of exact and heuristic methods exist, see [2, 5, 16].

Numerous solution methods have been proposed in the literature for the MEWCP. We refer the reader

to Wu and Hao [20] for a recent review of exact and heuristic solution methods for the MEWCP. The most

successful algorithms proposed in the literature for the MEWCP use a branch-and-cut framework. The

availability of strong valid inequalities is key to the success of these algorithms. Ideally, one would like to

use cutting planes that are facet defining and computationally ‘easy’ to generate. Several families of facet

defining inequalities are proposed in the literature for this purpose, see for example [7–9,11,13,14,19].

In this paper, we firstly consider a family of cutting planes that have recently been developed by Djeumou

Fomeni et al. [4] for the general mixed 0-1 polynomial programs, and which can be separated efficiently in

polynomial times. Then we prove that under certain conditions, one of the inequality in this family defines

facets for the MEWCP. This result may contribute to the development of more efficient algorithms for the

MEWCP that use cutting planes.

The rest of this paper is organised as follows. In Section 2, we review the relevant literature, and in

Section 3 we provide the proof that the (s, t) inequalities define facet of the MEWCP.

2 Literature review

We refer the reader to [1,3,7–9,11,13,14,19] for more details on other existing facet defining inequalities and

solution methods for the MEWCP. For the sake of brevity, we restrict our literature review to the paper of

Djeumou Fomeni et al. [4] in which they presented the cutting planes that are discussed in this paper.
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2.1 The family of (s, t) inequalities for 0-1 quadratic programs

Given a linear inequality αTx ≤ b, with α ∈ Qn, let us define the corresponding quadratic knapsack polytope

as

Q := conv
{

(x, y) ∈ {0, 1}n+(n
2) : αTx ≤ b, 0 ≤, yij = xixj for (i, j) ∈ E

}
For any S ⊂ N and any α ∈ Qn, we will let α(S) denote

∑
i∈S αi, S

+ denote {i ∈ S : αi > 0} and S− denote

{i ∈ S : αi < 0}.

The method for generating inequalities presented in [4] is based on the following idea. First, we construct

a cubic valid inequality, by which we mean a non-linear inequality that involves products of up to three x

variables, but no y variables. Then, we weaken the cubic inequality, in order to make it valid for Q. For

example, we can take the inequality αTx ≤ b, and two binary variables, say xs and xt, and form the following

three cubic inequalities:

(b− αTx)xsxt ≥ 0 (2)

(b− αTx)xs(1− xt) ≥ 0 (3)

(b− αTx)(1− xs)(1− xt) ≥ 0. (4)

Since quadratic terms of the form xixj can be replaced with yij , and linear and constant terms can be left

unchanged, the only real issue is how to deal with cubic terms, of the form xixjxk. The following lemma

addresses this issue:

Lemma 1 Let xi, xj and xk be three variables, all constrained to lie in the interval [0, 1]. Let yij = xixj,

and similarly for yik and yjk. Then we have the following lower bounds on xixjxk:

xixjxk ≥ max {0, yij + yik − xi, yij + yjk − xj , yik + yjk − xk} , (5)

and the following upper bounds:

xixjxk ≤ min {yij , yik, yjk, 1− xi − xj − xk + yij + yik + yjk} . (6)

It is shown in [4] that (5) and (6) provide the best possible under- and over-estimators of the product term

xixjxk.

The following theorem characterises the cutting planes that can be derived by weakening the cubic in-

equalities (2), (3) and (4), respectively. It turns out that they give rise to three huge (exponentially-large)

families of valid inequalities for Q.

Theorem 1 For any pair {s, t} ⊂ N , let S, T and W be disjoint subsets of N \ {s, t} and let R denote

N \ ({s, t} ∪ S ∪ T ∪W ).

1. Then the following (s, t) inequalities are valid for Q:∑
i∈S∪W

αiyis +
∑

i∈T∪W
αiyit −

∑
i∈W

αixi ≤ −α(W−) + α(S+ ∪W−)xs

+ α(T+ ∪W−)xt +
(
b− α({s, t} ∪ S+ ∪ T+ ∪W− ∪R−)

)
yst. (7)

2. The following mixed (s, t) inequalities are valid for Q:∑
i∈W

αixi +
∑

i∈T∪R
αiyis −

∑
i∈T∪W

αiyit ≤ α(W+) +
(
b− α({s} ∪ S− ∪W+)

)
xs

− α(W+ ∪ T−)xt +
(
α({s} ∪ S− ∪ T− ∪W+ ∪R+)− b

)
yst. (8)
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3. The following reverse (s, t) inequalities are valid for Q:∑
i∈S∪T∪R

αixi −
∑

i∈T∪R
αiyis −

∑
i∈S∪R

αiyit ≤ b− α(W−) +
(
α(S+ ∪W−)− b

)
xs

+
(
α(T+ ∪W−)− b

)
xt +

(
b− α(S+ ∪ T+ ∪W− ∪R−)

)
yst. (9)

These inequalities can be strengthened further, see [4] for details. Our contribution in this paper consists

of proving that under certain conditions, the (s, t) inequalities (7) are facet defining. We also remark that

the particular case of the mixed (s, t) inequalities obtained when S = T = R = ∅ and α = (1, . . . , 1) was

previously given in [7] and proved to be facet defining for the MEWCP.

2.2 Separation of the (s, t) inequalities in O(n3) time

Since the inequalities presented in Theorem 1 are exponential in number, we need separation algorithms. For

a given family of inequalities, the separation algorithm takes a fractional point (x∗, y∗), solution of the LP

relaxation, as input, and outputs a violated inequality in that family, if one exists.

It turns out that the separation problems for the (s, t) inequalities (7), mixed (s, t) inequalities (8) and

reverse (s, t) inequalities (9) can each be solved exactly in O(n3) time [4]. Indeed, there are
(
n
2

)
choices for

the pair {s, t}. Now assume that s and t are fixed. The (s, t) inequality can be rewritten as:∑
i∈S+

αi(yis + yst − xs) +
∑
i∈T+

αi(yit + yst − xt) +
∑

i∈W+

αi(yis + yit − xi)

+
∑
i∈S−

αiyis +
∑
i∈T−

αiyit +
∑

i∈W−

αi(1− xi − xs − xt + yis + yit + yst)

+
∑
i∈R−

αiyst ≤ (b− αs − αt)yst.

Observe that, in this form, the right-hand side is a constant for the given α, b, s and t. Then, to find a

most-violated (s, t) inequality, if any exists, it suffices to maximise the left-hand side. This can be done using

the following algorithm. Consider each node i ∈ N \ {s, t} in turn. If αi > 0, place i in one of the sets

S, T , W or R, according to which of the following four quantities is largest: y∗is + y∗st − x∗s, y∗it + y∗st − x∗t ,

y∗is + y∗it − x∗i and zero. (Ties can be broken arbitrarily.) If αi < 0, place i in S, T , W or R according to

which of the following four quantities is smallest: y∗is, y
∗
it, 1− x∗i − x∗s − x∗t + y∗is + y∗it + y∗st and y∗st. (Again,

ties can be broken arbitrarily.) If αi = 0, then i can be placed in an arbitrary set, since it has no effect on the

violation. Note that, for any i, only a constant number of comparisons is needed. Therefore the algorithm

runs in O(n) time for the given α, b, s and t.

3 Facet proof

In this section, we provide the proof that under certain conditions, the family of (s, t) inequalities (7) are

facets defining for the MEWCP. The (s, t) inequality for the MEWCP can be written as follows:∑
i∈S∪W

yis +
∑

i∈T∪W
yit −

∑
i∈W

xi ≤ (|S|)xs + (|T |)xt + (b− 2− |S| − |T |) yst. (10)

For the rest of this paper, the set Q corresponds to

Q := conv

{
(x, y) ∈ {0, 1}n+(n

2) :

n∑
i=1

xi ≤ b, 0 ≤, yij = xixj for (i, j) ∈ E

}

Theorem 2 Let s, t, S, T and W be defined as in Section 2. If S and T are non empty, |S| ≤ b−2, |T | ≤ b−2,

W = R = ∅ and |S ∪ T | ≥ b− 1, then the (s, t) inequalities (10) define facets of Q.
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Note that with the settings of Theorem 2, the supporting graph of the (s, t) inequalities (10) is a double

star tree as follows.

• •

• •

s t

• •

•

Proof. Let F = {(x, y) ∈ Q : (10) holds with equality} , and a(x, y) ≤ a0 i.e. let

a1x1 + a2x2 + . . .+ anxn + a12y12 + a13y13 + . . . an−1,nyn−1,n ≤ a0

be an inequality valid for Q such that every point (x, y) ∈ F satisfies a(x, y) = a0. We will use some integer

points in Q that satisfy (10) to equality i.e integer points in F to find the coefficients a and a0 uniquely up

to scalar multiplication.

Let ei be ith unit vector of size n, eij the
(
n
2

)
-vector with all components equal to zero except the (i, j)−th

component which is equal to 1.

1. The vector (x, y) = (0, 0) ∈ F ; this implies that a0 = 0.

2. (ei, 0) ∈ F for i 6= s, t; this implies that ai = 0 for all i 6= s, t.

3. (ei + ej , eij) ∈ F for all i, j 6= s, t and i 6= j; it follows that aij = 0 for all i, j 6= s, t and i 6= j.

4. We now prove that ait = 0 for any node i ∈ N \ (T ∪ {s, t}). Let i ∈ N \ (T ∪ {s, t}), we define:

• Cs
it to be a star tree with node set T ∪{i, t} such that all the edges are incident to t. Since Cs

it ∈ F ,

it follows that

at +
∑
k∈T

akt + ait = 0 (i)

• Ci
t to be a star tree with node set T ∪{t} such that all the edges are incident to t this is the same

as the star tree Cs
it without the edge (i, t). Since Ci

t ∈ F , it follows that

at +
∑
k∈T

akt = 0 (ii)

Subtracting (ii) from (i) yields ait = 0 for i ∈ N \ (T ∪ {s, t}).

5. Similarly to the above point, ajs = 0 for j ∈ N \ (S ∪ {s, t}).
6. We show that ais = ajt for i ∈ S and j ∈ T . Let i, j ∈ S ∪ T with i 6= j and let A ⊆ S ∪ T \ {i, j} such

that |A| = b − 3. Let Cj
ist be a double star tree with node set A ∪ {i, s, t} obtained by linking all the

nodes in A ∩ S to s, all the nodes in A ∩ T to t and connecting the node s to the node t.

• Since Cj
i,s,t ∈ F , it follows that

as + at +
∑

k∈A∩S

aks +
∑

k∈A∩T

akt + ais + ait + ast = 0 (iii).

• Since Ci
j,s,t ∈ F , it follows that

as + at +
∑

k∈A∩S

aks +
∑

k∈A∩T

akt + ajs + ajt + ast = 0 (iv).
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Subtracting (iii) from (iv) yields ais + ait = ajs + ajt. So we have the following:

a) If i, j ∈ S then ais = ajs.

b) If i, j ∈ T then ait = ajt.

c) If i ∈ S and j ∈ T , then ais = ajt.

7. Using ait = ajt for i, j ∈ T , and considering equation (ii), we have at + |T |ait = 0 for i ∈ T . Therefore,

ait = − at
|T |

.

Similarly, as + |S|ais = 0 for i ∈ S, i.e ais = − as
|S|

.

8. Let i ∈ S and j ∈ T , we define the set A as in step 6 and denote αs = |A ∩ S| + 1 and αt = |A ∩ T |.
It follows from (iii) that as + at + αsais + αtajt + ast = 0 i.e. ast = −as − at +

asαs

|S|
+
atαt

|T |
for i ∈ S

and j ∈ T .

9. Finally, considering the above steps, the inequality

a1x1 + a2x2 + . . .+ anxn + a12y12 + a13y13 + . . . an−1,nyn−1,n ≤ a0

reduces to

asxs + atxt +
∑
i∈S

aisyis +
∑
i∈T

aityit + astyst ≤ 0

which, using the identities ais = ajt, ajt = − at
|T |

and ais = − as
|S|

for i ∈ S, j ∈ T , is equivalent to

asxs + atxt −
as
|S|
∑
i∈S

yis −
at
|T |
∑
i∈T

yit +

(
asαs

|S|
+
atαt

|T |
− as − at

)
yst ≤ 0.

We finally have

as
|S|

[
|S|xs + |T |xt −

∑
i∈S

yis −
∑
i∈T

yit − (|S|+ |T | − αs − αt)yst

]
≤ 0.

Since (es, 0) satisfies the inequality a(x, y) < a0, i.e as < 0, and given that αs + αt = b − 2, this ends

the proof.
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