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G–2015–68

July 2015
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as well as the Fonds de recherche du Québec – Nature et tech-
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GERAD & Department of Electrical Engineering,
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Abstract: Pressure on ancillary reserves in power systems has significantly mounted due to the recent
generalized increase of the fraction of (highly fluctuating) wind and solar energy sources in grid generation
mixes. Dedicated energy storage devices have seen their role reaffirmed as potentially low carbon print,
if expensive tools, for smoothing the resulting generation/demand imbalances. However, a hitherto under
utilized, relatively inexpensive energy storage alternative is that formed by the tiny energy wells of electric
origin attached to millions of individual customer electric thermal loads. A hierarchical mean field games
approach is proposed for shaping their collective load, whereby the top level sets system optimal mean
aggregate temperature target trajectories. In turn based on a local state and a mean field dependent cost
function, each individual load develops a decentralized local control law such that the aggregate load can
meet the set targets. This control law is to be followed only as long as local comfort and safety constraints are
secured, thus guaranteeing acceptability by customers. The corresponding mathematical theory is developed
and numerical results are reported.

Acknowledgments: The authors gratefully acknowledge the support of Natural Resources Canada.
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1 Introduction

The advances in smart grid systems could enable users to track the electricity price signals periodically.
At first sight, one would expect that an important fraction of consumers would react by lowering their
consumption when prices are high, and displacing the power consuming jobs towards cheaper power hours,
thus achieving system wide load relief at peak hours. However, individual responses without a proper dynamic
optimization perspective could lead to difficult to predict oscillations in the aggregate load, and in fact possibly
amplified albeit delayed peaks.

Reducing peak load is a challenging task for system operators. One implementation alternative aimed
at achieving peak load reduction, given prior agreements with customers, would be to employ a centralized
controller which, given forecasts of the uncontrolled portions of the demand, as well as aggregate demand
models of the controllable loads, would generate within safety and comfort customer constraints, a power
usage schedule for participating customers. However, such a standard implementation runs into scalability
problems, and there would be a need for high levels of data exchanges between the control authority and the
devices. Past research on aggregate modeling (see [1], [2] for example) leads to models which can anticipate
controlled device states statistical distribution with minimal observation. These classes of models have been
leveraged in [3], [4] as well as extended in [5]. However limitations are still present concerning heterogeneity
of load parameters and communication/estimation needs.

Several reasons favor renewable energy (wind, solar, etc.) as a crucial option for the power grid; the most
notable are absence of carbon emissions, cost independence from the highly volatile and mostly increasing
oil prices, and the potential deferral of costs of carbon emission taxes. Nevertheless, renewable sources
such as wind and solar tend to be structurally problematic; they lack continuous availability due to factors
out of the power system direct control. This fact leads to more need for rapidly dispatchable production
which is typically costly and polluting. In our current line of research we further explore the potential of
energy storage in dispersed devices naturally present in power systems, whether associated with electric
water heaters, electric space heaters, air conditioners, batteries of plug-in electric vehicles etc., as a tool to
mitigate renewable generation variability and reduce peak load. In this particular case a demand dispatch
mechanism is implemented to employ the free storage in space heaters such that (i) intermittent renewable
penetration can be increased in the grid by using this storage capacity, and (ii) load peaks can be mitigated
by smoothing the aggregate load. The envisioned control architecture is hybrid: (i) centralized in terms of
target trajectory generation for adequately partitioned groups of energy storage capable electric devices, so
as to preserve overall optimality characteristics, (ii) decentralized at the implementation level so as to locally
enforce safety and comfort constraints, as well as to minimize communication requirements. More specifically,
we mention the following implementation principles, and argue that a class of decentralized control schemes
based on a mean field game (MFG) setup (see [6], [7–10]) can actually meet all the requirements. Note that
while we refer to a central authority in our discussion, the proposed control scheme could be applied by
so-called “aggregators” [11] which manage large groups of energy storing devices as a storage or “negative
load” resource on electricity markets.

(i) Each controller has to be situated locally.

As mentioned earlier, a completely centralized control architecture micromanaging every individual device to
be controlled requires significant communication requirements as well as a very large computational power.
Moreover, in the event of a loss of communication, users might face difficulties in the sense of comfort and
safety. When the controller is situated locally, these worries are void since the controller can locally enforce
comfort and safety constraints. Even if the communication with the central authority is lost, it is able to
respect the safety and comfort requirements of the user. As it turns out, MFG controllers are thoroughly
decentralized.

(ii) Data exchanges should be kept minimum both with the central authority and among users.

The control architecture must be able to operate with a highly reduced volume of data exchanges since,
given the very large number of agents involved, a requirement of constant flows of information between
agents and the central authority, as well as amongst agents themselves, besides confidentiality issues, would
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create scalability problems. In this context, the MFG based controllers turn the large numbers issue from
a hurdle into an asset, by relying on the predictability stemming from the law of large numbers. Note
that it is precisely the law of large numbers which is largely behind the successes of statistical mechanics, a
mathematical theory at the basis of MFG. MFG based controllers can indeed operate by relying only on an
agent’s local observations and for example, for the case of thermal heating-cooling loads, hereon considered
for illustration purposes as electric space heaters, the shared information on the initial electrically heated
spaces population mean temperature, as well the mean target temperature trajectory over an adequate control
horizon, as precomputed by the central authority using deterministic macroscopic aggregate models.

(iii) User disturbance should be kept at minimum.

Since the centralized authority is solely interested in the aggregate consumption, individual trajectories do
not need to necessarily follow the (mean) targets set by the authority. On the contrary, in fact in the case
of a population of thermal loads, it is desirable to shape the mean temperature of the population with least
disturbance; ideally without customers even noticing the effects of the control actions on their comfort level.
Also, it is important to maintain some measure of fairness among the users when it comes to sharing the
control effort. We shall show that the developments in this work address these issues.

We introduce collective target tracking mean field control, where the presence of large numbers of space
heating electric devices is employed to develop a decentralized mean field control based approach to the
problem of these devices following a desired mean trajectory. The proposed solution deviates from the
classical linear quadratic tracking formulation or a typical mean field rendez-vous problem (see [9]) which
would have each element track the desired mean temperature thus introducing unnecessary control actions.
Instead, our proposed solution enforces collective mean temperature tracking while minimizing temperature
disturbance on individual devices. The mean field effect is mediated by the weights in a commonly shared
quadratic cost function. The advantage of a mean field based control approach is that when provided with
the mean temperature target trajectory as well as the initial mean temperature in the controlled group,
the devices will generate their own control locally, and thus enforce their safety and comfort constraints
locally as well. As a result, communication requirements become drastically reduced. Note however, that
provision is made that devices would send their temperature readings according to a Poisson process with
low intensity. The results are aggregated at the central level thus providing at all times some feedback on the
current temperature distribution in the population; this is to avoid a risky mode of operation which would
be completely open loop, with prediction errors increasing over time.

After a brief review of the main results of mean field control of linear quadratic Gaussian agents, a diffusion
model of elemental space heating/cooling loads is considered. Contributions consist of (i) a formulation of the
control problem whereby the objective is for, in general, a heterogeneous group of devices to follow a desired
mean target temperature, (ii) the description of our collective target tracking mean field control algorithm,
(iii) the corresponding system of mean field equations, (iv) a fixed point analysis, (v) an ε-Nash theorem for
the population of agents, and numerical simulations for a population of space heaters aimed at illustrating
the methodology.

For dynamic large population games where the agents are coupled through their cost functions and
dynamics through a state averaging function, the mean field framework [6–9] provides decentralized strategies
that yield Nash equilibria in the asymptotic limit of an infinite population. The control laws use only the
local information of each agent on its own state and own dynamical parameters, while the mass effect is
calculated offline using statistical information. These laws yield approximate equilibria when applied in the
finite population case, and must be periodically readjusted after long intervals of time using on line aggregate
measurements. This is because of prediction errors buildup, due to finite albeit large numbers and potentially
non-stationary elemental devices stochastic models.

Using dispersed storage for accommodating renewable sources is a growing area of research. An aggregate
model for a large number of pool pumps using mean field limits is developed in [12–14]. Dynamic pricing
for controlling the load of aggregates of large commercial buildings is analyzed in [15], and domestic heating
systems are employed as heat buffers in [16]. A decentralized charging control strategy for large populations
of plug-in electric vehicles (PEVs) using the mean field methodology is presented in [17].
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The rest of the paper is organized as follows. In Section 2 we briefly review linear quadratic Gaussian
(LQG) mean field theory. In Section 3 we introduce the model that will be used throughout the paper and
propose our collective target tracking mean field formulation. In Section 4 we present a fixed point analysis for
the equation system characterizing the limiting mean field. In Section 5 we introduce a numerical algorithm
that guarantees convergence, and in Section 6 we develop our ε-Nash Theorem indicating that an approximate
Nash Equilibrium is attained. Lastly, in Section 7, we provide simulation results together with comparisons
to a prevailing target tracking control formulation.

The following notation is defined; the set of nonnegative real numbers is denoted by R+. For vectors
x, y ∈ Rn, we use the notation x ≤ y if xi ≤ yi for all 1 ≤ i ≤ n, and x < y if xi ≤ yi for all 1 ≤ i ≤ n,
and there exists at least one i, 1 ≤ i ≤ n, such that xi < yi. The norm ‖·‖ denotes the 2-norm of vectors
and matrices, and ‖x‖2Q , x>Qx. The set C[0,∞) denotes the family of all continuous functions on [0,∞),
Cb[0,∞) = {x : x ∈ C, supt≥0‖xt‖ < ∞} denotes the family of all bounded continuous functions, and for

any x ∈ Cb, ‖·‖∞ denotes the supremum norm: ‖x‖∞ , supt≥0‖xt‖. For the trace operator the notation
tr(X) is employed, and X> denotes the transpose of a matrix X.

2 Background on linear quadratic gaussian mean field control

A review of the LQG multi-agent heterogeneous population mean state tracking
problem

A large population of N stochastic dynamic agents is considered where agents are stochastically independent,
but which shall be cost coupled and such that the individual dynamics are defined by

dxit = (Aixit +Biuit + ci)dt+Ddwit, t ≥ 0, (1)

1 ≤ i ≤ N , where for agentAi, xi ∈ Rn is the state, ui ∈ Rm is the control input; wi ∈ Rr is a standard Wiener
process on a sufficiently large underlying probability space (Ω,F , P ) such that wi is progressively measurable

with respect to Fwi , {Fwit ; t ≥ 0}. We denote the population average state by x(N) = (1/N)
∑N
i=1 x

i. As
N goes to infinity, asymptotic decoupling of the agents suggests x(N) converging to some a priori unknown
trajectory x∗.

The cost function for agent Ai, 1 ≤ i ≤ N , is given by

Ji(u
i, u−i) = E

∫ ∞
0

e−δt
[
‖xit −mt‖2Qt + ‖uit‖2R

]
dt, (2)

where the cost-coupling is assumed to be in the form of an arbitrary averaging function mt , m(x
(N)
t +η), η ∈

Rn and δ is a strictly positive discount factor. The term ui is the control input of the agent Ai and u−i

denotes the control inputs of the complementary set of agents A−i = {Aj : j 6= i, 1 ≤ j ≤ N}.

Each agent Ai, 1 ≤ i ≤ N , solves the Riccati equation

− dΠi
t

dt
= Πi

t

(
Ai − δ

2
I

)
+

(
Ai − δ

2
I

)>
Πi
t −Πi

tB
iR−1Bi

>
Πi
t +Qt, (3)

for t ∈ [0,∞). First define the function class
Cδ/2[0,∞) = {x : x ∈ C[0,∞), supt≥0(‖xt‖e−(δ′/2)t) < ∞} for some δ′ ∈ [0, δ). For a given posited mass
tracking signal x∗ ∈ Cδ/2[0,∞) the mass offset function si is generated by the differential equation

− dsit
dt

= (Ai − δI −BiR−1Bi
>

Πi
t)
>sit + Πi

tc
i −Qtx∗t , (4)

for t ∈ [0,∞).
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We introduce the following assumptions.

A1: The processes wit, t ≥ 0, 1 ≤ i ≤ N , are mutually independent and independent of the initial

conditions, and supi≥1[trΣ + E‖xi0‖2] <∞, where E[wiwi
>

] = Σ, 1 ≤ i ≤ N . �

A2: Γ is a compact set such that for each γi , [Ai, Bi, ci] ∈ Γ, (i) the pair [Ai− (δ/2)I,B] is stabilizable,

(ii) [Q
1/2
t , Ai − (δ/2)I], t ∈ [0,∞), is detectable, and (iii) ‖Q‖∞ <∞. �

Then, under A1-A2, (i) there exists a unique solution si for (4) in the class Cδ/2[0,∞), and (ii) the
optimal tracking control law [18] is given by

ui∗(xit, x
∗
t ) = −R−1Bi

>
(Πi

tx
i
t + sit), t ≥ 0, (5)

where ui∗(·) solves inf Ji(u
i, x∗), which is defined below by an abuse of notation:

inf Ji(u
i∗, x∗) , inf

[
E
∫ ∞

0

e−δt[‖xit − x∗t ‖2Qt + ‖uit‖2R]dt

]
.

Note that x∗ ∈ Cδ/2[0,∞) is assumed to be fixed although unknown. For that x∗ to be sustainable, it
must be collectively replicated by the agents implementing their best responses to that signal. Thus, system
(4)–(5) must be complemented by a fixed point requirement leading to the mean field equation system to be
defined later.

We first define the empirical distribution associated with the first N agents:
F γN = (1/N)

∑N
i=1 I(γi<γ), γ ∈ Rn(n+m+1), where {γi, 1 ≤ i ≤ N} is a set of random matrices on (Ω,F , P )

with the common probability distribution F γ . Then for the basic rendez-vous type MF control problem, the
following assumption is adopted.

A3: The cost-coupling is assumed of the form: m(·) , m(x(N) + η), η ∈ Rn, where the function m(·)
is Lipschitz continuous on Rn with a Lipschitz constant λ > 0; i.e. ‖m(x) − m(y)‖ ≤ λ‖x − y‖ for all
x, y ∈ Rn. �

Each agent solves the equation system below to calculate the mass tracking signal x∗t , t ∈ [0,∞), offline,
for an infinite population of agents.

Definition 2.1 Mean Field (MF) Equation System on t ∈ [0,∞):

−ds
γ
t

dt
= (Aγ − δI −BγR−1Bγ>Πγ

t )>sγt + Πγ
t c
γ −Qtx∗t ,

dx̄γt
dt

= (Aγ −BγR−1Bγ>Πγ
t )x̄γt −BγR−1Bγ>sγt + cγ ,

x̄t =

∫
Γ

x̄γt dF
γ ,

x∗t = m(x̄t + η), t ∈ [0,∞).

(6)

�

Let us introduce the following assumption before analysing (6).

A4: ‖Q‖∞‖R−1‖λ
∫
γ∈Γ
‖Bγ‖2(

∫∞
0
‖eAγ∗(t)t‖dt)2dF γ < 1, where Aγ∗(t) , Aγ −BγR−1Bγ>Πγ

t . �

Lemma 2.1 Under A1–A4 the MF Equation System (6) admits a unique bounded solution.

The proof is similar to the proof of Theorem 4.4 in [9], and is therefore omitted.

Note in the above, the potential heterogeneity of the agent dynamic parameters is captured by parameter
γ considered as a random vector on a compact set (recall A2 and see [9] for further details).
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The Global Observation Control Set UNg : For the optimality analysis, we first introduce the global observation
control set. The set of control inputs UNg consists of all feedback controls adapted to FNt , t ≥ 0, where FNt
is the σ-field generated by the set {xjτ : 0 ≤ τ ≤ t, 1 ≤ j ≤ N}.

The Local Observation Control Set Ul,i: The local observation control set of agent Ai is the set of control
inputs Ul,i which consists of the feedback controls adapted to the set Fi,t, t ≥ 0, where the σ-field Fi,t is
generated by (xiτ ; 0 ≤ τ ≤ t).

Theorem 2.2 MF Stochastic Control Theorem (following [9])

For systems (1) with cost function (2) let A1–A4 hold;

(i) the MF equations (6) have a unique solution; which induces a family of decentralized feedback control
policies, UNMF , {(ui)◦; 1 ≤ i ≤ N}, 1 ≤ N <∞, described by (5) such that

(ii) all agent system trajectories xi, 1 ≤ i ≤ N, are stable in the sense that

E
∫ ∞

0

e−δt‖xit‖2dt <∞;

(iii) {UNMF ; 1 ≤ N <∞} yields an ε-Nash equilibrium for all ε > 0, i.e., for all ε > 0, there exists N(ε) such
that for all N ≥ N(ε)

JNi
(
(ui)◦, (u−i)◦

)
− ε ≤ inf

ui∈UNg
JNi
(
ui, (u−i)◦

)
≤ JNi

(
(ui)◦, (u−i)◦

)
.

Proof.

(i) Property (i) follows from Lemma 2.1.

(ii) Note that the closed loop system is given by

dxit = (Ai −BiR−1Bi
>

Πi
t)x

i
tdt−BiR−1Bi

>
sitdt+ cidt+Ddwit, t ≥ 0.

First of all (a) A2 ensures that Ai −BiR−1Bi
>

Πi
t − (δ/2)I is Hurwitz, and (b) A1 ensures that xi0 is

independent of wi(.) and E‖x0‖2 <∞. Moreover, si ∈ Cδ/2[0,∞); therefore, Lemma A.4 ensures that

E
∫ ∞

0

e−δt‖xit‖2dt <∞.

(iii) The proof is similar to the proof of Theorem 5.6 in [9], and is therefore omitted.

In essence Theorem 2.2 states that the MF equation system produces a set of decentralized control policies
for each agent, which collectively become arbitrarily close in performance to a Nash equilibrium in the space
of feedback strategies, provided the number of agents increases sufficiently.

3 Electric space heater models

In the following, we first introduce the model for space heating dynamics that will be employed throughout
the paper. Subsequently, a collective target tracking mean field control model is defined together with the
individual control actions and the corresponding mean field system of equations is developed.

We employ a one dimensional equivalent thermal parameter (ETP) model (see Figure 1) [19] to describe
the thermal dynamics of a single household, which is written as

dxint =
1

Ca
[−Ua(xint − xout) +Qh(t)]dt+ σdwt, t ≥ 0, (7)
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xout

1
Ua

xin

Ca

Qh

dw

Figure 1: Equivalent thermal parameter (ETP) model of a household

where xin is the air temperature inside the household, xout is the outside ambient temperature, Ca is the
thermal mass of air inside, Ua is conductance of the walls and Qh is the heat flux from the heater. Note that
wt, t ≥ 0, is a standard Wiener process defined on (Ω,F , P ) to reflect the noise on the system caused by
random processes of heat gain and loss due to customer activity within the dwellings, and σ is its volatility
term.

For brevity of notation, the system for heater Ai, 1 ≤ i ≤ N, is equivalently written as

dxit = [−ai(xit − xout,i) + biuit]dt+ σdwit, t ≥ 0, 1 ≤ i ≤ N, (8)

where xi , xin,i and ui , Qih for 1 ≤ i ≤ N ; ai = U ia/C
i
a and bi = Cia

−1
. Note that this model is similar to

the model given in [1], where the thermostat control is exchanged with a linear control.

Recalling the implementation principle (iii), we consider that users “naturally” would like their devices
to stay at their initial temperatures (normally attained via thermostatic action and before the intervention
of the power utility control center). Thus, we have reformulated the control effort as the signal required
to make them deviate from that initial temperature; more precisely, the control effort to stay at the initial
temperature is considered free and will not be penalized by the cost function to be defined. The corresponding
dynamical equation is written as

dxit = [−ai(xit − xout,i) + bi(uit + ufree,i)]dt+ σdwit, t ≥ 0, (9)

where ufree,i , bi
−1
ai(xi0 − xout,i).

A5: The initial states xi0 are bounded from above and below by comfort levels; i.e., l ≤ xi0 ≤ h, 1 ≤ i ≤ N .

Dynamical parameters ai, bi and xout,i together with xi0 are parameterized by θi ∈ Θ, i.e., aθ
i

, bθ
i

, xout,θ
i

, xθ
i

0 ;
where {θi, 1 ≤ i ≤ N} is a set of random real numbers on (Ω,F , P ) with the probability distribution F θ,
reflecting a possibly heterogeneous population of devices. �

3.1 Benchmark: Classical linear quadratic gaussian (LQG) tracking model

Following the results of a global optimization analysis, and for simplicity here, it is assumed that the central
authority wants the mean temperature of a particular population to track some constant target temperature
signal y. In the classical linear quadratic Gaussian (LQG) tracking formulation each agent’s cost function is
defined as

Ji(u
i) = E

∫ ∞
0

e−δt
[
(xit − y)2q + (uit)

2r
]
dt. (10)

The problem with this approach is that each agent minimizes its own cost function and tracks the same signal
y. Even though the central authority is only interested in aggregate behaviour and mean temperature, this
control approach causes all agents to track the target signal.
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3.2 Collective target tracking mean field model

The currently prevailing mean field LQG control formulation provides the requirements (i) and (ii) in Sec-
tion 1, but fails short of objective (iii). The reason is that mean field theory is based on a noncooperative
dynamic game approach and prevailing cost functions penalize only individual’s Euclidean distance from the
mean field signal (which could be a convex combination of agents’ mean and target trajectory; see [20])
together with the squared norm of the control effort. In this work, instead of each agent trying to track
a mean field signal, the individual cost structures are formulated such that ultimately, it is only the mean
of the population trajectories that tracks a desired signal. In the proposed method, the novelty is that the
mean field effect is mediated by the quadratic cost function parameters under the form of an integral error.
The resulting concept will be called collective target tracking mean field.

We employ the dynamics for the heaters given in (8). The infinite horizon discounted cost function for
agent Ai, 1 ≤ i ≤ N , is defined as follows:

Ji(u
i, u−i) = E

∫ ∞
0

e−δt
[
(xit − z)2qyt + (xit − xi0)2qx0 + (uit)

2r
]
dt, (11)

where z, is a direction assigned to each agent in the population and each agent’s deviation from this direction
is penalized by the deviation penalty coefficient qyt , t ∈ [0,∞), which captures the mean field information
and is calculated as the following integrated error signal :

qyt =

∣∣∣∣λ ∫ t

0

(x(N)
τ − y)dτ

∣∣∣∣ , t ≥ 0, (12)

λ > 0, where y is the main control center dictated mean target constant level, and x(N) , (1/N)
∑N
i=1 x

i.
Moreover, agents are also penalized with respect to their deviation from their individual initial points, which
acts as another layer of heterogeneity for the population.

The justification for the above cost function is that by pointing individual agents towards what is con-
sidered as the minimum (or maximum) comfort temperature z, it dictates a global decrease (or increase) in
their individual temperatures. This pressure persists as long as the differential between the mean tempera-
ture and the mean target y is high. The role of the integral controller is to mechanically compute the right
level of penalty coefficient qyt , t ∈ [0,∞), which, in the steady-state, should maintain the mean population
temperature at y. When this happens, individual agents reach themselves their steady states (in general
different from y and closer to their initial diversified states than classical LQG tracking would dictate).

In order to derive the limiting infinite population MF equation system we start this time assuming a
given (albeit initially unknown) cost penalty trajectory qy ∈ Cb[0,∞) and constant qx0 . Given qy and qx0 ,
individual agents Ai, 1 ≤ i ≤ N , solve a classical target tracking LQG problem [18] with time varying cost
coefficient with Riccati gain πi and offset term si evolving as follows:

− dπit
dt

= (−2ai − δ)πit − bi
2
r−1(πit)

2 + qyt + qx0 , t ≥ 0, (13)

− dsit
dt

= (−ai − δ − bi2πitr−1)sit + aixi0π
i
t − q

y
t z − qx0xi0, t ≥ 0. (14)

Then, the optimal tracking control law is given by

(uit)
◦ = −bir−1(πitx

i
t + sit), t ≥ 0. (15)

The calculation of the unknown qyt , t ≥ 0, is obtained by requiring that qyt , t ≥ 0, be such that when
individual agents implement their associated best responses, they must collectively replicate the posited
qyt , t ≥ 0, trajectory. This fixed point requirement leads to the specification below of the collective target
tracking MF equation system.
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Definition 3.1 Collective Target Tracking (CTT) MF Equation System on t ∈ [0,∞):

qyt =

∣∣∣∣λ ∫ t

0

(x̄τ − y)dτ

∣∣∣∣ ,
−dπ

θ
t

dt
= (−2aθ − δ)πθt − bθ

2
r−1πθt

2
+ qyt + qx0 ,

−ds
θ
t

dt
= (−aθ − δ − bθ2

πθt r
−1)sθt + aθxθ0π

θ
t − q

y
t z − qx0xθ0,

dx̄θt
dt

= (−aθ − bθ2
πθt r
−1)x̄θt − bθ

2
r−1sθt + aθxθ0,

x̄t =

∫
Θ

x̄θtdF
θ.

(16)

�

The calculation of the collective target tracking (CTT) MF equation system (16) is performed offline
locally by each agent with statistical information F θ, available at the start of the control horizon. In theory,
the control scheme is fully decentralized; i.e., no communication takes place among the controllers throughout
the horizon. In practice however, because of the anticipated prediction error accumulations over time, we
intend to readjust periodically the control laws over long intervals based on aggregate system measurements
(see Figure 2).

Note that the MF Equations for this model are significantly different from (4.6)-(4.9) in [9] or (6) in
Section 2. Indeed both systems are amenable to analysis within a linear systems framework and uniqueness
of the fixed point is obtained via a reasonably verifiable contraction condition. In contrast, system (16) is
fundamentally nonlinear (because of the form of qyt , t ≥ 0) and special arguments have to be developed for
its analysis.

Controller 1

...

Controller N

space heater 1

space heater N

Scheduler

u1
t

uN
t

x1
t

xN
t

x
(N)
0

y[0, T ]

x
(N)
t

Figure 2: Control architecture in practice

4 Homogeneous case fixed point analysis

Here we present the fixed point analysis for the collective target tracking MF equation system for the particular
case ai = a, bi = b, 1 ≤ i ≤ N, for brevity of notation. We assume that y ≤ x̄0, where the target temperature
of the central authority is less than or equal to the initial mean temperature of the population. The analysis
is very similar for the case x̄0 ≤ y; which therefore will be omitted. Note that for y ≤ x̄0, the population
direction z is set to be less than y; i.e., z = l ≤ y ≤ x̄0 ≤ h, so that the agents collectively decrease their
temperatures by moving towards that target (see Figure 3).
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Figure 3: An energy release system (z ≤ y ≤ x̄0)

The corresponding equation system is given below.

Proposition 4.1 Collective Target Tracking (CTT) MF Equation System on t ∈ [0,∞):

qyt =

∣∣∣∣λ ∫ t

0

(x̄τ − y)dτ

∣∣∣∣ ,
−dπt
dt

= (−2a− δ)πt − b2r−1π2
t + qyt + qx0 ,

−dst
dt

= (−a− δ − b2πtr−1)st + ax̄0πt − qyt z − qx0 x̄0,

dx̄t
dt

= (−a− b2πtr−1)x̄t − b2r−1st + ax̄0,

(17)

The proof is given in Appendix B.

4.1 CTT MF equation system

In this section we analyze the existence of a fixed point for CTT MF Equation System (17). We first introduce
the operators ∆ and T , where their composition M , T ◦ ∆,M(x̄) : Cb[0,∞) → C[0,∞), characterizes
equation system (17). Then, we define the function set G ∈ Cb[0,∞) endowed with ‖·‖∞, which includes all
the continuous functions of interest in our context. i.e., bounded within the comfort zones and all sharing
the same initial point. In order to employ Schauder’s fixed point theorem [21] for M on G, we need to show
that (i) G is a non-empty and closed convex subset of Cb[0,∞), (ii) the operator M : G → G is a compact
operator (i.e., the operator is continuous and bounded sets in G are mapped into sequentially compact sets).
We first show that G is closed in Cb[0,∞), and is a non-empty convex set. Then, we show that M’s image
set on G is within G. Next we show that Im(M) is bounded and forms an equicontinuous family of functions,
followed by the continuity of M. The latter properties imply that Im(M) is indeed a sequentially compact
subset of G based on the Arzela-Ascoli theorem [21], thus establishing the existence, by Schauder’s Theorem,
of a fixed point for the operator M on G.

First we define the operator ∆(x̄;λ) : Cb[0,∞)→ C[0,∞):

qyt =

∣∣∣∣λ ∫ t

0

(x̄τ − y)dτ

∣∣∣∣
, ∆(x̄;λ)(t), (18)
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where λ > 0. Next we define T : C[0,∞)→ C[0,∞) for the equation system below with input qyt and output
x̄t.

−dπt
dt

= (−2a− δ)πt − b2r−1π2
t + qyt + qx0 , (19)

−dst
dt

= (−a− δ − b2πtr−1)st + ax̄0πt − qyt z − qx0x̄0, (20)

dx̄t
dt

= (−a− b2πtr−1)x̄t − b2r−1st + ax̄0, (21)

which is equivalent to
x̄t , (T q)(t). (22)

Hence, one can write the MF equation system for CTT as

x̄t = (T ◦∆)(x̄)(t)

, (Mx̄)(t), t ∈ [0,∞). (23)

Definition 4.1 Define the set G endowed with the norm ‖·‖∞ as that including all functions such that f ∈
Cb[0,∞), f(0) = x̄0 and z ≤ f(t) ≤ x̄0 for t ∈ [0,∞). Note that G is nonempty.

Note that the proofs of the following lemmas and propositions are given in Appendix B. Appendix A
incorporates other necessary preliminary results and their proofs.

Lemma 4.2 G is convex and closed in Cb[0,∞) under ‖·‖∞.

Proposition 4.3 For M : G → C[0,∞) defined in (23) and G specified in Definition 4.1:

(i) Im(M) is uniformly bounded,

(ii) Im(M) ⊂ G and forms a family of equicontinuous functions.

Proposition 4.4 For operator M : G → C[0,∞) defined in (23), where Im(M) is shown to be in G in
Proposition 4.3, for any x′, x′′ ∈ G we have

‖Mx′ −Mx′′‖∞ ≤ f(λ)‖x′ − x′′‖∞, (24)

where λ is given in (18), f(0) = 0 and f(·) is a strictly monotonically increasing function of λ.

4.2 Fixed point theorem

Following the lemmas we present our fixed point existence theorem.

Theorem 4.5 There exists a fixed point for the map M : G → G.

Proof. It has been shown in Lemma 4.2 that the set G is non-empty, convex and closed in Cb[0,∞). Then it
has been shown in Proposition 4.3 thatM is a mapping from G onto itself, Im(M) is bounded, and Im(M)
forms a family of equicontinuous functions. In Proposition 4.4 it has been shown that M is a continuous
operator.

Now take a sequence {x̄k}k∈N ∈ G converging to x̄† ∈ (G, ‖·‖∞) (note that G is closed in Cb[0,∞)
due to Lemma 4.2). Proposition 4.3 implies the uniform boundedness and equicontinuity of {M(x̄k)}k∈N.
By Arzela-Ascoli Theorem there exists a convergent subsequence of {M(x̄k)}k∈N. Therefore, Im(M) is a
sequentially compact subset of G.

Hence, since G is a closed convex subset of Cb[0,∞),M : G → G, andM is a compact operator, Schauder’s
Fixed Point Theorem [22] dictates the existence of a fixed point for the map M : G → G.
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From the structure of the problem, it appears fairly obvious that the only possible candidates at steady-
state for such an equilibrium are a desirable one (x̄∞ = y), and an undesirable one (x̄∞ = z). The existence
of a fixed point for (17) in essence implies the existence of a Nash Equilibrium for an infinite population
game. In the equilibrium, the prescribed control actions are the best responses for infinitesimal agents, and
there is no unilateral profitable deviation. The existence of an algorithm to reach one such equilibrium by
tuning integral control gain parameter λ in (12) will be presented below.

5 Numerical algorithm

5.1 Restricted operator

In order to concentrate on the monotonicity of the trajectories for a system when z ≤ y ≤ x̄0, we employ a
so-called restricted operator whereby anytime the state trajectory x̄t, t ≥ 0, hits y, it is frozen there.

Note that y ≤ x̄0. Define Th ∈ (R+ ∪∞) as the first time that x̄t ≤ y, t ≥ 0.

Then, define Mr , T r ◦∆ where T r : C[0,∞)→ Cb[0,∞):

T r ,
{
T (q) for [0, Th),
y for [Th,∞).

(25)

Define the function space Gr ⊂ G, where for functions f ∈ Gr, f(0) = x̄0 and y ≤ f(t) ≤ x̄0 for all t ≥ 0.

Proposition 5.1 IfMr(x̂) = x̂ for some x̂ ∈ Gr such that x̂ ∈ C1
b [0,∞), then x̂ is a fixed point of the operator

M on G; i.e., M(x̂) = x̂.

Proof. Note that Mr(f) ≡ M(f) for y ≤ f(t) ≤ x0, t ∈ [0,∞). Since x̂ ∈ C1
b [0,∞), either (i) Th = ∞,

i.e., x̂ asymptotically converges to y, or (ii) x̂ never crosses y. In both cases, the operators act identically.
Therefore, Mr(x̂) = x̂, x̂ ∈ Gr, x̂ ∈ C1

b [0,∞) implies M(x̂) = x̂.

Theorem 5.2 There exists a λ∗ > 0 that guarantees the existence of a unique fixed point for the map M :
G → G.

Proof. Note that Cb[0,∞) equipped with ‖·‖∞ is a complete metric space. Since G is closed in Cb[0,∞) due
to Lemma 4.2, and a closed subset of a complete metric space is complete, G equipped with ‖·‖∞ is complete.
For λ ∈ [0, λ∗) where

λ∗ , f−1(1), (26)

and f(·) is given in (24), M is a contraction mapping M : G → G. Employing Banach fixed point theorem
provides the uniqueness of the fixed point.

5.2 A numerical algorithm for the restricted operator

In this section we present an algorithm that always finds a fixed point to the operator M : G → G. The
algorithm acts on the restricted space Gr, and decreases λ until a fixed point is achieved such that the fixed
point x∗ ∈ Gr also has the property that x∗ ∈ C1

b [0,∞). Once that is achieved, Proposition 5.1 provides
that x∗ is also a fixed point to the original operatorM given in (23). Note that Theorem 5.2 guarantees the
existence of a lower bound for λ, so it is guaranteed that the algorithm is bound to end in a finite number of
iterations. There is the (unfortunate) inevitable trade-off that lowering λ in essence lowers the convergence
speed of the mean trajectory to the target trajectory.

The numerical algorithm not only tries to find any fixed point, but also tries to find a desirable fixed
point; in other words tries to achieve x̄∞ = y. At steady state, the mean field equations are written as
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(−2a− δ)π∞ − b2r−1π2
∞ + qy∞ + qx0 = 0,

(−a− δ − b2π∞r−1)s∞ + ax̄0π∞ − qy∞z − qx0 x̄0 = 0,

(−a− b2π∞r−1)x̄∞ − b2r−1s∞ + ax̄0 = 0,

where π∞, s∞, x̄∞ denote the steady state values for Riccati, offset and mean field state equations respec-
tively. Solving the equation system for qy∞ when x̄∞ = y gives

qy∞
∗ =

[a(a+ δ)r + qx0b2]

b2

(
x̄0 − y
y − z

)
, (27)

where qy∞
∗ is the corresponding cost coefficient for the desirable fixed point of the system.

Define Tq∞ ∈ (R+ ∪∞) as the first time that qyt ≥ qy∞∗, t ≥ 0.

Then, define ∆r : Cb[0,∞)→ Cb[0,∞):

∆r ,

{
∆(xt;λ) for [0, Tq∞),
qy∞
∗ for [Tq∞ ,∞).

The so-called Restricted Operator Algorithm is presented below.

Definition 5.1 Restricted Operator Algorithm For the iterative algorithm first pick sufficiently small ε1 > 0
and ε2 > 0, where the former will be compared to the infinity norm between two successive iterations as a
threshold rule for convergence, and the latter will be used to decrease λ when the iterations for the incumbent
λ enter a zone of non-desirable convergence or divergence.

• k = 0

• while ‖x̄− x̄old‖∞ > ε1, do

– x̄old(2) = x̄old

– x̄old = x̄

– if mod(k, 2) == 1 then

∗ qy = ∆(x̄;λ)

∗ if qy∞ > qy∞
∗ then

λ = λ× 1
1+ε2

k = 0
x̄t = x̄0, t ∈ [0,∞)
qy = ∆(x̄;λ)

∗ end if

– elseif |x̄− x̄old(2)| == 0 then

∗ qy = ∆r(x̄;λ)

– else

∗ qy = ∆(x̄;λ)

– end if

– x̄ = T r(qy)

– k = k + 1

• end while

• return x̄.

Remark 1 The algorithm basically iterates Mr on Gr. We initiate the algorithm with x0
t = x̄0, t ≥ 0, and

at the end of each iteration the algorithm calculates the sequence (xi), i ∈ Z. Note that x2k, k ∈ Z, denotes
the even subsequence whereas x2k+1, k ∈ Z, denotes the odd subsequence.
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Lemma 5.3 x2k > x2k+1 for all k ∈ Z.

Proof. Note that we initialize x0 as x0 , T (qy0) where qyt
0

= 0,∀t ≥ 0. Hence, x0
t = x0 for all t ≥ 0. Then

define qy1 , ∆(x0), and note that ‖qy1‖∞ > 0 since x0 > y. Since qyt
1 ≥ qyt

0
for all t ≥ 0, and ‖qy1‖∞ >

‖qy0‖∞, x1 , T (qy1) is uniformly less than x0; i.e., x1
t ≤ x0

t for all t ≥ 0, and inft≥0(x1
t ) < inft≥0(x0

t ). Hence,
x1 < x0.

Now assume there exists some k̂ ∈ Z such that x2k̂ ≤ x2k̂+1. By definition, x2k̂ = (T ◦ ∆)(x2k̂−1) and

x2k̂+1 = (T ◦ ∆)(x2k̂). Then, x2k̂ ≤ x2k̂+1 implies ∆(x2k̂−1) ≥ ∆(x2k̂). This implies x2k̂−1 ≥ x2k̂ which

also implies ∆(x2k̂−2) ≥ ∆(x2k̂−1), which then again implies x2k−2 ≤ x2k−1. Continuing this iteration gives
x0 ≤ x1 which is a contradiction. Therefore the lemma follows.

Lemma 5.4 The limits exist for limk→∞ x2k = x(2k)∗ and limk→∞ x2k+1 = x(2k+1)∗ such that

x(2k)∗ = x(2k+1)∗.

Proof. x2k and x2k+1 are both bounded from above by x̄0 and bounded below by y. Since both are monotonic
sequences due to Lemma 5.3, the limits exist. For all finite k ∈ Z, Lemma 5.3 asserts x2k > x2k+1; i.e., the
sequence x2k is uniformly higher than x2k+1 for all t ≥ 0. Hence, at the limit one has x(2k)∗ ≥ x(2k+1)∗.

Assume x(2k)∗ > x(2k+1)∗. Since x(2k)∗ is the limit, then x(2k)∗ = M(M(x(2k)∗)). On the other hand
∆r(M(M(x(2k)∗))) < ∆(x(2k)∗) which implies M(M(M(x(2k)∗))) > M(x(2k)∗). However, this implies
x(2k+1)∗ > x(2k+1)∗, which is a contradiction. Hence,

x(2k)∗ = x(2k+1)∗.

Theorem 5.5 Let us define q̂y to be equal to ∆(x∗), where x∗ = x(2k)∗ = x(2k+1)∗. Then, q̂y∞ = qy∗∞ given
in (27).

Proof. Note that the algorithm employs ∆r operator on the odd sequence when qy∞ > qy∗∞. Therefore, by
definition, ∆(x(2k+1)∗) ≤ qy∗∞. Now, if we had ∆(x(2k+1)∗) < qy∗∞, then x(2k)∗ would not cross y; therefore,
∆(x(2k)∗) would tend to ∞, which violates x∗ = x(2k)∗ = x(2k+1)∗. Hence, q̂y∞ = qy∗∞ is established.

We have shown in Theorem 5.5 that the limit of the iterations of the numerical algorithm provides a
trajectory whose integral gives a cost function q̂y that is equal to qy∗∞ asymptotically. The resulting response
to such a cost function is a smooth function that asymptotically converges to y as t → ∞. Therefore, the
algorithm provides a desirable smooth trajectory.

6 ε-Nash theorem

Here we present the main theorem of the paper. More specifically it develops an MF stochastic control law
that achieves a Nash equilibrium at the population limit when applied by all agents in the system. Moreover,
the control law induces an ε-Nash equilibrium property for a finite population.

Theorem 6.1 Collective Target Tracking MF Stochastic Control Theorem

For systems (9) with the cost function (11), let A1–A5 hold.

(i) For λ ∈ [0, λ∗) (26), the CTT MF Equations have a unique solution which induces a family of de-
centralized feedback control policies UNcol , {(ui)◦; 1 ≤ i ≤ N}, 1 ≤ N < ∞, generated by (15) such
that

(ii) a desirable fixed point is achieved; i.e., the mean trajectory converges to the target trajectory;
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(iii) all agent system trajectories xi, 1 ≤ i ≤ N, are exponentially bounded in the sense that

E
∫ ∞

0

e−δt‖xit‖2dt <∞;

(iv) {UNcol; 1 ≤ N <∞} yields an ε-Nash equilibrium in the sense that, for all ε > 0, there exists N(ε) such
that for all N ≥ N(ε)

JNi
(
(ui)◦, (u−i)◦

)
− ε ≤ inf

ui∈UNg
JNi
(
ui, (u−i)◦

)
≤ JNi

(
(ui)◦, (u−i)◦

)
.

Proof.

(i) The proof is given in Theorem 5.2.

(ii) The proof is given in Theorem 5.5.

(iii) Note that the closed loop system is given by

dxit = (Ai −BiR−1Bi
>

Πi
t)x

i
tdt−BiR−1Bi

>
sitdt+ cidt+Ddwit, t ≥ 0.

First of all (a) A2 ensures that Ai −BiR−1Bi
>

Πi
t − (δ/2)I is Hurwitz, and (b) A1 ensures that xi0 is

independent of wi(.) and E‖xi0‖2 <∞. Moreover, si ∈ Cδ/2[0,∞), and hence E
∫∞

0
exp(−δt)‖uit‖2dt <

∞. Therefore, Lemma A.4 ensures that

E
∫ ∞

0

e−δt‖xit‖2dt <∞, 1 ≤ i ≤ N.

(iv) The proof is similar to the proof of Theorem 5.6 in [9], and is therefore omitted.

7 Simulations

For our numerical experiments we simulate a population of 200 space heaters. We take a uniform population
of heaters; adopt a one layer ETP model given in (7), where the capacitance (Ca) and conductance (Ua)
parameters are chosen to be 10 kWh/◦C and 0.2 kW/◦C respectively, the ambient temperature is set to
-10◦C, and the volatility parameter is set to 0.25◦C/

√
h. The initial temperatures of the heaters are drawn

from a Gaussian distribution with a mean of 21◦C and a variance of 1. The cost function parameters δ, qx0

and r are uniformly chosen to be 0.001, 200 and 1 respectively.

For the first simulation the central authority provides the target temperature trajectory (20◦C) to each
controller, and local controllers apply a classical LQG tracking algorithm. Figure 4 shows that as a result
each agent in the population tracks the target degree of 20◦C. Notice that in this implementation all agents
track 20◦C in order for the population mean temperature to track 20◦C, where all agents are heavily disturbed
for the global goal.

In the second scenario the central authority sets the target temperature to 20◦C (y parameter), and all
agents are assigned to track 17◦C (z parameter). The x̄ based Picard iterations of the collective target
tracking MF equation system without restriction are provided in Figure 5 with x̄0

t = x̄0, t ∈ [0,∞). One
immediately notices the monotonic behaviour in the early stages of the trajectories before any of the curves
encounters the y target line; the so-called restricted operator algorithm is introduced to take advantage of
that monotonicity. In Figure 6 we plot the iterations of the restricted algorithm. Note that the even curves
are frozen at the point y when the mean trajectory reaches y. The algorithm converges to the same mean
field trajectory as in the previous Figure 5. We provide the corresponding cost function trajectory given
by qy∗ , ∆(x̄∗) in Figure 7, where x̄∗ is the fixed point to the mean field equation system. The resulting
controlled trajectories are presented and the mean temperature trajectory is shown in Figure 8. It can be
seen that while the mean temperature still settles at 20◦C, individuals in the population are disturbed much
less than in the LQG tracking implementation.
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Figure 4: Agents applying classical LQG tracking
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Figure 5: Collective target tracking MF iterations
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Figure 6: Collective target tracking MF iterations: Restricted algorithm
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Figure 7: Collective target tracking: Iterations for cost function
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Figure 8: Agents applying collective target tracking MF control: All agents following the low comfort level

In practical implementation, in order to increase the convergence speed of the mean field trajectory to
the steady state, we implement an accelerated engineering solution: the agents calculate their individualized
steady states (which contribute to the global mean field steady state), and employ no control until their
temperature reaches their individual steady state (in the case of a desired increase in mean temperature,
the individuals would instead apply maximum control to reach their own calculated steady-state). This
calculation can be carried out as follows. One writes (27) for individual agent Ai, 1 ≤ i ≤ N, as

qy∞
∗ =

[a(a+ δ)r + qx0b2]

b2

(
xi0 − (xi∞)∗

(xi∞)∗ − z

)
. (28)

Solving (28) for (xi∞)∗ yields

(xi∞)∗ = xi0 −
b2(q∞)∗(xi0 − z)

ar(a+ δ) + (q∞)∗b2 + qx0b2
.

For the same set of parameters, the central authority sets the target temperature to 20◦C. The resulting
controlled trajectories are presented and the mean temperature trajectory is shown in Figure 9. It can be
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Figure 9: Agents applying collective target tracking MF control: Accelerated engineering solution
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Figure 10: Agents applying collective target tracking MF control: All agents following the low comfort level
signal

seen that the mean temperature settles at 20◦C in about two and a half hours, a rate noticeably faster than
the convergence rate of the mean field dictated by collective target tracking MF control.

For the same set of parameters of the previous simulation, this time the target is set to 19◦C. The
corresponding aggregate power consumption plot is provided in Figure 10. Not only does the control algorithm
provide immense relief at the early stages of the horizon, but it also provides a smooth transition to the
steady state power consumption profile without a delayed payback peak typical of direct control schemes of
thermostats. Notice on the other hand that while thermostats were eliminated from the original formulation,
the final controls correspond to simply changing the set points of individual thermostats from their initial
values to the desired individualized steady-state values and could be implemented in this manner.

For the next experiment we separate the population in two groups where the first group consists of the
heaters above the 21◦C initial population mean temperature, and the second group consists of the ones below
that temperature. The central authority sets the target temperature to 22◦C, and both groups are assigned
to track 25◦C. In order to achieve a level of fairness among the agents, the first group is assigned a higher
control penalty coefficient r thus making it more reluctant to change its initial temperature. Collective target
tracking MF control is applied to these groups together, however using the max control until the individual
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steady state option which has been described above. The simulation result is provided in Figure 11. It can
be seen that the collective target tracking MF control scheme leads the mean temperature of the global
heaters population to 22◦C while soliciting the agents with lower initial temperatures more intensely than
those with higher initial temperatures.This illustrates how one could shape the collective tracking response
for greater fairness. The mean trajectories of the sub-populations with this scheme compared to the case
when sub-populations share the same control penalty coefficients is given in Figure 12.
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Figure 11: Agents applying collective target tracking MF control: Different r for subpopulations. The blue
heated spaces are initially warmer and are thus asked for a lower contribution to the overall energy reduction
effort
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Figure 12: The mean trajectories of the subpopulations in Figure 11

8 Concluding remarks

In this paper the presence of large numbers of electric devices associated with energy storage is employed
to develop a decentralized mean field control based approach to the problem of these devices following a
desired mean trajectory. Provided with the mean temperature target trajectory as well as the initial mean
temperature in the controlled group, the devices generate their own control locally, and thus enforce their
safety and comfort constraints locally as well. The proposed solution deviates from the classical formulation
which would have each element track the desired mean temperature thus introducing unnecessary control
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actions. The solution made possible by mean field theory enforces collective mean temperature tracking while
leaving individual devices freer to remain, if possible within their comfort zone. In the proposed method,
the novelty is that the mean field effect is mediated by the quadratic cost function parameters under the
form of an integral error, as compared to currently prevailing mean field control formulations where the mean
field effect is concentrated on the tracking signal. The equations that provide the best response action are
presented together with the MF equation system; a fixed point analysis is given and the existence of a solution
is shown. A numerical algorithm for the calculation of a desirable smooth fixed point is provided, and finally
an ε-Nash Theorem is presented. Numerical simulation results are provided illustrating the flexibility and
potential of this form of decentralized collective control.

In future work, the analysis of a cooperative framework and nondiffusion load dynamics which involve
jump Markov models (such as in electric water heaters) will be studied. Also, the extension to time varying
target tracking problems and the impact of constraints on the synthesis of control laws are subjects of
future study. Finally, note that higher dimensional elemental models such as presented in [23] can be easily
accommodated in the current theory.

Appendix A Preliminary results

We declare the following lemmas.

Lemma A.1 For M : G → C[0,∞) in (23), the cost function qyt , t ∈ [0,∞), in (12) and the associated
Riccati equation πt, t ∈ [0,∞), in (13) have the following properties:

(i) qyt ≤ λmax[y − z, x̄0 − y]t, t ≥ 0,

(ii) πt is bounded above by πu, and below by πb, where πb > 0 is a constant, and πu is monotonically
increasing in time and strictly concave,

(iii) π(q′)(t)− π(q′′)(t) ≤ λ(κ1t+ κ2
1)‖x̄′ − x̄′′‖∞, where q′ and q′′ are given by (18) respectively for x̄′ and

x̄′′ in G.

Proof.

(i) Since x̄ ∈ G, and qy is given in (18), (i) immediately follows.

(ii) Since qy is upper bounded by (qy)
u

= λmax[y − z, x̄0 − y]t, then the corresponding π(qy) is upper
bounded by the corresponding πu((qy)

u
). Also, π(qy) is bounded below by πl((qy)l) where (qy)l(t) =

0, t ∈ [0,∞).

To show the monotonicity properties of (qy)
u

we use a similar technique to the one used in [24, Lemma
10.2]. Now, for any t ∈ [0,∞), we have

− dπut
dt

= −(2a+ δ)πut − b2r−1(πut )2 + qx0 + λmax[y − z, x̄0 − y]t, t ≥ 0. (29)

Taking the derivative gives

−d
2πut
dt2

= −(2a+ δ)
dπut
dt
− b2r−12πut

dπut
dt

+ λmax[y − z, x̄0 − y], (30)

=
[
−(2a+ δ)− 2b2r−1πut

] dπut
dt

+ λmax[y − z, x̄0 − y], t ≥ 0.

Now, the solution is given by

dπut
dt

= −
∫ t

∞
Γ(t, τ)λmax[y − z, x̄0 − y]dτ,
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where
∂Γ(t, τ)

∂t
= 2a+ δ + 2b2r−1πut , (31)

which implies
dπut
dt > 0 for all t ∈ [0,∞).

Similarly take the derivative of (30) to obtain

−d
3πut
dt3

= −(2a+ δ)
d2πut
dt2

− 2b2r−1πut
d2πut
dt2

− 2b2r−1

(
dπut
dt

)2

, (32)

=
[
−(2a+ δ)− 2b2r−1πut

] d2πut
dt2

− 2b2r−1

(
dπut
dt

)2

, t ≥ 0. (33)

The solution is given by

d2πut
dt2

= −
∫ t

∞
Γ(t, τ)

[
−2b2r−1

(
dπut
dτ

)2
]
dτ,

where Γ(t, τ) is given in (31), which implies
d2πut
dt2 < 0 for all t ∈ [0,∞).

Hence, πu is monotonically increasing in time and strictly concave.

(iii) First define q̃t , q′t − q′′t and π̃t , π(q′)(t)− π(q′′)(t). Then, (29) gives

− dπ̃t
dt

=

[
−(2a+ δ)− b2

r
2π(q′′)(t)

]
π̃t − b2r−1π̃2

t + q̃t, t ≥ 0. (34)

where π̃t is the solution to the Riccati equation (34). Hence, for q̃t ≥ 0, t ∈ [0,∞), π̃t ≥ 0, t ∈ [0,∞),
follows.

Since π(q′′)(t) ≥ 0, t ∈ [0,∞), and π̃2
t ≥ 0, t ∈ [0,∞) , we get

−dπ̃t
dt

+ (2a+ δ)π̃t ≤ q̃t, t ≥ 0.

Since q̃t ≤ λt‖x̄′ − x̄′′‖∞ we can write

− dπ̃t
dt

+ (2a+ δ)π̃t ≤ λt‖x̄′ − x̄′′‖∞, t ≥ 0. (35)

Taking derivative of both sides gives

−d
2π̃t
dt2

+ (2a+ δ)
dπ̃t
dt
≤ λ‖x̄′ − x̄′′‖∞, t ≥ 0.

It is shown in (ii) that π̃ is concave. Therefore,

dπ̃t
dt
≤ λ

2a+ δ
‖x̄′ − x̄′′‖∞, t ≥ 0. (36)

Then, (35) implies

(2a+ δ)π̃t ≤
dπ̃t
dt

+ λt‖x̄′ − x̄′′‖∞, t ≥ 0.

Employing (36) gives

π̃t ≤
1

2a+ δ

(
λt+

λ

2a+ δ

)
‖x̄′ − x̄′′‖∞,

, λ(κ1t+ κ2
1)‖x̄′ − x̄′′‖∞.
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Lemma A.2 For a system with the transition matrix

∂Φ(t, s)

∂t
= (−α− βtγ)Φ(t, s), (37)

for α ≥ 0, β ≥ 0, 0 < γ ≤ 1, the following assertions hold:

1) sup
t≥0

∫ t

0

Φ(t, τ)dτ ≤ 1

α
,

2) sup
t≥0

t

∫ t

0

Φ(t, τ)dτ < κ2,

3) Φ(t, τ)− Φ(t+ ∆t, τ) ≤ κ3∆t as ∆t→ 0,

4)

∫ t

0

(Φ(t, τ)− Φ(t+ ∆t, τ)) dτ ≤ κ4∆t as ∆t→ 0.

Proof. When needed, consider in the following α = 0 and γ = 1 without loss of generality. Then,

1) sup
t≥0

∫ t

0

Φ(t, τ)dτ ≤ 1

α
.

Since Φ(t, τ) ≤ exp[−α(t− τ)], we get the assertion.

2) sup
t≥0

t

∫ t

0

Φ(t, τ)dτ < κ2.

First write

t

∫ t

0

Φ(t, τ)dτ = t

∫ t

0

exp

(∫ t

τ

−βsds
)
dτ

= t

∫ t

0

exp

(
−β
2

(t2 − τ2)

)
dτ.

Now, [25, 7.8.7] implies

t

∫ t

0

Φ(t, τ)dτ <
2

3β

(
2 +

β

2
exp

(
−β
2
t2
)
t2 − 2 exp

(
−β
2
t2
))

<
2

3β

(
2 +

β

2
exp

(
−β
2
t2
)
t2
)
.

Take the derivative of exp
(
−β
2 t2

)
t2 to obtain exp

(
−β
2 t2

)(
1− β

2 t
2
)
, which is positive for t ∈ [0, (2/β)0.5)

and negative for t > (2/β)0.5; hence achieves maximum at t = (2/β)0.5.

Therefore,

sup
t≥0

t

∫ t

0

Φ(t, τ)dτ <
2 exp(−1) + 4

3β

, κ2.

3) Φ(t, τ)− Φ(t+ ∆t, τ) ≤ κ3∆t as ∆t→ 0.

First write

Φ(t, τ)− Φ(t+ ∆t, τ) = Φ(t, τ)(1− Φ(t+ ∆t, t)

= exp

[
−β
2

(t2 − τ2)

](
1− exp

[
−β
2

(2t+ ∆t)∆t

])
.

Then, again without loss of generality take τ = 0, ∆t << 1 and ∆t << t. Then,
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Φ(t, τ)− Φ(t+ ∆t, τ) ≤ exp

(
−β
2
t2
)
β

2
(2t+ 1)∆t

= exp

(
−β
2
t2
)
βt∆t+ exp

(
−β
2
t2
)
β

2
∆t

≤ κ3∆t.

4)

∫ t

0

(Φ(t, τ)− Φ(t+ ∆t, τ))dτ ≤ κ4∆t as ∆t→ 0.

We write ∫ t

0

(Φ(t, τ)− Φ(t+ ∆t, τ))dτ = (1− Φ(t+ ∆t, t))

∫ t

0

Φ(t, τ)dτ.

Take α = 0 and γ = 1 without loss of generality. Then,∫ t

0

(Φ(t, τ)− Φ(t+ ∆t, τ))dτ =

(
1− exp

(∫ t+∆t

t

(−βτ)dτ

))∫ t

0

Φ(t, τ)dτ

=

(
1− exp

[
−β

2
(∆t(2t+ ∆t))

])∫ t

0

Φ(t, τ)dτ.

Take ∆t << t and ∆t << 1. Then,∫ t

0

(Φ(t, τ)− Φ(t+ ∆t, τ))dτ ≤ β

2
∆t(2t+ 1)

∫ t

0

Φ(t, τ)dτ.

With the assumption ∆t << t and ∆t << 1, one gets∫ t

0

(Φ(t, τ)− Φ(t+ ∆t, τ))dτ ≤ β

2
∆t(2t+ 1)

∫ t

0

Φ(t, τ)dτ

= ∆tβt

∫ t

0

Φ(t, τ)dτ + ∆t
β

2

∫ t

0

Φ(t, τ)dτ

≤ ∆tβ sup
t≥0

{
t

∫ t

0

Φ(t, τ)dτ

}
+ ∆t

β

2
sup
t≥0

{∫ t

0

Φ(t, τ)dτ

}
= βI1∆t+

β

2
I2∆t.

We have shown in 2) that I1 ≤ κ2 and in 1) that I2 ≤ 1/α. Therefore, the assertion holds.

Lemma A.3 For a system with the transition matrix

∂Ψ(t, s)

∂t
, (α+ βtγ)Ψ(t, s),

where α ≥ 0, β ≥ 0, γ > 0, we get∫ t2

t1

Ψ(t2, τ)(α+ βτγ)dτ = exp[α(t2 − t1)] exp

[
β

γ + 1
(tγ+1

2 − tγ+1
1 )

]
− 1,

which implies ∫ t2

∞
Ψ(t2, τ)(α+ βτγ)dτ = −1.

The proof is trivial, and is therefore omitted.

Lemma A.4 For a system with the dynamics

dxt = (Axt +But + ct)dt+Ddwt, t ≥ 0,

a > 0 where (i) A− (δ/2)I is Hurwitz, (ii) x0 is independent of w(·), (iii) E‖x0‖2 <∞, (iv) c ∈ Cδ/2[0,∞),
(v) E

∫∞
0

exp(−δt)‖ut‖2dt ≤ c1, the following holds

E
∫ ∞

0

exp(−δt)‖xt‖2dt ≤ c2.
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Proof. Define x′t = exp[−(δ/2)t]xt and u′t = exp[−(δ/2)t]ut. The SDE for x′ is given by

dx′t = [A− (δ/2)I]x′tdt+Bu′tdt+ exp[−(δ/2)t]ctdt+ exp[−(δ/2)t]Ddwt.

Taking the integral gives

E
∫ ∞

0

‖x′t‖2dt ≤ C + E
∫ ∞

0

∥∥∥∥∫ t

0

exp [(A− (δ/2)I)(t− τ)]Bu′τdτ

∥∥∥∥2

dt.

Since A− (δ/2)I is Hurwitz, there exists a ρ > 0 such that

E
∫ ∞

0

‖x′t‖2dt ≤ C + ‖B‖2E
∫ ∞

0

∥∥∥∥∫ t

0

exp[−ρ(t− τ)]u′τdτ

∥∥∥∥2

dt.

Now employ Cauchy-Schwarz Inequality to obtain

≤ C + ‖B‖2E
∫ ∞

0

(∫ t

0

exp[−ρ(t− τ)]dτ

)(∫ t

0

exp[−ρ(t− τ)]‖u′τ‖2dτ
)
dt

= C + (‖B‖2/ρ)E
∫ ∞

0

(∫ t

0

exp[−ρ(t− τ)]‖u′τ‖2dτ
)
dt.

Using Tonelli’s theorem, a change-of-order of integration gives

= C + (‖B‖2/ρ)E
∫ ∞

0

exp(ρτ)‖u′τ‖2
(∫ ∞

τ

exp(−ρt)dt
)
dτ

≤ C + (‖B‖2/ρ2)E
∫ ∞

0

‖u′τ‖2dτ,

which implies

E
∫ ∞

0

exp(−δt)‖xt‖2dt ≤ C + (‖B‖2/ρ2)E
∫ ∞

0

exp(−δτ)‖uτ‖2dτ

= C +
‖B‖2

ρ2
c1

= c2.

Appendix B Proofs

Proof of Proposition 4.1. Employing A5, for systems (8) where the individual controllers are generated
according to (15), the fixed point equation system is given by

−dπt
dt

= (−2a− δ)πt − b2r−1π2
t + qyt + qx0 ,

−ds
θ
t

dt
= (−a− δ − b2πtr−1)sθt + ax̄θ0πt − q

y
t z − qx0xθ0, (38)

dx̄θt
dt

= (−a− b2πtr−1)x̄θt − b2r−1sθt + ax̄θ0,

x̄t =

∫
Θ

x̄θtdF
θ, (39)

qyt =

∣∣∣∣λ ∫ t

0

(x̄τ − y)dτ

∣∣∣∣ .
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The state transition and offset transition coefficients under the feedback control (15) evolve respectively
according to

∂Φ(t, s)

∂t
, (−a− b2πtr−1)Φ(t, s),

∂Ψ(t, s)

∂t
, (a+ b2πtr

−1 + δ)Ψ(t, s).

The unique solutions to the state and offset equations are given respectively by

x̄θt = Φ(t, 0)x̄θ0 +

∫ t

0

Φ(t, τ)
(
− b2r−1sθτ + ax̄θ0

)
dτ, (40)

sθt =

∫ t

∞
Ψ(t, τ)

(
− ax̄θ0πτ + qyτ z + qx0xθ0

)
dτ. (41)

Integrating (38) with respect to F θ, st =
∫

Θ
sθtdF

θ, gives

st =

∫
Θ

∫ t

∞
Ψ(t, τ)

(
− ax̄θ0πτ + qyτ z + qx0xθ0

)
dτdF θ

=

∫ t

∞
Ψ(t, τ)

(
− ax̄0πτ + qyτ z + qx0 x̄0

)
dτ.

Taking the time derivative of st gives

−dst
dt

= (−a− δ − b2πtr−1)st + ax̄0πt − qyt z − qx0 x̄0.

Integrating (39) with respect to F θ gives

x̄t =

∫
Θ

Φ(t, 0)x̄θ0dF
θ +

∫
Θ

∫ t

0

Φ(t, τ)
(
− b2r−1sθτ + ax̄θ0

)
dτdF θ

= Φ(t, 0)x̄0 +

∫ t

0

Φ(t, τ)
(
− b2r−1sτ + ax̄0

)
dτ.

Taking the time derivative of x̄t gives

dx̄t
dt

= (−a− b2πtr−1)x̄t − b2r−1st + ax̄0.

Hence, (17) is achieved.

Proof of Lemma 4.2. Let (fn) ∈ G be a Cauchy sequence in Cb[0,∞). Since G ∈ Cb[0,∞), and Cb[0,∞)
is a Banach space, f , limn→∞(fn) exists in Cb[0,∞). Assume that there exists an ε > 0 such that
supt≥0 f(t) ≥ x̄0 + ε (or inft≥0 f(t) ≤ z − ε without loss of generality). This implies that there exists some
fN , N ≥ 0, such that ‖fN‖∞ ≥ x̄0 + ε/2. Clearly, this is a contradiction to the fact that (fn) ∈ G for n ≥ 0.
Therefore, the limit f has the bound z ≤ f ≤ x̄0 which implies that G is closed in Cb[0,∞).

For convexity of G, let f1, f2 ∈ G. Consider f̂ = f1 + (1 − γ)f2 for 0 ≤ γ ≤ 1. Note that f̂(0) = x̄0,
z ≤ f̂ ≤ x̄0 and f̂ is continuous for 0 ≤ γ ≤ 1, which implies convexity.

Proof of Proposition 4.3.

Step 1: Im(M) is bounded between z and x̄0.

Note that qyt = 0, t ∈ [0,∞), gives T (q) = x̄0 since the optimal control is u◦t = 0 for all t ∈ [0,∞). Also,
note that as qt → ∞ x̄t → z; and for fixed r this behaviour is monotone in qt. Moreover since x̄0 ≤ y ≤ z,
and 0 ≤ qyt ≤ λmax[y − z, x̄0 − y]t due to Lemma A.1, for all t ∈ [0,∞), T (q) is bounded between x̄0 and z.
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Step 2: Im(M) ⊂ G and forms a family of equicontinuous functions.

In order to establish (2), we need first to rely on Lemmas A.1, A.2 and A.3 established earlier in Ap-
pendix A.

The unique solutions to the state and offset equations are given respectively by (40) and (41).

Injecting qyτ = |λ
∫ τ

0
(x̄s − y)ds| gives

st =

∫ t

∞
Ψ(t, τ)

(
− ax̄0πτ +

∣∣∣∣λ ∫ τ

0

(x̄s − y)ds

∣∣∣∣z + qx0 x̄0

)
dτ.

Then, the mean field state equation is written as

x̄t = Φ(t, 0)x̄0 +

∫ t

0

Φ(t, τ)

[
− b2r−1

∫ τ

∞
Ψ(τ, s)(

− ax̄0πs +

∣∣∣∣λ ∫ s

0

(x̄ζ − y)dζ

∣∣∣∣z + qx0 x̄0

)
ds+ ax̄0

]
dτ

= (Mx̄)(t).

(42)

For t2 = t1 + ∆t, 0 ≤ t1 ≤ t2 <∞,

(Mx)(t2)− (Mx)(t1) = Φ(t2, 0)x̄0 +

∫ t2

0

Φ(t2, τ)(·)dτ

− Φ(t1, 0)x̄0 +

∫ t1

0

Φ(t1, τ)(·)dτ

= (Φ(t2, 0)− Φ(t1, 0))x̄0

+

∫ t2

0

Φ(t2, τ)

[
− b2r−1

∫ τ

∞
Ψ(τ, s)

(
− ax̄0πs + qx0 x̄0

)
ds

]
dτ

−
∫ t1

0

Φ(t1, τ)

[
− b2r−1

∫ τ

∞
Ψ(τ, s)

(
− ax̄0πs + qx0 x̄0

)
ds

]
dτ

+

∫ t2

0

Φ(t2, τ)

[
− b2r−1

∫ τ

∞
Ψ(τ, s)

∣∣∣∣ · ∣∣∣∣zds]dτ
−
∫ t1

0

Φ(t1, τ)

[
− b2r−1

∫ τ

∞
Ψ(τ, s)

∣∣∣∣ · ∣∣∣∣zds]dτ
+

∫ t2

0

Φ(t2, τ)ax̄0dτ

−
∫ t1

0

Φ(t1, τ)ax̄0dτ

, I1 + I2 − I3 + I4 − I5 + I6 − I7,

where the terms Ii, 1 ≤ i ≤ 7, are defined respectively.

(a) |I1| is given as
|I1| = |Φ(t2, 0)− Φ(t1, 0)|x̄0

≤ h|Φ(t2, 0)− Φ(t1, 0)|,
(43)

since x̄0 ≤ h, the high comfort level. Then, we employ Lemma A.1 together with Lemma A.2 and get

|I1| ≤ hλκ1κ3|t2 − t1|.

Note that in Subsections (b), (c) and (d) below, the definitions of variable ∆1 and ∆2 are strictly local
to the subsections.
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(b) I2 − I3 is given as

I2 − I3 =

∫ t2

0

Φ(t2, τ)

[
b2r−1

∫ τ

∞
Ψ(τ, s)

(
ax̄0πs − qx0 x̄0

)
ds

]
dτ

−
∫ t1

0

Φ(t1, τ)

[
b2r−1

∫ τ

∞
Ψ(τ, s)

(
ax̄0πs − qx0 x̄0

)
ds

]
dτ

=

∫ t1

0

(Φ(t2, τ)− Φ(t1, τ))

[
b2r−1

∫ τ

∞
Ψ(τ, s)

(
ax̄0πs − qx0 x̄0

)
ds

]
dτ

+

∫ t2

t1

Φ(t2, τ)

[
b2r−1

∫ τ

∞
Ψ(τ, s)

(
ax̄0πs − qx0 x̄0

)
ds

]
dτ

, ∆1 + ∆2.

We start with ∆1 and write

|∆1| ≤ b2r−1x̄0

∫ t1

0

|Φ(t2, τ)− Φ(t1, τ)|
∣∣∣∣ ∫ τ

∞
Ψ(τ, s)(aπs + qx0)ds

∣∣∣∣dτ.
Note that x̄0 ≤ h; we employ Lemmas A.1 and A.3, and obtain

|∆1| ≤ b2r−1h(a+ qx0)

∫ t1

0

|Φ(t2, τ)− Φ(t1, τ)|dτ.

We employ Lemma A.2 and get

|∆1| ≤ b2r−1h(a+ qx0)λκ1κ4|t2 − t1|.

Likewise, for ∆2 we get

|∆2| ≤ b2r−1h(a+ qx0)

∫ t2

t1

Φ(t2, τ)dτ

≤ b2r−1h(a+ qx0)a−1 (1− exp[−a(t2 − t1)]) .

Assuming |t2 − t1| << 1, we achieve the bound

|∆2| ≤ b2r−1h(a+ qx0)|t2 − t1|.

(c) I4 − I5 is given as

I4 − I5 =

∫ t1

0

(Φ(t2, τ)− Φ(t1, τ))

[
− b2r−1

∫ ∞
τ

Ψ(s, τ)qyszds

]
dτ

+

∫ t2

t1

Φ(t2, τ)

[
b2r−1

∫ ∞
τ

Ψ(s, τ)qyszds

]
dτ

, ∆1 + ∆2.

We start with ∆1. Employing Lemma A.1 gives

|∆1| ≤ λb2r−1zmax[y − z, x̄0 − y]

∫ t1

0

|Φ(t2, τ)− Φ(t1, τ)|
(∫ ∞

τ

Ψ(s, τ)sds

)
dτ.

Employing Lemma A.1 together with Lemmas A.2 and A.3 gives

|∆1| ≤ λ2b2r−1zmax[y − z, x̄0 − y]κ1κ4|t2 − t1|.
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Then, employing Lemmas A.1 and A.3 gives

|∆2| ≤ λb2r−1zmax[y − z, x̄0 − y]

∫ t2

t1

Φ(t2, τ)

(∫ ∞
τ

Ψ(s, τ)sds

)
dτ

≤ λb2r−1zmax[y − z, x̄0 − y]

∫ t2

t1

Φ(t2, τ)dτ.

The bound Φ(t2, τ) ≤ exp[−a(t− τ)] gives

|∆2| ≤ λb2r−1zmax[y − z, x̄0 − y]a−1(1− exp[−a(t2 − t1)]).

For |t2 − t1| << 1 we get
|∆2| ≤ λb2r−1zmax[y − z, x̄0 − y]|t2 − t1|.

(d) I6 − I7 is given as

I6 − I7 =

∫ t1

0

(Φ(t2, τ)− Φ(t1, τ))ax̄0dτ

+

∫ t2

t1

Φ(t2, τ)ax̄0dτ

, ∆1 + ∆2.

We start with ∆1, employ x̄0 ≤ h, Lemmas A.1 and A.2 to obtain

|∆1| ≤ ahλκ1κ4|t2 − t1|.

Likewise for ∆2, employing x̄0 ≤ h gives

|∆2| ≤ ah
∫ t2

t1

exp[−a(t2 − τ)]dτ

≤ aha−1 (1− exp[−a(t2 − t1)]) .

For |t2 − t1| << 1, we get
|∆2| ≤ ah|t2 − t1|.

Finally,

|(Mx)(t2)− (Mx)(t1)| ≤
(
λκ1κ3h+ (λκ1κ4 + 1)(b2r−1h)(a+ qx0)

+ (λ2κ1κ4 + λ)b2r−1zmax[y − z, x̄0 − y]

+ (λκ1κ4 + 1)ah

)
|t2 − t1|

,M |t2 − t1|. (44)

Note that Mx(0) = x̄0. We have shown in Step 1 that z ≤ M(x) ≤ x̄0 for all x ∈ G. Then, we have shown
in Step 2 that M(x) is uniformly Lipschitz continuous for all x ∈ G. This means (i) Im(M) ⊂ G, and (ii)
Im(M) forms a family of equicontinuous functions.

Proof of Proposition 4.4. The operator M has been shown in (42) to be

x̄t = Φx̄(t, 0)x̄0 +

∫ t

0

Φx̄(t, τ)

[
− b2r−1

∫ τ

∞
Ψx̄(τ, s)(

− ax̄0π
x̄
s +

∣∣∣∣λ ∫ s

0

(x̄ζ − y)dζ

∣∣∣∣z + qx0 x̄0

)
ds+ ax̄0

]
dτ

= (Mx̄)(t).
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where
dΦx̄(t, s)

dt
, (−a− b2πx̄t r−1)Φx̄(t, s),

dΨx̄(t, s)

dt
, (a+ b2πx̄t r

−1 + δ)Ψx̄(t, s).

For x′, x′′ ∈ G,

Mx′ −Mx′′ = Φx̄
′
(t, 0)x̄0 +

∫ t

0

Φx̄
′
(t, τ)(·)x̄

′
dτ

− Φx̄
′′
(t, 0)x̄0 +

∫ t1

0

Φx̄
′′
(t, τ)(·)x̄

′′
dτ

= (Φx̄
′
(t, 0)− Φx̄

′′
(t, 0))x̄0

+

∫ t

0

Φx̄
′
(t, τ)

[
− b2r−1

∫ τ

∞
Ψx̄′(τ, s)

(
qx0 x̄0

)
ds

]
dτ

−
∫ t

0

Φx̄
′′
(t, τ)

[
− b2r−1

∫ τ

∞
Ψx̄′′(τ, s)

(
qx0 x̄0

)
ds

]
dτ

+

∫ t

0

Φx̄
′
(t, τ)

[
− b2r−1

∫ τ

∞
Ψx̄′(τ, s)

(
− ax̄0π

x̄′

s

)
ds

]
dτ

−
∫ t

0

Φx̄
′′
(t, τ)

[
− b2r−1

∫ τ

∞
Ψx̄′′(τ, s)

(
− ax̄0π

x̄′′

s

)
ds

]
dτ

+

∫ t

0

Φx̄
′
(t, τ)

[
− b2r−1

∫ τ

∞
Ψx̄′(τ, s)

∣∣∣∣ · ∣∣∣∣x̄′zds]dτ
−
∫ t

0

Φx̄
′′
(t, τ)

[
− b2r−1

∫ τ

∞
Ψx̄′′(τ, s)

∣∣∣∣ · ∣∣∣∣x̄′′zds]dτ
+

∫ t

0

Φx̄
′
(t, τ)ax̄0dτ

−
∫ t

0

Φx̄
′′
(t, τ)ax̄0dτ

, I1 + I2 − I3 + I4 − I5 + I6 − I7 + I8 − I9,

where the terms Ii, 1 ≤ i ≤ 9, are defined respectively.

(a) |I1| is given as

|I1| = |Φx̄
′
(t, 0)− Φx̄

′′
(t, 0)|x̄0

≤ h|Φx̄
′
(t, 0)− Φx̄

′′
(t, 0)|,

(45)

since x̄0 ≤ h, the high comfort level. Then, we employ Lemma A.1 together with Lemma A.2 and get

‖I1‖∞ ≤ hλκ1κ3‖x̄′ − x̄′′‖∞.

Note that in Subsections (b), (c) and (d) below, the definitions of variable ∆1 and ∆2 are strictly local
to the subsections.

(b) I2 − I3 is given as

I2 − I3 =

∫ t

0

Φx̄
′
(t, τ)

[
− b2r−1

∫ τ

∞
Ψx̄′(τ, s)

(
qx0 x̄0

)
ds

]
dτ

−
∫ t

0

Φx̄
′′
(t, τ)

[
− b2r−1

∫ τ

∞
Ψx̄′′(τ, s)

(
qx0 x̄0

)
ds

]
dτ

=

∫ t

0

Φx̄
′
(t, τ)(·)′dτ −

∫ t

0

Φx̄
′′
(t, τ)(·)′dτ +

∫ t

0

Φx̄
′′
(t, τ)(·)′dτ −

∫ t

0

Φx̄
′′
(t, τ)(·)′′dτ

, ∆1 −∆2 + ∆3 −∆4.
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With similar analysis to (b) in the Proof of Proposition 4.2 we get

‖∆1 −∆2‖∞ ≤ b2r−1hqx0λκ1κ4‖x̄′ − x̄′′‖∞.

Likewise, for ∆3 −∆4 we get

‖∆3 −∆4‖∞ ≤ b2r−1hqx0λκ1κ4‖x̄′ − x̄′′‖∞,

so
‖I2 − I3‖∞ ≤ 2b2r−1hqx0λκ1κ4‖x̄′ − x̄′′‖∞.

(c) Likewise, we get
‖I4 − I5‖∞ ≤ 3b2r−1haλκ1κ4‖x̄′ − x̄′′‖∞,

(d) I6 − I7 is given as

I6 − I7 =

∫ t

0

Φx̄
′
(t, τ)

[
− b2r−1

∫ τ

∞
Ψx̄′(τ, s)

∣∣∣∣λ ∫ s

0

(x̄′ζ − y)dζ

∣∣∣∣zds]dτ
−
∫ t

0

Φx̄
′′
(t, τ)

[
− b2r−1

∫ τ

∞
Ψx̄′′(τ, s)

∣∣∣∣λ ∫ s

0

(x̄′′ζ − y)dζ

∣∣∣∣zds]dτ
=

∫ t

0

Φx̄
′
(t, τ)

[
− b2r−1

∫ τ

∞
Ψx̄′(τ, s)

∣∣∣∣λ ∫ s

0

(x̄′ζ − y)dζ

∣∣∣∣zds]dτ
−
∫ t

0

Φx̄
′
(t, τ)

[
− b2r−1

∫ τ

∞
Ψx̄′(τ, s)

∣∣∣∣λ ∫ s

0

(x̄′′ζ − y)dζ

∣∣∣∣zds]dτ
+

∫ t

0

Φx̄
′
(t, τ)

[
− b2r−1

∫ τ

∞
Ψx̄′(τ, s)

∣∣∣∣λ ∫ s

0

(x̄′′ζ − y)dζ

∣∣∣∣zds]dτ
−
∫ t

0

Φx̄
′
(t, τ)

[
− b2r−1

∫ τ

∞
Ψx̄′′(τ, s)

∣∣∣∣λ ∫ s

0

(x̄′′ζ − y)dζ

∣∣∣∣zds]dτ
+

∫ t

0

Φx̄
′
(t, τ)

[
− b2r−1

∫ τ

∞
Ψx̄′′(τ, s)

∣∣∣∣λ ∫ s

0

(x̄′′ζ − y)dζ

∣∣∣∣zds]dτ
−
∫ t

0

Φx̄
′′
(t, τ)

[
− b2r−1

∫ τ

∞
Ψx̄′′(τ, s)

∣∣∣∣λ ∫ s

0

(x̄′′ζ − y)dζ

∣∣∣∣zds]dτ
, ∆1 −∆2 + ∆3 −∆4 + ∆5 −∆6.

For ∆1 −∆2 we employ ∣∣∣∣λ ∫ s

0

(x̄′ζ − y)dζ

∣∣∣∣− ∣∣∣∣λ ∫ s

0

(x̄′ζ − y)dζ

∣∣∣∣ ≤ λs‖x̄′ − x̄′′‖∞,
and obtain

‖∆1 −∆2‖∞ ≤ b2r−1za−1λ‖x̄′ − x̄′′‖∞.

Likewise
‖∆3 −∆4‖∞ ≤ b2r−1zλ2κ1κ4‖x̄′ − x̄′′‖∞,

and
‖∆5 −∆6‖∞ ≤ b2r−1zλ2κ1κ4‖x̄′ − x̄′′‖∞,

which implies
‖I6 − I7‖∞ ≤ b2r−1z(a−1λ+ 2λ2κ1κ4)‖x̄′ − x̄′′‖∞.

(e) For I8 − I9 we get
‖I8 − I9‖∞ ≤ ahλκ1κ4‖x̄′ − x̄′′‖∞.
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Finally,

‖Mx′ −Mx′′‖∞ ≤
[
λ
(
hκ1κ3 + 2b2r−1hqx0κ1κ4 + 3b2r−1haκ1κ4 + b2r−1za−1 + ahκ1κ4

)
+ λ2

(
2b2r−1zκ3κ4

)]
‖x′ − x′′‖∞

, f(λ)‖x′ − x′′‖∞,

where κ1 is given in Lemma A.1, and κ3 and κ4 are given in Lemma A.2.
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[9] M. Huang, P.E. Caines, and R.P. Malhamé, Large population cost-coupled LQG problems with non-uniform
agents: individual-mass behaviour and decentralized ε – Nash equilibria, IEEE Transactions on Automatic
Control, 52(9), 1560–1571, Sep. 2007.

[10] P.E. Caines, Mean field games, in Encyclopedia of Systems and Control, T. Samad and J. Ballieul, Eds. London:
Springer-Verlag, 2014, 1–6.

[11] Y. Xu, L. Xie, and C. Singh, Optimal scheduling and operation of load aggregator with electric energy storage
in power markets, in North American Power Symposium (NAPS), 2010, Sept 2010, 1–7.
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