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Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca





Nested general variable
neighborhood search for
the periodic maintenance
problem

Raca Todosijević a
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Abstract: In this paper we study the periodic maintenance problem: given a set of m machines and a
horizon of T periods, find indefinitely repeating itself maintenance schedule such that at most one machine
can be serviced at each period. In addition, all the machines must be serviced at least once for any cycle.
In each period the machine i generates a servicing cost bi or an operating cost which depends on the last
period in which i was serviced. The operating cost of each machine i in a period equals ai times the number
of periods since the last servicing of that machine. The main objective is to find a cyclic maintenance
schedule of a periodicity T that minimizes total cost. To solve this problem we propose a new Mixed Integer
programming formulation and a new heuristic method based on general Variable neighborhood search called
Nested general variable neighborhood search. The performance of this heuristic is shown through an extensive
experimentation on a diverse set of problem instances.

Key Words: Scheduling, preventive maintenance, mixed-integer linear programming, variable neighborhood
search, nested general VNS.
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1 Introduction

Companies usually have developed long term strategies to remain competitive, innovative and profitable. At

an operational level, an efficient use of their resources is crucial to remain successful. As a consequence, the

human organization and the manufacturing systems in these companies have to be adapted consequently to

support managerial decisions. To achieve this goal, the production tools must be available almost all the

time.

Given that manufacturing systems constitute the vast majority of company’s investment and constitute

their production tools, they must be in perfect conditions whenever needed. Unfortunately, these systems

are subject to random failures and to deterioration and therefore have to undergo corrective maintenance [1].

Systems can also be stopped for preventive maintenance reasons to avoid (or minimize) the consequences

of failures. This kind of maintenance is designed to preserve and restore equipment reliability by replacing

worn components before they actually fail. Preventive maintenance activities take time that could otherwise

be used for production, but delaying preventive maintenance for production may increase the probability of

machine failures [3]. Hence, there are conflicts between maintenance planning, and production scheduling

and consequently there is good reasons to try minimizing the cost of the two functions [14].

The preventive maintenance problem arises especially in large manufacturing companies. Since the ca-

pacity of the maintenance department is limited, we are trying to schedule the maintenance of a number of

machines throughout the year (e.g. 52 weeks). Each machine must be serviced at least once throughout the

year; otherwise the operating cost of that machine will continue to increase and the reliability of the machine

will decrease to such an extent that will affect the quality of the product. In addition, during each week,

the maintenance service can not service more than k machines. Obviously the parameter k depends on the

capacity of the maintenance service. In our problem k = 1. Finally, the desired schedule aims to determine,

for each week, which machine has to be serviced (if any).

Any interruption of the line caused by any equipment malfunction or failure will result in a major disrup-

tion of output or even line or factory shutdown. Thus, an effective maintenance program should be designed

to provide the required availability of machinery and output quality. Furthermore, analysis of maintenance

costs indicates that a repair performed in the reactive or run to failure mode is, on average, about three

times higher than the same repair made within a scheduled or preventive mode [13]. Scheduling the repair

minimizes the repair time and associated labor costs. It also reduces the negative impacts of expedited

shipments and lost production.

In this paper we consider the periodic maintenance problem (PMP). There is a set of machines M =

{1, 2, . . . ,m}, and there is a set of periods U = {1, 2, . . . , T} with T ≥ m. The PMP consists of finding

an optimal cyclic maintenance schedule of lenght T that is indefinitely repeated. At most one machine is

serviced at each period and all the machines must be serviced at least once for any cycle. When machine

i ∈ M is serviced, a given non-negative servicing cost of bi is incurred, regardless of the period. At period

t ∈ U , a machine i ∈M that is not serviced during some period is in operation and incurs an operation cost

of ni(t)× ai where ai is a given positive integer, and where ni(t) is the number of periods elapsed since last

servicing of machine i. The main objective of this problem is to determine a feasible maintenance schedule

with a minimum cost, i.e. to decide for each period t ≤ T which machine to service (if any), such that

the total servicing costs and operating costs are minimized. We give here an example to well understand

the present problem. If cycle length T is a decision variable then the problem is called the Free periodic

maintenance problem. Here we consider T as an input parameter.

Illustrative example. Let the length of the maintenance cycle T = 8 and the total number of machines

m = 4. We suppose furthermore that the servicing costs are b1 = 1, b2 = 2, b3 = 3, and b4 = 4 and the

operation costs are a1 = 1, a2 = 10, a3 = 1 and a4 = 5.

We explain the problem using the optimal solution π∗ = (2, 4, 2, 1, 2, 4, 2, 3) obtained by a MIP formulation

of the problem (that will be given later in Section 2). Solution π∗ indicates that machine 2 is serviced in

the first period, 4 in the second period, etc. The total corresponding cost is as follows: Servicing cost

= b2 + b4 + b2 + b1 + b2 + b4 + b2 + b3 = 2 + 4 + 2 + 1 + 2 + 4 + 2 + 3 = 20. The operating costs are
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computed as follows. For Machine 1, costs are incurred in periods 1, 2, 3, 5, 6, 7 and 8. In periods

5, 6, 7, 1, 2 and 3 these costs are equal respectively to a1, 2a1, 3a1, 4a1, 5a1, 6a1 and 7a1. Thus the

total cost equals 28 for machine 1. Similarly we compute the total cost for the other machines. The total

cost of machine 2 is equal to 0 + a2 + 0 + a2 + 0 + a2 + 0 + a2 = 40. The total cost of machine 3 is

equal to a3 + 2a3 + 3a3 + 4a3 + 5a3 + 6a3 + 7a3 + 0 = 28a3 = 28. For machine 4, the total cost is

a4 + 2a4 + 3a4 + 0 + a4 + 2a4 + 3a4 + 0 = 12a4 = 60. Therefore, the objective value of this optimal solution

is f(π∗) = 176. Figure 1, also presents it.

Figure 1: Example with m = 4 and T = 8, with optimal solution π∗ = (2, 4, 2, 1, 2, 4, 2, 3) and f(π∗) = 176.

The contributions of the paper are:

(i) New variant of Variable Neighborhood Search (VNS) called Nested General VNS (NGVNS) is proposed;

(ii) New mathematical programming formulation of periodic maintenance problem (PMP) is proposed;

(iii) New NGVNS heuristic solves exactly all 110 instances from the literature;

(iv) Comparative study of 4 exact solution methods for PMP is conducted.

The rest of the paper is organized as follows. In the next section we give four existing mathematical

programming formulations of PMP and then our new formulation. In Section 3 we describe our new variant

of VNS called NGVNS. Section 4 contains computational results obtained on 110 instances while Section 5

concludes the paper.

2 Problem formulations

Grigoriev et al. [4] presented several mathematical models to solve the PMP. Hereafter we first give four

models from the literature and then we present a new mathematical model.

2.1 A quadratic programming formulation

In this model, it is assumed that servicing cost equals to zero, i.e., bi’s are assumed to be null. The quadratic

model uses the integer variable xi,t that corresponds to the number of periods between the current period

t ∈ U and the last period before t when machine i ∈ M has been serviced. So, the quadratic formulation of

PMP is stated as follows:

minx

∑
i∈M

∑
t∈U

aixi,t (1)

s.t. xi,t+1 (xi,t+1 − xi,t − 1) = 0, i ∈M, t ∈ U, (2)

xi,1 (xi,1 − xi,T − 1) = 0, i ∈M, (3)

xi,t + xk,t ≥ 1, i 6= k, i ∈M,k ∈M, t ∈ U, (4)

xi,t ∈ Z+, i ∈M, t ∈ U. (5)

The objective function (1) minimizes the total operating cost. Equations (2) and (3) ensure the re-

quired behavior of the xi,t variables. Equations (4) imply that each pair of machines cannot be serviced

simultaneously.
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The authors in [4] also gave a linearization of this model where the servicing costs bi are taken into

account. This linearization is given in the next section.

2.2 A linearization of the quadratic programming formulation

Aforementioned quadratic model is linearized by introducing the binary variable yi,t that takes value 1 if the

machine i is serviced in period t and 0 otherwise. The formulation of linearized model is given bellow:

minx

∑
i∈M

∑
t∈U

(aixi,t + biyi,t) (6)

s.t. xi,t+1 ≥ xi,t + 1− Tyi,t+1, i ∈M, t ∈ U, (7)

xi,1 ≥ xi,T + 1− Tyi,1, i ∈M, (8)∑
i∈M

yi,t ≤ 1, t ∈ U, (9)

xi,t ∈ Z+, i ∈M, t ∈ U, (10)

yi,t ∈ {0, 1}, i ∈M, t ∈ U. (11)

The objective function (6) minimizes the sum of operating costs and servicing costs. Equations (7) and (8)

enforce the variables xi,t to behave in the same way as in the previous model. Inequality (9) assure that we

cannot service more than one machine in a single period. Restrictions (10) and (11) are usual integrality

constraints.

2.3 A flow formulation of PMP

The PMP may be modeled using the binary variable xs,ti which equals 1 if machine i ∈ M is serviced in

period s ∈ U , and serviced next (cyclically) in period t + 1 ∈ U , and 0 otherwise. In this model cost c(s, t)

is defined as:

c(s, t) =

{
(t−s)(t−s+1)

2 if s ≤ t,
(T−s+t)(T−s+t+1)

2 if s > t,

Hence, the flow formulation model is stated as:

min
∑
i∈M

∑
s∈U

∑
t∈U

(
aic(s, t)x

s,t
i + bix

s,t
i

)
(12)

s.t.
∑
i∈M

∑
s∈U

xs,ti ≤ 1, t ∈ U (13)∑
s∈U

xs,ti =
∑
s∈U

xt+1,s
i , i ∈M, t ∈ U, (14)∑

s∈U
xs,Ti =

∑
s∈U

x1,si , i ∈M, (15)∑
s∈U

∑
t∈U

xs,ti ≥ 1, i ∈M (16)

xs,ti ∈ {0, 1}, i ∈M, s ∈ U, t ∈ U. (17)

The objective function (12) minimizes the total operating costs and servicing costs. Inequalities (13)

assure that, at each period, at most one machine can be serviced. Equality constraints (14) and (15) imply

that there is a next period in which a machine will be serviced. Constraint (16) assures that each machine

is serviced at least once. Finally, restrictions (17) represent the integrality conditions.

2.4 A set partitioning formulation

Let S be the set of all non-empty subsets of U . Clearly, every s ∈ S is a possible set of periods for servicing

a machine i ∈ M . Let us call s ∈ S a service strategy or simply strategy. For every pair consisting of a
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machine i ∈M and a strategy s ∈ S, we can compute the cost ci,s incurred when servicing machine i in the

periods contained in s as follows: let ps be the cardinality of s and let qj , j ∈ {1, 2, . . . , ps}, be the distance

between neighboring services in s. The total service and operating cost associated with machine i ∈M and

strategy s ∈ S is

c(i, s) = bips + ai

ps∑
j=1

(qj − 1)qj/2.

The set-partitioning formulation (SP) is as follows: The binary variable xi,s is equal to 1 if the machine

i ∈M is serviced in the periods contained in strategy s ∈ S, and 0 otherwise.

min
∑
i∈M

∑
s∈S

ci,sxi,s (18)

s.t.
∑
s∈S

xi,s = 1, i ∈M (19)∑
i∈M

∑
s∈S:t∈s

xi,s ≤ 1, t ∈ T (20)

xi,s ∈ {0, 1}, i ∈M, s ∈ S. (21)

The total servicing and operating cost is minimized by objective function (18). Constraints (19) imply that

one service strategy has to be selected for each machine. Constraints (20) ensure that no two strategies make

use of a same period, while constraints (21) represent usual integrality constraints.

Despite the fact that the set-partitioning formulation (SP) has an exponential number of variables, its

linear relaxation, which is quite strong, is solvable in a polynomial time in m and T (see [4]). Furthermore,

the LP relaxation of SP is stronger than the LP relaxation of FF (see [4]).

2.5 A new MIP formulation of PMP

The PMP may be modeled in terms of the following variables. Let xi,t be a binary variable that takes the

value of 1 if machine i is serviced in the time period t and 0 otherwise. Further, let zi,t be a variable such

that the difference (t − zi,t) is equal to 0 if the machine i is serviced in the time period t, while otherwise,

it is equal to the number of time periods elapsed since the last service of machine i. Mathematically, the

variable zi,t may be stated as:

zi,t = max{τ ∈ {h|xi,h = 1, 1 ≤ h ≤ t} ∪ {h− T |xi,h = 1, t+ 1 ≤ h ≤ T}} (22)

Note that we also introduce the variable zi,t for t = 0 that corresponds to the last period before starting new

cycle. Then the PMP may be formulated as follows:

min
∑
i∈M

∑
t∈U

bixi,t + ai(t− zi,t) (23)

s.t.
∑
i∈M

xi,t ≤ 1, t ∈ U (24)∑
t∈U

xi,t ≥ 1, i ∈M (25)

zi,t ≥ xi,t(t+ T )− T, t ∈ U, i ∈M (26)

zi,t ≥ zi,t−1, t ∈ U, i ∈M (27)

zi,t−1 + xi,t(t+ T )− zi,t ≥ 0, t ∈ U, i ∈M (28)

zi,0 = zi,T − T i ∈M (29)

−T ≤ zi,t ≤ t, t ∈ U, i ∈M (30)

xi,t ∈ {0, 1}, i ∈M, t ∈ U. (31)

The objective (23) minimizes the sum of operating costs and servicing costs. The meaning of the constraints

are as follows: constraint (24) guarantees that in each time period at least one machine will be serviced,
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while the constraint (25) allows the servicing of each machine at least once. From the definition of variables

zi,t (see (22)) follows that zi,t equals to t if xi,t = 1 and zi,t−1 otherwise. This simple observation is used for

modeling the constraints (26-30) keeping in mind that the whole process is cyclic (constraint (29)).

The model is illustrated using the example given in the Section 1. The optimal solution π∗ of the

formulation is presented in Table 1.

Table 1: Optimal solution of the MIP formulation

Time period t

0 1 2 3 4 5 6 7 8
serviced machine 2 4 2 1 2 4 2 3

x1,t 0 0 0 1 0 0 0 0
x2,t 1 0 1 0 1 0 1 0
x3,t 0 0 0 0 0 0 0 1
x4,t 0 1 0 0 0 1 0 0
z1,t -4 -4 -4 -4 4 4 4 4 4
z2,t -1 1 1 3 3 5 5 7 7
z3,t 0 0 0 0 0 0 0 0 8
z4,t -2 -2 2 2 2 2 6 6 6

Refinement of the model. Since we consider the minimization, the all constraints which bound variables zi,t
from below are redundant. So, constraint (26) and (27) can be excluded from the model in order to obtain

a model with smaller number of constraints. Such model is given below.

min
∑
i∈M

∑
t∈U

bixi,t + ai(t− zi,t) (32)

s.t.
∑
i∈M

xi,t ≤ 1, t ∈ U (33)∑
t∈U

xi,t ≥ 1, i ∈M (34)

zi,t−1 + xi,t(t+ T )− zi,t ≥ 0, t ∈ U, i ∈M (35)

zi,0 = zi,T − T i ∈M (36)

−T ≤ zi,t ≤ t, t ∈ U, i ∈M (37)

xi,t ∈ {0, 1}, i ∈M, t ∈ U. (38)

(39)

The following Table 2 gives a brief comparison of four formulations of the studied PMP problem. It

appears that models 1 and 4 contains the less number of variables than other two.

Table 2: Number of constraints and number of variables for each model

Formulation # of constraints # of integer variables # of binary variables

Linearisation of the quadratic programming mT +m+ T mT mT
Flow model mT + 2m+ T 0 mT 2

A set partitioning m+ T 0 m(2T − 1)
New MIP T + 2m+ 4mT 0 mT

3 Nested general variable neighborhood search for the PMP

Variable Neighborhood Search (VNS) [11, 8, 7, 6] is a flexible framework for building heuristics. VNS changes

systematically the neighborhood structures during the search for an optimal (or near-optimal) solution. The
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changing of neighborhood structures is based on the following observations: (i) A local optimum relatively

to one neighborhood structure is not necessarily a local optimal for another neighborhood structure; (ii) A

global optimum is a local optimum with respect to all neighborhood structures; (iii) Empirical evidence shows

that for many problems all local optima are relatively close to each other. The first property is exploited by

increasingly using complex moves in order to find local optima with respect to all neighborhood structures

used. The second property suggests using several neighborhoods, if local optima found are of poor quality.

Finally, the third property suggests exploitation of the vicinity of the current incumbent solution. The VNS

based heuristics have been successfully applied for solving many optimization problems (see e.g. [8, 7, 2, 10, 5]

for recent applications).

In this section we give details of our Nested general variable neighborhood search (NGVNS) based heuris-

tic. Before giving its pseudo-code and explaining in details each its step, we first discuss important question

in applying each heuristic: how to represent the solution of PMP in the computer.

3.1 Solution presentation and solution space

The following necessary condition allow us to efficiently define the solution space of the PMP.

Property 3.1 If there is a machine j such that aj > bj and if solution of PMP is optimal then, exactly one

machine is serviced in each time period.

Proof. Let us assume that opposite is true, i.e. that there is an optimal solution such that in the time period

t′ none of machines is serviced. In that case, in the time period t′ operating cost op cost(i, t′) = ni(t
′) × ai

occurs for each machine i. Furthermore, the operating cost of machine j, op cost(j, t′) is greater or equal to

aj . Therefore, in the case when aj > bj , if we service the machine j in the time period t′, we would obtain

better solution than the optimal one. This is obviously a contradiction.

In addition, we may draw the following property.

Property 3.2 Let us assume that there is a machine j such that aj = bj and that in a given solution π of

PMP in time period t′ none of machines is serviced, then servicing machine j in the time period t′ will yield

the solution with objective value better than or equal to that one of a given solution.

Proof. Let π be a solution such that in time period t′ none of machines is serviced and f(π) its corresponding

objective value. Therefore, the operating cost of machine j incurred in time period t′, i.e. op cost(j, t′) is

greater or equal to aj . However, if we service machine j in the time period t′, op cost(j, t′) will be zero, while

servicing cost induced by machine j in time period t′ will be bj . So, the value of such obtained solution π′

will be f(π′) = f(π) − op cost(j, t′) + bj . Hence, objective value of resulting solution π′ can not be greater

than the solution value of a given solution π.

Solution space. Based on the problem definition (including T ≥ m), the features of test instances (see

Section 4) and Properties 3.1 and 3.2, we may conclude that the solution space of PMP consists of all vectors

π = (π1, π2, . . . , πT ), with πt ∈M for t ∈ U such that M ⊂ π. In such representation, πt corresponds to the

index of a machine serviced in the tth time period. In what follows the solution space of PMP will be denoted

by P . For example if M = {1, 2, 3} and T = 6 then solution π may be represented as π = {1, 1, 2, 2, 3, 1}

3.2 Pseudo-code of NGVNS

In order to explore the solution space we propose new variant of VNS that we call Nested GVNS. It may

be seen as an extension of the nested variable neighborhood descent (NVND) already proposed in [7, 9].

It applies general variable neighborhood search (GVNS) on each element of the preselected neighborhood

structure, unlike NVND that applies sequential Variable neighborhood descent (VND) instead. The steps of

our NGVNS are depicted at Algorithm 1.
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Algorithm 1: Procedure for solving PMP

Function NGVNS(π);
1 Improve← True;
while Improve do

2 for each π′ ∈ Replace(π) do
3 Improve← False;
4 π′′ ← GVNS(kmax, π′);
5 if π′′is better than π then
6 π ← π′′;
7 Improve← True;
8 break;

end

end

end

The proposed NGVNS applies GVNS starting from each element of the neighborhood structure Replace of

the current solution π. The neighborhood Replace(π) contains all sets π′ ∈ P that may be derived from the

set π by replacing one element of π (say πj) with one from the set M , e.g πk ∈ M, πk 6= πj . Therefore the

following property holds.

Property 3.3 The cardinality of the neighborhood Replace(π) is O(m · T ).

If an improvement is detected, it is accepted as a new incumbent solution π and whole process is repeated

starting from that solution. NGVNS finishes its work if there is no improvement. An initial solution for the

proposed NGVNS is built as follows. In the first m periods all m machines are chosen to be serviced. In the

remaining T −m periods, machines to be serviced are chosen at random. In that way the feasibility of the

initial solution is achieved. The reason why we decide to use NGVNS instead of NVND is that solution

obtained by GVNS can not be worse than one obtained by VND, used within GVNS. Therefore the solution

quality found by NGVNS is at least as good as one found by NVND.

Note that in Algorithm 1 the GVNS based heuristic is applied in each point of only one, i.e., Replace

neighborhood. Clearly, as in building Nested VND, more than one neighborhood structures could be nested

before GVNS is applied. That would obviously increase the procedure complexity, but enable much deeper

exploration of the solution space. In solving PMP we got very good results with only one initial or higher

level neighborhood structure. That is why we did not include more structures in NGVNS.

In NGVNS all neighborhoods used may be divided in 2 groups : higher level neighborhoods that are

nested and lower level neighborhood structures that are used in GVNS. Of course, within GVNS, lower level

neighborhoods can be used in sequential, nested and mixed nested fashion [9].

3.3 General variable neighborhood search used within NGVNS

General variable neighborhood search (GVNS) [7, 8] is a variant of VNS [11] which uses Variable neighborhood

descent (VND) as a local search. VND may be seen as a generalization of a local search since it explores

several neighborhood structures at once instead of exploring just one. The different neighborhood structures

may be explored in sequential, nested or mixed nested fashion [9].

The proposed GVNS (Algorithm 2) includes a shaking phase used in order to escape from the local minima

traps and an intensification phase in which sequential VND (seqVND) is applied. Within seqVND the follow-

ing neighborhood structures of a solution π are explored: Reverse two consecutive(π), Shift backward(π),

Shift forward(π) and Reverse part(π).
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Algorithm 2: GVNS for solving PMP.

Function GVNS(kmax, π)
1 k ← 1;
2 while k ≤ kmax do
3 π′ ← Shake(π, k) ;
4 π′′ ← SeqV ND(π′) ;
5 k ← k + 1;
6 if π′′is better than π then
7 π ← π′′; k ← 1;

end

end
8 Return π

Neighborhood structures.

• Reverse two consecutive(π) (1-opt) - the neighborhood structure consists of all solutions obtained

from the solution π swapping two consecutive elements of π (see e.g. [12]). The complexity of this

neighborhood structure is O(T ).

• Shift backward(π) (Or-opt) - the neighborhood structure consists of all solutions obtained from the

solution π moving some element πt backward immediately after some element πs for all s > t. The

complexity of this neighborhood structure is O(T 2).

• Shift forward(π) (Or-opt)- the neighborhood structure consists of all solutions obtained from the

solution π moving some element πt immediately after some element πs for all s > t. The complexity of

this neighborhood structure is O(T 2).

• Reverse part(π) (2-opt) - the neighborhood structure consisted of all solutions obtained from the solu-

tion π reversing a sub-sequence of π. Each solution in this neighborhood structure is deduced from the

solution π reversing the part starting at πt and ending at πs (t < s) and therefore the complexity of this

neighborhood structure is O(T 2). In other words from a solution π = {π1, . . . , πt, πt+1, . . . , πs, . . . , πT }
we will obtain π′ = {π1, . . . , πs, . . . , πt+1, πt, . . . , πT }. In fact, this neighborhood structure is a gener-

alization of the Reverse two consecutive(π) since it permits reversing the part of solution π consisted

of more than two consecutive elements.

The reason why we embedded these neighborhood structures within seqVND scheme is that all of them
are based on changing order of servicing machines. In Algorithm 3 we give pseudo-code for our seqVND.

Note that neighborhoods are changed according to “first improvement” strategy.

Algorithm 3: SeqVND

Function SeqVND(π);
1 while there is an improvement do
2 π′ ← Reverse two consecutive(π);
3 if(π′ better than π) then {π ← π′;continue;}
4 π′ ← Shift backward(π);
5 if(π′ better than π) then {π ← π′;continue;}
6 π′ ← Shift forward(π);
7 if(π′ better than π) then {π ← π′;continue;}
8 π′ ← Reverse part(π);
9 if(π′ better than π) then {π ← π′;continue;}
end

Shaking. The Shaking phase of GVNS, is presented at Algorithm 4. It takes as input the solution π and

the parameter k. At the output it returns the solution obtained after performing k-times random shift



Les Cahiers du GERAD G–2015–40 9

move on π. Each random shift consists of inserting an element in π at random either backward or forward

(Shift backward and Shift forward).

Algorithm 4: Shaking procedure

Function Shake(π, π′,k);
1 for i = 1 to k do
2 select π′ ∈ Shift backward(π) ∪ Shift forward(π) at random;
3 π ← π′;

end
4 return π′

4 Computational results

In this section we compare five methods for solving the PMP. Four among them are exact and differ in

mathematical programming formulation: our new formulation (see Section 2.5 of this paper) and another

three taken from [4]: MIP model (see Section 2.2), flow formulation (FF) model (see Section 2.3) and set

partitioning formulation (SP) (see Section 2.4). The last method included in comparison is NGVNS based

heuristic presented in Section 3. After some preliminary testing, the GVNS parameter kmax has been set

to 10. The numerical experiments were carried on a personal computer with 2.53GHz CPU and 3GB RAM

memory. All mathematical models, except SP model, were solved using the MIP solver IBM ILOG CPLEX

12.4. The time limit for MIP solver were set to 300 seconds.

For testing purposes we consider the same test instances proposed in Grigoriev et al.[4]. Comparative

results are reported in Tables 3–7. All results reported in Tables 3–7 are obtained on the same computer

except those obtained by SP based model. We simply copied them from [4]. In the tables the following

abbreviations are used:

• OPT – optimal solution value

• MIP value – value of solution obtained solving MIP formulation proposed in Grigoriev et al.[4]

• MIP time – CPU time, in seconds, consumed by MIP solver to solve MIP formulation proposed in

Grigoriev et al.[4].

• SP – consumed CPU time, in seconds, for solving an instance using set-partitioning (SP) formulation.

• FF – CPU time, in seconds, needed to solve an instance using flow formulation (FF) formulation.

• new-MIP – CPU time, in seconds, spent by MIP solver to solve MIP formulation proposed in this paper.

• NGVNS – CPU time (in seconds)consumed by NGVNS based heuristic to solve an instance of PMP.

Note that Table 6 does not provide results obtained by SP model since not all solution values had been

provided in [4].

The Table 8 provides the average CPU times consumed by each solution approach on a considered data

set.

From Tables 3–8 the following conclusions may be drawn:

(i) Overall NGVNS approach appears to be most reliable. It solved all test instances to the optimality in

the shortest CPU time (i.e. 0.831 seconds on average for all test instances).

(ii) NGVNS needed in most of instances less than a second to get an optimal solution, except on instances

in Table 5 which appears to be the hardest.
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Table 3: Instances with three machines (m = 3, bi = 0, i ∈M)

T a OPT MIP SP new-MIP FF NGVNS
(s) (s) (s) (s) (s)

3 1 1 1 3 0.11 1 0.01 0.06 0.00
3 2 1 1 4 0.02 1 0.02 0.03 0.00
3 2 2 1 5 0.02 1 0.02 0.03 0.00
4 5 1 1 5.5 0.05 1 0.03 0.06 0.00
4 5 2 1 7 0.03 1 0.02 0.03 0.00
5 5 5 1 10 0.04 1 0.19 0.02 0.00
4 10 1 1 8 0.02 1 0.02 0.02 0.00
4 10 2 1 9.5 0.03 1 0.02 0.00 0.00
6 10 5 1 13.3333 0.04 1 0.05 0.05 0.01
16 10 10 1 17.25 3.04 114 0.16 0.61 0.00
8 30 1 1 14.5 0.10 1 0.08 0.03 0.00
17 30 2 1 17.2941 3.32 89 0.55 0.69 0.10
8 30 5 1 22.25 0.07 1 0.11 0.03 0.02
9 30 10 1 28.4444 0.05 1 0.09 0.11 0.02
13 30 30 1 42.9231 0.16 9 0.11 0.03 0.09
10 50 1 1 19 0.09 1 0.08 0.03 0.02
21 50 2 1 22.6667 11.74 604 1.64 0.98 0.12
10 50 5 1 29.5 0.15 2 0.08 0.05 0.03
10 50 10 1 36.5 0.14 1 0.09 0.03 0.03
15 50 30 1 55 0.37 27 0.17 0.73 0.10
17 50 50 1 66.8235 0.57 114 0.16 0.62 0.05

Average time 0.960 46.333 0.176 0.202 0.028

Table 4: Instances with three machines (m = 3, bi = 0, i ∈M)

T a OPT MIP MIP SP new-MIP FF NGVNS
value time(s) (s) (s) (s) (s)

4 1 1 1 1 6 6 0.04 1 0.05 0.00 0.00
9 2 1 1 1 7.3333 7.3333 0.35 1 0.16 0.05 0.02
10 2 2 1 1 8.8 8.8 0.68 1 0.14 0.05 0.05
15 2 2 2 1 10.4 10.4 8.84 1 0.34 0.72 0.04
6 5 1 1 1 10 10 0.06 1 0.11 0.02 0.00
16 5 2 1 1 11.75 11.75 17.84 1 0.33 0.78 0.05
22 5 2 2 1 13.7273 13.7273 300.01 3 1.12 2.32 0.21
6 5 5 1 1 15 15 0.07 1 0.09 0.03 0.00
6 5 5 2 1 17.5 17.5 0.06 1 0.09 0.02 0.00
24 5 5 5 1 22.25 22.25 300.16 3 2.45 2.25 0.02
6 10 1 1 1 12.5 12.5 0.08 1 0.05 0.01 0.00
6 10 2 1 1 15 15 0.07 1 0.09 0.01 0.00
6 10 2 2 1 17.5 17.5 0.09 1 0.09 0.02 0.00
8 10 5 1 1 19.5 19.5 0.27 1 0.12 0.09 0.01
6 10 5 2 1 22.5 22.5 0.08 1 0.06 0.03 0.00
8 10 5 5 1 27.875 27.875 0.16 1 0.16 0.22 0.00
8 10 10 1 1 24.5 24.5 0.13 1 0.12 0.02 0.01
6 10 10 2 1 27.5 27.5 0.10 1 0.11 0.01 0.00
9 10 10 5 1 34 34 0.26 1 0.14 0.08 0.00
33 10 10 10 1 40.4545 41.0606 300.02 17 5.04 3.62 0.89
8 30 1 1 1 21.75 21.75 0.18 1 0.11 0.03 0.00
8 30 5 1 1 29.5 29.5 0.15 1 0.09 0.06 0.01
10 30 5 5 1 40.5 40.5 0.42 1 0.11 0.10 0.02
8 30 10 1 1 37 37 0.13 1 0.08 0.05 0.03
12 30 10 5 1 49.6667 49.6667 2.09 1 0.17 0.18 0.04
30 30 10 10 1 58.3333 58.3333 300.18 19 6.75 4.52 0.66
26 30 30 1 1 55.8462 55.8462 300.01 3 13.81 2.36 0.42
24 30 30 5 1 70.5 70.5 300.01 4 3.18 3.20 0.35
14 30 30 10 1 81.5 81.5 3.02 1 0.36 1.25 0.05
19 30 30 30 1 108.4737 108.4737 21.09 1 0.69 1.17 0.22

Average time 61.890 2.433 1.207 0.776 0.103
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Table 5: Instances with three machines (m = 3, ai = 1, bi = 0, i ∈M)

T OPT MIP MIP SP new-MIP FF NGVNS
value time(s) (s) (s) (s) (s)

50 3.04 3.04 300.02 51 3.81 4.52 0.75
51 3 3 25.96 21 0.47 3.54 1.84
52 3.0385 3.0385 300.01 154 4.77 5.40 0.38
53 3.0377 3.0377 107.24 247 3.20 4.98 0.38
54 3 3 219.56 32 0.76 4.76 1.66
55 3.0364 3.0364 53.13 117 4.26 5.63 0.68
56 3.0357 3.0357 300.12 590 4.73 5.13 0.46
57 3 3 16.37 46 0.42 3.95 1.43
58 3.0345 3.0345 300.01 366 5.63 4.99 2.42
59 3.0339 3.0339 164.97 407 5.12 4.68 1.41
60 3 3.0667 300.06 170 1.78 6.50 1.51
61 3.0328 3.0328 300.01 715 5.97 6.27 2.47
62 3.0323 3.0882 300.08 1437 4.79 7.67 1.47
63 3 3 233.27 195 1.04 6.04 2.93
64 3.0313 3.0571 300.08 1431 7.77 6.85 3.28
65 3.0308 3.05 207.69 1098 6.15 7.93 1.70
66 3 3.0444 46.11 470 2.62 5.57 2.81
67 3.0299 3.16 10.51 546 8.52 6.26 1.18
68 3.0294 3.0882 300.09 783 5.76 7.69 3.34
69 3 3 229.87 601 3.46 7.91 0.88
70 3.0286 3.0571 300.06 5150 6.52 7.53 1.87
80 3.025 3.025 300.17 1167 10.84 16.07 13.76
90 3 3.0444 300.06 1093 3.87 17.82 7.16
100 3.02 3.02 300.11 2618 16.30 24.85 16.11

Average time 217.315 812.708 4.940 7.606 2.994

Table 6: Instances with positive maintenance costs (m = 5, T = 24)

a b OPT MIP MIP new-MIP FF NGVNS
value time(s) (s) (s) (s)

5 1 1 1 1 0 0 0 0 0 15 15 300.01 2.48 2.08 0.22
5 1 1 1 1 5 1 1 1 1 17.3333 17.3333 300.01 3.00 2.26 0.36
5 1 1 1 1 30 10 5 2 1 27.0417 27.125 300.00 6.49 8.94 0.58
5 5 1 1 1 0 0 0 0 0 21.9583 21.9583 300.01 31.84 2.51 0.32
5 5 1 1 1 5 5 1 1 1 25.4167 25.4167 300.00 57.49 25.96 0.04
5 5 1 1 1 30 10 5 2 1 33.8333 34.125 300.00 9.42 28.28 0.61
5 5 5 1 1 0 0 0 0 0 29.5 29.5 300.15 5.21 2.78 0.13
5 5 5 1 1 5 5 5 1 1 33.5 33.9167 300.01 4.63 5.46 0.06
5 5 5 1 1 30 10 5 2 1 41.125 41.125 300.00 6.94 39.61 0.33
5 5 5 5 1 0 0 0 0 0 40.375 40.375 300.14 229.15 8.72 0.66
5 5 5 5 1 5 5 5 5 1 44.875 44.875 300.02 111.71 6.16 0.04
5 5 5 5 1 30 10 5 2 1 50.375 50.375 300.17 86.30 300.00 0.33
10 5 1 1 1 0 0 0 0 0 26.75 26.75 300.07 9.89 2.95 0.48
10 5 1 1 1 10 5 1 1 1 32.125 32.25 300.12 6.71 59.33 0.35
10 5 1 1 1 30 10 5 2 1 41 41 300.17 27.88 38.39 0.3
10 10 5 1 1 0 0 0 0 0 43.5 43.9167 300.03 48.75 4.65 0.6
10 10 5 1 1 10 10 5 1 1 50.9583 50.9583 300.01 49.17 6.86 0.3
10 10 5 1 1 30 10 5 2 1 56.125 56.625 300.10 21.19 300.00 0.87
30 10 5 1 1 0 0 0 0 0 61.4167 61.4167 300.11 30.5 4.18 0.28
30 10 5 1 1 30 10 5 1 1 77.4167 77.4167 300.10 38.14 13.53 0.62
30 10 5 1 1 30 10 5 2 1 77.5 77.7083 300.10 43.34 208.28 0.52
30 30 1 1 1 0 0 0 0 0 69 69 300.09 55.72 3.26 0.46
30 30 1 1 1 30 30 1 1 1 91.75 91.75 300.06 26.40 3.49 0.22
30 30 1 1 1 30 10 5 2 1 84.6667 84.6667 300.08 79.14 261.57 0.55
30 30 30 1 1 0 0 0 0 0 129.5 129.5 300.01 202.88 4.26 0.51
30 30 30 1 1 30 30 30 1 1 155.875 155.875 300.01 79.80 9.53 0.59
30 30 30 1 1 30 10 5 2 1 142.7917 142.7917 300.13 103.88 300.00 0.41
30 30 30 30 1 0 0 0 0 0 207.75 207.75 300.02 47.25 3.09 0.16
30 30 30 30 1 30 30 30 30 1 236.5417 236.5417 300.03 37.03 3.76 0.35
30 30 30 30 1 30 10 5 2 1 218.2917 218.2917 300.16 37.99 74.46 0.21

Average time 300.064 50.011 57.812 0.382
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Table 7: Instances with many machines (m = 10, T = 18, bi = 0, i ∈M)

a OPT MIP MIP SP new-MIP FF NGVNS
value time(s) (s) (s) (s)

1 1 1 1 1 1 1 1 1 1 49 49 300.12 1 300.00 300.00 0.32
10 9 8 7 6 5 4 3 2 1 232 232.3333 300.12 29 300.00 300.00 0.38
10 10 10 10 10 10 10 10 10 1 413.5 413.5 300.25 2 300.00 300.00 0.22
100 1 1 1 1 1 1 1 1 1 126.5 126.5 300.08 1 300.00 11.71 0.03
1000 1 1 1 1 1 1 1 1 1 576.5 576.5 279.32 7 150.05 0.76 0.05

Average time 295.798 8.000 270.010 182.494 0.199

Table 8: Average CPU times

Instances MIP SP new-MIP FF NGVNS
from (s) (s) (s) (s) (s)

Table 3 0.960 46.333 0.176 0.202 0.028
Table 4 61.890 2.433 1.207 0.776 0.103
Table 5 217.315 812.708 4.940 7.606 2.994
Table 7 295.798 8.000 270.010 182.494 0.199

Average time 143.991 217.369 69.083 47.770 0.831

Regarding exact solution methods, several interesting observations may be derived:

(i) The best performance on average are reported by FF and our new MIP formulation. Further, the

optimality of found solutions for 4 test instances (Table 7) were not proven solving new MIP formulation,

while solving FF formulation the optimality were not proven for 6 test instances (3 instances in Table 6
and 3 instances in Table 7). For all these instances reported times are boldfaced.

(ii) The advantage of FF over new MIP formulation comes from test instances four in Table 7. There, the

optimal solution was reached by new MIP formulation but not proven in 300 seconds.

(iii) The behaviour of SP formulation is interesting. It is the worst exact method for small instances in

Table 3 but the best one for the largest instances presented in Table 7.

(iv) The old MIP model is least reliable. For example in Table 6 and Table 7, for only one instance (out of

35) the optimal solution has been proven within 300 seconds. However, the optimal solution has not

been reached on eight instances (boldfaced values in those tables).

5 Concluding remarks

In this paper, we study the periodic maintenance problem (PMP) that consists of finding the cyclic mainte-

nance schedule of machines in a given time period. We present a new MIP formulation for PMP and compare

its performance with the models from the literature. Due to the limitations of these models, we also propose

a heuristic method based on the Nested General Variable Neighborhood Search (NGVNS) to tackle hard

instances. Computational results show that the proposed NGVNS approach is very efficient. For all 110

test instances the optimal solutions were found. Moreover, NGVNS heuristic needed only 0.831 seconds on

average to solve them.

It will be very convenient in the future research to generalize the PMP model taking into account more

practical issues. Future research may also include proposing extensions of PMP model as well as development

of NGVNS based heuristics to solve resulting problems.
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[9] A. Ilić, D. Urošević, J. Brimberg, and N. Mladenović. A general variable neighborhood search for solving the
uncapacitated single allocation p-hub median problem. European Journal of Operational Research, 206(2):289–
300, 2010.
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