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Abstract: In the present paper, we are interested in bounding differences between graph invariants as well
as in characterizing the corresponding extremal graphs. This kind of results belongs to the more general form
known as AGX Form 1 which is extensively studied using the AutoGraphiX system at GERAD, Montreal.
The graph invariants involved in the present work are the proximity, the remoteness, the eccentricity, the
average distance, the frequencies of the maximum and minimum degrees, the domination number, the stability
number and the chromatic number.
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1 Introduction

Since GRAPH [14, 15], a system defined about two decades ago, several other systems for automated, or

computer assisted, discovery of conjectures in graph theory have been developed. They include newGRAPH,

due to Stevanović [33], Graffiti, due to Fajtlowicz [19], Graffiti.pc, due to Delavina [20], GraPHedron due to

Mélot [28] and AutoGraphix (AGX for short), due to Caporossi and Hansen [4, 11].

The AGX system was systematically tested in the thesis of Aouchiche [1]. Pairwise comparisons between

20 invariants were studied, and all results and/or conjectures were of the following form (called AGX Form 1):

`n ≤ i1(G)⊕ i2(G) ≤ un

where i1(G) and i2(G) are invariants, ⊕ is one of the four operations +,−,×, /, and `n and un are lower

and upper bounding functions of the order n of G which are best possible, i.e., such that for each value of n

(except possibly very small ones where border effects appear) there is a graph G for which the bound is tight.

These pairwise comparisons gave rise to 1520 cases, more than half of which were easily proved automatically

by AGX, and about 360 were proved by hand, either by the GERAD Montreal group, or by graph theorists

of various countries (mainly Serbia and China).

Several papers were devoted to prove results of the AGX Form 1, a list of which can be found in [3,5]. In

the present paper, we explore forward the AGX Form 1, and focus our attention on the difference between

pairs of invariants in terms of their order. Our results involve the following invariants which are defined in

the next section: the proximity, the remoteness, the eccentricity, the average distance, the frequencies of the

maximum and minimum degrees, the domination number, the stability number and the chromatic number.

They were all first conjectured using the AGX system.

While the average distance is widely studied, see e.g. [9,16,21–23,29,32], the eccentricity, introduced in [16],

seems to be less studied then the average distance (see [18,26,27,31]). Also, despite their recent introduction

[1, 7], the proximity and the remoteness attracted the attention of several graph theorists [6, 25, 27, 30, 34].

Five conjectures were listed in [7], four of them were settled in [27,30,34], and the last one (that bounds the

difference between the average eccentricity and the remoteness) is still open. Particular cases of this open

conjecture are solved by Sedlar [30]. Further results of the AGX Form 1 involving the proximity and the

remoteness can be found in [6, 8, 27,34].

2 Definitions and notations

Let G = (V,E) be a finite undirected graph, where V is the vertex set, and E the edge set of G. The

cardinality of V is also called the order of G. Two vertices u and v are said to be adjacent if {u, v} (also

denoted by uv or vu) belongs to E. For any subset U of V , the subgraph of G induced by U is the graph

H = (U,E(U)), where E(U) consists of those edges of G with both ends in U . We denote by n∆(G) the

number of vertices of maximum degree in G, while nδ(G) is the number of vertices of minimum degree in G.

Given two vertices u and v of G, a path of length ` between u and v is a sequence (u0 = u, u1, . . . , u` = v)

of distinct vertices such that uiui+1 is an edge of G for all i ∈ {0, 1, . . . , ` − 1}. A cycle C is a sequence

(u0, u1, . . . , u`−1) of distinct vertices such that uiui+1 is an edge of G for all i ∈ {0, 1, . . . ` − 1} (where the

addition is modulo `). We denote by Pn the path of order n, and by Cn the cycle of order n. A graph G is

connected if for any pair of vertices u and v of G, there is a path between u and v. If G is not connected, its

vertex set can be partitioned into connected components, i.e., maximal induced subgraphs that are connected.

A graph G is a tree if it is connected and has no cycle.

A set of vertices in a graph G is stable if it induces a subgraph with no edges. The stability number of

G, also called independence number, and denoted by α(G), is the maximum cardinality of a stable set in G.

A k-coloring of G is a partition of its vertex set into k stable sets. The chromatic number of G, denoted by

χ(G), is the smallest integer k such that G admits a k-coloring. A set of vertices in G is dominating if all

vertices of G are adjacent to at least one vertex of this set, or belongs to it. The domination number of G,

denoted by β(G) is the minimum cardinality of a dominating set in G.
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The distance between two vertices u and v in G, denoted dG(u, v), is the number of edges on a shortest

path between u and v. For a vertex v of a graph G, σG(v) denotes the transmission of v in G, i.e.,

σG(v) =
∑
w∈V

dG(v, w)

and εG(v) denotes the eccentricity of v in G, i.e.,

εG(v) = max
w∈V

dG(v, w).

The diameter of G, denoted by D(G), is the maximum eccentricity of any vertex in G, i.e., D(G) =

maxv∈V εG(v).

We denote by Ka,b the complete bipartite graph having a vertices in one part, and b in the other one,

and by Ka,b − e the graph obtained from Ka,b by removing an edge. The comet, denoted by COn,k, is the

graph obtained by linking a vertex of degree 1 of a star on k+ 1 vertices to one of the endpoints of the path

Pn−k−1 on n − k − 1 vertices. Also, we denote by KIn,k the kite which is obtained by linking a vertex of a

clique on k vertices to one of the endpoints of a path Pn−k on n− k vertices. A double comet (double kite) is

the graph obtained by considering two disjoint comets (kites) G1 and G2 and linking a vertex of maximum

eccentricity in G1 with a vertex of maximum eccentricity in G2. A double comet (double kite) with n vertices

and diameter not larger than n − 3 is balanced if the two vertices of maximum degree have a degree that

differs by at most one unit. We denote by DCn,` (DKn,`) the balanced double comet (balanced double kite)

with n vertices and diameter `. For illustration, the graphs CO7,4, KI7,4, DC9,5 and DK9,5 are shown in

Figure 1.

Given a graph G = (V,E), we are mainly interested in the four following invariants, respectively called

the eccentricity, the proximity, the remoteness, and the average distance of a connected graph G:

ε(G) =

∑
v∈V

εG(v)

n
π(G) =

min
v∈V

σG(v)

n− 1
ρ(G) =

max
v∈V

σG(v)

n− 1
µ(G) =

∑
v∈V

σG(v)

n(n− 1)
.

In the next section, we give bounds on the differences of the form π(G)− i(G), where i(G) is an invariant

among nδ(G), n∆(G) and β(G). In Section 4, we prove an upper bound on ρ(G) − n∆(G), while an upper

bound on ε(G)−µ(G) is given in Section 5 for the class of trees. Finally, in Sections 6 and 7, we prove upper

and lower bounds on χ(G)− n∆(G) and α(G)− nδ(G), respectively.

3 Comparing proximity to other invariants

Let G be a connected graph of order n. The following result was proved in [7].

Proposition 3.1

1 ≤ π(G) ≤

{
n2

4(n−1) if n is even
n+1

4 if n is odd.

Moreover, the lower bound is reached if and only if G contains a dominating vertex, while the upper bound is

reached if and only if G is the path Pn or the cycle Cn on n vertices.

Figure 1: A comet, a kite, a double comet and a double kite



Les Cahiers du GERAD G–2015–31 3

We now give the second possible largest value of the proximity of a graph G of order n.

Lemma 3.1 Let G be a connected graph of order n. If G is not isomorphic to the cycle Cn or to the path Pn
on n vertices, then

π(G) ≤

{
n2−4

4(n−1) if n is even
n2−5

4(n−1) if n is odd.

Moreover, the bound is reached if G is isomorphic to COn,3 or KIn,3 (and possibly also by other graphs).

Proof. Since G is not isomorphic to Cn or Pn, it follows from Property 3.1 that π(G) is strictly smaller

than π(Cn) = π(Pn). It then follows from the definition of the proximity that π(G) is at most equal to

π(Cn)− 1
n−1 . Hence,

π(G) ≤

{
n2

4(n−1) −
1

n−1 = n2−4
4(n−1) if n is even

n+1
4 + 1

n−1 = n2−5
4(n−1) if n is odd.

It is easy to verify that this bound is attained for G equal to COn,3 or KIn,3.

Theorem 3.2 Let G be a connected graph of order n ≥ 4. Then

1− n ≤ min{π(G)− nδ(G), π(G)− n∆(G)}

≤ max{π(G)− nδ(G), π(G)− n∆(G)} ≤

{
n2−4n
4(n−1) if n is even
n2−4n−1
4(n−1) if n is odd.

Moreover, the lower bound is reached if and only if G is a clique, while the upper bound is reached if G is

isomorphic to COn,3 or KIn,3 (and possibly also by other graphs).

Proof. Notice first that π(G) reaches its minimum value 1 when G has a dominating vertex, while n∆(G) and

nδ(G) reach their maximum value n only for regular graphs. Hence, both π(G)− n∆(G) and π(G)− nδ(G)

are at least equal to 1− n and this lower bounds is attained only for cliques.

For the upper bound, let us first show that it is not reached when G is isomorphic to Cn or Pn. Since

n∆(Cn) = nδ(Cn) = n > n∆(Pn) = n−2 ≥ nδ(Pn) = 2, it is sufficient to show that π(Pn)−nδ(Pn) is strictly

smaller that the proposed upper bound.

π(Pn)− nδ(Pn) =

{
n2

4(n−1) − 2 if n is even
n+1

4 − 2 if n is odd

=

{
n2−8n+8
4(n−1) if n is even
n2−8n+7
4(n−1) if n is odd

<

{
n2−4n
4(n−1) if n is even
n2−4n−1
4(n−1) if n is odd.

If G is not isomorphic to Cn or Pn, then it follows from Lemma 3.1 and the inequalities n∆(G) ≥ 1 and

nδ(G) ≥ 1 that

max{π(G)− nδ(G), π(G)− n∆(G)} ≤

{
n2−4

4(n−1) − 1 if n is even
n2−5

4(n−1) − 1 if n is odd.
=

{
n2−4n
4(n−1) if n is even
n2−4n−1
4(n−1) if n is odd.

It is easy to verify that this bound is attained for G equal to COn,3 or KIn,3.
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Theorem 3.3 Let G be a connected graph of order n ≥ 2 and with a given diameter D(G) = `. Then

π(G) ≤


2`n−`2
4(n−1) if ` is even
2`n−`2+1

4(n−1) if ` is odd and n is even
2`n−`2−1

4(n−1) if both ` and n are odd.

Moreover, the upper bound is reached by balanced double comets DCn,` and balanced double kites DKn,`.

Proof. Consider an induced path P = (v0, v1, · · · , v`) of length ` in G. Let a = d `−1
2 e and b = d `2e. We

obviously have π(G) ≤ min{σG(va)
n−1 , σG(vb)

n−1 }. The sum of the distances from va or from vb to the other vertices

of P is 1
2b

`
2c(b

`
2c+ 1) + 1

2d
`
2e(d

`
2e+ 1). Also, min{σG(va)

n−1 , σG(vb)
n−1 } is maximised by linking half of the n− `− 1

other vertices of G to v1 and the other half to v`−1. More precisely, without loss of generality, we may assume

that dn−`−1
2 e vertices of G not in P are linked to v1 and are at distance d `−1

2 e of va, while bn−`−1
2 c vertices

of G not in P are linked to v`−1 and are at distance d `2e of va. In summary,

(n− 1)π(G) ≤ σG(va) ≤ 1

2
b `2c(b

`
2c+ 1) +

1

2
d `2e(d

`
2e+ 1) + dn−`−1

2 ed `−1
2 e+ bn−`−1

2 cd `2e.

If ` is even, we therefore get

(n− 1)π(G) ≤ `
2 ( `2 + 1) + (n− `− 1) `2 = 2n`−`2

4 .

If ` is odd, while n is even, then

(n− 1)π(G) ≤ 1
2
`−1

2 ( `−1
2 + 1) + 1

2
`+1

2 ( `+1
2 + 1) + n−`−1

2
`−1

2 + n−`−1
2

`+1
2

= 2`n−`2+1
4 .

Finally, if both ` and n are odd, then

(n− 1)π(G) ≤ 1
2
`−1

2 ( `−1
2 + 1) + 1

2
`+1

2 ( `+1
2 + 1) + n−`

2
`−1

2 + n−`−2
2

`+1
2

= 2`n−`2−1
4 .

Theorem 3.4 Let G be a connected graph of order n ≥ 2. Then

π(G)− β(G) ≤ n2 − 8n+ z

36(n− 1)
with z =



−9 if n = 9 or 17 (mod 18)
0 if n = 0 or 8 (mod 18)
3 if n = 11 or 15 (mod 18)
7 if n = 1, 7 or 13 (mod 18)
12 if n = 2 or 6 (mod 18)
15 if n = 3 or 5 (mod 18)
16 if n = 4, 10 or 16 (mod 18)
24 if n = 12 or 14 (mod 18)

Moreover, if 2 ≤ n ≤ 9, then the bound is attained by all graphs G with a dominating vertex, while if n ≥ 10,

then the bound is reached by balanced double comets DCn,` and balanced double kites DKn,` with diameter

` = 2 + 3bn9 c.

Proof. Since the statement of the theorem is clearly true for n = 2, we can assume n ≥ 3. Also, notice that

if D(G) = 1 (i.e., G is a clique), then π(G)−β(G) = 0, while if G is a star (i.e., G = K1,n−1), then D(G) = 2

and π(G)−β(G) also equals 0. Hence, the upper bound on the difference π(G)−β(G) is always attained for

at least one graph which is not a clique. From now on, we therefore assume D(G) ≥ 2.
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It was proved in [24] that β(G) ≥ dD(G)+1
3 e and we know from Theorem 3.3 that π(G) ≤ 2D(G)n−D(G)2+x

4(n−1) ,

with x = 0, 1 or −1, depending on the parity of n and D(G). Hence,

π(G)− β(G) ≤ 2D(G)n−D(G)2 + x

4(n− 1)
− dD(G) + 1

3
e.

Let F (`) and f(`, n) be defined as follows:

F (`) =
2`n− `2

4(n− 1)
− d`+ 1

3
e

f(`, n) =
x

4(n− 1)
with x =

 0 if ` is even
1 if ` is odd and n is even
−1 if both ` and n are odd.

We then have π(G)− β(G) ≤ F (D(G)) + f(D(G), n). Moreover,

• if ` = 0(mod 3), then F (`+ 2) + f(`+ 2, n) = F (`) + f(`, n) + n−`−1
n−1 ;

• if ` = 1(mod 3) then F (`− 2) + f(`− 2, n) = F (`) + f(`, n) + `−2
n−1 .

This implies that given any n, the integer ` for which F (`) + f(`, n) reaches its maximal value is equal to

2 + 3a for some integer a ≥ 0, which implies d `+1
3 e = `+1

3 . We now show that this optimum value is reached

for a = bn9 c.

So assume ` = 2 + 3bn9 c. Then

F (`+ 3) = F (`) +
2n− 6l − 5

4(n− 1)
= F (`) +

2n− 18bn9 c − 17

4(n− 1)
≤ F (`)− 1

4(n− 1)

and

F (`− 3) = F (`)− 2n− 6l + 13

4(n− 1)
= F (`)−

2n− 18bn9 c+ 1

4(n− 1)
≤ F (`)− 1

4(n− 1)
.

Since considering F (`) as a continuous function, it is quadratic concave, this proves that the maximum value

of F (`) with ` integer is reached when ` = 2 + 3bn9 c.

Consider now any integer `′ = 2 + 3a′ with a′ 6= bn9 c. It follows from the defintion of f that f(`′, n) ≤
f(`, n) + 1

4(n−1) . Also, we have shown that F (`′) ≤ max{F (`− 3), F (`+ 3)}. Hence,

F (`′) + f(`′, n) ≤
(
F (`)− 1

4(n− 1)

)
+

(
f(`, n) +

1

4(n− 1)

)
= F (`) + f(`, n).

This means that the upper bound on π(G)− β(G) is reached for graphs G of order n with diameter D(G) =

2 + 3bn9 c. We now analyze the value of F (D(G)) + f(D(G), n) according to the value of n mod 18.

If n = 0(mod 18), then D(G) = 2 + 3n9 = n+6
3 . Hence, both n and D(G) are even, which means that

f(D(G), n) = 0 and

F (D(G)) + f(D(G), n) =
2n+6

3 n− (n+6)2

9

4(n− 1)
− n+ 9

9
=

n2 − 8n

36(n− 1)
.

If n = 1(mod 18), then D(G) = 2 + 3n−1
9 = n+5

3 . Hence n is odd while D(G) is even, which means that

f(D(G), n) is again equal to 0. We therefore have

F (D(G)) + f(D(G), n) =
2n+5

3 n− (n+5)2

9

4(n− 1)
− n+ 8

9
=
n2 − 8n+ 7

36(n− 1)
.

Similar computations can be done for the other values of n mod 18, and we get the result in the statement

of the theorem. It is easy to check that the upper bound equals 0 for 2 ≤ n ≤ 9, which means that it is

reached by all graphs having a dominating vertex. For n ≥ 10, it follows from Theorem 3.3 and the above
proof that the upper bound is reached by balanced double comets DCn,` and balanced double kites DKn,`

with diameter ` = 2 + 3bn9 c.
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4 The remoteness and the maximum degree frequency

Let G be a connected graph of order n. The following result was proved in [7].

Proposition 4.1

1 ≤ ρ(G) ≤ n

2

Moreover, the lower bound is reached if and only if G is a clique, while the upper bound is reached if and only

if G is the path Pn on n vertices.

We now give the second possible largest value of the remoteness of a graph G of order n

Lemma 4.1 Let G be a connected graph of order n. If G is not the path Pn, then

ρ(G) ≤ n2 − n− 2

2(n− 1)

Moreover, the bound is reached if G is isomorphic to COn,3 or KIn,3 (and possibly also by other graphs).

Proof. Since G is not isomorphic to Pn, it follows from Property 4.1 that ρ(G) is strictly smaller than ρ(Pn) =
n
2 . It then follows from the definition of the proximity that ρ(G) is at most equal to n

2 −
1

n−1 = n2−n−2
2(n−1 . It

is easy to verify that this bound is attained for G equal to COn,3 or KIn,3.

Theorem 4.2 Let G be a connected graph of order n ≥ 4. Then

1− n ≤ ρ(G)− n∆(G) ≤ n2 − 3n

2(n− 1)

Moreover, the lower bound is reached if and only if G is a clique, while the upper bound is reached if G is

isomorphic to COn,3 or KIn,3 (and possibly also by other graphs).

Proof. Notice first that ρ(G) reaches its minimum value 1 when G is a clique, while n∆(G) reaches its

maximum value n for regular graphs. We therefore have ρ(G) − n∆(G) ≥ 1 − n, and this lower bound is

attained only for cliques.

For the upper bound, let us first show that it is not reached when G is isomorphic to Pn. This follows

from the fact that ρ(Pn)− n∆(Pn) = n
2 − (n− 2) ≤ 0 < n2−3n

2(n−1) .

If G is not isomorphic to Pn, then Lemma 4.1 and the inequaly n∆(G) ≥ 1 give

ρ(G)− n∆(G) ≤ n2 − n− 2

2(n− 1)
− 1 =

n2 − 3n

2(n− 1)
.

It is easy to verify that this bound is attained for G equal to COn,3 or KIn,3.

5 Average eccentricity and average distance

Lemma 5.1 Let T be a tree of order n and let P = (v0, v1, · · · , vD(T )) be a path of length D(T ) in T . If there

is j ≤ D(T )
2 such that the degree of vk is at most 2 for k ≥ j + 1, then ε(T )− µ(T ) ≤ ε(Pn)− µ(Pn).

Proof. Let ` = D(T ) and suppose T is not the path Pn. Let w be a leaf in T different from v0 and v`,

and let T ′ be the graph obtained from T by deleting the edge incident to w and adding an edge between w

and v`. Note that it follows from the assumptions that dT (v`, w) ≥ `
2 + 1. It is now sufficient to prove that

ε(T )− µ(T ) ≤ ε(T ′)− µ(T ′) since we can then repeat this transformation until we obtain the path Pn.
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Clearly, T ′ has diameter `+ 1 and ε(v) is increased by 1 unit for at least n− `+1
2 vertices v in T . Hence,

ε(T ′) ≥ ε(T ) +
2n− `− 1

2n
. (1)

To measure the difference between µ(T ′) and µ(T ), first notice that

µ(T ) =
1

n(n− 1)

∑
v∈V

σT (v) =
1

n(n− 1)
(σT (w) +

∑
v 6=w

σT (v))

=
1

n(n− 1)
(σT (w) +

∑
v 6=w

dT (v, w) +
∑
u6=v,w

dT (v, u)


=

1

n(n− 1)
(2σT (w) +

∑
v 6=w

∑
u6=v,w

dT (v, u))

Similarly, we get

µ(T ′) =
1

n(n− 1)
(2σT ′(w) +

∑
v 6=w

∑
u6=v,w

dT ′(v, u)).

Since
∑
v 6=w

∑
u6=v,w

dT (v, u)) =
∑
v 6=w

∑
u 6=v,w

dT ′(v, u), we have

µ(T ′) = µ(T ) +
2(σT ′(w)− σT (w))

n(n− 1)
. (2)

By construction, we have σT ′(w) = σT (v`)− dT (v`, w) + n− 1, and since dT (v`, w) ≥ `
2 + 1, we have:

2(σT ′(w)− σT (w)) ≤ 2(σT (v`)− `
2 + n− 2− σT (w))

= 2n− 4− `+ 2(σT (v`)− σT (w)). (3)

In T , v` is at distance at most ` from the vertices outside P , and at distance `− i from vi (i = 1, · · · , `− 1).

Hence,

σT (v`) ≤
`(`− 1)

2
+ `(n− `) = n`− `2

2
− `

2
. (4)

If w is adjacent to a vertex in P , then it is at distance at least two from the vertices outside P and the sum

of the distances from w to the vertices in P is minimized when w is adjacent to vb `2 c
. In such a case, we

therefore have

σT (w) ≥
(b `2c+ 1)(b `2c+ 2) + (d `2e+ 1)(d `2e+ 2)

2
− 1 + 2(n− `− 2)

≥ (
`

2
+ 1)(

`

2
+ 2)− 1 + 2(n− `− 2)

= 2n+
`2

4
− `

2
− 3. (5)

This is the best possible lower bound on σT (w) because if w is not adjacent to a vertex in P , then the bound

increases by ` units since the distance from w to the ` + 1 vertices in P increases by one unit for each of

them, while the distance from w to its neighbour outside P decreases from 2 to 1.

Putting together (2) to (5), we get

µ(T ′)− µ(T ) =
2(σT ′(w)− σT (w))

n(n− 1)

≤ 2n− 4− `+ 2(σT (v`)− σT (w))

n(n− 1)
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≤
2n− 4− `+ 2

(
(n`− `2

2 −
`
2 )− (2n+ `2

4 −
`
2 − 3)

)
n(n− 1)

=
−4n− 2`+ 4− 3`2 + 4n`

2n(n− 1)
. (6)

We therefore get from (1) and (6)

(ε(T ′)− µ(T ′))− (ε(T )− µ(T )) ≥ 2n− `− 1

2n
− −4n− 2`+ 4− 3`2 + 4n`

2n(n− 1)

=
2n2 − 5`n+ n+ 3`2 + 3`− 3

2n(n− 1)
.

It remains to show that F (`) = 2n2 − 5`n+ n+ 3`2 + 3`− 3 ≥ 0. Since F is a quadratic convex function, it

reaches its minimum value when its derivative equals 0, which means that −5n+ 6`+ 3 = 0, i.e., ` = 5n−3
6 .

It can be checked that F ( 5n−3
6 ) = 31

3 n
2 − 9n− 4 > 0 for all n ≥ 2.

Theorem 5.1 Let T be a tree of order n. Then

ε(T )− µ(T ) ≤ 5n− 10

12
− n mod 2

4n
.

Moreover, the bound is reached if and only if T is the path Pn.

Proof. We follow a similar proof as the one used in [30] for determining an upper bound on ε(T )− ρ(T ).

Let T be a tree which maximizes the difference ε(T )− µ(T ). Assume, by contradiction, that T is not the

path Pn. Let P = (v0, v1, · · · , vD(T )) be a longest path in T . Let Gi be the connected component of T \ P
rooted in vi, and let Vi be the vertex set of Gi. We know from Lemma 5.1 that there are two vertices vj
and vk on P of degree at least 3 such that j ≤ D(T )

2 < k. Let us choose such a pair of vertices on P with

minimum value k − j. Let wj be a neighbor of vj outside P , and let wk be a neighbor of vk outside P . Let

T ′ be the tree obtained from T as follows:

• for every w 6= wj , vj+1 adjacent to vj , remove the edge vjw and add the edge wjw;

• for every w 6= wk, vk−1 adjacent to vk, remove the edge vkw and add the edge wkw.

Note that the diameter of T ′ is two units larger than the diameter of T . Now, let

V ′j = {v ∈ Vj : dT (v, wj) < dT (v, vj)},
V ′k = {v ∈ Vk : dT (v, wk) < d(v, vk)}.

Consider the following partition of the vertices of T

X1 = V0 ∪ . . . ∪ Vj−1 ∪ (Vj \ (V ′j ∪ {vj}),
X2 = V ′j ,

X3 = {vj} ∪ Vj+1 ∪ . . . ∪ Vk−1 ∪ {vk},
X4 = V ′k,

X5 = (Vk \ (V ′k ∪ {vk}) ∪ Vj+1 ∪ . . . ∪ VD(T ).

Let xi = |Xi|. We clearly have εT ′(v) = εT (v)+1 for every vertex in X2∪X3∪X4, while εT ′(v) = εT (v)+2

for every vertex in X1 ∪X5. Hence

ε(T ′) = ε(T ) +
φ

n
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where φ = 2x1 + x2 + x3 + x4 + 2x5. Let us now analyze how the average distance varies when transforming

T to T ′. If v ∈ X1, then

dT ′(v, u)− dT (v, u) =


0 if u ∈ X1

−1 if u ∈ X2

1 if u ∈ X3 ∪X4

2 if u ∈ X5.

Hence, σT ′(v) = σT (v) + τ1 for all v ∈ X1, where τ1 = −x2 + x3 + x4 + 2x5.

If v ∈ X2, then

dT ′(v, u)− dT (v, u) =

 −1 if u ∈ X1

0 if u ∈ X2 ∪X3 ∪X4

1 if u ∈ X5.

Hence, σT ′(v) = σT (v) + τ2 for all v ∈ X2, where τ2 = −x1 + x5.

If v ∈ X3, then

dT ′(v, u)− dT (v, u) =

{
1 if u ∈ X1 ∪X5

0 if u ∈ X2 ∪X3 ∪X4.

Hence, σT ′(v) = σT (v) + τ3 for all v ∈ X3, where τ2 = x1 + x5.

By symmetry, we also have σT ′(v) = σT (v) − τ4 for all v ∈ X4 and σT ′(v) = σT (v) − τ5 for all v ∈ X5,

where τ4 = x1 − x5 and τ5 = 2x1 + x2 + x3 − x4.

We thus have

n(n− 1)µ(T ′) =

5∑
i=1

∑
v∈Xi

σT ′(v) =

5∑
i=1

∑
v∈Xi

(σT (v) + τi) = n(n− 1)µ(T ) +

5∑
i=1

xiτi.

Notice that (n− 1)φ− nτ1 = (2n− 2)x1 + (2n− 1)x2 − x3 − x4 − 2x5 > 0 because x3, x4, x5 are at most

equal to n− 4, while x1 and x2 are at least equal to 1. Similarly (n− 1)φ− nτi > 0 for i = 2, 3, 4, 5. Hence

(ε(T ′)− µ(T ′))− (ε(T )− µ(T )) =
φ

n
−
∑5
i=1 xiτi

n(n− 1)
>
φ

n
−
∑5
i=1 xiφ

n2
= 0

which contradicts that fact that T maximizes the difference ε(T )− µ(T ).

Hence the path Pn maximizes ε(T )− µ(T ) among all trees T and it is not difficult to check that ε(Pn)−
µ(Pn) = 5n−10

12 − n mod 2
4n .

6 The chromatic number and the maximum degree frequency

Theorem 6.1 Let G be a connected graph of order n ≥ 3. Then.{
2− n if n is even,
3− n if n is odd

≤ χ(G)− n∆(G) ≤ n− 2.

Moreover, the lower bound is reached, for example, by the cycle Cn as well as by the regular bipartite graphs.

The upper bound is reached if and only if G is a kite KIn,n−1.

Proof. Since χ(G) ≥ 2 and n∆(G) ≤ n, we clearly have χ(G) − n∆(G) ≥ 2 − n. This lower bound is

clearly only reached by bipartite regular graphs, which means that n must be even. Hence, if n is odd, then

χ(G)− n∆(G) ≥ 3− n. The bound is then reached, for example by the cycle Cn.

We now prove the upper bound n − 2 is valid and can only be reached if G = KIn,n−1. If χ(G) = n,

then G is a clique and n∆(G) = n, which means that χ(G) − n∆(G) = 0 < n − 2. Also, if χ(G) 6= n − 1 or

n∆(G) 6= 1, then χ(G) − n∆(G) < n − 2. So assume χ(G) = n − 1 and n∆(G) = 1. We then know that G
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is not the cycle Cn. Since G is not a clique, Brook’s theorem [10] implies n − 1 = χ(G) ≤ ∆(G). Hence, G

contains a dominating vertex v.

Let G′ be the induced subgraph obtained by removing v from G. Clearly, χ(G′) = n−2. Hence, G′ is not

the cycle Cn−1 since we would have χ(G′) = 2 < n− 2 if n = 5, and χ(G′) = 3 < n− 2 if n > 5. Also, since

n∆(G) = 1, we necessarily have ∆(G′) ≤ n − 3, which implies that G′ is not a clique. If G′ is connected,

then we can again apply Brook’s theorem, and we get χ(G′) ≤ ∆(G′) ≤ n − 3, a contradiction. So assume

G′ is not connected.

Let H1, ...,Hr denote the connected components of G′. We then have

n− 1 = χ(G) = max
i

χ(Hi) + 1.

Hence, there is a connected component Hi such that χ(Hi) = n − 2. But since every Hi contains at most

n− 2 vertices, we deduce that G′ contains only two connected components, one being a clique or order n− 2,

and the other one an isolated vertex. But this implies that G = KIn,n−1.

7 The stability number and the minimum degree frequency

Theorem 7.1 Let G be a connected graph of order n ≥ 5. Then

1− n ≤ α(G)− nδ(G) ≤ n− 3.

Moreover, the lower bound is reached if and only if G is a clique, while the upper bound is reached, for

example, by K2,n−2 − e.

Proof. Since α(G) ≥ 1 and nδ(G) ≤ n, we clearly have α(G) − nδ(G) ≥ 1 − n, and this bound is only

reached if G is a clique. Let us now prove that the upper bound is valid. Since G is connected, we have

α(G) ≤ n − 1, and this bound is attained only for G = Sn. In such a case, α(Sn) − nδ(Sn) = 0 < n − 3.

So assume α(G) ≤ n − 2. We then have α(G) − nδ(G) ≤ n − 3. The bound is reached for, example, by

G = K2,n−2 − e.
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