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Abstract: We introduce an iterative algorithm for the solution of the diameter minimization clustering
problem (DMCP). Our algorithm is based upon two observations: 1) subsets induce lower bounds on the
value of the optimal solution of the original problem; and 2) there exists a subset whose optimal clustering
has the same value as that of the original problem. We also describe how to adapt our algorithmic framework
for the solution of other clustering problems, namely the minimum sum-of-diameters clustering problem
(MSDCP), the split maximization clustering problem (SMCP) and the maximum sum-of-splits clustering
problem (MSSCP). A parallel implementation of our algorithm can solve problems containing almost 600,000
entities while consuming only moderate amounts of time and memory. The size of the problems that can be
solved using our algorithm is two orders of magnitude larger than the largest problems solved by the current
state-of-the-art algorithm.
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1 Introduction

Clustering is among the most important data mining tasks. Given a set of objects without any prior knowl-

edge, clustering consists in finding subsets, called clusters, which are homogeneous and/or well separated.

Homogeneity means that entities in the same cluster should be similar whereas separation means that entities

in different clusters should differ one from the other.

The problem of clustering n objects into k clusters can be posed as a mathematical optimization problem

as follows:

min(or max) f(x) (1)

subject to

k∑
j=1

xij = 1, ∀i = 1, . . . , n (2)

xij ∈ {0, 1}, ∀i = 1, . . . , n; (3)

∀j = 1, . . . , k.

The decision variables xij express the assignment of the object i to the cluster j. Thus, constraints (2) assure

that each object is assigned to exactly one cluster.

The function f in (1) defines how homogeneity and separation are expressed in the clusters to be found [18].

Moreover, f is determinant to the computational complexity of the associated clustering problem. For

example, the split of a cluster consists in maximizing the minimum dissimilarity across all pair of objects

assigned to different clusters. Clustering via split maximization is polynomially solved in time O(n2) [10].

Among the many available criterion used in cluster analysis, the diameter minimization (DM) is the most

natural to express homogeneity of the clusters found. The diameter (Dj) of a cluster j ∈ {1, . . . , k} is defined

as:

Dj = max{dii′ : 1 ≤ i < i′ ≤ n, xij = xi′j = 1}, (4)

where dii′ represents the dissimilarity between objects i and i′. The diameter minimization problem is then

expressed as

min max
1≤j≤k

Dj . (5)

DM tends to produce compact clusters due to its objective of producing clusters with small intra-cluster

dissimilarities among their objects. For k = 2, the problem can be solved in polynomial time via a repulsion

algorithm developed by Rao [26]. Brucker [6] showed that DM is polynomially solvable when data is located

over a line. In two or more dimensions, DM is proved NP-hard by a reduction to the graph coloring prob-

lem [17]. Gonzalez [16] and Hochbaum & Shmoys [20] showed that the DM has a 2-approximation algorithm.

Hochbaum [19] showed that DM cannot be approximated within a factor better than 2. Feder and Greene [12]

showed that for objects located on the plane DM cannot be approximated within a ratio of 1.969.

The classic book of Garey and Johnson [15] refers to the DM clustering problem (henceforth DMCP) as the

clustering problem to prove that the associated decision problem is, in general, strongly NP-complete. This

highlights the importance the DM which is perhaps the most intuitive criterion for clustering. Besides, DM

does not have the tendency to produce clusters of particular sizes [8], which may be important for datasets

with a potential large cluster and several small ones. One disadvantage is that many distinct optimal solutions

often exist, leaving to the analyst the burden of selecting one of them. Alternatives to automate this decision

include combining DM with a second criterion in a multi-objective setting [7, 10].

Existing methods for large-scale hierarchical clustering are only heuristic, and often fail to find an optimal

clustering for large problems. Moreover, many of those algorithms do not scale well and cannot be applied

on large problems due to time or memory limitations. Regarding exact algorihtms, the landscape is even

bleaker. The state-of-the-art algorithm for DM [9] can solve problems containing a few thousand nodes and

rapidly runs out of memory beyond that.
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In this paper, we propose an algorithm that aims at solving very large DM clustering problems and

that consumes only moderate CPU time and memory. Our algorithm’s running time is comparable to the

time needed to compute the whole dissimilarity matrix, and sometimes it proves even faster. In terms of

the memory space required to solve such problems, the requirements are minimal. Indeed, the proposed

algorithm does never store the dissimilarity matrix explicitly. Our algorithm can, on most cases, detect an

optimal clustering in a few seconds, and spend a long time to prove the optimality of such clustering. Thus,

a simple modification of our algorithm can also be used to solve problems with an arbitrarily large number

of observations in a heuristic fashion.

2 Literature review

DM has a quite old history in data analysis. A popular heuristic for DM is the classical complete-linkage

hierarchical clustering algorithm [21, 29]. Complete-linkage merges at each step of its hierarchical construction

the two subsets for which the maximum dissimilarity between their objects is minimum. The desired solution

is then obtained by cutting the resulting tree at k clusters. However, the method seldom finds optimal

solutions as reported by [3, 17].

The FPF (Furthest Point First) method introduced in [16] works with the idea of head objects for each

cluster of the partition to which each object is assigned. In the first iteration, an object is chosen at random

as the head of the first cluster and all objects assigned to it. In the next iteration, the furthest object from

the first head is chosen as the head of the second cluster. Then, any object which is closer to the second head

than to the first one is assigned to the second cluster. The algorithm continues for k iterations, choosing the

object which is the furthest to its head as the head of the new cluster. The FPF heuristic is guaranteed to

find a partition with diameter at most two times larger than the diameter of the optimal partition.

Regarding exact methods, Hansen and Delattre [17] explore the relationship between DM and graph-

coloring to devise a branch-and-bound method to solve problems of non-trivial size. Brusco and Stahl [8]

proposes a backtracking algorithm, denoted Repetitive Branch-and-Bound Algorithm (RBBA), that branches

by assigning each object to one of the possible k clusters. Pruning is performed whenever: (i) the number

of unassigned objects is smaller than the number of empty clusters; (ii) the assignment of an object to a

particular cluster yields a partition with a diameter larger than the diameter of the best current branch-

and-bound solution; and (iii) there is an unassigned object that cannot be assigned to any of clusters of

the partial solution. Recently, Dao et al. [9] proposed a constraint programming approach for DM whose

computational results outperformed the previous exact approaches found in the literature. In particular, the

method obtained the optimal partition regarding the DM criterion for a real-world dataset with 5,000 objects

grouped in three clusters.

We would like to mention that our algorithm is inspired from the need of handling extremely large datasets

in the context of big data applications. We are not the first to elaborate upon the need of developing a scalable

algorithm able to handle large datasets while avoiding as much as possible the scanning of the whole data.

Zhang et al. [33] use a tree structure to estimate and store the distribution of the dissimilarities. Their

algorithm then relies on this estimator to proceed to cluster the data. In Bradley et al. [5], the authors

introduce an algorithm for the k-means clustering problem that uses compression and discarding of data to

reduce the number of observations. Fraley et al. [14] introduce a sampling-based algorithm to solve problems

containing large amounts of data in a sequential fashion. At every iteration of their algorithm, typically much

smaller datasets are considered. Unlike our method, all these algorithms are heuristic by nature.

It is always important to compare clustering algorithms using the same datasets since the hardness of a

clustering problem depends not only on the number of objects (n), but also on the number of sought clusters

(k) and on how the objects are spread in the space. For example, if objects are embedded in an Euclidean

space and located in very separated clusters, any reasonable exact method should find the optimal solution

regardless of the number of objects.
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3 Preliminaries and notation

Let V be the complete set of nodes, of size n. We let E = {{u, v} : u, v ∈ V, u < v} be the set of edges linking

all nodes in V , of size m = n(n − 1)/2. For each edge e = {u, v} ∈ E, we denote by de the dissimilarity

between nodes u and v. The dissimilarity matrix of V is denoted by D(V ) = [de]e∈E . A feasible solution

of the DMCP is a partition C = (Ci)
k
i=1 of V . The diameter of a cluster Ci is denoted by d(Ci) and is

equal to max{de : e = {u, v} ∈ E, u, v ∈ Ci}. The cost associated with C is denoted by ω and is equal to

max{d(Ci) : i = 1, . . . , k}. Our algorithm to solve the DMCP relies on the following results and hypothesis.

Lemma 1 Let U ⊂ V be a subset of V , and let D(U) be its dissimilarity matrix. The optimal solution of the

DMCP on (U,D(U)) provides a lower bound on the optimal solution of the DMCP on (V,D(V )).

Proof. The proof is by induction on the size of V \ U . Let |V \ U | = 1. Let ωV , ωU be the values of two

optimal solutions of the DMCP on (V,D(V )) and on (U,D(U)), respectively. Let v∗ = V \ U . If ωU > ωV ,

the one can remove v∗ from the cluster containing it in (V,D(V )) and get a solution for (U,D(U)) of cost

smaller than or equal to ωV , which contradicts the optimality of ωU . If |V \ U | = k > 1 then one can apply

the same argument k times.

Proposition 1 Let U ⊂ V , and let CU be an optimal solution for (U,D(U)) of cost ωU . If one can find a

clustering CV of V of cost ωU , then that clustering is optimal for V .

Proof. From the lemma, ωU is a lower bound on the optimal solution value of DMCP for the set V . If ωU

is also the value of an upper bound (a feasible solution), then ωU is optimal.

Hypothesis 1 There exists a subset U ⊂ V of size n′ � n such that Proposition 1 holds for U .

The algorithm introduced in this article provides an efficient way of finding such set U . Note that this

hypothesis does not hold on problems in which the addition of a node into a cluster entails necessarily an

increase in the objective function. Thus, our algorithm, in the way it is presented, is limited to problems

presenting large degrees of degeneracy.

4 The general framework

We begin by selecting (using some criterion) an initial set U0 containing κ points from V , where κ is a

positive integer parameter, usually small. Let us set i ← 0. At iteration i, one solves problem (U i, D(U i))

to optimality using some method (e.g. branch-and-price, constraint programming). Let Ci, ωi denote the

optimal solution and its value, respectively, for problem (U i, D(U i)). We then run a heuristic and try to

build a feasible solution for problem (V,D(V )) of cost ωi. Our heuristic proceeds as follows: The nodes in

V \ U i are sorted using some ordering cheap to compute. Every node v ∈ V \ U i is then iteratively inserted

into Ci on some cluster that does not sees its diameter increased. If for some node v∗ this is not possible,

the heuristic stops. We set U i+1 ← U i ∪ {v∗}, i← i+ 1 and the algorithm is restarted. If, on the contrary,

all nodes in V \ U i could be inserted into Ci, then an optimal clustering of (V,D(V )) has been found. The

following pseudo-code illustrates our method:
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Algorithm 1 Iterative clustering

Input: Problem P = (V,D(V ))
Output: Optimal clustering CV = {Cj : j = 1, . . . , k} of P

Build U by selecting κ points from V
ωU , ωV ←∞
CU , CV ← ∅
W ← ∅
repeat
U ← U ∪W
(ωU , CU )← OptimalClustering(U,D(U))
(ωV , CV ,W )← HeuristicCompletion(CU , V \ U)

until W = ∅
return CV

In this algorithm, procedure OptimalClustering(U,D(U)) solves the clustering problem restricted to

the nodes in U to optimality. It returns the optimal clustering CU and its objective value ωU . The function

HeuristicCompletion(CU , V \U) completes the solution found by OptimalClustering(U,D(U)) and returns

the resulting clustering CV (not necessarily an optimal one), its value ωV and a set W = {w} containing a

node that could not be inserted into CU without augmenting its cost (∅ if no such node exists).

The exactness and finiteness of our approach is based upon the following observation. At every iteration,

the heuristic either proves the optimality of the current subproblem (supported by Proposition 1), or the

set V is augmented. In the worst case, U will grow up to become equal to V , in which case procedure

OptimalClustering(V,D(V )) is guaranteed to return an optimal solution for problem (V,D(V )). A simple

worst-case time analysis of our method based upon this observation would suggest that it is indeed theoret-

ically slower than solving the complete problem at once. In practice, our algorithm exploits the extremely

large degeneracy of these DM problems and typically proves optimality by solving problems several orders of

magnitude smaller than the original one.

5 Selection of an initial set U 0U 0U 0

The choice of the initial set U0 in our algorithm is as follows. We first compute the centroid u of the points

in V . If the i-th dimension of the problem is a numerical variable, we let ui = 1
|V |

∑
u∈V ui. On the contrary,

if it is a categorical variable, we let ui to be the median of the values (ui)u∈V .

We let then T be the set containing the ρ = min{5000, |V |} farthest points in V from u. For each p ∈ T ,

we let Tp be built iteratively as follows: in step 1, Tp = {p}. From step 2 to κ, we insert into Tp the node

v ∈ V \ Tp whose minimum dissimilarity with respect to a node in Tp is maximum.

Following the ordering defined by the dissimilarity with respect to the centroid (the farthest first), we

execute for Tp the following constructive heuristic: we sort the edges in Ep = E(Tp) in non-decreasing order

of dissimilarity, so as to favor the appearance of solutions with small diameters as early as possible during the

process. For a given edge e = {u, v} of dissimilarity de, we try to iteratively build clusters whose diameters

do not exceed de, as follows. We begin with a single cluster containing the nodes u, v. Then, we always try

to insert into the current cluster a node that will prevent the cluster from exceeding a diameter of de. If not

possible, we create a new cluster unless the maximum number of clusters has been reached, in which case

the current clustering is simply deemed unfeasible. If it is not possible to build a clustering of maximum

diameter de, we continue to the next edge.

The solution for a given set Tp is then compared to the solutions obtained for previous sets. The set Tp
that provides the maximum possible diameter is always retained. Indeed, it corresponds to the best possible

estimate of the optimal clustering value. The algorithm is thus executed at most ρ times. Indeed, we abort

the execution of the algorithm as soon as 100 different candidate sets have been considered without providing

an increment of the objective value.
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6 Optimal clustering

In this section we present a branch-and-price algorithm for the exact solution of the DMCP. The branch-and-

price is based upon the solution of a set-covering formulation by column generation. Integrality is enforced

through branch-and-bound.

6.1 Set-covering formulation of the DMCP

A feasible cluster can either be equal to a singleton {u} or to a pair (U, e) ∈ P × E, where e represents one

possible edge of maximum diameter within the nodes in U . The set of all feasible clusters containing two or

more nodes is denoted by T . For a cluster t = (U, e) ∈ T we denote Ut = U, et = e.

For every u ∈ V , we let su be a binary variable equal to 1 iff node u is clustered alone, and we let du
be its diameter (as we will explain in Section 6.5, a node can have a strictly positive diameter following a

branching decision). For every t ∈ T we consider a binary variable zt that will take the value 1 iff the cluster

t is retained. For every node u ∈ V we let aut be a binary constant that takes the value 1 iff u ∈ Ut. Also,

for every edge e ∈ E we let bet be a binary constant that takes the value 1 iff e = et. We finally define a

continuous variable ω equal to the maximum diameter among the chosen clusters. The following set-covering

formulation is valid for the DMCP:

min
s,ω,z

ω (6)

subject to

ω −
∑
t∈T

betdezt ≥ 0 e ∈ E (7)

ω − dusu ≥ 0 u ∈ V (8)∑
t∈T

autzt + su ≥ 1 u ∈ V (9)∑
t∈T

zt +
∑
u∈V

su ≤ k (10)

zt ≥ 0 t ∈ T (11)

zt is integer t ∈ T (12)

This formulation contains an exponentially large number of variables and cannot be explicitly solved even

for small graphs. Column generation is a technique that allows the solution of a linear program with a large

number of variables by adding them in a dynamic fashion. In our case, we consider the linear relaxation of

formulation (6)–(12) by relaxing constraints (12). Primal feasibility is then enforced through branching.

6.2 Reduced costs

Let us assume that problem (6)–(11) has been solved restricted to a subset T ′ ⊂ T of feasible clusters. We

can extract dual variables (σe)e∈E , (αu)u∈V , (λu)u∈V and γ for constraints (7), (8), (9) and (10), respectively.

The reduced cost of variables su, zt are denoted as cu, ct, respectively, and are equal to

cu = duαu − λu − γ (13)

ct = detσet −
∑
u∈V

autλu − γ (14)

6.3 Pricing subproblem

The pricing sub-problem is performed in two steps. In the first step, we search for single-node clusters of

negative reduced cost. This can be done by simple inspection by evaluating expression (13) for every possible

u ∈ V .
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If no such cluster exist, the second step of the pricing subproblem searches for a feasible cluster t of

minimum reduced cost, this is such that expression (14) is minimized. We formulate this problem as an

integer program, as follows. For every u ∈ V , we let xu be a binary variable equal to 1 iff u ∈ Ut. For every

edge e ∈ E we let ye be a binary variable equal to 1 iff e = et. We consider the following integer program:

min
x,y

φ =
∑
e∈E

σedeye −
∑
u∈V

λuxu (15)

subject to ∑
f∈E

dfyf − de(xu + xv − 1) ≥ 0 e = {u, v} ∈ E (16)

2ye − xu − xv ≤ 0 e = {u, v} ∈ E (17)∑
e∈E

ye = 1 (18)

xu ∈ {0, 1} u ∈ V (19)

ye ∈ {0, 1} e ∈ E (20)

Now, this pricing subproblem will select one edge e ∈ E (associated to a variable ye = 1) and construct a

node subset accordingly (associated to the set {u ∈ V : xu = 1}). We would like to highlight that, if the edge

et = {ut, vt} is chosen in advance (meaning that yet = 1), one can a priori fix to zero all variables xu such that

max{duut , duvt} > det and to one variables xut , xvt . Let then V et = {u ∈ V \{ut, vt} : max{duut , duvt} ≤ det}.
The optimal set of nodes for a fixed et can be found by solving the following integer program:

max
x

φ′(et) =
∑

u∈V et

λuxu (21)

subject to

xu + xv ≤ 1 u, v ∈ V et , u < v, duv > det (22)

xu ∈ {0, 1} u ∈ V et (23)

The relationship between φ and φ′(·) is as follows:

φ = min{σede − (φ′(e) + λu + λv) : e = {u, v} ∈ E} (24)

6.4 Solution of the pricing subproblem

The solution of the pricing subproblem exploits the aforementioned property to derive an efficient heuristic

and exact method. It relies on the sorting of the edges in E in increasing order according to the quantity

σede − λu − λv, with e = {u, v} ∈ E.

6.4.1 Greedy heuristic

Our greedy heuristic starts, for every edge e = {u, v} ∈ E, with a cluster containing the nodes u and v, and

expanding it while possible.

Set k ← 1, and let ek = {uk, vk} be the k-th element of E. We let C = {uk, vk}, S ← V ek . Let us set

j ← 1. At any iteration j ≥ 1, C represents be the current cluster and S the set of nodes that can be inserted

into C without exceeding the diameter given by dek . At iteration j+1, we will set v∗ ← arg max{λv : v ∈ S}.
We then update C and S as follows: the new cluster becomes C ← C ∪ {v∗}; the new set S becomes

S ← S \ {v ∈ S : dvv∗ > dek}. If S is empty, we check if the reduced cost associated to cluster (C, ek) is

negative. If so, stop and return (C, ek). Otherwise, set k ← k + 1 and restart unless k > |E|, in which case

the algorithm is stopped and no column is returned.
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6.4.2 Exact algorithm

Let w be the linear relaxation value associated with the current set of columns. Let w∗ be the current upper

bound of the problem. We define the absolute gap as the difference w∗ − w and denote it by gap.

Let k ← 1 and let ek = {uk, vk} be the next edge to inspect. Our exact algorithm computes a maximum

weighted clique on the graph Gk = (V k, Ek), with V k = V ek and Ek = {e = {u, v} : e ∈ E, u, v ∈ V k, de ≤
dek}. Each node u ∈ V has a weight equal to λu. We compute φ′(ek) using CLIQUER [24]. Let us denote

ck ← σekdek − (φ′(ek) + λuk
+ λvk)− γ. Depending in the value of ck, three possible cases arise:

1. If ck < 0, then a column (a feasible cluster) of negative reduced cost has been detected. Stop and

return the associated cluster.

2. Else if 0 ≤ ck < gap, then do nothing.

3. Else (i.e. if ck ≥ gap), then no column t ∈ T such that et = ek can be part of an optimal solution

improving upon the incumbent. Therefore, edge ek can be removed from the computation of φ in (24)

without compromising the exactness of the algorithm.

In cases 2 and 3, we set k ← k + 1 and restart the procedure with the next available edge. If none, we

abort the algorithm and return nil.

6.5 Branch-and-bound

Let ((su)u∈V , (zt)k∈T ) be the optimal solution at the end of the column generation process. Let us define, for

every e ∈ E, ye =
∑

t∈T beT zt. We also define, for every edge {u, v} ∈ E, xe =
∑

t∈T autabtzt. In addition,

we define, for every node u ∈ V , ru =
∑

v∈V \{u} ye. The solution might be declared unfeasible if su, ye, xe or

ru are fractional for some edge e or node u. Depending on the branching decision chosen, the two children

problems are built as follows:

1. If su ∈]0, 1[ is the chosen branch: We create two children nodes, namely su = 0 and su ≥ 1. For se = 0

we remove the variable su from the child master and from the computation of the reduced costs. For

the branch su ≥ 1, we simply add the inequality to the child node. As the variable is already in the

current node master, there is no need to remove it and therefore no need to consider its dual in the

computation of the reduced costs when using expression (13).

2. If ye ∈]0, 1[ is the chosen branch: We create two children nodes, namely ye = 0 and ye ≥ 1. For ye = 0

we remove the edge e from the computation of φ in (24) and also remove all clusters {(U, e) ∈ T ′} from

the master problem. For the branch ye ≥ 1, we simply add the following inequality to the child node:∑
t∈T betzt ≥ 1. Its dual must be taken into account for the computation of the reduced costs.

3. If xe ∈]0, 1[ is the chosen branch, with e = {u, v}: We create two children nodes, namely xe = 0 and

xe = 1. For xe = 0, we need to assure that u and v will never be on the same cluster. Thus, we remove

from the master problem all clusters containing both nodes. In addition, we modify their dissimilarity

to be duv ← +∞. For the branch xe = 1, we need to assure that every cluster containing u will also

contain v. We proceed to shrink these two nodes into a single node {uv}, and update its diameter

to d{uv} ← du + dv. Also, for every w ∈ V \ {u, v}, we let d{u,v}w ← max{duw, dvw, d{uv}}. We also

remove from the master problem all clusters containing one of the nodes but not both.

4. If ru ∈]0, 1[ is the chosen branch: We create two children nodes, namely ru = 0 and ru ≥ 1. For ru = 0,

we remove from the master all clusters (U, e) ∈ T ′ such that one of the endpoints of e is equal to u. All

edges {e = {v, w} ∈ E : v = u or w = u} are removed from the computation of φ in 24. For the branch

ru ≥ 1, we simply add the following inequality to the child node:
∑

t∈T
∑
{e={u,v}∈E:v∈V } betzt ≥ 1.

We have implemented a hybrid branching strategy that performs strong branching for the first 1,000 node

separations, and pseudo-cost branching afterwards. Some technical details for a proper implementation of

this procedure are perhaps necessary, but for the sake of simplicity of the presentation we prefer to omit the

details.
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7 Completion heuristic

To prove the optimality of the solution associated to the current set U or that another iteration of the

algorithm is necessary, we have implemented the following completion heuristic. Let D(U), CU , ωU be the

associated dissimilarity matrix, the optimal clustering of those nodes and the optimal solution value, respec-

tively. For every node u ∈ V \ U and for every cluster C ∈ CU , we let ν(u,C) = max{duv : v ∈ C}. For each

u ∈ V \U , the clusters are sorted in non-decreasing order of ν(u,C), this is ν(u,C1(u)) ≤ ν(u,C2(u)) ≤ · · · ≤
ν(u,Ck(u)). In case of a tie among two or more clusters, we proceed as follows. For two clusters sharing the

same value for ν(u,Ci(u)), we consider the following tie-breaker quantity: ν(u,C)′ = max{0, d(C)−ν(u,C)}.
Two clusters sharing the same value of ν(u,C) are sorted in non-decreasing order of ν(u,C)′. Following ties

are broken arbitrarily.

The next problem is to define an ordering of the nodes in V \U . The intuition behind our approach is to

sort the nodes so as to favor the detection of unfeasibilities in the early stages of the algorithm. The reason

for doing so lies on the need of avoiding an exhaustive computation of the dissimilarity matrix. For every

u ∈ V \U , let C1(u) be the first cluster considered in the previously defined ordering for node u. We consider

the following quantities:

l1(u) = max{0, ωU − d(C1(u) ∪ {u})} (25)

l2(u) = max{0, d(C1(u) ∪ {u})− d(C1(u))} (26)

l3(u) = d(C1(u) ∪ {u}) (27)

l4(u) = d(C1(u)) (28)

The nodes are sorted in non-increasing order of l1. Ties are broken by considering l2, l3 and l4, in that

order. If it is still not possible to break a tie, we consider the second cluster for each node, namely C2(·) and

apply the same reasoning. Further ties are broken using C3(·), C4(·), . . . , Ck(·), in that order.

Let i← 1. Let ui ∈ V \U be the next node to be inserted according to the mentioned ordering. We try to

insert ui in some cluster using the ordering defined by the values (ν(u,Cl(u)))kl=1. The node is inserted into

the first cluster where it can be added without augmenting the value of the maximum diameter given by ωU .

If no such cluster exists, the algorithm stops. We check whether the insertion of node ui becomes unfeasible

because of another previously inserted node uj , j < i. If no such uj exists, we return W = {ui}, otherwise we

return W = {uj , ui}. If the insertion is, however, possible, we update the diameter of the cluster involved,

let i← i+ 1 and restart, unless i reaches |V \U |+ 1 in which case the algorithm stops and the global optimal

clustering is returned.

8 Acceleration techniques

To accelerate the whole procedure, some remarks are in order.

First, we perform a preprocessing of the nodes by sorting them in lexicographical order and then by

removing duplicates. While for some problems this procedure did not help to reduce the number of points,

for others the reduction reached a 70% of the nodes (KDD cup 10%, from 494,020 to only 145,583 nodes).

In addition, we perform dimension reduction by removing dimensions whose standard deviations are equal

to 0.

Second, we warm-start the branch-and-price procedure by computing lower and upper bounds for the

problem, as follows: An upper bound can be obtained by executing the constructive heuristic introduced in

Section 5. Moreover, we have implemented an iterated local search method to improve this solution that uses

the LS presented in Fioruci et al. [13], with a perturbation based on the random selection of diameter nodes

(two nodes that have maximum intra-cluster dissimilarity) and the reassignment of those nodes to randomly

selected clusters. The value achieved by the ILS is then used as a cut-off value for the branch-and-price
algorithm. The ILS, in all of our tests, consumed no more than a 5% of the total computing time. Also, the

optimal solution from the previous iteration of the branch-and-price provides a lower bound on the value of
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the optimal solution at the current iteration, thanks to Lemma 1. Let ω′ be that lower bound. We enforce

it by adding to the master problem the inequality∑
t∈T

∑
e∈E′

betzt ≥ 1, (29)

where E′ = {e ∈ E : de ≥ ω′}. Certainly, one needs to consider its dual variable in the computation of the

reduced costs for the column generation process.

Third, we also provide a simple but effective parallelization of our algorithm. Indeed, we have realized

that the bottleneck of our algorithm in most cases is the completion heuristic that takes time O(n2) as it

needs to compute the dissimilarity between a node u ∈ V \ U and all the nodes in a cluster to update its

diameter. We simply divide this computation among the available cores.

9 A heuristic implementation of the algorithm

Our algorithm might fail into solving extremely large problems due mainly to the O(n2) time spent by the

completion heuristic. However, we have realized that the completion heuristic takes this extremely long time

only at the last iteration to prove optimality. Indeed, the preprocessing performed to sort the nodes before

the execution of the heuristic is such that an unfeasible completion is usually detected after the insertion of

a few nodes (less than 1,000 in most cases). Otherwise, the heuristic often succeeds to prove the optimality

of the current solution. Moreover, when this happens, the sorting of the clusters for each node is such that

most nodes can be effectively inserted into the first cluster according to this ordering. Thus, if one decides to

abort the completion heuristic after, say, 1,000 successful node insertions and assign the remaining nodes to

the first cluster according to the ordering defined in the preprocessing, the result is a heuristic that provides

very near-optimal solutions.

10 Solution of other clustering problems

In this section we briefly describe how to adapt our algorithm to handle clustering problems using other

criteria. Namely, we consider the minimum sum-of-diameters clustering problem (MSDCP), the split maxi-

mization clustering problem (SMCP) and the maximum sum-of-splits clustering problem (MSSCP). We have

decided not to implement these modifications because of two main reasons: 1) in the case of the MSDCP, this

criterion is known to favor the appearance of one extremely large cluster + several singletons or extremely

small clusters, and is therefore not interesting in practice; 2) in the case of SMCP and MSSCP, these problems
can already be solved in time O(n2). While our algorithmic approach may still be advantageous against this

algorithm, as it avoids an explicit computation of the dissimilarity matrix, we think that the potential speed-

up may not be significant to justify the use of our algorithm. We encourage, however, enthusiast researchers

to prove us wrong or to support our claim with strong evidence.

For the case of the MSDCP, we propose to modify the objective function on problem (6)–(12) to

min
∑
t∈T

d(Ut)zt. (30)

In addition, one may adapt the constructive heuristic and ILS method to favor the minimization of this

criterion. The correctness of the approach is supported by observing that Lemma 1 and Proposition 1 also

hold for this criterion, as well as Hypothesis 1.

For SMCP and MSSCP, it does not make sense anymore to implement an implicit enumeration algorithm

such as branch-and-bound to solve problems that can be solved in polynomial-time using the single-linkage

algorithm [27]. Just as for the MSDCP, the constructive heuristic and ILS should also be adapted to favor

the maximization of these criteria. In addition, it is easy to see that Lemma 1 and Proposition 1 also hold

for these two criteria by replacing the maximization of the (minimum / sum-of-) splits by a minimization of

the additive inverse of the (minimum / sum-of-) splits. Finally, it is easy to see that, due to the large degree

of degeneracy usually found on these two problems, Hypothesis 1 is also likely to hold.
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11 Computational results

The proposed algorithm has been programmed in C++ using the GNU g++ compiler v5.2. The general pur-

pose linear programming solver used within the branch-and-price procedure is CPLEX 12.6. The algorithm

has been compiled and executed on a machine powered by an Intel Core i7-4710HQ CPU @ 2.50GHz×8 with

16GB of RAM, running the Ubuntu 15.10 Operating System. The parallel implementation of our algorithm

uses the OpenMP standard and is executed on the same machine using the 8 available cores.

In our experimental analysis, we consider some classical problems from clustering, classification and

regression tasks. In Table 1 we provide the detail of the datasets considered in our computational study.

The number of problems ranges from very small instances with 150 points up to very large-scale problems

containing 581,012 observations. In this table, n,m, k and d stand for the number of points, the number

of edges (computed as n(n − 1)/2), the number of classes and the dimension of the problem, respectively.

Column labeled Ref contains a reference to the source of the problem. The selected problems contain mixed

numerical and categorical data. The dissimilarity between two points u = (u1, . . . , ud) and v = (v1, . . . , vd)

is computed as:

duv =

√√√√ d∑
i=1

f(ui, vi), (31)

where f(x, y) is equal to (x−y)2 if x and y are two numerical values, equal to 1 if x and y are two categorical

values whose string representations differ, and equal to 0 if x and y are two categorical values whose string

representations are the same.

Table 1: Problems details

Problem n m k d Ref

Iris 150 11,175 3 4 [23]
Wine 178 15,753 3 13 [23]
Glass 214 22,791 7 9 [23]
Ionosphere 351 61,425 2 34 [23]
User knowledge 403 81,003 4 5 [22]
Breast cancer 569 161,596 2 30 [23]
Synthetic control 600 179,700 6 60 [1]
Vehicle 846 357,435 4 18 [28]
Yeast 1,484 1,100,386 10 8 [23]
Mfeat (morph) 2,000 1,999,000 10 6 [9]
Multiple features 2,000 1,999,000 10 649 [23]
Segmentation 2,000 1,999,000 7 19 [9]
Image segm 2,310 2,666,895 7 19 [23]
Waveform (v1) 5,000 12,497,500 3 21 [23]
Waveform (v2) 5,000 12,497,500 3 40 [23]
Ailerons 13,750 94,524,375 10 41 [30]
Magic 19,020 180,870,690 2 10 [23]
Krkopt 28,056 393,555,540 17 6 [23]
Shuttle 58,000 1,681,971,000 7 9 [23]
Connect-4 67,557 2,281,940,346 3 42 [23]
SensIt (acoustic) 96,080 4,615,635,160 3 50 [11]
Twitter 140,707 9,899,159,571 2 77 [23]
Census 142,521 10,156,046,460 3 41 [23]
HAR 165,633 13,717,062,528 5 18 [31]
IJCNN1 191,681 18,370,707,040 2 22 [25]
Cod-Rna 488,565 119,347,635,330 2 8 [32]
KDD cup 10% 494,090 122,062,217,005 23 41 [23]
Cover type 581,012 168,787,181,566 7 54 [4]

To assess the efficiency of our method, we have designed three experiments. In the first experiment,

summarized in Table 2, we consider a sequential implementation of our algorithm and compare it against

Dao et al.’s CP algorithm [9], the RBBA of Brusco and Stahl [8] and the BB of Delattre and Hansen [10].

We restrict our analysis to the problems used in the experimental analysis of CP. As one can see from this
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table, our algorithm takes two seconds or less to solve all the problems, including problem Waveform (v2)

that passed from being solved in almost a minute, to only two seconds.

Table 2: Running times (in seconds) on small datasets

Problem Opt RBBA BB CP IC

Iris 2.58 1.4 1.8 < 0.1 < 0.1
Wine 458.13 2.0 2.3 < 0.1 < 0.1
Glass 4.97 8.1 42.0 0.2 0.2
Ionosphere 8.6 0.6 0.3 0.2
User knowledge 1.17 3.7 0.2 1.2
Breast cancer 2,377.96 1.8 0.5 0.2
Synthetic control 109.36 1.6 0.4
Vehicle 264.83 0.9 0.2
Yeast 0.67 5.2 1.7
Mfeat (morph) 1,594.96 8.59 0.6
Segmentation 436.4 5.7 0.6
Waveform (v2) 15.58 50.1 2.0

Our second experiment compares the efficiency of the parallelization scheme used in the completion

heuristic, against a sequential implementation of the algorithm. We have decided to omit from our analysis

all problems that were solved in one minute or less by the sequential implementation of our algorithm. In

Table 3 we describe the Wall times (in minutes) required to solve each problem using either approach, as well

as the speed up provided by the paralllelization, computed as tsequential/tparallel, where tsequential, tparallel
are the reported Wall times. As one can see, the algorithm takes advantage of the parallelization, which

can reduce the times by a factor of 1.84 on average with respect to the sequential implementation of the

algorithm.

Table 3: Sequential vs Parallel implementations

Problem
Wall time (minutes)

Speed up
Sequential Parallel

Multiple features 1.22 0.67 1.82
Shuttle 3.87 3.38 1.14
Connect-4 7.26 2.73 2.66
SensIt (acoustic) 19.46 13.14 1.48
Twitter 53.41 28.77 1.86
Census 95.20 33.95 2.80
HAR 35.96 19.25 1.87
IJCNN1 20.52 13.36 1.54
Cod-Rna 141.62 123.62 1.15
KDD Cup 10% 62.99 28.43 2.22
Cover type 280.60 162.94 1.72

Average 1.84

Our third experiment, summarized in Table 4 aims at reporting and analyzing the performance of our

algorithm on very large datasets. We restrict our analysis to the parallel implementation of the algorithm,

and to problems containing 5,000 nodes or more. In this table, label it represents the number of main

iterations of our algorithm, this is the number of times that the completion heuristic needs to be executed.

Label n′ represents the number of nodes in the last iteration of the algorithm right before the final completion

heuristic takes place. The time (in minutes) spent in the last completion heuristic is reported under column

labeled lch. The total wall time spent by our algorithm (in minutes) is shown under column labeled t. Finally,

we report in a separate column (as it is not part of the algorithm bur rather reported for analyses purposes)

labeled dmc, the time (in minutes) needed to compute the whole dissimilarity matrix. In all cases, times

lower than 0.1 minute (6 seconds) are reported as “< 0.1”.

As shown in this table, our method is capable of solving all these problems within reasonable time limits.

Typically, only very small graphs need to be handled by the exact clustering submethod at every iteration of
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Table 4: Detailed results on iterative clustering

Problem Opt
Iterative clustering

dmc
it n′ lch t

Waveform (v1) 13.74 10 21 < 0.1 < 0.1 < 0.1
Waveform (v2) 15.58 9 22 < 0.1 < 0.1 < 0.1
Ailerons 230.71 34 49 < 0.1 0.2 0.17
Magic 692.44 3 12 0.33 0.37 0.27
Krkopt 2.00 60 77 < 0.1 0.39 0.47
Shuttle 6,157.44 5 14 3.23 3.38 2.95
Connect-4 3.87 11 20 2.31 2.73 6.45
SensIt (acoustic) 4.47 6 15 12.72 13.14 12.16
Twitter 80,734 2 11 28.19 28.77 27.91
Census 100,056 3 13 33.27 33.95 33.00
HAR 1,078.73 8 18 18.70 19.25 24.76
IJCNN1 3.97 5 14 12.98 13.36 17.90
Cod-Rna 934.68 3 12 122.86 123.62 97.26
KDD cup 10% 144,165 26 53 25.50 28.43 23.71
Cover type 3,557.3 129 143 122.5 162.94 393.35

the algorithm. In addition, if the last completion heuristic is aborted and the remaining nodes are added into

their closest cluster (according to a predefined ordering that is cheap to compute), the algorithm becomes a

heuristic that finds near optimal solutions in a matter of minutes even for extremely large datasets. Finally,

we would like to highlight that our algorithm’s running time is comparable to the time needed to compute

the dissimilarity matrix. Moreover, on some very large datasets, it proves even faster. This demonstrates

that in the future, algorithms for DM and related criteria need to rely on the necessity of avoiding the

pre-computation and storage of the dissimilarity matrix.

12 Algorithm limitations

Unfortunately, not everything is good news regarding the iterative clustering approach. In this section, we

would like to report some of the difficulties that we have encountered and that we have not been able to

satisfactorily deal with.

First, IC is not suitable, at least from a straightforward modification, to handle problems in which

Hypothesis 1 does not hold. This is the case of, for instance, some important clustering criteria as the

minimum sum-of-squares [2]. Whether our algorithmic approach can be generalized to handle these types of

problems should be a matter of future research.

Another limitation of our algorithm is related to the handling of noise in problems with a large number of

clusters. We have encountered this issue on problems pendigits, letter, letter-recognition, birch1, birch2 and

birch3. Our algorithm when applied to these problems showed poor convergence, which resulted in too many

iterations of the main loop and thus in subproblems large enough to become untractable for our branch-

and-price method. Whether this limitation can be overcome by using an alternate algorithm for optimal

clustering (like the CP of [9], for instance) remains unknown and should certainly be the matter of future

research.

At last, we would like to highlight an inherent limitation of our algorithm related to the complexity of

reading the data. We have shown that our algorithm does not need to a priori compute the dissimilarity

matrix explicitly. However, the running time of our algorithm is still comparable to the O(n2) time of

performing this task. Whether it is possible to reduce this to some theoretical bound strictly lower than

O(n2) is unknown.
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13 Conclusion

We have presented a novel algorithmic framework for the solution of very large-scale DM clustering problems.

Our algorithm outperforms the state-of-the-art algorithms for this problem by solving datasets that are two

orders of magnitude larger than those handled by previous algorithms. Moreover, we show how to adapt our

algorithm to derive a fast and efficient heuristic that consumes only a fraction of the time and provides in

many cases the optimal solution. In addition, we show that our algorithmic framework can also be generalized

to solve other closely related clustering problems, such as the sum-of-diameters clustering problem, the split

maximization clustering problem and the maximum sum-of-splits clustering problem. We can identify three

potential avenues for future research: 1) to adapt this algorithmic framework to solve clustering problems

where Hypothesis 1 does not hold; 2) to work on the robustness of the algorithm to allow the solution of

problems with noise; and 3) to assess the efficiency of the heuristic implementation of our algorithm to solve

arbitrarily large problems, as for those encountered on online applications in which large amounts of data

arrive in streams.
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