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Abstract: Thermoforming process is a technique widely used in the plastic industry. This process involves
three stages: i) sheet heating, ii) forming, and iii) cooling and solidification. A crucial problem occurring
during this process is the non-uniform distribution of the energy flux intercepted by the plastic sheet during
infrared heating. To circumvent the occurring of this phenomenon, the approach that we followed is first
model the heat process as an optimization problem. Then, two meta-heuristic algorithms, simulated annealing
and migrating bird optimization algorithms, are applied and compared so as to meet as much as possible the
corresponding objective function. An experimental study is then conducted to evaluate the quality of the
solutions produced by both algorithms. Results are presented and analysed.
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1 Introduction

Sheet thermoforming is widely used in the plastic industry. This process involves three stages: i) reheat:
the initial polymeric sheet is oven-heated to a softened state using radiative heat transfer, ii) forming: the
heated sheet is deformed into the mold under the action of air flow, and iii) cooling and solidification: the
polymeric sheet cools in the mold. Temperature and deformation distribution in the final container can be
predicted using a robust modelling of the energy and momentum equations (see e.g. Wiesche et al. [8]).

When heated by infrared radiation, the plastic sheet is transformed from glassy into a rubbery state.
This hot state combined with the gravity creates a non-uniform thickness distribution in the plastic sheet.
Adequate optimization of the heating stage can improve significantly the mass distribution in the finished
part. One effective way to achieve better uniform thickness distribution is to reduce the differences of energy
intercepted and absorbed by the different areas of the thermoplastic sheet. An illustration is pictured by
Figure 1, in which the colours represent the intensity of energy received by the thermoforming sheet:

Figure 1: Distribution of energy received by a thermoplastic sheet from an infrared source

The classical methods of optimization of thermoplastics radiation have been the subject of many studies
in the literature in finding the optimum solution of continuous and differentiable functions (see e.g. Boutaous
et al. [1]). These methods are analytical in the sense that they make use of the techniques of differential
calculus to locate optimum points. However, practical problems usually involve objective functions that are
not continuous, nor differentiable. Therefore, the classical optimization techniques have a limited scope for
those applications. One way to circumvent this difficulty is to discretize the problem so one can use iterative
processes to rapidly produce reasonable solutions, but without the optimality guaranty.

The present paper is organized as follows. Section 2 introduces the problem we are considering. In Sec-
tion 3, we present in an informal way the corresponding optimization formulation that we derived for the
problem we are considering. In Section 4, we highlight two meta-heuristic algorithms viz. the simulated
annealing and the migrating bird optimization algorithms. Section 5 first presents details on the implemen-
tation issues for both algorithms, and then results of the comparison study we conducted on the quality of
the solutions produced by both algorithms.

2 Problem description

In the thermoforming process, the thermoplastic sheet is heated and formed in a mold through application
of heat and pressure. The pressure is applied by introducing a vacuum, compressed air, or matched molds.
Ceramic and quartz radiators are the main radiation sources used in an industrial scale thermoforming
machines to heat plastic sheets. In the case of ceramic radiators, the entire mass of the system is maintained
at a temperature of 570K–950K. On the other hand, quartz radiator systems use incandescent coils, including
fused silica radiators with a coil temperature of 1200K, quartz glass radiators (1200K), and halogen radiators
(2500K). Generally, the oven has a heater bank of n ceramic elements. The illustration of this process is
pictured by Figure 2.

The incident radiation Qj
i on cell i of the thermoplastic sheet surface Si is calculated according to the

geometric orientation of surface Sj and temperature t of oven heater cell j. View factors are required to
obtain the energy for each area of the thermoplastic surface exposed to the infrared radiation. Assuming
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Figure 2: The thermoforming (heating) process

that surface Sj of the heater is separated by a transparent medium from surface Si of the thermoplastic

sheet, the amount of radiation Qj
i leaving area Sj and reaching area of Si is given by the following equation

(see e.g. Erchiqui et al. [5]):

Qj
i = Fij

Sj

Si
σεt4. (1)

Parameter Fij denotes the view factor, ε̄ is the average source emissivity of the material. Parameter σ is the
Stefan-Boltzman of value 5.67 10−8 W/m2K, and t represents the temperature from the temperature set τ
assigned to cell j.

The view factors, given by the following

Fij =
1

Si

∫
Si

∫
Sj

cos θi cos θj
π × r2

dSidSj , (2)

are required to calculate the energy on the thermoplastic surface exposed to the infrared source. Note that,
as illustrated by Figure 3, θi and θj are angles formed by the distance vector −→r and the normal vector −→n1

(respectively −→n2). Parameter r is the distance separating surface dSi and dSj .

Figure 3: Geometric definition of the view factor

Note that the evaluation of the double integrals of (2) is estimated with the numerical Gaussian integration
method (see e.g. Dhatt and Touzot [3]).

3 Statement of the optimization problem

Before proceeding into the modelling process, let us recall that the energy received by each cell of the ther-
moplastic sheet from a single heating cell is given by (1). The criterion that evaluates a uniform distribution
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of the energy received by the thermoplastic sheet may be constructed as follows. The difference of energy
received by two elements of the thermoplastic plastic sheet has an important influence on the quality of the
final form of the product. Obviously, the smaller are the differences between these elements the better is
the quality of the product. The goal is thus to make the elements of the thermoplastic sheet receive the
same amount of heat from the heating elements. One may to achieve this goal is to minimize the standard
deviation of the energy, compared to the mean, received by the cells of the thermoplastic sheet. To be more
explicit, we proceed as follows. The expression of Qj

i may be written, for a given temperature τk to choose
from τ = (τ1, ..., τq), as

Qj
i = Fij

Sj

Si
εστ4

k .

It follows that the total energy received by cell i of the thermoplastic sheet is

Ei =

m∑
j=1

Qj
i .

If x = 1
n

n∑
i=1

Ei, then the goal is to minimize

1

x

√√√√ n∑
i=1

(Ei − x)
2
, (3)

such that any cell of the heating oven receives exactly one temperature from set τ , and a temperature from
τ may be used at most m times.

Let us first make the following point about the objective function. The above problem was the subject of
the work presented in Erchiqui et al. [5], and Nahas et al. [6]. The objective function they studied is similar
to the one presented in (3), but without the denominator x of the fraction. The weakness of that function is
that its minimization tends to favour the small values of the temperature set as they produce small values
for that objective function. We recall that the goal is to find a small value of the standard deviation, but
in comparison to its mean; the value of a standard deviation of data distributions is meaningful only when
compared to its mean. In other words, what matters is the distribution of the values around their mean
value, not the value of the standard variation on its own. This is the main reason the denominator appears
in (3).

As stated, the above optimization problem is an extended version of the quadratic assignment problem.
Indeed, the problem we are considering here may be viewed as seeking a mapping (and not a permutation
as it is in the classical quadratic assignment problem) between the set of the temperatures and the set of
the oven cells such that (3), a quadratic objective function, is minimized. It is known that the quadratic
assignment problem is NP-hard (see e.g. Burkard et al. [2]). Therefore, the approximation approach is well
justified as a solving method.

4 Metaheuristic approach

In this section, two meta-heuristic algorithms, simulated annealing and migrating bird optimization algo-
rithms, are developed as a solving approach to distribute uniformly the energy intercepted by the material
sheet.

4.1 The simulated annealing method

The simulated annealing (SA) approach is a technique that uses the analogy of a metal cooling until a
minimum crystalline energy is reached. The goal is to bring a system from an arbitrary initial state to a
state with a minimum possible energy.

In the implementation we designed we added two parameters. The first, the variable I, allows the exit
from a given temperature if the solution is not improved after a certain number of successive iterations.
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The second, parameter J, is another counter that permits the algorithm to stop if the current solution is
not improved after a certain number of successive temperatures. The simulated annealing algorithm we
implemented is resumed as below; for more details, see e.g. Pibouleau et al. [7].

1. Generate an initial solution S, and initialize T and c(0 < c < 1).

2. Set the maximum number of iterations iter-max, the maximum number U of successive temperatures
T the current solution is not improved, the successive number I of times the current solution is not
improved for a given T .

a. Generate a new Ś in the neighborhood of S and 4f = fS − fŚ ;

b. if 4f > 0 then S ← Ś;

else { - generate at random r in [0,1];

- if r < exp (−4f/T )

S ← Ś };
c. Set T = T ∗ c if I is reached;

3. Repeat Step 3 until either iter-max or U is reached.

The neighbourhood utilized for the above version of SA is as follows:

Procedure Neighborhood {

1. Generate at random r in [0,1];

2. if (r < 0.5)

Select at random two temperature locations i and j from the actual solution, and then exchange
the two corresponding temperatures;

else Select at random a temperature location i from current solution S, and choose at

random a temperature t from τ and assign it to cell i.

} // end of the procedure

This technique of exploring the neighbourhood space allows a certain diversification. Indeed, if a solution
cannot be improved with the permutation of the actual temperatures, then a new temperature from the
temperature set is generated to replace a temperature of an arbitrary cell.

4.2 The migrating bird optimization method

The Migration Birds Optimization (MBO) was recently introduced by Ekram et al. [4]. Their method is
inspired from the shape of the flight in ‘V’ of the migrating birds. The property of bird flights lies mainly
in the energy conservation. Indeed, when a bird beats its wings, it generates a draft which will make the
birds behind supplying fewer efforts to rise. The organization of the flight of birds is as follows: the bird at
the head leads the group for a certain period, and spends more energy than the rest of the birds. When it
gets tired, it moves to the back of the group, and one of the birds behind takes the lead. The idea behind
the algorithm that one may derive works as follows. The leader is chosen according to the best performance.
At first, we select the best solution among the set of the solutions generated previously as initial solutions.
Then, two lists are created, a left and a right list, to form the V-shape of the flight as follows: the first
solution is added to the left list, the second in the right list, and so on until all the solutions are placed. This
way of placing the solutions is similar to that of birds. Indeed, the strongest bird is placed forward, whereas
the least strong are placed behind, among others the old birds (see Figure 4 for an illustration).This way of
arranging the solutions may lead in the search for the best solution to more promising regions and find the
solution we are looking for in a reasonable laps of time.

As the method is quite recent, let us detail its description. For the sake of clarity, we first start mentioning
analogies between MBO and natural bird migration. This makes it easy to justify the approach.
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Figure 4: V-shape of bird flights

MBO Flight of migrating birds

Number of solutions P Nombre of birds
Number α of evaluated neighbors Induced strength that is required
Number β of shared neighbors Distance between birds
Number x of iterations Flight time of the leader bird

The parameters defining the above algorithm are thus as follows:

• P = the number of initial solutions.

• α = the number of neighbor solutions to consider.

• β = the number of neighbors to share with the next solution.

• x = the number of iterations to perform before changing the leader solution, and

• K = the maximum number of iterations the algorithm executes.

The MBO algorithm mainly consists of four phases summarized as follows:

Step 1: This step initializes the parameters of the algorithm. First, it is recommended to choose P as an
odd number in order to have the same number of solutions in the two lists in addition to the bird leading
the flock. The number α of generated neighbors to evaluate may be interpreted as the necessary power of
the flight. This power is inversely linked to the speed. With a bigger α, the birds flight at lower altitude,
which helps to explore the neighborhood in details. By generating a large number of neighbors, we better
explore the search space. Birds behind get less tired compared with those who are forwards, and thus save
more energy. To respect this property in the MBO algorithm, we use the mechanism of services between the
solutions. For the solutions at the back of the flock, through β the number of neighbors to share with the next
solution, by generating fewer neighbors and by using the neighbors of the solutions in front, the algorithm
can respect the property of energy conservation. Finally, the number x of iterations, before changing the
solution linked to the leader at the head of the flock, represents the time spent by the leader of the group
before its replacement.

Step 2: To improve the leading solution, α neighbour solutions are randomly generated. If the best
neighbour solution is better than the leader, the latter is replaced by this solution, otherwise, it remains
unchanged. The (α − 1) neighbour solutions not used by the leader solution are sorted in increasing order
according to their objective values. Then, two groups, one is at the left and the other one is at the right,
are formed as follows: the first and the second neighbour solution are added into the left and right lists,
respectively, and so on. Let us note that each of these two sets is of cardinality β.

Step 3: The process of improvement progresses along the lists of the frock towards the tail. For a solution
in the left list, we generate (α − β) randomly solutions in its neighbourhood. Then, these solutions are
evaluated. The best solution is used to improve the current solution. The process is repeated until all the
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solutions in the left list are evaluated and possibly improved. The same procedure is used for the solutions
in the right list. This procedure is repeated x times without changing the leader.

Step 4: we proceed in this step to the change of the leader solution. The procedure is similar to what make
the real birds: the bird spending most energy moves back behind for a rest, and another bird will take the
lead. By analogy, the leading solution is alternately moved into the extremities of the left and the right line
of both lists and the first solution of the list where the leader was placed is passed on as the new leader. With
this mechanism, a solution which does not succeed in improving itself with its own neighbours is replaced by
one of the neighbours of the previous solution, if the previous solution is naturally more promising. In this
way, the region around the most promising solution will be explored more in details.

The steps followed an MBO algorithm may be then resumed as below:

Procedure MBO {

1. Fix P, α, β, x and K (the maximum number of iteration MBO executes).

2. Generate arbitrarily n solutions, and place them in a V-shape.

3. Improve the leader solution by generating and evaluating α of its neighbors.

4. Improve the solution in the V-shape by evaluating (α−β) neighbors with the β best solutions not used
in the solution ahead.

5. Repeat x times Step 2 and 3.

6. Move the leader to the back of the group, and move one of the next solutions that are behind it to the
leader position.

7. If K is not reached, repeat Step 2 until Step 6.

} // end of the procedure.

5 Experimental study

This section describes the experiments that we conducted to compare the two proposed algorithms (SA and
MBO). We limited this comparison to the quality of the solutions they produced by setting the number
of evaluated solutions to a maximum value of 10 000. The characteristics of the thermoforming device are
as follows. The number of the oven heating cells is fixed to 36 (6 × 6) elements. The size of the heating
cells is 1.2 × 1.8mm. The size of the thermoplastic sheet is 1 × 1.6mm, and the distance that separates the
thermoplastic sheet and the heating oven is fixed to 1m. The average emissivity ε̄ of the thermoplastic sheet
is set to 0.8.

The two algorithms are implemented in Matlab, version 7.12.0 (R2012a), and executed on an INTEL 2.0
GHz Dual Core processor with a RAM of 8192 MB capacity. Let us also mention that each execution of both
algorithms is done on 10 instances generated arbitrarily. The values of the temperature set, we used in each
simulation, are drawn from the interval [400, 900].

We first conducted experiments to tune the parameters of SA and MBO. Then, we compared the quality
of both algorithms on several types of instances.

5.1 Parameters tuning

In this section, we present the study we conducted on tuning the different parameters related to the simulated
annealing and the migrating bird optimization algorithms.

The parameters of the simulated annealing that we focused on are the initial solution, the initial temper-
ature, the decrease of the temperature, and the number of iterations. Except the initial solution, our choice
for the rest of the parameters is based on those utilized in Nahas et al. [5] as follows:

1. The initial temperature value T is set to 200.
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2. The decrease of T obeys the following updating T = T × c, where c = 0.99.

3. The number of successive iterations without an improvement on the objective for a given temperature
is set to I = 40.

4. The number of successive temperatures without an improvement on the objective function is set to
U = 40.

With regard to the initial solution, we tested the following rules:

• Rule 1: fix each cell to an arbitrary temperature from the temperature set.

• Rule 2: fix the cells to an arbitrary temperature from the temperature set.

• Rule 3: fix the cells to the minimum temperature from the temperature set.

• Rule 4: fix the cells to the maximum temperature from the temperature set.

The results we got are summarized by Table 1.

Table 1: Selecting an initial solution for the simulated annealing algorithm

Instances Rule 1 Rule 2 Rule 3 Rule 4

Avg Min Avg Min Avg Min Avg Min

1 0.0315 0.0301 0.0289 0.0265 0.0274 0.0265 0.0225 0.0215
2 0.0251 0.0240 0.0215 0.0210 0.0202 0.0198 0.0169 0.0155
3 0.0290 0.0271 0.0279 0.0279 0.0257 0.0240 0.0225 0.0215
4 0.0265 0.0232 0.0260 0.0252 0.0250 0.0221 0.0222 0.0201
5 0.0290 0.0265 0.0270 0.0270 0.0235 0.0230 0.0210 0.0210
6 0.0272 0.0241 0.0254 0.0254 0.0242 0.0232 0.0221 0.0215

We have generated six different instances to compare the performance of the above rules. The results we
got are summarized in Table 1, and pictured in Figure 5. We observed that Rule 2 generates better results
than the rest. Therefore, in the simulated annealing we implemented, the initial solution is generated by
Rule 2.

Figure 5: Minimal and average values of the objective function

With regards to MBO algorithm, we had to conduct a complete experimental study for the choice of the
main parameters P, α, β, x and K. Let us first start with the initial solutions. Since MBO algorithm is a
metaheuristic with a population, and in order to start the algorithm with a certain level of diversity, we
generated initial solutions arbitrarily from a uniform distribution.

In Ekram et al. [4], it was recommended to set n to an odd number with a modest value. We tested
our algorithm for n in the range 11 to 51. As shown by Figure 6a, we got better solution for P = 51. We
tested α for modest values so as to explore a large number of solutions in the neighborhood of a solution.
Our tests for α = 3, 5, 7, 11, and 21, as resumed in Figure 6b, show that the results as much better for α = 7.
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Again, Ekram et al. [4] recommended choosing small values for β. The values we selected for our tests are
β = 1, 2, 3, and 5. The results we got, as resumed in Figure 6c, suggest the value β = 3. Again, it was
recommended in Ekram et al. [4] to choose a modest value for x. We conducted a simulation for x = 1, 2, 10
and 20. As resumed in Figure 6d, the results are better for x = 10. In the following, the abbreviations avg
and Std mean average and standard deviation, respectively.

(a) Effects of variation of P (b) Effects of variation of 𝛼

(c) Effects of variation of 𝛽 (d) Effects of variation of 𝑥

Figure 6: Analysis to determine the value of the parameters MBO

5.2 Simulated annealing vs. migrating bird optimization

This section is devoted to the comparison of the two metaheuristics under study viz. simulated annealing
and migrating bird optimization.

The different pairs (n,m) that we used, in the simulation we conducted to build the temperature set from
which we select the temperatures to heat up the cell of oven, are follows:

Case 1. n = mn = mn = m: The number of temperatures generated is the same as the number of the cells in the
infrared oven.

Case 2. n > mn > mn > m: The number of temperatures generated arbitrarily is less than the number of the cells
of the infrared oven. We distinguished three subcases: n = 1

4m, n = 1
2m, n = 3

4m.

Case 3. n < mn < mn < m: The number of temperatures generated arbitrarily is greater than the number of the
cells of the infrared oven. We distinguished three subcases: n = 3

2m, n = 2m, n = 5
2m.

In the following, we present for the different cases, presented above, the results produced by SA and MBO
and the best solution, in terms of selected temperatures assigned to the oven cells, generated by each approach,
followed the corresponding energy flux received by the cells of the thermoforming sheet, respectively. We
executed both algorithms 10 times for each set t of temperatures generated randomly.
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Case 1. n = m = 36n = m = 36n = m = 36. The temperature set is as follow, and the results are as in Table 2:
τ = {518, 589, 585, 619, 594, 489, 441, 826, 565, 732, 892, 506, 665, 443, 800, 851, 457, 842, 773, 537, 879,
834, 491, 847, 790, 463, 796, 691, 406, 460, 417, 760, 554, 403, 617, 605}

Table 2: Results produced by SA and MBO

1 2 3 4 5 6 7 8 9 10 Avg Std

MBO 0.059 0.059 0.058 0.057 0.057 0.053 0.055 0.058 0.057 0.053 0.057 0.002
SA 0.041 0.043 0.041 0.042 0.040 0.040 0.041 0.040 0.043 0.041 0.041 0.001

Table 3: Distribution of the temperatures produced
by SA

892 790 403 403 732 892
665 403 403 403 403 403
403 403 403 403 403 403
403 403 403 403 403 403
851 403 403 403 403 796
892 406 403 403 441 892

Table 4: The corresponding distribution energy flux
received by the thermoplastic sheet

968.9 1044.8 1073.2 1066.9 1037.7 985.1
1027.6 1107.1 1137.8 1130.9 1097.5 1038.2
1005.7 1081.4 1113.2 1108.9 1076.5 1017.4
996.2 1066.9 1096.4 1093.3 1065.3 1012.7

1019.0 1084.9 1108.0 1103.1 1080.7 1038.2
1001.6 1061.2 1078.0 1071.7 1055.4 1023.6

Table 5: Distribution of the temperatures produced
by MBO

851 619 537 585 589 691
619 892 506 443 403 665
417 460 585 491 554 506
619 460 443 489 665 800
463 589 892 457 619 506
790 460 879 760 417 417

Table 6: The corresponding distribution energy flux
received by the thermoplastic sheet

1165.8 1291.1 1362.9 1381.1 1349.2 1267.8
1312.7 1450.9 1523.9 1531.0 1478.8 1373.4
1352.9 1488.1 1554.8 1551.4 1485.3 1366.4
1348.6 1477.0 1537.8 1529.7 1459.1 1335.7
1325.7 1450.2 1508.1 1499.1 1429.0 1305.3
1250.2 1366.8 1419.5 1410.0 1343.9 1226.4

Case 2. n < mn < mn < m. We investigate here three subcases according to the value of n as a function of m.

Subcase 2.1. n = 1
4m = 9n = 1
4m = 9n = 1
4m = 9. The temperature set is as follows, and the results are as in Table 7.

τ = {459, 649, 880, 570, 693, 512, 776, 527, 653}

Table 7: Results produced by SA and MBO algorithms

1 2 3 4 5 6 7 8 9 10 Avg Std

MBO 0.060 0.058 0.058 0.058 0.054 0.055 0.056 0.054 0.058 0.055 0.057 0.001
SA 0.049 0.049 0.049 0.049 0.051 0.049 0.051 0.048 0.049 0.049 0.049 0.001

Table 8: Distribution of the temperatures produced
by SA

880 880 459 459 880 880
776 459 459 459 459 459
459 459 459 459 459 459
459 459 459 459 459 512
880 459 459 459 459 776
880 776 459 527 693 880

Table 9: The corresponding distribution energy flux
received by the thermoplastic sheet

1285,3 1402,2 1456,3 1457,7 1417, 1334,8
1385,7 1507,2 1561,7 1558,6 1509,3 1415,4
1372,4 1487,1 1539,0 1534,7 1483,2 1388,3
1358,7 1466,9 1514,8 1509,5 1460,0 1370,0
1380,2 1485,7 1527,5 1518,4 1470,9 1387,1
1352,7 1454,4 1491,0 1479,6 1435,8 159,89

Table 10: Distribution of the temperatures pro-
duced by MBO

857 808 716 808 808 539
808 463 463 857 879 857
673 673 808 448 879 463
808 673 857 853 857 857
539 808 463 716 808 463
539 673 448 673 673 673

Table 11: The corresponding distribution energy
flux received by the thermoplastic sheet

1697.5 1897.3 2013.2 2031.9 952.93 1786.7
1881.0 2086.6 2196.1 2199.6 2101.7 1916.5
1906.9 2094.0 2182.9 2169.8 2064.0 1881.8
1869.1 2044.5 2124.2 2107.8 2006.8 1836.5
1810.5 1993.7 2085.4 2083.3 1996.8 1839.0
1676.7 1870.8 1983.3 2005.0 1939.8 1797.6
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Subcase 2.2. n = 1
2m = 18n = 1
2m = 18n = 1
2m = 18. The temperature set is as follows, and the results are as in Table 12.

τ = {796, 880, 728, 417, 825, 867, 740, 779, 772, 596, 728, 485, 753, 414, 538, 423, 448, 812}

Table 12: Results produced by SA and MBO algorithms

1 2 3 4 5 6 7 8 9 10 Avg Std

MBO 0.059 0.058 0.058 0.056 0.055 0.053 0.056 0.058 0.059 0.057 0.057 0.002
SA 0.045 0.044 0.044 0.044 0.045 0.043 0.044 0.044 0.044 0.045 0.044 0.001

Table 13: Distribution of the temperatures pro-
duced by SA

880 740 414 414 753 880
728 414 414 414 414 414
414 414 414 414 414 414
414 414 414 414 414 414
753 414 414 414 414 812
880 728 414 414 414 825

Table 14: The corresponding distribution energy
flux received by the thermoplastic sheet

950.8 1025.6 1055.7 1053.5 1028.7 979.1
1019.1 1098.4 1130.4 1126.1 1095.2 1037.1
1000.0 1077.9 1112.1 1109.9 1078.5 1018.9
983.0 1058.8 1093.6 1093.6 1065.6 1010.5

1001.8 1075.9 1105.9 1102.6 1076.0 1026.0
997.1 1066.5 1087.8 1076.6 1047.3 1000.1

Table 15: Distribution of the temperatures pro-
duced by MBO

423 867 825 448 812 867
753 728 423 417 740 812
728 538 796 423 796 596
753 867 415 779 596 740
880 417 538 417 740 596
728 414 414 485 596 796

Table 16: The corresponding distribution energy
flux received by the thermoplastic sheet

1509.2 1673.8 1764.1 1775.8 1714.0 1585.8
1679.6 1848.4 1930.8 1926.4 1845.1 1697.8
1719.0 1874.8 1941.3 1921.3 1828.3 1676.2
1714.6 1861.4 1919.2 1893.1 1797.8 1647.2
1694.8 1844.2 1905.7 1884.8 1794.9 1648.2
1600.6 1754.3 1825.9 1817.7 1740.2 1602.7

Subcase 2.3. n = 3
4m = 27n = 3
4m = 27n = 3
4m = 27. The temperature set is as follows, and the results are as in Table 17:

τ = {596, 728, 485, 753, 415, 538, 423, 448, 812, 748, 558, 876, 417, 619, 591, 783, 798, 493, 645, 623, 723,
755, 778, 538, 740, 728, 481}

Table 17: Results produced by SA and MBO algorithms

1 2 3 4 5 6 7 8 9 10 Avg Std

MBO 0.059 0.060 0.059 0.061 0.056 0.057 0.056 0.060 0.061 0.059 0.059 0.002
SA 0.044 0.045 0.044 0.044 0.045 0.046 0.049 0.045 0.044 0.045 0.045 0.002

Table 18: Distribution of the temperatures pro-
duced by SA

876 778 415 415 798 876
755 415 415 415 415 423
415 415 415 415 415 415
417 415 415 415 415 415
783 415 415 415 415 798
876 723 415 415 723 798

Table 19: The corresponding distribution energy
flux received by the thermoplastic sheet

1019.2 1101.8 1136.1 1133.9 1105.4 1048.6
1092.5 1178.9 1213.5 1207.8 1171.9 1105.7
1071.0 1154.1 1189.6 1184.9 1147.6 1079.7
1050.3 1131.1 1167.3 1165.1 1131.4 1067.6
1067.5 1148.3 1182.3 1179.7 1149.2 1090.6
1059.0 1137.8 1167.6 1162.3 1133.4 1079.0

Table 20: Distribution of the temperatures pro-
duced by MBO

755 448 728 755 645 623
740 591 619 728 723 596
753 728 755 493 723 448
740 481 753 596 558 728
493 415 876 778 493 485
485 481 740 728 415 778

Table 21: The corresponding distribution energy
flux received by the thermoplastic sheet

1296.7 1448.7 1535.8 1548.8 1489.1 1364.9
1445.6 1605.4 1689.7 1692.5 1618.7 1478.8
1473.6 1623.8 1696.8 1689.2 1608.9 1468.2
1458.1 1601.8 1668.0 1655.0 1572.5 1434.1
1430.4 1575.7 1642.8 1629.9 1547.9 1411.0
1338.6 1482.2 1552.0 1544.8 1470.5 1342.3
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Case 3. n > mn > mn > m. Again, we investigate three subcases according to the value of n as a function of m.

Subcase 3.1. n = 3
2m = 54n = 3
2m = 54n = 3
2m = 54. The temperature set is as follows, and the results are as in Table 22:

τ = {808, 853, 463, 857, 716, 448, 539, 673, 879, 883, 478, 886, 879, 643, 800, 471, 611, 858, 796, 880, 728,
417, 825, 867, 740, 779, 772, 596, 728, 485, 753, 415, 538, 423, 448, 812, 748, 558, 876, 417, 619, 591, 783,
798, 493, 645, 623, 723, 755, 778, 538, 740, 728, 481}

Table 22: Results produced by SA and MBO

1 2 3 4 5 6 7 8 9 10 Avg Std

MBO 0.063 0.059 0.059 0.059 0.057 0.057 0.057 0.064 0.059 0.062 0.059 0.003
SA 0.043 0.044 0.044 0.043 0.040 0.043 0.043 0.043 0.043 0.050 0.044 0.002

Table 23: Distribution of the temperatures pro-
duced by SA

886 853 415 415 800 886
716 415 415 415 415 418
415 415 415 415 415 415
415 415 415 415 415 417
883 415 415 415 415 783
886 558 415 415 716 883

Table 24: The corresponding distribution energy
flux received by the thermoplastic sheet

1110,6 1203,4 1240,5 1234,2 1197,3 1130,4
1181,9 1277,9 1316,2 1308,3 1266,2 1191,8
1158,3 1248,2 1286,3 1280,3 1239,3 1165,9
1145,0 1229,1 1264,7 1260,4 1224,5 1158,1
1167,1 1248,1 1279,5 1275,6 1246,8 1190,6
1143,6 1221,1 1249,9 1248,9 1229,4 1185,1

Table 25: Distribution of the temperatures pro-
duced by MBO

645 858 800 755 481 858
558 539 623 886 728 418
539 493 463 723 853 728
876 858 591 867 596 880
716 478 783 886 728 596
673 591 417 812 596 853

Table 26: The corresponding distribution energy
flux received by the thermoplastic sheet

1417.6 1588.8 1696.9 1732.7 1693.7 1581.9
1556.6 1746.7 1872.0 1922.6 1893.1 1781.4
1562.1 1744.4 1864.9 1914.9 1888.9 1783.6
1535.8 1704.4 1810.5 1847.8 1813.5 1707.2
1521.5 1687.1 1787.0 1815.4 1772.2 1659.8
1464.0 1631.0 1733.0 1762.7 1719.5 1607.1
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Subcase 3.2. n = 2m = 72n = 2m = 72n = 2m = 72. The temperature set is as follows, and the results are as in Table 27:
τ = {522 865 575 498 525 708 637 576 816 693 675 859 543 779 777 590 684 438 427 665 790 867 465 684 635
405 568 481 797 555 664 482 701 531 727 745 774 625 441 514 857 476 813 669 899 439 621 453 881 402 788
809 835 442 600 530 800 616 856 491 532 472 468 835 690 675 472 827 711 575 657 807}

Table 27: Results produced by SA and MBO

1 2 3 4 5 6 7 8 9 10 Avg Std

MBO 0.064 0.063 0.064 0.062 0.063 0.062 0.061 0.068 0.064 0.063 0.063 0.002
SA 0.041 0.042 0.043 0.043 0.041 0.041 0.041 0.043 0.044 0.041 0.042 0.001

Table 28: Distribution of the temperatures pro-
duced by SA

899 857 402 402 727 899
684 402 402 402 402 625
402 402 402 402 402 405
405 402 402 402 402 405
865 402 402 402 402 816
899 657 402 402 568 881

Table 29: The corresponding distribution energy
flux received by the thermoplastic sheet

1422.2 1542.1 1590.3 1582.6 1535.5 1450.2
1523.6 1648.6 1699.1 1690.3 1638.0 1544.5
1494.5 1613.1 1664.3 1658.4 1607.3 1514.1
1469.9 1582.7 1632.0 1627.0 1578.5 1489.2
1497.4 1609.2 1653.2 1644.4 1596.8 1511.7
1483.6 1593.8 1633.0 1621.0 1575.9 1497.2

Table 30: Distribution of the temperatures pro-
duced by MBO

865 526 701 850 723 882
563 742 701 829 744 565
668 827 837 680 593 850
504 444 563 847 912 847
847 755 882 593 593 865
526 608 755 829 659 444

Table 31: The corresponding distribution energy
flux received by the thermoplastic sheet

1924.0 2153.3 2282.2 2292.9 2187.9 1987.2
2141.6 2390.0 2530.1 2545.8 2439.3 2228.2
2200.5 2437.8 2568.8 2583.1 2484.5 2285.6
2195.8 2415.7 2531.0 2538.0 2443.0 2256.2
2153.0 2362.0 2467.4 2469.4 2375.9 2195.3
2018.2 2217.2 2318.5 2322.5 2235.2 2063.3
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Subcase 3.3. n = 5
2m = 90n = 5
2m = 90n = 5
2m = 90. The temperature set is as follows, and the results are as in Table 32:

τ = {853 463 857 716 448 539 673 879 883 478 886 879 643 800 471 611 858 796 880 728 417 825 867 740 779
772 596 728 485 753 415 538 423 448 812 748 558 876 417 619 591 783 798 493 645 623 723 755 778 538 740
728 481 459 649 880 570 693 512 776 527 653 750 846 880 674 469 474 529 821 527 807 522 865 575 498 525
708 637 576 816 693 675 859 543 779 777 590 684 808}

Table 32: Results produced by SA and MBO algorithms

1 2 3 4 5 6 7 8 9 10 Avg Std

MBO 0.061 0.061 0.063 0.060 0.057 0.059 0.058 0.060 0.060 0.061 0.060 0.002
SA 0.042 0.043 0.043 0.042 0.042 0.043 0.042 0.043 0.043 0.044 0.043 0.001

Table 33: Distribution of the temperatures pro-
duced by SA

886 415 415 415 796 886
693 415 415 415 415 527
415 415 415 415 415 415
415 415 415 415 415 415
880 415 415 415 415 858
886 693 415 415 448 886

Table 34: The corresponding distribution energy
flux received by the thermoplastic sheet

1135,7 1233,0 1272,4 1265,9 1227,2 1157,9
1204,8 1305,5 1347,4 1341,3 1299,7 1224,9
1179,5 1273,8 1315,8 1313,2 1274,9 1203,3
1169,4 1257.0 1295,4 1293,7 1260,7 1197,4
1199.0 1281,8 1312,4 1306,5 1277,1 1222,9
1182,5 1259,5 1282,0 1271.2 1243,7 1197,2

Table 35: Distribution of the temperatures pro-
duced by MBO

776 859 463 645 807 469
716 821 853 728 858 708
753 596 723 783 527 645
883 867 716 880 779 649
880 538 674 653 527 543
693 418 740 417 576 825

Table 36: The corresponding distribution energy
flux received by the thermoplastic sheet

1817.8 2021.3 2123.8 2118.3 2018.1 1844.7
2013.6 2235.8 2349.0 2347.9 2246.7 2064.9
2040.7 2261.8 2381.6 2394.8 2310.6 2141.6
2008.6 2232.9 2365.0 2395.1 2325.1 2162.6
1963.1 2196.7 2341.9 2383.0 2315.8 2146.7
1837.7 2064.6 2208.9 2252.6 2188.0 2019.8

Table 37 summarizes the results obtained from the execution of two algorithms through the instances
we have generated. We note that, on the seven generated instances, the best results are produced by the
simulated annealing algorithm. Nevertheless, some remarks connected to the average and standard deviations
of the generated results are to be made:

1. For the seven instances we have studied, the method of SA generates by far better results than MBO
in terms of average and standard deviation for the values generated for the objective function.

2. The discrepancy between the cells in terms of energy received by the thermoplastic sheet is significant
for MBO than for SA.

3. Even though this was not our primary goal for the comparison we conducted, we noticed that the
running time of SA to generate a solution is much better than that of MBO, and

4. The convergence of MBO towards the best solution is very slow compared with SA.

Table 37: Results produced by SA and MBO algorithms for all the cases

MBO SA

N Min Avg Std Min Avg Std

9 0.054 0.057 0.001 0.048 0.049 0.001
18 0.053 0.057 0.002 0.044 0.044 0.001
36 0.053 0.057 0.002 0.041 0.041 0.001
54 0.057 0.059 0.003 0.043 0.044 0.002
72 0.061 0.063 0.002 0.041 0.02 0.001
90 0.058 0.060 0.002 0.042 0.043 0.001
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We conclude not only from the above results related to the values of the objective function, but also
by visualizing the distributions of the energy intercepted by the thermoplastic sheet generated by both
algorithms, resumed by the above tableaux, that the simulated annealing algorithm clearly outperforms the
migrating bird emigrating optimization method.

6 Conclusion

The study we conducted in this paper allowed us to adapt the MBO method for the resolution of a problem
of thermoforming modelled in the form of a problem of combinatorial optimization, in this particular case,
the problem of the quadratic assignment problem. Then, we conducted an extensive experimental study by
first tuning the different parameters linked to SA and MBO, and by comparing the quality of the solution
produced by these two algorithms.

This study reveals that the quality of the solutions generated by SA outperforms those of MBO in all the
cases. Even from the running time point of view, this conclusion is still the same.

For further research, it would be interesting to design much more involved heuristics to generate an initial
solutions and see to what extent this may influence not only the quality of the final solution, but also the
convergence of the simulated annealing method. Different structures of neighborhood are also a good research
avenue to improve the performance of SA.

On the other hand, we have suggested, through the expression of the objective function, another way of
capturing the distribution of the energy flux received by the thermoforming sheet. Even though we improved
the quality of this distribution, compared to the results generated by SA in Nehas et al. [6], we still observe
significant discrepancies between cells as regards to the energy flux received by the thermoforming sheet. It
would be of interest to improve the quality of this distribution by developing other objective functions. This
avenue of research is in progress.
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[4] Ekram D., Mitat U., Ali Fuat A. (2012) Migrating bird optimization: A new metaheuristic approach and its
performance on quadratic assignment problem. Information Sciences, 217, 65–77.

[5] Erchiqui F., Nahas N., Nourelfath M., Souli M. (2011) A metaheuristic algorithms for optimization of infrared
heating stage of the thermoforming process. International Journal of Metaheuristics, 1(3), 199–221.

[6] Nehas, F. Bachir Cherif K., Rebaine D., Erchiqui F. (2015) A heuristic approach for the infrared heating in
thermoforming process, submitted for publication.

[7] Pibouleau L., Domenech S., Davin A., Azzaro-Pantel C. (2005) Expérimentations numériques sur les variantes
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