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Abstract: Given a flight schedule and a set of aircraft of different types, the airline fleet assignment
problem (FAP) consists of assigning an aircraft type to each flight with the objective of maximizing the
expected profits. Typically, the expected revenues are computed using the average demand for each potential
passenger itinerary (this case is referred to as the FAP with deterministic demand). In this paper, we
assume that the demand is stochastic and we address the FAP with stochastic demand. We propose a
two-stage stochastic optimization model with recourse where an initial fleet assignment is implemented in
the first stage and re-fleeting of pre-defined flight leg sequences can be performed in the second stage to
face deviations from the average demand. Demand stochasticity is modeled using a limited set of demand
scenarios. Computational results obtained on instances derived from a real-world flight network involving up
to 5,180 flight legs show that the resulting model can be solved by a commercial mixed integer programming
solver in reasonable computational times (up to an average of 12 hours) and that the computed solutions can
yield significant additional expected profits compared to those derived from the solutions of the FAP with
deterministic demand.

Key Words: Airline fleet assignment, stochastic passenger demand, two-stage stochastic optimization, re-
fleeting recourse.
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1 Introduction

Airline fleet assignment consists of assigning an aircraft type to each flight leg of a given schedule such

that the flow of aircraft per type is balanced in each station at each time, fleet availability is satisfied, and

expected profits are maximized. Given that the flight schedule of an airline is typically regular from one week

to another in a season, the fleet assignment problem (FAP) is often solved only once per season, considering a

representative one-week schedule and an average passenger demand (for airlines operating the same schedule

every day, a one-day schedule is considered). The FAP is solved three to four months before the beginning of

the season. Even if the same flight schedule is offered each week, passenger demand may vary from one week

to another. In this case, the fleet assignment computed for the whole season might not be optimal for a given

week. Re-fleeting (i.e., changing the aircraft type assigned to some flight legs) is sometimes performed by the

airline during the booking period when the forecasted demand becomes more accurate. However, in the last

few weeks prior to the operations, re-fleeting is rather limited because it may be in conflict with other planned

activities such as aircraft maintenance and crew scheduling. Nevertheless, re-fleeting within the same aircraft

type family is often acceptable because it yields little drawbacks (crew members are usually qualified for all

aircraft types in a family). Re-fleeting involving types of different families may also be performed on certain

sequences of flights when it is possible to retrieve a feasible aircraft flow and a feasible crew schedule.

This paper addresses the FAP with stochastic demand taking into account the re-fleeting possibilities that

can occur during the booking period. For this model, we propose a two-stage stochastic optimization model

that considers limited re-fleeting recourse actions. The re-fleeting possibilities, within the same aircraft type

family or not, are identified a priori from a pre-computed solution to the FAP. The solutions to the stochastic

model are robust against demand variations in the sense that they offer feasible re-fleeting opportunities

where they might be profitable.

1.1 Literature review

The FAP is a classical optimization problem in air transportation that has been studied for more than

forty years. The fleet assignment model introduced by Hane et al. (1995) is at the basis of several subsequent

works, including the itinerary-based fleet assignment model of Barnhart et al. (2002, 2009) that computes the

expected revenues through decision variables determining which itineraries will be chosen by the passengers

(corresponding to a system-optimization model where the passenger choices are guided by the airline) and the

bilevel optimization approach of Dumas et al. (2009) that evaluates the expected revenues using an external

passenger flow model (corresponding to a user-optimization model where the passengers make their own

decisions). The FAP tackled by Dumas et al. (2009) can be seen as a FAP with stochastic demand because

the passenger flow model of Dumas and cois Soumis (2008) that they use considers demand stochasticity.

Nevertheless, their approach does not handle re-fleetings. As surveyed by Klabjan (2005) and Sherali et al.

(2006), several other extensions to the basic FAP have also been studied. We do not review them here because

they are not of direct interest for this paper.

The literature related to the FAP with possible re-fleeting can be divided in two categories. The first one

concerns only the re-fleeting subproblem that aims at modifying a known fleet assignment and the second

the whole problem that consists of finding a complete fleet assignment. Let us start by reviewing the works

in the first category.

Berge and Hopperstad (1993) introduce the Demand Driven Dispatch system to propose dynamically

fleet assignment changes within the same aircraft type family before the day of operations. To identify these

changes, this system takes into account the most recent demand forecasts and the current bookings for all

flight legs. They report a profit increase of up to 5% when applying their system. Talluri (1996) improves

this approach by developing an algorithm which guarantees finding a profitable aircraft type swap if one

exists during a day. However, this algorithm considers a maximum of two aircraft types.

Jarrah et al. (2000) develop a re-fleeting model to identify a sequence of re-fleeting solutions, where one

solution contains a strict subset of the changes proposed in the preceding solution. In this way, the airline

can choose the desired level of modifications to bring to the current fleet assignment. Bish et al. (2004) study
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the benefits of an approach, called Demand Driven Swapping, that swaps aircraft types on compatible loops,

i.e., back-and-forth pairs of flight legs starting from the same station and with similar departure and arrival

times. Sherali et al. (2005) propose a Demand Driven re-fleeting model for a single family of aircraft. They

consider a deterministic demand per passenger itinerary and incorporates into their model the passenger flow

model of Barnhart et al. (2002) without passenger recapture.

Jiang (2006) and Warburg et al. (2008) present a mixed integer programming (MIP) model to modify

flight departure times and fleet assignment during the booking period. They also integrate the passenger

flow model of Barnhart et al. (2002) without passenger recapture. The results of Warburg et al. (2008) show

that re-fleeting is mostly responsible for the observed profit increase. Jiang and Barnhart (2009) improve

the model of Jiang (2006) by assuming a complete recapture of the passengers between the itineraries of the

same market and no recapture between the itineraries of different markets. They report a profit increase of

2.28% when applying their methodology.

The following papers fall in the second category as they deal with the whole problem. Sherali and Zhu

(2008) further develop the work of Sherali et al. (2005) by presenting a two-stage stochastic optimization

model. In the first stage, an aircraft family is assigned to each flight leg while, in the second stage (representing

the re-fleeting process), a specific aircraft type within the selected family is assigned to each leg. Several

demand scenarios are considered to model the stochastic nature of the passenger demand and an L-shaped

method is applied to solve the proposed model. The authors report profit increases varying between 1.1

and 1.7% compared to solutions computed using a deterministic model based on average demand. Pilla

et al. (2008) introduce a similar two-stage model but propose a statistical approach to estimate the expected

profits. Pilla et al. (2012) complete this research by developing a cutting plane algorithm where the cuts

approximate the expected profit function. Their computational results show faster computational times than

an L-shaped method and similar profit increases. These computational times remain, however, very long:

more than 5 days for an instance involving 2,538 flight legs and 60 demand scenarios.

Starting from an initial schedule, Jiang and Barnhart (2013) propose an integer programming model to

design a robust de-banked flight schedule for a hub-and-spoke network together with an initial fleet assignment

that will favor, if required, modifications to flight departure times and fleet assignment using the method

of Jiang and Barnhart (2009). This model aims at maximizing potential revenues by increasing the number

of potential itineraries that would become feasible if some flexibility was added to certain flight departure

times. It does not take into account aircraft costs and assumes that all aircraft types operate at the same

speed and require the same connection times. To incorporate flight departure time flexibility, they consider

in their model flight leg copies with different departure times up to 30 minutes before or after the planned

departure time. They assume that the revenues from each itinerary are the same independently of the flight

copies selected for this itinerary and also of the other offered itineraries. Their computational results show

that using a robust schedule computed by their model yields additional profits compared to a standard flight

schedule.

1.2 Contributions

As discussed above, very few papers have addressed the FAP with stochastic demand taking into account

the possibility of re-fleeting during the booking period. The two-stage optimization approaches of Sherali

and Zhu (2008) and Pilla et al. (2008, 2012) limit the aircraft changes within the same aircraft family and

requires impractical computational times. The robust-optimization approach of Jiang and Barnhart (2013)

does not consider directly the stochastic demand, but aims at maximizing re-fleeting and re-timing recourse

opportunities without evaluating the possible profits from these recourses.

In this paper, we propose a two-stage stochastic optimization approach that is not restricted to re-fleetings

within the same aircraft family. It is rather based on a limited set of possible re-fleetings that are identified

a priori from an initial solution to the FAP. Each possibility in this set is defined by a sequence of flight legs

(possibly a single leg) and a pair of aircraft types that can both be assigned to this sequence and be feasibly

swapped during the booking period. A swap is considered feasible if it is possible to retrieve after the swap a

feasible aircraft schedule and a feasible crew schedule for each aircraft type. The stochasticity of the demand
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is represented by a set of demand scenarios. The resulting model corresponds to a mixed integer program

that can be solved directly by a commercial solver such as CPLEX when the number of scenarios considered

is not too large. Our computational results on instances derived from a real-life one-week instance involving

up to 5,180 flight legs, 15 aircraft types, and 71,000 passenger itineraries show that the post-processor can

yield expected profits increases of about 3% while requiring less than 12 hours of computational time.

The rest of this paper is structured as follows. The FAP with stochastic demand is stated in Section 2. The

proposed two-stage stochastic optimization model is introduced in Section 3 before describing the solution

algorithm in Section 4. Next, computational results on instances derived from a real-world dataset are

reported in Section 5. Finally, conclusions are drawn in Section 6.

2 Problem statement

The FAP with deterministic demand can be stated as follows. Consider an airline flight network servicing

a set S of stations (airports). Let L be the set of flight legs operated in this network in a cyclic schedule

that spans a time period (e.g., one week). This schedule is repeated over several consecutive time periods

(the operations horizon) and the computed solution must, therefore, be repeatable period after period. A leg

l ∈ L can also be denoted by the triplet (o, d, t), where o and d represent the origin and destination stations

of l, and t its departure time.

To operate this schedule, the airline possesses aircraft of different types. We denote by F the set of

aircraft types and by nf the number of aircraft available in fleet f ∈ F . Furthermore, let Fl ⊆ F be the

subset of aircraft types that can be assigned to leg l ∈ L (i.e., those having sufficient autonomy, capacity,

etc.). Assigning an aircraft of type f ∈ Fl to a leg l ∈ L incurs a cost Cfl and yields a flight duration hfl.

The seats available in an aircraft are partitioned into fare classes. Let U be the set of fare classes and capufl,

u ∈ U , l ∈ L, f ∈ Fl, the number of seats in class u on leg l if fleet f is assigned to it.

For this schedule, the airline earns revenues by selling tickets to passengers. Let I be the set of itineraries

that can be requested by the passengers. An itinerary is defined by a sequence of flight legs in L and a fare

class in U for each leg. For each itinerary i ∈ I, its average demand di (number of passengers requesting

it) over the operations horizon is assumed to be known as well as the average price pi paid by a passenger.

When passengers cannot obtain a ticket on their preferred itinerary because of a lack of available seats of the

appropriate fare class on a leg of this itinerary, they most likely try to buy a ticket on a different itinerary.

In this case, we say that the passengers are spilled and recaptured. We model the spill and recapture process

by defining for each pair of itineraries i, j ∈ I, i 6= j, a parameter rij that indicates the proportion of the

passengers that are spilled from i onto j when they are rejected on i. Note that
∑

j∈I rij can be less than

one to model passengers opting for another airline or a different mode of transportation. Given the aircraft

type assigned to each flight leg l ∈ L, a passenger flow model (such as the one proposed in Dumas and cois

Soumis (2008)) can be used to determine the average number of tickets sold for each itinerary i ∈ I and,

therefore, the total expected revenues from this flight schedule.

The FAP with deterministic demand consists of assigning an aircraft type f ∈ Fl to each flight leg l ∈ L
such that the expected profits (expected revenues minus costs) are maximized, aircraft flow conservation by

aircraft type is satisfied in every station at every time, a minimum connection time is imposed between any

two consecutive legs to be assigned to the same aircraft, and the maximum number of aircraft of each type

is not exceeded.

As mentioned above, the considered flight schedule is assumed to be operated over several consecutive

time periods. Typically, the demand varies from one time period to another. In consequence, in the FAP with

stochastic demand, we consider the demand as a set of stochastic variables Di, one for each passenger itinerary

i ∈ I. We assume that the demand variables Di follow known probability distributions (e.g., truncated normal

distributions) and that these distributions are not necessarily independent. The computation of the expected

revenues must be done using these probability distributions or a suitable approximation of them (e.g., a set

of demand scenarios).
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To temper the effect of demand variability, the airlines often proceed to re-fleeting during the booking

period. Each re-fleeting decision targets a specific period of the operations horizon. When crews have been

scheduled for this period, re-fleeting possibilities are limited as they must be compatible with the planned

crew schedules. As mentioned in Section 1.1, previous works have focused on exchanging aircraft types within

the same family because crew members are, in general, qualified for all aircraft types in the same family.

In this case, the crew schedules can remain the same: the crew members just fly a different aircraft type.

Other re-fleeting opportunities can be considered. Indeed, for two (short) sequences of flight legs starting

and ending at the same stations at approximately the same departure and arrival times, it might be feasible

to switch both the aircraft and the crew on these sequences even if the aircraft belong to different aircraft

families. In this case, the crew schedules change: the crew members work on different flight legs but on

the same aircraft. Such a switching is feasible for the crews if each sequence is assigned to a single crew

and both sequences exhibit the same characteristics with regards to the crew scheduling regulations (e.g.,

they have similar departure times, arrival times, and total flying times). Because the crew schedules are

unknown when solving the FAP, it is not possible to determine if a given flight sequence will be assigned

to a single crew. Nevertheless, many sequences can be identified as such a priori: for example, it can be a

two-leg sequence starting from station s1, visiting station s2 and returning to s1 in the same day, where s1

is a hub corresponding to a crew base and s2 is a station with a single flight per day. Furthermore, it might

be possible to impose in the crew pairing (or scheduling) problem that the legs of a sequence be flown by the

same crew. In general, such constraints should not deteriorate much the crew costs if the leg sequences are

well selected.

Figure 1 illustrates an example of an aircraft swap between two flight leg sequences. It involves three

stations denoted HUB, A and B. The first sequence is composed of two flight legs: one from HUB to A

departing at 7h00 and one from A to HUB arriving at 11h20. Initially, the demands on these two legs

(derived from the itinerary passenger demands) were estimated at 120 and 122, respectively. In consequence,

an aircraft with a 130-seat capacity was assigned to this sequence. The second sequence is similar to the

first sequence but visits station B instead of station A. It starts at 7h05 and ends at 11h15. At the time

of planning, its demands were estimated at 142 and 136 passengers for its two legs and a 150-seat aircraft

was assigned to it. During the booking period, the anticipated demands are revised to an increased 135 and

138 passengers for the legs of the first sequence and to a decreased 125 and 122 passengers for the legs of

the second sequence. Clearly, swapping the aircraft initially assigned to these two sequences would certainly

benefit the airline.

Note that aircraft swaps can involve more than two sequences. For instance, consider three sequences q1,

q2 and q3 to which three different fleet f1, f2 and f3 have been assigned, respectively. It might be possible to

HUB

A

B

Assignment

Aircraft with 130 seats

Aircraft with 150 seats

swap before

operation day

7h00

11h20

7h05

11h15

120 (135)

122 (138)

Average demand (new anticipated demand)

136 (122)

142 (125)

Figure 1 – Aircraft swap between two compatible pairs of flight sequence and aircraft type

Note that aircraft swaps can involve more than two sequences. For instance, consider
three sequences q1, q2 and q3 to which three different fleet f1, f2 and f3 have been assigned,
respectively. It might be possible to reassign the aircraft of q1 to q2, that of q2 to q3 and,
finally, that of q3 to q1. In Section 3, we define formally the feasibility of an aircraft swap.

The FAP with stochastic demand considered in this paper is the same as the FAP with
deterministic demand stated above except that the passenger demand for each itinerary is
stochastic and the expected revenues must be computed taking into account that leg sequence
re-fleeting can occur during the booking period.

It should be noted that, in the example of Figure 1, the aircraft swapping is possible
because the initial fleet assignment proposed aircraft of different types on the two flight
leg sequences. This is to be expected from a solution to the FAP with stochastic demand
for sequences with relatively high demand variability and between which it is possible to
exchange the assigned aircraft.

3 A two-stage stochastic optimization model

In this section, we introduce a two-stage stochastic optimization model that considers a
stochastic demand and re-fleeting recourse actions. As in the solution method proposed by
Dumas et al. [2009], this model is integrated into a loop with a passenger flow model to
compute the expected passenger revenues.

The proposed model can be classified as a multi-commodity network flow model that

8

Figure 1: Aircraft swap between two compatible pairs of flight sequence and aircraft type
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reassign the aircraft of q1 to q2, that of q2 to q3 and, finally, that of q3 to q1. In Section 3, we define formally

the feasibility of an aircraft swap.

The FAP with stochastic demand considered in this paper is the same as the FAP with deterministic

demand stated above except that the passenger demand for each itinerary is stochastic and the expected

revenues must be computed taking into account that leg sequence re-fleeting can occur during the booking

period.

It should be noted that, in the example of Figure 1, the aircraft swapping is possible because the initial

fleet assignment proposed aircraft of different types on the two flight leg sequences. This is to be expected

from a solution to the FAP with stochastic demand for sequences with relatively high demand variability and

between which it is possible to exchange the assigned aircraft.

3 A two-stage stochastic optimization model

In this section, we introduce a two-stage stochastic optimization model that considers a stochastic demand

and re-fleeting recourse actions. As in the solution method proposed by Dumas et al. (2009), this model is

integrated into a loop with a passenger flow model to compute the expected passenger revenues.

The proposed model can be classified as a multi-commodity network flow model that involves one network

per aircraft type. In most fleet assignment models, the nodes of the underlying networks correspond to flight

leg departures and arrivals, and the arcs to flight legs and ground waitings. We use more compact networks

where nodes correspond to leg banks and arcs to leg sequences and ground waitings. Let us start by defining

the concepts of leg banks and leg sequences.

First, we define a bank of flight legs that is commonly known as a sequence of consecutive legs arriving at

a station followed by a sequence of consecutive legs departing from the same station. Here, we use a sligthly

different definition because we associate the banks with a fleet and the fleet are not yet assigned to the legs.

Consider a fleet f ∈ F and let Lf ⊆ L be the set of legs that can be operated by an aircraft in this fleet.

For each leg l ∈ Lf , we denote by tDl its departure time and by tAlf its arrival time, which is fleet-dependent

(due to possible different flying speeds), extended by a minimum connection time. Let s ∈ S be a station

and let LD
sf ⊂ Lf and LA

sf ⊂ Lf be the subsets of legs departing from s and arriving at s, respectively. The

departure times tDl of the legs l ∈ LD
sf and the arrival times tAlf of the legs l ∈ LA

sf are sorted together in

chronological order. These times wrap around the time period and their corresponding legs form a cyclic list

that can be divided into banks. A bank is composed of a maximal sequence of consecutive arrivals in this list
followed by a maximal sequence of consecutive departures. In consequence, a bank starts by an arrival that

is preceded by a departure in the cyclic list, and ends with a departure that is succeeded by an arrival.

Figure 2 illustrates the banks at a station for an aircraft type. In this figure, the diagonal arrows represent

flight legs arriving or departing from this station (the arrival times include a minimum connection time).

These legs are divided into two banks. The first bank contains three arrivals and two departures, whereas

the second contains two arrivals followed by three departures. Notice that a bank favors multiple connection

opportunities between its arrivals and departures as the connection between any pair of arrival and departure

in the bank is feasible.

Time

Bank 1 Bank 2

Figure 2: Example of banks at a station for an aircraft type
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Let Ksf be the ordered (cyclic) set of banks at station s ∈ S associated with aircraft type f ∈ F . For

a given bank k ∈ Ksf , we denote by k− and k+, its predecessor and successor banks in Ksf , respectively.

When a station contains a single bank k, then k+ = k− = k. Furthermore, for bank k, we denote by tDk
and tAk , its earliest departure time and its latest arrival time, respectively. We say that bank k ∈ Ksf begins

and ends at times tDk and tAk , respectively. For ease of exposition only, we assume that tAk ≥ tDk for all banks

k ∈ Ksf , s ∈ S, f ∈ F , i.e., there is no bank that spans the start/end of the time period.

Given an initial solution to the FAP, one can derive a set of aircraft routes that satisfy aircraft availability

per fleet. Each route can be divided into disjoint (relatively short) sequences of consecutive flight legs such

that, for each sequence, all its legs will be assigned to the same crew. Note that a sequence can contain a

single leg and that each leg in L belongs to a single sequence. Let Q be the set of all sequences. In Section 4,

we propose an algorithm to construct the sequences in Q, which are used to determine the possible aircraft

swaps as follows. For each sequence q ∈ Q, we denote by sDq and sAq its origin and destination stations,

respectively, and by Fq the set of aircraft types that can be assigned to it. Furthermore, for each fleet f ∈ Fq,

we denote by tDq and tAqf the departure time of its first leg and the arrival time of its last leg, respectively,

and by kDqf and kAqf the origin and destination banks of q, respectively, when q is assigned to an aircraft of

type f . Let q1, q2 ∈ Q be two leg sequences. We say that q1 and q2 are compatible with respect to an aircraft

type f ∈ F if

1. f can be assigned to both sequences q1 and q2, i.e., f ∈ Fq1 ∩ Fq2 ;

2. both sequences begin at the same station, i.e., sDq1 = sDq2 ;

3. both sequences end at the same station, i.e., sAq1 = sAq2 ;

4. for type f , both sequences belong to the same origin bank, i.e., kDq1f = kDq2f ;

5. for type f , both sequences belong to the same destination bank, i.e., kAq1f = kAq2f ;

6. both sequences have similar flying times and durations (as well as other similar characteristics if relevant

for crew schedule feasibility) when assigned to fleet f .

Given that the banks are specific to each aircraft type, two sequences can be compatible for an aircraft type

but not for another.

An aircraft swap between two sequences can be feasible if these sequences are compatible with respect to

at least two aircraft types. Consider two aircraft: the first is of type f1 and flies the three sequences q1
1−q1

2−q1
3

consecutively in this order and the second is of type f2 and operates the sequences q2
1 − q2

2 − q2
3 consecutively.

If the sequences q1
2 and q2

2 are compatible with respect to both aircraft types f1 and f2, then the aircraft

can be swapped on these two sequences, that is, the two aircraft would then be assigned to q1
1 − q2

2 − q1
3 and

q2
1 − q1

2 − q2
3 , respectively. These aircraft routes remain feasible because the compatible sequences q1

2 and q2
2

have the same departure and arrival banks for both fleet f1 and f2. From a crew scheduling point of view,

the crews assigned to q1
2 and q2

2 can remain on the same sequence if f1 and f2 belong to the same aircraft

family. On the other hand, the crews also need to be swapped with the aircraft if the aircraft are not in the

same family. Given that the sequences have similar characteristics, the new schedules should be feasible.

Aircraft swaps involving more than two sequences are also possible. In this case, it is easy to see that not

all pairs of sequences need to be compatible with respect to more than one aircraft type.

Let Qf ⊆ Q be the subset of sequences that can be assigned to aircraft type f ∈ F . For each type f ∈ F ,

the sequences in Qf are partitioned into a set Ef of clusters of pairwise compatible sequences of maximal

size or containing a single sequence. Thus, each sequence q ∈ Qf belongs to a single cluster in Ef . The

common departure and arrival banks of the sequences in cluster e ∈ Ef are denoted kDe and kAe , respectively.

A cluster in Ef whose cardinality is greater than or equal to 2 contains sequences which can be re-fleeted

during the booking period. We denote by Q∗ ⊆ Q the subset of the sequences that can be re-fleeted, i.e.,

those that belong to a non-singleton cluster in Ef for at least one type f ∈ F .

The proposed model imposes aircraft balance per aircraft type at every station and every time in the time

period considered. Consequently, to ensure that aircraft availability per type is met, one just need to count

the number of aircraft on the ground (excluding the minimum connection time after an arrival) and in the air
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(including the minimum connection time after an arrival) at a given time t̄. For each fleet f ∈ F , let Of ⊆ Qf

be the subset of sequences q in the air at time t̄ when assigned to fleet f , i.e., such that tDq < t̄ ≤ tAqf . If t̄

corresponds to a time when there are no aircraft in the air (e.g., t̄ corresponds to the middle of a night when

there are no night flights), then Of = ∅ and one can only count the number of aircraft on ground waiting arcs

overlapping t̄. Otherwise, because nodes in the networks correspond to banks that are associated with time

intervals rather than specific times, one must be careful when counting the number of aircraft on the ground

at time t̄. Consider a station s ∈ S and an aircraft type f ∈ F . If t̄ falls in the time interval associated

with a bank k ∈ Ksf , i.e., tDk < t̄ ≤ tAk , then the number of aircraft of type f on the ground in station s

at time t̄ is given by the sum of the number of aircraft on the ground before the start of bank k and the

number of aircraft that arrived in bank k prior to t̄ but that did not depart from s before t̄. In this case,

let k̄sf = k− and denote by GD
sf and GA

sf the subsets of legs in k̄sf departing before t̄ and arriving before t̄,

respectively. Otherwise, if t̄ falls between the intervals associated with two consecutive banks k1, k2 ∈ Ksf ,

i.e., tAk1
< t̄ ≤ tDk2

(where k1 = k2 if Ksf contains a single bank), then the number of aircraft of type f on the

ground in station s at time t̄ is given by the number of aircraft on the ground at the end of bank k1. In this

case, we set k̄sf = k1.

The objective function consists of maximizing the expected profits that are computed as the difference

between the expected revenues and the operation costs. Let Cqf be the operation costs of assigning an

aircraft of type f ∈ Fq to leg sequence q ∈ Q. The expected revenues depend on the stochastic demand

variables Di for each passenger itinerary i ∈ I. As it is often used in stochastic optimization, we propose to

approximate the probability distributions of the variables Di using randomly generated demand scenarios.

Let W be the set of scenarios, where a scenario indicates a possible demand realization for each itinerary

i ∈ I. The probability that scenario w ∈W occurs is denoted pw.

For a demand scenario w ∈ W , the revenues yielded by a fleet assignment can be computed using the

iterative algorithm introduced by Dumas et al. (2009). In fact, instead of considering expected revenues,

Dumas et al. (2009) proposed to use expected revenue losses per leg with respect to the maximum revenues

that could be achieved by assigning a fictitious aircraft of infinite capacity. The computation of these revenue

losses is explained in Section 4. With these revenue losses, the objective function of the fleet assignment model

consists of minimizing the sum of the operational costs and the expected revenue losses, which is equivalent to

maximizing the total expected profits. Once a new fleet assignment is computed using the estimated revenue

losses, these losses are revised and the process is repeated for a given number of iterations. In our model, we

rather use expected revenue losses per leg sequence RLw
qf , w ∈W , q ∈ Q, f ∈ Fq, that are computed like the

expected revenue losses per leg in the Dumas et al. (2009) approach.

The proposed model relies on the following three types of decision variables:

Xqf : Binary variable that takes value 1 if aircraft type f ∈ Fq is assigned to leg sequence q ∈ Q in the

planned fleet assignment, and 0 otherwise;

Yfkk+ : Nonnegative variable indicating the number of aircraft of type f ∈ F on the ground between the

consecutive banks k and k+ in Ksf at station s ∈ S in the planned fleet assignment solution;

Zw
qf : Binary variable that takes value 1 if aircraft type f ∈ Fq is assigned to leg sequence q ∈ Q in scenario

w ∈W , and 0 otherwise.

The variables X =
(
Xqf

)
q∈Q,f∈Fq

and Y =
(
Yfkk+

)
f∈F,s∈S,k∈Ksf

are the first-stage variables, i.e., they

define the planned fleet assignment to use at the start of the booking period. For each scenario w ∈ W , the

second-stage variables Zw =
(
Zw
qf

)
q∈Q,f∈Fq

indicate the final fleet assignment resulting from the re-fleetings

performed during the booking period if scenario w occurs.

The FAP with stochastic demand can be modeled using the following two-stage optimization model with

recourse:

min
∑
w∈W

pw

∑
q∈Q

∑
f∈Fq

(Cqf +RLw
qf )Zw

qf + η(X,Zw)

 (1)
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subject to:
∑
f∈Fq

Xqf = 1, ∀q ∈ Q, (2)

∑
e∈Ef :

kA
e =k

∑
q∈e

Xqf + Yfk−k −
∑

e∈Ef :

kD
e =k

∑
q∈e

Xqf − Yfkk+ = 0, ∀s ∈ S, f ∈ F, k ∈ Ksf , (3)

∑
q∈Of

Xqf +
∑
s∈S

( ∑
q∈GA

sf

Xqf −
∑

q∈GD
sf

Xqf + Yfk̄sf k̄
+
sf

)
≤ nf , ∀f ∈ F, (4)

∑
f∈Fq

Zw
qf = 1, ∀q ∈ Q,w ∈W, (5)

∑
q∈e

Zw
qf −

∑
q∈e

Xqf = 0, ∀f ∈ F, e ∈ Ef , w ∈W, (6)

Xqf ∈ {0, 1}, ∀q ∈ Q, f ∈ Fq, (7)

Zw
qf ∈ {0, 1}, ∀q ∈ Q, f ∈ Fq, w ∈W, (8)

Yfkk+ ≥ 0, ∀s ∈ S, f ∈ F, k ∈ Ksf . (9)

The objective function (1) minimizes the sum of the expected operation costs, revenue losses and re-fleeting

penalties, where the expectation is computed over the set W of considered scenarios. The re-fleeting penalties,

expressed by the term η(X,Zw), are introduced to avoid re-fleeting when a small gain can be realized. They

are discussed below. The first three sets of constraints concern the first-stage decisions. Constraints (2) ensure

that a valid aircraft type is assigned to each leg sequence. Constraints (3) impose flow conservation per aircraft

type at each bank of the network. Aircraft availability per fleet is enforced through constraints (4). The next

two sets of constraints ensure the feasibility of the possible re-fleetings in the second stage. Constraints (5)

stipulate that one aircraft type must be assigned to each leg sequence for each scenario. Constraints (6)

guarantee that any type assigned to a sequence in the second stage is either the type assigned in the first

stage or a type assigned to a compatible sequence. Finally, binary and nonnegativity requirements on the

decision variables are imposed through (7)–(9) (the integrality of the Y variables is implied by (7)). Note

that the feasibility of the final fleet assignment Zw for each scenario w ∈ W ensues from the feasibility of

the planned assignment X and the pairwise compatibility of the sequences in each sequence cluster e ∈ Ef ,

f ∈ F .

In practice, re-fleeting will not be implemented if it does not yield a sufficiently large expected gain. In

consequence, we introduce re-fleeting penalties η(X,Zw) to ensure that re-fleeting is proposed only when it

is really worth it. Two types of re-fleeting penalties can be considered: constant and fleet-and-sequence-

dependent penalties. In the first type of penalties, a constant penalty α is incurred for each re-fleeting and,

in this case,

η(X,Zw) = α
∑
q∈Q∗

∑
f∈Fq

max{0, Xqf − Zw
qf}. (10)

This expression can be linearized by introducing additional variables and constraints. Let V w
q be a binary

variable equal to 1 if re-fleeting occurs on leg sequence q ∈ Q in scenario w ∈W . Then η(X,Zw) is redefined

in terms of these new variables Vw =
(
V w
q

)
q∈Q as

η(X,Zw) ≡ η(Vw) = α
∑
q∈Q∗

V w
q , (11)

and the following constraints are added to model (1)–(9):

V w
q ≥ Xqf − Zw

qf , ∀q ∈ Q∗, f ∈ Fq, w ∈W, (12)

V w
q ∈ {0, 1}, ∀q ∈ Q∗, w ∈W. (13)

Constraints (12) ensure that, for each sequence q ∈ Q∗ and scenario w ∈ W , the variable V w
q is set to 1 if

re-fleeting occurs on sequence q in scenario w, i.e., if Xqf = 1 and Zw
qf = 0 for a fleet f ∈ Fq, whereas the

minimization of the re-fleeting penalties in the objective function forces V w
q to be equal to 0 in any other

situation.
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In the second type of penalties, the penalty αqf1f2 for changing the aircraft type assigned to a sequence

q ∈ Q∗ from f1 ∈ Fq in the first-stage assignment to f2 in the second stage is fleet- and sequence-dependent.

Such dependency can be useful when the impact of re-fleeting a sequence q from f1 to f2 is different from

f1 to f3 (f2 6= f3). For instance, if f1 and f2 are in the same aircraft family, then the schedule of the crew

assigned to q does not need to change, while it has to change if f1 and f3 are not in the same family. Also,

passengers that frequently take the same flight leg often prefer the same aircraft type as it ensures stability

(same gate, same seat configuration, etc.). Consequently, re-fleeting from f1 to f2 might be preferable to

re-fleeting from f1 to f3 if the former re-fleeting incurs less perturbations for the passengers than the latter.

Finally, the penalty can depend on the characteristics of the sequence, e.g., on its duration or on its number

of legs, which can reflect the level of perturbation experienced by the passengers. In this case,

η(X,Zw) =
∑
q∈Q∗

∑
f1∈Fq

∑
f2∈Fq\{f1}

αqf1f2 max{0, Xqf1 + Zw
qf2 − 1}. (14)

This expression can also be linearized by introducing new variables and constraints. Let V w
qf1f2

be a binary

variable equal to 1 if sequence q ∈ Q∗ is re-fleeted from type f1 ∈ Fq to type f2 ∈ Fq \{f1} in scenario w ∈W
and 0 otherwise. The re-fleeting penalty term then rewrites as

η(X,Zw) ≡ η(Vw) =
∑
q∈Q∗

∑
f1∈Fq

∑
f2∈Fq\{f1}

αqf1f2V
w
qf1f2 , (15)

where Vw =
(
V w
qf1f2

)
q∈Q,f1∈Fq,f2∈Fq\{f1}

this time. The constraints to add are:

V w
qf1f2 ≥ Xqf1 + Zw

qf2 − 1, ∀q ∈ Q∗, f1 ∈ Fq, f2 ∈ Fq \ {f1}, w ∈W, (16)

V w
qf1f2 ∈ {0, 1}, ∀q ∈ Q∗, f1 ∈ Fq, f2 ∈ Fq \ {f1}, w ∈W. (17)

Constraints (16) ensure that a variable V w
qf1f2

is set to 1 when re-fleeting from f1 to f2 occurs on sequence q

in scenario w, i.e., if Xqf1 = Zw
qf2

= 1. Otherwise, V w
qf1f2

takes value 0 because the objective function seeks

at minimizing its value.

4 Solution algorithm

The proposed solution algorithm requires an initial solution that is used to identify the leg sequences in Q.

This initial solution can be obtained in several ways. It can be obtained by solving (exactly or heuristically)

the FAP with deterministic demand or by adapting the solution used the previous year if the flight schedule

is sufficiently similar. To solve the FAP with stochastic demand, we execute the algorithm described in

Figure 3. This algorithm starts by creating the set of leg sequences Q. Then, it enters into a loop by

computing first the expected revenue losses RLw
fq for each scenario w ∈ W , each sequence q ∈ Q, and each

aircraft type f ∈ Fq that can be assigned to q. Next, it solves model (1)–(9) augmented by the appropriate

re-fleeting penalties (defined by (11)–(13) or (15)–(17)) using a commercial MIP solver such as CPLEX. The

computed solution proposes a fleet assignment X to implement, and, for each scenario w ∈ W , a final fleet

assignment Zw if scenario w is realized. For each scenario w, the expected revenues from the assignment Zw

are evaluated by solving the passenger flow model of Dumas and cois Soumis (2008) using the fixed-point

algorithm they proposed. These revenues allow to estimate the expected profits of the fleet assignment X,

taking into account the possible re-fleetings. Once a stopping criterion is reached (a maximum number of

iterations in our case), the loop is exited. If needed, a more extensive evaluation of the expected profits

is performed using a larger set of demand scenarios that excludes those used for computing the solution

(i.e., those in W ). Note that the passenger flow model of Dumas and cois Soumis (2008) takes into account

the demand stochasticity that still exists when re-fleeting possibilities are evaluated. Thus, as opposed to

most stochastic optimization approaches that model stochasticity using a set of deterministic scenarios, our

approach relies on stochastic scenarios. In the rest of this section, we provide further details on the selection

of the leg sequences, the computation of the revenue losses, and the final evaluation of the expected profits.

In general, the approach used to determine the leg sequences should depend on the network topology,

the flight schedule and the airline itself. It should try to maximize aircraft swapping opportunities. For
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Build flight leg
sequences

Compute expected revenue
losses for each scenario,

 sequence and fleet

Solve model (1)-(9) 
with re-fleeting penalties

Compute expected revenues
for each scenario Stopping criterion

reached ?

no

yes

If needed, evaluate expected 
profits using other scenarios

Figure 3: Overview of the algorithm

our tests, we used data provided by Air Canada whose flight schedules contain many two-leg loops that

start and end at one of the major stations serviced by Air Canada: for example, loops Montreal-Boston-

Montreal and Montreal-New York-Montreal. These loops have similar characteristics and are often scheduled

at approximately the same time (to accommodate business travelers), giving the opportunity to swap their

aircraft if needed. Furthermore, as Montreal is a crew base, there are high chances that the same crew will

fly both legs of these loops. In consequence, the proposed algorithm exploits this observation and creates leg

sequences that form two-leg loops starting and ending at the same station among the major stations. Legs

that are not part of these loops form single-leg sequences.

First, given the initial FAP solution, a first-in, first-out heuristic is applied to compute aircraft routes

for each aircraft type. Note that these routes can be determined using a more sophisticated procedure (e.g.,

that might consider maintenance constraints) if available. Then, each route is divided into leg sequences

containing at most two legs. To favor creating two-leg sequences that start at the major stations, a priority

βs is given to each station s ∈ S. A two-leg sequence containing legs l1 and l2 is admissible if and only

if sAl2 = sDl1 and βsDl1
≥ βsAl1

. Algorithm 1 provides the pseudo-code of the algorithm used to create the

leg sequences. Each route r is represented by its ordered list of legs (l1, l2, . . . , lnr
), where nr indicates the

number of legs in r. The first leg l1 corresponds arbitrarily to the first leg flown at the beginning of the time

period. Starting from the first leg of the route as the current leg li, the algorithm tries to build a two-leg

sequence with the next leg on the route. If this is not possible (i.e., one of the conditions in Step 4 is met), a

one-leg sequence is added to Q. Otherwise, a sequence with legs li and li+1 is created. The algorithm then

moves on to the next leg in the route to create a new sequence. The process repeats until all legs in all routes

have been included in a sequence. Once the set of sequences is built, the subsets Ef , f ∈ F , of compatible

sequences with respect to f are computed in Step 14 and the set Q∗ of sequences that are compatible with

at least another sequence is determined. In practice, Q∗ contains almost only two-leg sequences. However,

there might be two-leg sequences that are not compatible with any other sequence. In Steps 17 and 18, such

a sequence q ∈ Q\Q∗ is replaced in Q by two one-leg sequences to allow more flexibility during optimization.
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Algorithm 1 Creation of the leg sequences in Q

1: for each aircraft route r = (l1, l2, . . . , lnr
) do

2: i := 1
3: while i ≤ nr do
4: if i+ 1 > nr or βsAli

< βsDli
or sAli+1

6= sDli then

5: j := i
6: else
7: j := i+ 1
8: if i = j then
9: Add one-leg sequence (li) to Q

10: else
11: Add two-leg sequence (li, lj) to Q
12: i := j + 1
13: for each fleet f ∈ F do
14: Construct the set Ef of compatible sequences with respect to fleet f
15: Compute subset Q∗ of the sequences compatible with at least another sequence
16: for each two-leg sequence q = (l1, l2) ∈ Q \Q∗ do
17: Q := Q \ {q}
18: Q := Q ∪ {(l1), (l2)}

The revenue losses for a demand scenario w ∈ W are computed as follows. Given a fleet assignment

(either the initial one or the assignment Zw computed at a given iteration of the algorithm), the passenger

flow model of Dumas and cois Soumis (2008) is solved using their fixed-point algorithm for the corresponding

demand. The solution to this model indicates the expected number of tickets sold on each itinerary i ∈ I and

therefore the total expected revenues. Then, for each leg q ∈ Q, the algorithm of Dumas and cois Soumis

(2008) is run again 1+|Fq| times on a restricted version of the network: once with an infinite capacity assigned

to sequence q to yield total expected revenues ρwq,∞ and, for each fleet f ∈ Fq, once with the capacity of an

aircraft of type f assigned to q to yield expected revenues ρwqf . The revenue loss expected when assigning an

aircraft of type f ∈ Fq to sequence q ∈ Q is given by RLw
qf = ρwq,∞ − ρwqf . For a sequence q, the restricted

network is defined as follows. Let Iq be the subset of itineraries that contain a leg in q and all itineraries

that can capture spill from these itineraries. Let Lq be the set of legs in the itineraries of Iq. The network

is restricted to the legs in Lq and the itineraries in Iq. However, it considers as constant the flow (from the

solution to the complete network) of the other itineraries on the legs in Lq. Such a restricted network is used

to speed up the computational time. Compared to using a complete network, Dumas and cois Soumis (2008)

obtained a speed up factor of 400 and measured an acceptable average error of 1.3% on the revenue losses.

In the next section, we will compare different solutions to the FAP with stochastic demand that were

obtained by considering a different number of demand scenarios. To perform a fair comparison, we evaluate

each solution using a set of scenarios Ŵ that differ from the ones used during the optimization process. The

evaluation of a fleet assignment X̄ for a given scenario w ∈ Ŵ is performed in three steps as follows. First,

the revenue losses RLw
qf for each sequence q ∈ Q and each aircraft type f ∈ Fq are computed as described

above. Second, a mixed integer program is solved using CPLEX to identify the re-fleetings to perform if

scenario w occurs. This program corresponds to model (1)–(9), augmented by (11)–(13) or (15)–(17), but

restricted to a single scenario, namely, w and to the evaluated fleet assignment X̄ (i.e., X = X̄). The solution

to this modified model provides a final fleet assignment Zw if scenario w is realized. Finally, the passenger

flow model is solved again to evaluate the expected profits resulting from fleet assignment Zw. The expected

profits of the fleet assignment X̄ is then obtained as a weighted average of the expected profits yielded by

the scenarios in Ŵ .
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5 Computational experiments

In this section, we report the results obtained by the solution algorithm that we propose for solving the

FAP with stochastic demand. Before presenting these results, we describe the instances used for our tests,

including the generation of the demand scenarios.

5.1 Instances

For our experiments, we use the flight network used by Dumas et al. (2009) that corresponds to a part of

the Air Canada network in 2002. This network involves 5,180 flight legs over a one-week time period and

205 aircraft of 15 different types. The passengers are distributed over 71,844 itineraries (23,948 triplets of

itineraries where the itineraries in a triplet only differ by the fare class). To obtain a larger set of test instances

of various sizes, we built smaller flight networks by extracting subsets of this complete network. To create a

network, we select first a subset of consecutive days in the week, then the flight legs, the passenger itineraries,

and the aircraft. Initially, all legs with a departure time in the selected days are considered. However, there

might not exist a feasible solution for this set of legs because of the aircraft flow conservation constraints and

the need to produce a solution that can be repeated week after week. After solving a FAP with deterministic

demand where a leg might remain uncovered at a high penalty cost, the uncovered legs are removed from

the flight schedule. From the set of itineraries, we retain only those whose flight legs have been selected.

However, to compensate the demand of the itineraries that have been removed but that contain one leg in

the selected set, the demand on each selected itinerary is increased in such a way that the competition for

a ticket on each flight leg remains similar to that occurring in the complete network. Furthermore, the spill

and recapture rates from one itinerary to another are also adjusted. Finally, the number of aircraft available

in each fleet and their fixed costs are modified. Because most aircraft are used each day, the number of

available aircraft does not change much for networks spanning just one or a few days. The fleet have been

reduced manually and gradually until reaching a number of aircraft that provides a minimal leeway. The

aircraft fixed costs have been set according to the number of days in the time period.

With this approach, we generated 8 new flight networks: 3 spanning one day (Monday, Thursday and

Sunday), 3 spanning two days (Monday-Tuesday, Thursday-Friday, and Saturday-Sunday), and 2 spanning

three days (Monday to Wednesday and Friday to Sunday). In all these networks, a total of 194 aircraft were

made available. The numbers of flight legs (|L|) and itineraries (|I|) in each network are given in Table 1,

together with the number of aircraft types (|F |) and the total number of aircraft (
∑
f∈F

nf ).

For each of the nine flight schedules, we produced an initial fleet assignment by solving a FAP with

deterministic demand (just one evaluation of the leg-based revenues was performed). Then, we built leg

sequences using Algorithm 1. For this algorithm, the Toronto station, which is the most frequented by Air

Canada, received priority 1, Montreal and Vancouver had priority 2, and Calgary and Ottawa had priority 3.

All other stations were assigned priority 4. The total number of sequences in Q∗ (i.e., that can allow aircraft

swapping) for each flight schedule is also reported in Table 1. Recall that almost all sequences in Q∗ contain

two legs. Therefore, the proportion of legs that can be subject to re-fleeting varies between 14% and 20%

approximately.

In its last four columns, Table 1 provides for each network the numbers of variables and constraints in

model (1)–(9), augmented by (11)–(13), when 20 demand scenarios are considered. The first pair of columns

(Var., Const.) indicates the model size before the CPLEX preprocessing, whereas the second pair gives it

after preprocessing.

For each network 1 to 9, we created two new demand structures denoted structures II and III (the original

demand corresponds to structure I). To do so, we perturbed the expected demand di of each itinerary i ∈ I
by multiplying it by a random number drawn from a uniform distribution in the interval [0.55, 1.55]. These

new demands are then scaled to ensure that the total average demand over all itineraries remains the same.

In 2002, most airlines were not profitable in the aftermath of the events of September 11, 2001. In particular,

the seat occupancy rate of Air Canada was much below its normal rate. To perform our tests with normal

occupancy rates, we multiplied the demands of each pair of network and demand structure by three different
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Table 1: Flight network characteristics

Before preproc. After preproc.

Network Days |L| |I| |F |
∑
f∈F

nf |Q∗| Var. Const. Var. Const.

1 1 678 7,590 15 194 68 27,359 26,514 14,477 7,023
2 1 756 8,871 15 194 56 28,729 26,656 14,179 6,775
3 1 759 8,733 15 194 67 30,199 28,945 15,699 7,662
4 2 1,391 15,474 15 194 106 53,117 48,720 26,136 12,651
5 2 1,508 17,625 15 194 132 58,215 53,954 29,462 14,346
6 2 1,518 17,943 15 194 119 57,673 52,706 28,556 13,778
7 3 2,151 24,459 15 194 186 82,120 75,613 40,904 20,011
8 3 2,257 26,505 15 194 175 85,077 77,331 41,859 20,324
9 7 5,180 71,844 15 205 394 194,588 176,162 95,026 46,361

values, namely, 1.2, 1.325, and 1.45 to yield average occupancy rates of 77.1 %, 81.2 % and 84.3 %, respectively

(Air Transport Action Group (2014) reports that the average occupancy rate across the industry was 79% in

2014). We say that each multiplier generates a demand level and we denote these levels by L, M, and H for

low, medium, and high, respectively. In summary, we used a total of 81 instances (9 networks × 3 demand

structures × 3 demand levels) for our computational experiments.

Note that, even if the demand can vary significantly from one instance to another, we used the same leg

sequences for all nine instances derived from a flight network. Given that most leg sequences are two-leg

loops originating from one of the major stations serviced by Air Canada, we believe that, if the sequences

were computed for each instance, they would not differ much, the reported results would be similar, and the

conclusions would remain valid.

The demand scenarios used for our experiments should represent the variability of the demand for the

airline, the market and the season considered. We assume that the total demand over the whole network does

not vary significantly but the demand for an itinerary can be subject to a large variation. More specifically,

we assume that, for a given scenario w ∈W or w ∈ Ŵ , the total demand Dw follows a uniform distribution

in the interval [0.85D, 1.15D] where D =
∑

i∈I di is the average total demand, and the demand dwi for an

itinerary i ∈ I is generated as a uniform random number U(0.5, 1.5)diD
w/D. Each scenario w has the same

occurrence probability pw = 1/|W | (or 1/|Ŵ |).

For the set W of demand scenarios used in our model, we ensure that the total demands of its scenarios are

uniformly distributed in [0.85D, 1.15D]. Indeed, when using a relatively small number of scenarios (say, less

than 30), the distribution may be far from being uniform. Thus, we enforce the distribution. For example,

for a set of 5 scenarios, we generate scenarios with total demands 0.88D, 0.94D, 1.00D, 1.06D and 1.12D.

For the larger-sized set Ŵ used to evaluate a solution, we generate randomly the total demand of each of its

scenarios.

For a demand scenario set W (also for Ŵ ), we also ensure that, for each itinerary i ∈ I, the average of

the generated demands dwi , w ∈W , is equal to the average demand di, i.e.,
∑

w∈W dwi /|W | = di. To achieve

this while preserving as much as possible the total demand Dw for each scenario w, an iterative procedure

that alternates between re-scaling the itinerary demands in each scenario to achieve the average demand for

each itinerary over the scenarios and re-scaling for each scenario the itinerary demands to reach the targeted

total demand is applied.

Detailed information about the generation of the instances and the demand scenarios can be found in

Lasalle Ialongo (2014).

5.2 Test plan and environment

With our computational experiments, we pursue three goals. First, we want to assess the impact of the

number of scenarios used in our model on the quality of the computed solutions. Second, we want to

highlight the computational effort required to achieve these solutions. Third, we wish to compare the quality
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of the solutions obtained with our two-stage stochastic optimization model compared to that derived from

the FAP with deterministic demand.

To perform these analyses, we solved each of the 81 instances 6 times: once as a FAP with deterministic

demand, and five times with a different number of scenarios, namely, 1, 5, 10, 15, and 20 scenarios. The

computed solutions throughout the solution process are then evaluated using 100 scenarios (not used in

our model). Note that the FAP with stochastic demand and 1 scenario is very similar to the FAP with

deterministic demand. The difference resides in the fact that two-leg sequences are considered in the former

while only one-leg sequences are considered in the latter with very few compatible sequences. In consequence,

because re-fleeting can only take place between compatible leg sequences when the final solution is evaluated

at the end, only the solution of the former model can really benefit from re-fleeting. On the other hand,

even if the single demand scenario corresponds to the average demand (and thus to the demand used for the

FAP with deterministic demand), the fleet assignments may differ between the two models because the same

aircraft type must be assigned to the legs of each leg sequence. This restriction is not present in the FAP

with deterministic demand.

In our model, we used the constant re-fleeting penalty α, which was set to 200. Following preliminary

tests, we decided to stop the overall algorithm after 5 iterations because no significant improvements were

observed beyond this point. To avoid too long computational times, we allow in each iteration of the algorithm

a maximum of 2 hours (resp. 6 hours) of computational time to solve our model and we apply a tolerance of

0.0002% (resp. 0.0005%) on the optimality gap for the instances derived from networks 1 to 8 (resp. network

9).

For our experiments, we used the IBM CPLEX MIP solver, version 12.4. All tests were performed using

a single thread on an Intel Xeon X5670 processor clocked at 2.93GHz and with 24Gb of RAM.

5.3 Results

In this section, we report average results computed over all instances or over the instances with the same

demand structure and level or derived from the same network. Detailed results (expected profits and com-

putational times) can be found in the Appendix.

For the six models (FAP with deterministic demand, and FAP with 1, 5, 10, 15, and 20 demand scenarios),

Figure 4 presents the evolution of the average expected profits of the best solutions found by the algorithm

over the iterations. The averages are computed over all 81 instances. We omit to report the average expected

profits of the solutions computed at the first iteration because they are much lower than the others and
including them would compress the graphic. Note that the curves for the FAP with deterministic demand

and the FAP with 1 demand scenario are almost superimposed.

From these average results, we observe that the average expected profits yielded by the FAP with de-

terministic demand and the FAP with a single demand scenario are much less than those yielded by the

other models, independently of the iteration. Compared to the average expected profits for the FAP with

deterministic demand, the average gain achieved after 5 iterations increases with the number of scenarios and

varies between 3.32 and 3.44%. These gains slightly increase with the number of scenarios considered and

clearly show that assigning the aircraft types to the flight legs while taking into account stochastic demand

can yield a solution that facilitates profitable re-fleeting during the booking process. Note that the magnitude

of these gains might depend on the distributions of the demand variables, the flight network topology and

the flight schedule.

The average expected profits by demand structure and level obtained after 5 iterations of the algorithm

are reported in Table 2. The last column of this table specifies the average gain in percentage obtained

on the expected profits when using the FAP with 20 scenarios compared to the FAP with deterministic

demand. Here, we observe that, for each instance, the expected profits does not increase monotonically

with the number of scenarios considered. This is due to the heuristic nature of the solution process and the

stochasticity of the scenario generation process. However, the induced noise is small compared to the general

trend (see the Average row). As anticipated, as the demand level increases, the expected profits are larger.
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Figure 4: Progress of the average expected profits over all instances

Table 2: Average final expected profits (in M$) by demand structure and level

Demand Demand FAP with FAP with stochastic demand Gain

structure level det. dem. 1 sc. 5 sc. 10 sc. 15 sc. 20 sc. (%)

I

L 5.848 5.852 6.126 6.134 6.130 6.139 4.98

M 8.506 8.511 8.858 8.864 8.858 8.861 4.17

H 18.822 10.835 11.143 11.137 11.145 11.165 3.17

II

L 6.538 6.546 6.797 6.808 6.818 6.818 4.28

M 9.171 9.159 9.439 9.442 9.449 9.443 2.96

H 11.334 11.341 11.632 11.629 11.631 11.642 2.71

III

L 6.476 6.452 6.733 6.745 6.736 6.750 4.23

M 9.075 9.064 9.364 9.381 9.372 9.368 3.23

H 11.255 11.249 11.556 11.558 11.577 11.557 2.69

Average 8.781 8.779 9.072 9.078 9.080 9.082 3.60

However, note that, in this case, the gain in the expected profits decreases. This can be explained by the

fact that the expected profits are much larger when demand increases but the swapping possibilities remain

the same. An interesting average gain of 2.86% is nevertheless observed for the instances with the largest

demands (demand level H).

Table 3 reports the average final expected profits, but this time by network. Recall that networks 1 to 3

span one day, networks 4 to 6 span two days, networks 7 and 8 span three days, and network 9 spans one

week. Again, we observe that the average expected profits increase, in general, with the number of scenarios.

Obviously, these profits are larger for larger networks. The last column indicates that the average gains
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Table 3: Average final expected profits (in M$) by network

Instances from FAP with FAP with stochastic demand Gain

network det. dem. 1 sc. 5 sc. 10 sc. 15 sc. 20 sc. (%)

1 3.064 3.057 3.177 3.173 3.178 3.178 4.03

2 3.454 3.453 3.572 3.569 3.580 3.581 3.83

3 3.779 3.771 3.912 3.905 3.901 3.907 3.43

4 6.598 6.603 6.860 6.874 6.880 6.879 4.46

5 7.444 7.439 7.692 7.700 7.698 7.702 3.71

6 7.052 7.075 7.290 7.305 7.292 7.304 3.82

7 10.224 10.212 10.543 10.543 10.546 10.547 3.40

8 11.146 11.159 11.514 11.516 11.525 11.534 3.66

9 26.267 26.239 27.088 27.114 27.117 27.110 3.31

yielded by considering a FAP model with 20 demand scenarios instead of a FAP with deterministic demand

tend to decrease with the network size. This can be explained by the proportion of flight legs that can be

re-fleeted which decreases with the network size (from around 20% for the one-day instances to around 14%

for the one-week instance).

Average total computational times (excluding the computation of the initial fleet assignment and the

evaluation of the solution with 100 different scenarios) for each model are reported in Tables 4 and 5. In the

first table, averages are given by demand structure and level. We observe that larger computational times

are often required for the FAP with deterministic demand compared to the other models. This is somewhat

surprising because there are more variables and constraints in the models with scenarios. However, the two-

leg sequences considered in these models impose additional restrictions that reduce the combinatorial aspect

of the problem and might help CPLEX to rapidly find good heuristic solutions. Note that this behavior

is not observed for all instances (see the Appendix). On the other hand, the results clearly show that the

total computational time increases, in general, with the number of scenarios considered. This is due to

a corresponding increase in the number of variables and constraints. For the instances derived from the

complete network, we also computed the percentage of time devoted to solving the passenger flow model

(not shown in the tables). On average, this percentage is 1.1% for the FAP with deterministic demand and

24.7% for the FAP model with 20 demand scenarios. Therefore, as could be expected, this percentage seems

proportional to the number of scenarios. Furthermore, from Table 4, we notice that the computational time is

impacted by the level of the demand. In general, instances with larger demands require larger computational
times because it becomes more difficult to assign the proper aircraft type to each flight leg (or leg sequence)

when aircraft capacity is almost reached on many legs.

Table 4: Average computational times (in seconds) by demand structure and level

Demand Demand FAP with FAP with stochastic demand

structure level det. dem. 1 sc. 5 sc. 10 sc. 15 sc. 20 sc.

I

L 4,564 3,138 2,226 2,236 3,994 5,506

M 7,027 5,527 3,628 3,489 4,472 8,261

H 9,350 9,856 8,788 8,066 9,667 9,644

II

L 8,332 5,392 3,709 3,911 5,856 7,426

M 8,233 9,892 5,767 8,757 11,127 10,647

H 10,250 11,077 9,088 12,325 11,590 14,423

III

L 7,990 8,805 5,334 5,460 6,941 8,299

M 14,848 13,831 6,686 6,650 8,395 13,351

H 16,470 14,501 11,248 10,456 14,542 15,599

Average 9,674 9,113 6,275 6,816 8,509 10,351
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Table 5: Average computational times (in seconds) by network

Instances from FAP with FAP with stochastic demand

network det. dem. 1 sc. 5 sc. 10 sc. 15 sc. 20 sc.

1 197 146 300 513 705 893

2 398 311 444 679 899 1,096

3 250 266 486 695 896 1,214

4 2,245 1,365 1,629 1,737 2,510 3,621

5 4,779 4,721 3,081 3,593 4,667 4,902

6 3,816 2,880 1,833 1,776 3,796 4,682

7 8,998 7,675 6,957 7,264 12,434 15,730

8 21,399 13,417 13,342 16,102 17,959 18,196

9 44,983 51,237 28,402 28,990 32,717 42,824

Table 5 presents average computational times by network. As expected, the average computational time

increases with the size of the instances for each model. We highlight that an average computational time of

almost 12 hours is necessary to solve the FAP model with 20 scenarios for the instances derived from the

complete network 9 with more than 5,000 legs. These times are much less than those reported by Sherali

and Zhu (2008) and Pilla et al. (2012) who considered smaller networks.

To complete our study, we computed the average number of flight legs re-fleeted in the solutions produced

by the models with scenarios for the network-9 instances. The averages are computed over the 100 scenarios

in Ŵ . For models involving 1, 5, 10, 15, and 20 demand scenarios, there is an average of 3.44, 3.48, 4.04, 4.60,

and 4.61% of the legs that are re-fleeted, respectively. This shows that considering more scenarios allows

more profitable re-fleeting possibilities and, in consequence, additional expected profits.

6 Conclusion

In this paper, we addressed the FAP with stochastic demand using a two-stage stochastic optimization model

with recourse. Once a planned fleet assignment is disclosed to the public, the possible recourse considered

consists of changing the aircraft type on certain leg sequences that are identified a priori. This is possible

only if there exist compatible leg sequences that can be involved in an aircraft swap that preserve aircraft

flow balance as well as crew schedule feasibility when the crew schedule is already known. Our computational

results show that the proposed solution approach can solve instances with more than 5,000 legs in acceptable

computation times (less than 12 hours on average). Furthermore, it has the potential to yield a significant

increase of the expected profits when our solutions are compared to those obtained by solving a FAP with

deterministic demand.

For future work, we envision to define a similar stochastic model that would not depend on a priori

identified leg sequences, but that would determine them as needed. The development of a solution approach

capable of handling a much larger set of scenarios would also be an interesting research avenue.

A Detailed results

In this appendix, we provide the final expected profits and the total computational times for all instances

grouped by network. There are two sets of tables. The first set (tables with an even number) presents the

final expected profits whereas the second set (tables with an odd number) provides the total computational

times.
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Table 6: Final expected profits (in M$) for the nine network-1 instances

Demand Demand FAP with FAP with stochastic demand Gain

structure level det. dem. 1 sc. 5 sc. 10 sc. 15 sc. 20 sc. (%)

I

L 1.944 1.952 2.052 2.032 2.042 2.043 5.08

M 2.951 2.965 3.089 3.055 3.073 3.085 4.54

H 3.792 3.796 3.943 3.926 3.953 3.936 3.79

II

L 2.110 2.134 2.253 2.265 2.260 2.267 7.45

M 3.144 3.115 3.232 3.231 3.235 3.228 2.67

H 3.995 3.979 4.088 4.097 4.103 4.097 2.57

III

L 2.258 2.239 2.363 2.367 2.352 2.366 4.79

M 3.284 3.258 3.370 3.371 3.378 3.369 2.60

H 4.096 4.079 4.199 4.216 4.205 4.209 2.76

Average 3.064 3.057 3.177 3.173 3.178 3.178 4.03

Table 7: Computational times (in seconds) for the nine network-1 instances

Demand Demand FAP with FAP with stochastic demand

structure level det. dem. 1 sc. 5 sc. 10 sc. 15 sc. 20 sc.

I

L 56 36 216 202 568 598

M 137 359 249 426 657 606

H 166 99 260 576 728 856

II

L 219 87 122 376 714 697

M 154 321 288 563 618 865

H 66 47 222 757 830 957

III

L 94 46 240 265 334 802

M 218 62 372 650 575 1,088

H 666 256 730 798 1,324 1,568

Average 197 146 300 513 705 893

Table 8: Final expected profits (in M$) for the nine network-2 instances

Demand Demand FAP with FAP with stochastic demand Gain

structure level det. dem. 1 sc. 5 sc. 10 sc. 15 sc. 20 sc. (%)

I

L 2.217 2.194 2.308 2.328 2.342 2.339 5.51

M 3.302 3.337 3.457 3.473 3.470 3.462 4.85

H 4.289 4.310 4.429 4.420 4.410 4.440 3.54

II

L 2.584 2.599 2.690 2.679 2.691 2.684 3.87

M 3.671 3.659 3.784 3.776 3.785 3.769 2.66

H 4.560 4.551 4.660 4.685 4.679 4.695 2.96

III

L 2.461 2.436 2.553 2.554 2.578 2.566 4.26

M 3.548 3.540 3.665 3.644 3.676 3.664 3.27

H 4.455 4.451 4.606 4.566 4.591 4.613 3.55

Average 3.454 3.453 3.572 3.569 3.580 3.581 3.83
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Table 9: Computational times (in seconds) for the nine network-2 instances

Demand Demand FAP with FAP with stochastic demand

structure level det. dem. 1 sc. 5 sc. 10 sc. 15 sc. 20 sc.

I

L 55 42 254 317 978 831

M 200 298 328 754 827 1,676

H 1,172 330 256 871 948 904

II

L 183 213 1,071 1,327 1,046 1,588

M 161 63 330 616 805 1,286

H 228 112 418 683 668 748

III

L 584 424 192 263 804 758

M 578 144 388 636 914 1,104

H 417 1,176 762 645 1,103 967

Average 398 311 444 679 899 1,096

Table 10: Final expected profits (in M$) for the nine network-3 instances

Demand Demand FAP with FAP with stochastic demand Gain

structure level det. dem. 1 sc. 5 sc. 10 sc. 15 sc. 20 sc. (%)

I

L 2.509 2.500 2.592 2.580 2.578 2.574 2.60

M 3.560 3.560 3.727 3.717 3.720 3.726 4.68

H 4.531 4.529 4.677 4.680 4.645 4.674 3.15

II

L 3.057 3.058 3.190 3.162 3.164 3.164 3.50

M 4.114 4.123 4.238 4.233 4.238 4.234 2.91

H 4.944 4.951 5.101 5.095 5.085 5.103 3.21

III

L 2.757 2.728 2.870 2.869 2.865 2.877 4.33

M 3.812 3.778 3.958 3.956 3.957 3.957 3.79

H 4.726 4.709 4.854 4.852 4.855 4.854 2.71

Average 3.779 3.771 3.912 3.905 3.901 3.907 3.43

Table 11: Computational times (in seconds) for the nine network-3 instances

Demand Demand FAP with FAP with stochastic demand

structure level det. dem. 1 sc. 5 sc. 10 sc. 15 sc. 20 sc.

I

L 52 64 270 326 697 480

M 264 99 507 390 944 1,024

H 659 407 756 935 1,276 1,514

II

L 43 46 370 951 773 1,246

M 59 58 201 406 519 1,189

H 509 151 747 1,044 814 1,151

III

L 50 77 657 781 1,117 1,512

M 409 1,010 396 661 907 1,164

H 209 480 472 761 1,021 1,642

Average 250 266 486 695 896 1,214
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Table 12: Final expected profits (in M$) for the nine network-4 instances

Demand Demand FAP with FAP with stochastic demand Gain

structure level det. dem. 1 sc. 5 sc. 10 sc. 15 sc. 20 sc. (%)

I

L 4.341 4.382 4.555 4.595 4.564 4.607 6.14

M 6.449 6.514 6.760 6.759 6.784 6.767 4.92

H 8.297 8.348 8.573 8.627 8.635 8.653 4.29

II

L 4.654 4.625 4.919 4.929 4.947 4.918 5.68

M 6.824 6.807 7.052 7.083 7.091 7.072 3.64

H 8.598 8.608 8.869 8.874 8.858 8.897 3.47

III

L 4.793 4.769 5.007 4.993 5.015 5.016 4.65

M 6.828 6.795 7.126 7.142 7.130 7.132 4.45

H 8.601 8.581 8.876 8.864 8.899 8.850 2.89

Average 6.598 6.603 6.860 6.874 6.880 6.879 4.46

Table 13: Computational times (in seconds) for the nine network-4 instances

Demand Demand FAP with FAP with stochastic demand

structure level det. dem. 1 sc. 5 sc. 10 sc. 15 sc. 20 sc.

I

L 794 254 426 770 1,055 1,891

M 2,017 302 500 887 1,097 1,964

H 2,009 1,578 1,543 1,351 1,572 3,021

II

L 252 459 537 1,305 1,521 2,500

M 382 800 1,168 3,713 2,218 5,142

H 638 2,695 2,630 1,628 5,806 8,064

III

L 4,024 1,110 642 1,285 1,681 2,886

M 5,950 2,471 1,404 3,462 2,003 2,163

H 4,140 2,618 5,811 1,231 5,635 4,960

Average 2,2245 1,365 1,629 1,737 2,510 3,621

Table 14: Final expected profits (in M$) for the nine network-5 instances

Demand Demand FAP with FAP with stochastic demand Gain

structure level det. dem. 1 sc. 5 sc. 10 sc. 15 sc. 20 sc. (%)

I

L 4.866 4.920 5.149 5.152 5.152 5.159 6.03

M 7.120 7.089 7.446 7.434 7.419 7.449 4.62

H 9.068 9.085 9.323 9.283 9.291 9.281 2.35

II

L 5.887 5.868 6.090 6.098 6.082 6.100 3.62

M 7.988 7.991 8.232 8.247 8.244 8.251 3.29

H 9.720 9.696 9.987 9.980 9.986 9.976 2.63

III

L 5.396 5.390 5.627 5.673 5.643 5.675 5.16

M 7.577 7.563 7.787 7.808 7.821 7.798 2.92

H 9.372 9.347 9.586 9.623 9.643 9.632 2.78

Average 7.444 7.439 7.692 7.700 7.698 7.702 3.71
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Table 15: Computational times (in seconds) for the nine network-5 instances

Demand Demand FAP with FAP with stochastic demand

structure level det. dem. 1 sc. 5 sc. 10 sc. 15 sc. 20 sc.

I

L 3,257 1,050 601 1,223 1,689 2,228

M 2,132 5,726 4,542 1,429 3,907 3,248

H 5,458 2,640 5,474 7,056 9,451 4,019

II

L 1,310 400 2,478 2,714 6,640 4,380

M 7,502 3,510 3,696 2,767 5,208 3,594

H 3,194 8,012 963 3,157 2,700 5,025

III

L 1,293 3,220 2,197 5,323 4,618 6,530

M 10,266 8,454 3,539 2,488 3,607 6,505

H 8,595 9,476 4,241 6,182 4,183 8,585

Average 4,779 4,721 3,081 3,593 4,667 4,902

Table 16: Final expected profits (in M$) for the nine network-6 instances

Demand Demand FAP with FAP with stochastic demand Gain

structure level det. dem. 1 sc. 5 sc. 10 sc. 15 sc. 20 sc. (%)

I

L 4.639 4.613 4.864 4.860 4.875 4.874 5.06

M 6.946 7.006 7.164 7.217 7.201 7.188 3.49

H 8.838 8.838 9.148 9.131 9.134 9.156 3.59

II

L 5.003 5.072 5.257 5.265 5.257 5.268 5.31

M 7.256 7.327 7.529 7.526 7.529 7.544 3.98

H 9.109 9.106 9.377 9.379 9.393 9.387 3.04

III

L 5.096 5.148 5.323 5.329 5.340 5.368 5.33

M 7.367 7.377 7.536 7.606 7.499 7.564 2.67

H 9.212 9.192 9.413 9.430 9.401 9.391 1.94

Average 7.052 7.075 7.290 7.305 7.292 7.304 3.82

Table 17: Computational times (in seconds) for the nine network-6 instances

Demand Demand FAP with FAP with stochastic demand

structure level det. dem. 1 sc. 5 sc. 10 sc. 15 sc. 20 sc.

I

L 2,437 2,613 991 1,882 5,379 4,395

M 3,044 2,601 1,745 1,107 2,671 3,038

H 4,896 2,991 1,906 3,957 7,493 5,341

II

L 3,922 2,846 648 993 1,332 2,395

M 4,464 2,845 1,235 1,508 2,419 2,772

H 2,849 3,852 1,871 1,364 1,810 4,672

III

L 1,236 899 3,472 1,562 4,641 3,187

M 5,642 703 3,648 1,796 2,538 9,286

H 5,850 6,571 985 1,814 5,882 7,054

Average 3,816 2,880 1,833 1,776 3,796 4,682
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Table 18: Final expected profits (in M$) for the nine network-7 instances

Demand Demand FAP with FAP with stochastic demand Gain

structure level det. dem. 1 sc. 5 sc. 10 sc. 15 sc. 20 sc. (%)

I

L 6.679 6.770 7.121 7.127 7.108 7.111 6.47

M 10.053 10.055 10.472 10.481 10.445 10.444 3.89

H 12.880 12.941 13.303 13.254 13.272 13.308 3.33

II

L 7.073 7.122 7.338 7.326 7.427 7.406 4.70

M 10.409 10.400 10.658 10.664 10.677 10.668 2.49

H 13.168 13.183 13.487 13.502 13.473 13.477 2.35

III

L 7.546 7.417 7.743 7.791 7.777 7.771 2.98

M 10.792 10.650 11.024 11.032 11.032 11.063 2.51

H 13.416 13.368 13.741 13.710 13.706 13.671 1.91

Average 10.224 10.212 10.543 10.543 10.546 10.547 3.40

Table 19: Computational times (in seconds) for the nine network-7 instances

Demand Demand FAP with FAP with stochastic demand

structure level det. dem. 1 sc. 5 sc. 10 sc. 15 sc. 20 sc.

I

L 8,047 14,779 8,146 3,144 7,089 12,800

M 2,027 1,656 3,658 6,173 7,199 16,616

H 9,077 8,420 10,955 4,087 6,227 10,212

II

L 14,267 18,648 11,698 9,078 14,335 23,111

M 7,031 4,629 3,476 5,113 13,922 4,529

H 10,791 4,479 5,751 8,747 7,929 11,991

III

L 8,324 3,652 9,384 11,477 29,806 29,171

M 5,256 5,829 5,702 13,414 14,965 24,579

H 16,161 6,979 3,839 4,144 10,438 8,561

Average 8,998 7,675 6,957 7,264 12,434 15,730

Table 20: Final expected profits (in M$) for the nine network-8 instances

Demand Demand FAP with FAP with stochastic demand Gain

structure level det. dem. 1 sc. 5 sc. 10 sc. 15 sc. 20 sc. (%)

I

L 7.365 7.354 7.715 7.741 7.734 7.762 5.40

M 10.689 10.723 11.144 11.142 11.190 11.186 4.65

H 13.615 13.658 13.976 13.990 14.029 14.026 3.02

II

L 8.622 8.632 8.896 8.940 8.916 8.936 3.64

M 11.852 11.809 12.168 12.144 12.152 12.153 2.54

H 14.428 14.453 14.786 14.795 14.779 14.803 2.60

III

L 8.197 8.199 8.588 8.559 8.560 8.566 4.51

M 11.384 11.429 11.797 11.795 11.784 11.817 3.81

H 14.159 14.179 14.555 14.540 14.579 14.554 2.79

Average 11.146 11.159 11.514 11.516 11.525 11.534 3.66
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Table 21: Computational times (in seconds) for the nine network-8 instances

Demand Demand FAP with FAP with stochastic demand

structure level det. dem. 1 sc. 5 sc. 10 sc. 15 sc. 20 sc.

I

L 13,341 3,544 6,270 7,978 12,153 15,264

M 24,523 3,370 10,151 8,908 8,975 13,444

H 24,016 21,559 14,237 15,652 15,814 9,504

II

L 17,564 9,666 8,727 11,030 15,165 15,470

M 8,737 12,722 22,454 29,707 28,280 30,321

H 26,870 13,330 19,516 24,084 25,300 25,862

III

L 20,954 17,923 2,731 7,930 3,350 5,232

M 27,499 17,512 10,778 14,206 20,790 16,453

H 29,090 21,128 25,210 25,421 31,808 32,217

Average 21,399 13,417 13,342 16,102 17,959 18,196

Table 22: Final expected profits (in M$) for the nine network-9 instances

Demand Demand FAP with FAP with stochastic demand Gain

structure level det. dem. 1 sc. 5 sc. 10 sc. 15 sc. 20 sc. (%)

I

L 18.076 17.983 18.775 18.795 18.779 18.785 3.92

M 25.486 25.354 26.467 26.494 26.424 26.445 3.76

H 32.088 32.010 32.912 32.923 32.939 33.007 2.86

II

L 19.852 19.807 20.543 20.605 20.616 20.616 3.85

M 27.285 27.199 28.056 28.076 28.092 28.064 2.86

H 33.487 33.538 34.337 34.257 34.321 34.339 2.54

III

L 19.781 19.742 20.524 20.575 20.497 20.544 3.86

M 27.086 27.188 28.010 28.074 28.067 27.951 3.19

H 33.259 33.331 34.172 34.224 34.318 34.243 2.96

Average 26.267 26.239 27.088 27.114 27.117 27.110 3.31

Table 23: Computational times (in seconds) for the nine network-9 instances

Demand Demand FAP with FAP with stochastic demand

structure level det. dem. 1 sc. 5 sc. 10 sc. 15 sc. 20 sc.

I

L 13,039 5,861 2,861 4,283 6,339 11,065

M 28,899 35,330 10,971 11,324 13,967 32,737

H 36,697 50,680 43,706 38,105 43,498 51,425

II

L 37,231 16,159 7,730 7,424 11,175 15,449

M 45,611 64,076 19,051 34,417 46,156 46,130

H 47,109 67,016 49,678 69,461 58,450 71,334

III

L 35,350 51,894 28,495 20,255 16,117 24,616

M 77,811 88,290 33,946 22,534 29,259 57,817

H 83,102 81,829 59,179 53,105 69,488 74,840

Average 44,983 51,237 28,402 28,990 32,717 42,824
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