
Les Cahiers du GERAD ISSN: 0711–2440

Bayesian estimation of disease prevalence
from continuous diagnostic test data
using Polya tree distributions

M. Kaouache, B. MacGibbon,
L. Joseph

G–2015–125

November 2015
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Abstract: Inferences about the prevalence of a given disease or condition can be drawn from results of
a diagnostic test applied to a sample from the target population. For example, knowledge about disease
clustering in tuberculosis (TB) can be estimated from the nearest genetic distance (NGD), a continuous test
measuring the relatedness of TB strains. Most diagnostic tests, including the NGD test for TB clustering,
are imperfect, which for continuous tests implies overlap in the measure between positive and negative cases.
The resulting misclassification errors must be taken into account when estimating the prevalence. In creating
models for continuous test results, one can use either a standard parametric form, such as normally distributed
data through a bi-normal model, or attempt to fit a nonparametric model that makes fewer distributional
assumptions. Nonparametric models include those based on Dirichlet Process priors and Polya trees. While
Polya tree models have been applied to continuous diagnostic testing data, their properties in this context
concerning prevalence estimation have not been rigorously examined. We extend this past work in three
directions. First, we use simulations to learn about the performance of the model in practice. Second, we
derive a method to calculate the Bayes Factor to select between a parametric and a nonparametric model.
Third, we investigate the dependence of a fixed partition Polya tree model on the particular partition selected
by comparison of the results with a random partition Polya tree model. Finally, we apply our methods to
estimate the prevalence of TB clustering from NGD data.

Key Words: Bayesian nonparametric methods, bi-normal model, continuous diagnostic test, misclassifica-
tion, Polya tree, prevalence.

Résumé : Les inférences sur la prédominance d’une maladie ou d’une condition donnée sont déduites parfois
des résultats de tests de diagnostic continus. Par exemple, de l’information sur la présence de grappes en
tuberculose (TB) peut être estimée à partir de la distance génétique la plus proche (NGD), un test mesurant
la parenté de souches de TB. La plupart des tests de diagnostic sont imparfaits, ce qui se traduit par un
chevauchement entre les mesures provenant de sujets dont le vrai statut est positif et celles provenant de sujets
dont le vrai statut est négatif. Les erreurs de classification qui en résultent doivent être prises en compte
quand on estime la prédominance. En formulant des modèles pour les tests de diagnostic, on peut soit utiliser
un modèle paramétrique standard tel qu’un modèle bi-normal, qui suppose que les données suivent une loi
normale, soit considérer un modèle non paramétrique, qui offre plus de flexibilité en imposant moins de
contraintes sur la forme des lois de probabilité. Parmi ces modèles non paramétriques, on peut nommer ceux
qui reposent sur le processus de Dirichlet et ceux qui reposent sur le processus d’arbres de Pólya. Bien que les
modèles d’arbres de Pólya aient été utilisés pour modéliser les tests de diagnostic continus, leurs propriétés
dans le contexte de l’estimation de la prédominance n’ont pas été rigoureusement étudiées. Nous étendons ces
travaux passés dans trois directions. Premièrement, nous utilisons des simulations pour connâıtre l’efficacité
du modèle en pratique. Deuxièmement, nous établissons une méthode pour calculer les facteurs de Bayes
pour fin de sélection entre modèle paramétrique et modèle non paramétrique. Troisièmement, nous étudions
la dépendance d’un modèle d’arbres de Pólya, où la partition est fixe, sur la partition particulière sélectionnée,
en le comparant à un modèle dont la partition est aléatoire. Finalement nous appliquons nos méthodes à
l’estimation de la prédominance de formation de grappes en TB en utilisant des données NDG.
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1 Introduction

In tuberculosis (TB) epidemiology it is of interest to estimate the prevalence of clustering defined by the

proportion of recently transmitted cases as opposed to cases that are reactivations of previously acquired

infection. To date there is no gold standard test to definitively determine whether a case is clustered or

not, but several imperfect diagnostic measures have been devised. One marker of recent transmission is a

continuous measure of genetic relatedness, the nearest genetic distance or NGD [1]. Lower values of NGD

are more likely to be clustered compared to higher values. While the probability density function of NGD

values from recently transmitted cases is located to the left of the density from the reactivated cases, some

overlap is expected. Furthermore, NGD data tend to be skewed, so normality assumptions may not hold.

Given the possibility of non-normality of NGD data, what statistical model should be applied to estimate

the prevalence of TB clustering, and how should this model be selected? Once a model is chosen, given the

imperfect nature of the NGD test, how well can it be expected to perform in estimating the prevalence of

clustering?

Analysis of diagnostic test data in the absence of a gold standard is usually done by latent class models.

Frequentist latent class models are reviewed by Goetghebeur et al. [2] and Rutjes et al. [3] , although if data

from only a single diagnostic test is available the problem is non-identifiable, and Bayesian methods may be

preferable [4,5]. The non-normality can be handled by non-parametric methods, and indeed several Bayesian

nonparametric latent class models have been proposed. Ladouceur et al. [6] used approximate Dirichlet

process priors [7], extending the bi-normal model of Scott et al. [8]. Dirichlet process models appear to work

well in practice, but are problematic theoretically since they select a discrete probability distribution for test

results with probability one. Conversely, Polya tree priors result in a continuous probability distribution.

Branscum et al. Branscum et al. [9] used a mixture of finite Polya tree priors in the diagnostic testing setting

but their model requires additional diagnostic tests for inferences to be made on the prevalence.

Here we propose to study a Bayesian finite Polya tree model for continuous diagnostic test data with no

gold standard, focusing on the case where no additional diagnostic test data or other information is available.

We extend past work on Bayesian nonparametric latent class models in three directions. First, we derive a

method to calculate the Bayes Factor to select between a parametric and a nonparametric model. Second,

we use simulations to learn about the performance of the model in practice, comparing inferences from

Polya trees to those assuming normality, both when normality holds and when data come from a different

distribution. Third, we investigate the dependence of a fixed partition Polya tree model on the particular

partition selected by comparison of the results to those from a random partition Polya tree model [10]. This

is of interest because some have criticized Polya tree models for the need to select a single partition, upon

which the smoothness of the resulting density estimate can depend.

Section 2 presents our Bayesian Polya tree model for continuous diagnostic tests, including the likelihood

function and prior and posterior distributions. This section also discusses a model based on randomized

Polya trees. Results from our simulation study investigating the properties of our model and comparisons

to the bi-normal parametric model are given in Section 3. These simulations include examples of prototypic

scenarios under which diagnostic testing data may arise. In Section 4, we use Bayes factors computed via

marginal likelihood to select between the parametric and nonparametric models. In Section 5 we return to

the analysis of NGD data for TB clustering in Montreal, Canada. Section 6 concludes the paper with a

discussion.

2 Bayesian finite Polya tree models for continuous diagnostic test data

We first describe a standard Polya tree model with a fixed partition, followed by the extension to random

partition Polya trees.

2.1 A fixed partition Polya tree model

Polya trees were introduced by Freedman [11], Fabius [12] and Ferguson [13], and further developed by Lavine

[14,15] and Mauldin et al. [16]. Polya trees are generalizations of Dirichlet processes that can place positive
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mass on the set of absolutely continuous distributions, constructed by recursive binary partitioning of the

sample space into finer and finer disjoint sets.

A Polya tree distribution, F , on a sample space Ω can be defined as follows. We start by constructing a

recursive tree of partitions of Ω. At the top of the tree (level 0) is the entire space Ω, followed by level 1 which

consists of B0 and B1, with 0 denoting the left interval and 1 the right side. While in general these can be

any two disjoint intervals, in this paper we use the canonical construction [13]. Let G be a fixed parametric

base distribution, for example a normal distribution, and then choose B0 and B1 such that G(B0) = G(B1).

Continuing to level 2, split B0 into B00 and B01 such that G(B00) = G(B01), and similarly split B1 into B10

and B11, such that G(B10) = G(B11). The disjoint intervals B00, B01, B10, B11, form the partition of Ω at

level 2, and so on to deeper levels of the tree.

Any interval at an arbitrary level k can be uniquely identified from a sequence of 0’s and 1’s of length

k, defining the unique path from the top of the tree to level k. Let ε = ε1...εk be the binary sequence that

identifies the interval Bε1...εk at a certain level k of the tree. We define the conditional probability, also called

the branch probability, Yε1...εk = F (Bε1...εk0|Bε1...εk) that, at level k + 1, we end-up in Bε1...εk0 (1-Yε1...εk is

then the probability of ending up in Bε1...εk1), given that at level k we were in Bε1...εk .

We complete the definition of the Poly tree by assuming that the branch probabilities are independent

and follow beta distributions with fixed parameters. At level k = 0, let YØ = F (B0) so that F (B1) = 1−YØ,

and assume YØ ∼ Beta(α0, α1). For k ≥ 1, and conditional on Bε1...εk , the mass Yε1...εk given by F to

Bε1...εk0 follows a Beta(αε1...εk0, αε1...εk1) density. Let α0 = α1 = c and for k ≥ 1, we let αε1...εk0 =

αε1...εk1 = c(k + 1)
2
, where c is a weight parameter, which implies an absolutely continuous distribution with

probability 1 [13]. F is then centered about the base distribution G, and the weight parameter c represents

the strength in our belief that the data are in fact generated from the base distribution G, with higher values

of c indicating stronger belief.

In theory, Polya trees have an infinite number of parameters, approximated in practice by finite Polya

trees which are specified only up to a certain level, denoted here by K. We use the notation F ∼ PTK(G, c)

to denote that F is distributed according to a finite Polya tree prior with base distribution G and a weight

parameter equal to c.

We now embed Polya trees within our diagnostic testing model. Let π be the prevalence of a disease or

medical condition in a certain population. Suppose that we apply a continuous diagnostic test to a random

sample of n individuals from this population, and let X = (x1, ..., xn) be the observed test outcomes. A

subset of these n individuals belongs to the diseased population (the D+ group) and the rest are disease
free (the D− group), although the true disease status for each individual is unknown. Let Z = (z1, ..., zn)

be latent data representing the unknown disease status for each individual, so that zi = 1 if the individual

has the disease and zi = 0 otherwise. Let F0 (F1) be the cumulative distribution function of test results for

the D− (D+) group. The model is bi-normal when F0 and F1 are assumed to be normally distributed, and

a nonparametric model arises when F0 and F1 are distributed according to Polya trees, the latter denoted

as xi|zi ∼ Fzi and Fj ∼ PTK(Gj , c), j=0,1. Let Y0 and Y1 denote the branch probabilities associated with

F0 and F1, respectively. Further, let G0 ∼ N(µ0, σ
2
0) and G1 ∼ N(µ1, σ

2
1) be the base densities, where

µ1, σ
2
1 , µ0, σ

2
0 are selected according to prior information about F0 and F1.

Prior densities are also required for the branch probabilities, which are given beta distributions with

parameters determined by a weight c. For simplicity we assume the same value of c for both F0 and F1. The

set of prior distributions is completed by setting a beta (a,b) prior over the range [0, 1] for the prevalence

π. In this paper we select a = b = 1, the low information because it is the main parameter of interest to

estimate. Of course, other choices of prior densities can be used as appropriate in any given problem.

Conditional on being diseased (disease free), the contribution of a data point xi to the likelihood is equal to

the re-normalized density function of the base distribution G1 (G0) restricted to the element of the partition,

B1
εi1 ...εiK

(B0
εi0 ...εiK

) at the lowest level K, associated with F1 (F0) and containing xi, multiplied by all the

branch probabilities leading to B1
εi1 ...εiK

(B0
εi0 ...εiK

). The full likelihood function of the observed and latent
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data can be written as:

f(x1, ..., xn, z1, ..., zn|π,Y1,Y0) =

n∏
i=1

(πf1(xi))
zi

n∏
i=1

((1− π)f0(xi))
1−zi , (1)

where

fj(xi) =
gj(xi)

Gj(B
j
εi1 ...εiK

)

K∏
k=1

(Y jεi1 ...εik−1
)
1−εik (1− Y jεi1 ...εik−1

)
εik , j = 0, 1. (2)

The parameters εi1:k = εi1 ...εik , εij = 0, 1 for j = 1, ..., k trace the unique path followed by the data

point xi down the tree to level k, and g0 and g1 are, respectively, the probability densities of the normal

base distributions G0 and G1. There are two different paths associated with one single data point, one with

respect to the D+ partition and the other with respect to the D− partition. To avoid cumbersome notation,

we use the same εi1:k to denote the two different paths, easily distinguishable from their context.

The joint posterior distribution over all parameters is obtained from Bayes Theorem by multiplying the

likelihood (1) by the prior distributions. While there is no closed form formula for this posterior density,

the Gibbs sampler can be used. This requires the full conditional density for each parameter, which we now

describe.

Conditional on the branch probabilities (Y0,Y1) and π, the true latent disease status zi is, up to a

normalizing constant, a posteriori equal to 1 with probability πf1(xi) and equal to 0 with probability (1 −
π)f0(xi), where f0 and f1 are the Polya tree densities given by (2). Thus zi follows a Bernoulli with parameter

p = πf1(xi)
πf1(xi)+(1−π)f0(xi)

. Conditional on π and the zi’s, the full conditional densities of the branch probabilities

are also easily derived by noting that every time a data point with zi = 0 falls in a certain interval of the

partition at level k indexed by the binary sequence (of length k) ε1...εk−10, it makes a contribution of size

Y 0
ε1...εk−1

to the likelihood. Conversely, every time that data point falls in the interval indexed by the binary

sequence ε1...εk−11 it makes a contribution to the likelihood of size 1−Y 0
ε1...εk−1

. Since the prior distribution

of Y 0
εi1 ...εik−1

is Beta(ck2, ck2), its full conditional posterior density is Beta(ck2 +nε1...εk−10, ck
2 +nε1...εk−11),

where nε1...εk−10 and nε1...εk−10 are the number of data points with zi = 0 falling in the intervals indexed

respectively by ε1...εk−10 and ε1...εk−11. The full conditional density of Y 1
ε1...εk−1

is similarly obtained. The

full conditional density of π can also easily be obtained as a Beta(a + n1, b + n0), where n0 and n1 are the

number of data points with zi = 0 and zi = 1 respectively.

As usual, the Gibbs sampler selects random values from the above full conditional densities in cyclic

fashion, and the output used to approximate the marginal posterior densities across all parameters.

2.2 Randomized Polya tree models

One of the main drawbacks to Polya trees is the dependence of final inferences on the chosen partition.

Branscum et al. [9] proposed mixtures of Polya trees to avoid this problem, which employ prior densities

rather than fixed values for the means and standard deviations of the base distributions. While this can

work well when data from multiple tests are available, poorer inferences can result when data from only a

single test is applied. This is because allowing the base distributions to be moved around may cause the

estimated D+ and D− distributions to wander too far from their respective true distributions, especially

when the true densities have appreciable overlap. By fixing the base distributions of D+ and D+, stronger

prior information is put on the location of the true distributions within the diseased and the non-diseased

population, while allowing for their shapes to be determined by the data, but this creates discontinuities at

the fixed partition endpoints.

To smooth out these discontinuities, Paddock et al. [10] proposed randomized Polya tree models that

add randomness to the location of the partition endpoints. Under this random partition model, each data

point xi follows a random distribution F0i if disease free, and a random distribution F1i if diseased. F0i

and F1i are conditional on, and can be considered as, random perturbations on the quantile scale of F0 and
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F1 respectively. Each of F0 and F1 are random probabilities distributed according to distinct Polya tree

distributions.

Paddock et al. [10] illustrated this strategy using the special case where the sample space is the interval

(0,1], but generalization to any space Ω on the real line is straightforward. Let G0 and G1 be the base

distributions of F0 and F1, respectively. At each level j of the tree a new parameter βij is introduced. These

beta parameters will determine the partition endpoints at level j associated with the data point i. The βij
are, a priori, randomly generated in a small interval (0.5± τ), where τ is a constant generally fixed between

0.01 and 0.1. At level 1, for example, instead of splitting the sample space Ω into B0
0 and B0

1 such that

G0(B0
0)=G1(B0

1) = 0.5, as would be done for a simple Polya tree, we split Ω into B0i
0 and B0i

1 such that

G0(B0i
0 )=βi1 and G0(B0i

1 )=1-βi1.

A priori, the beta parameters are uniformly distributed over a small interval centered at 0.5. Other than

the additional step to sample {β0
i1, ..., β

0
iK}ni=1 and {β1

i1, ..., β
1
iK}ni=1 from their posterior distributions using

a Metropolis-Hastings algorithm [10], the Gibbs sampler can proceed as under a fixed partition model. Note

that within each iteration of the MCMC algorithm, the partition endpoints change and in order to determine

the beta marginal posterior densities, the number of data points with zi = 0 (with zi = 1) falling within each

interval of the D− (D+) partition at each level of the tree needs to be recalculated, rendering these random

partition models more computationally intensive compared to fixed partition models.

3 Evaluating the performance of latent class Polya tree models

To evaluate the accuracy and precision with which Polya tree models can estimate the prevalence of a given

condition from continuous test data, we conducted a simulation study under two main sets of conditions. In

the first set of simulations the data are assumed to arise from two normal distributions. The flexibility of a

nonparametric model is thus not needed, and the simulations will serve to quantify any disadvantages of using

a nonparametric model when the data arise from a standard bi-normal model. In the second set of simulations

the test results from both the diseased and the non-diseased populations will be non-normally distributed.

Under these conditions the nonparametric model is expected to perform better than the parametric model,

and we can thus estimate the degree to which estimation is improved.

3.1 Simulated data sets

For both sets of simulations we chose a relatively low degree of overlap, corresponding to an area under the

ROC curve of 0.9. We first experimented with larger overlaps and realized that without a high degree of a

priori information to distinguish between the diseased and the non-diseased populations the prevalence could

not be accurately estimated. Similar findings using Dirichlet priors were reported by Ladouceur et al. [6]. We

simulated data with both moderate (n = 1000) and large (n = 5000) sample sizes. We avoid smaller sample

sizes which are generally insufficient for accurate prevalence estimation in the absence of a gold standard [17].

In the first set of simulations, data are simulated from a bi-normal model where the true density within the

D+ population is N(0, 1) and that within the D− population is N(2, 1). In the second set of simulations, we

simulate the D+ results from a chi-squared distribution with 3 degrees of freedom and the D− results from

an even mixture of N(5, 1.5) and N(11, 1.5). These densities are depicted in Figure 1, and were chosen to be

far from normality. A total of 200 data sets were simulated, and each dataset was fitted by both parametric

and nonparametric models. We next present the prior densities used.

3.2 Prior distributions

Under a parametric model, test results within the diseased and the disease free population are assumed to be

normally distributed and prior distributions are specified on their respective means and standard deviations.

As discussed earlier, the Polya tree priors here will be centered around a base probability distribution G

which is also assumed to be normal, with the parameter c representing the strength of our prior belief that

the data are in fact normally distributed.
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Figure 1: True probability densities of the diseased (dashed) and non-diseased (solid) populations used in the
first set of simulations (left) and true probability densities of the diseased (dashed) and non-diseased (solid)
populations used in the second set of simulations (tight).

We consider two sets of priors. The first set is centered about the true means and variances, representing

the best case scenario where accurate prior information is available. The second set of priors are off-centered,

that is, they are no longer centered on their true values. The exact values used are summarized in Table 1.

For the parametric models the centered priors are elicited by putting normal prior distributions on the means

µ0 and µ1 and uniform prior distributions on the standard deviations σ0 and σ1, centered and concentrated

around their true values.

Table 1: Prior distributions across all simulations for both parametric and nonparametric models.

First set of simulations. Test data are normally distributed.
True D+ ∼ N(0, 1) and true D− ∼ N(2, 1)

First set of priors (centered) Second set of priors (not centered)

Parametric model Nonparametric model Parametric model Nonparametric model

µ1 ∼ N(0, 1) g1 ∼ N(0, 1) µ1 ∼ N(−1, 1) g1 ∼ N(−1, 1)
µ0 ∼ N(2, 1) g0 ∼ N(2, 1) µ0 ∼ N(3, 1) g0 ∼ N(3, 1)
σ1 ∼ unif(0.8, 1.2) c = 5 σ1 ∼ unif(0.8, 1.2) c = 5
σ0 ∼ unif(0.8, 1.2) c = 10 σ0 ∼ unif(0.8, 1.2) c = 10

c = 100 c = 100

Second set of simulations. Test data are not normally distributed.
True D+ ∼ χ2

3 and true D− ∼ 0.5N(5, 1.5) + 0.5N(11, 1.5)

First set of priors (centered) Second set of priors (not centered)

Parametric model Nonparametric model Parametric model Nonparametric model

µ1 ∼ N(2.366, 0.25) g1 ∼ N(2.366,
√

6) µ1 ∼ N(1.366, 0.25) g1 ∼ N(1.366,
√

6)
µ0 ∼ N(8, 0.25) g0 ∼ N(8, 3.35) µ0 ∼ N(9, 0.25) g0 ∼ N(9, 3.35)
σ1 ∼ unif(2.25, 2.65) c = 5 σ1 ∼ unif(2.25, 2.65) c = 5
σ0 ∼ unif(3.15, 3.55) c = 10 σ0 ∼ unif(3.15, 3.55) c = 10

c = 100 c = 100

The centered priors for the finite Polya tree models, Fj ∼ PT5(N(Gj , c), j = 0, 1 consist of a normal base

distribution centered at the true means and standard deviations of the data. Three values of c are used, 5,

10 and 100. The non-centered priors are obtained by shifting the location of the normal prior distributions

for µ0 and µ1 one unit to the left and to the right, respectively. The off-centered ones were handled in a

similar fashion. For the Polya tree models, all programming was carried out in SAS (Version 9.2, Cary NC).
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3.3 Results from simulations

Our main focus will be on estimating the prevalence parameter π, but we will also report on the posterior

predictive densities of the test results. Posterior distributions were generated using the Gibbs sampler with

100,000 posterior iterations after a burn-in of 5000. Results for the prevalence are presented in terms of

bias (defined as the average median estimates over the 200 simulated data sets minus the true value of the

parameter), the average length of the 95% credible intervals (CrI), and the coverage probabilities, estimated

as the proportion of the 200 credible intervals containing the true prevalence value.

Table 2 summarizes the results when estimating the prevalence under the first set of conditions, that

is, when the data are simulated from normal densities. Using centered priors, both the parametric and the

nonparametric models estimate the prevalence with high accuracy. The nonparametric models generally

offer greater precision than the parametric model, with precision increasing with the value of c and with the

sample size. Coverage probabilities are close to one. The prevalence is still estimated with low bias across

all models for the second set of priors, although bias is increased compared to estimates from the first set of

priors. Credible intervals are narrower but coverage probabilities are below the nominal level value of 95%.

Therefore, the nonparametric models offer greater precision at the expense of lower coverage, especially with

n = 5000 where the highest coverage is only equal to 0.425.

Table 2: Bias, average length and coverage probabilities of the 95% Credible intervals across all simulations,
based on 200 simulated data sets.

n=1000 n=5000

Bias Length of Coverage of Bias Length of Coverage of
95% CrI 95% CrI 95% CrI 95% CrI

First set of priors (centered)

Data are simulated
from two normal
distributions as
described in
Table 1

Parametric 0.003 0.329 0.995 0.017 0.221 1
Nonparametric

c=5 0.003 0.154 1.000 0.002 0.124 1
c=10 0.004 0.124 1.000 0.003 0.093 1
c=100 0.001 0.084 0.995 0.001 0.048 1

Second set of priors (not centered)

Parametric 0.024 0.339 0.995 0.019 0.227 0.925
Nonparametric

c=5 0.020 0.082 0.865 0.023 0.048 0.400
c=10 0.019 0.076 0.915 0.023 0.042 0.375
c=100 0.021 0.067 0.855 0.017 0.032 0.425

First set of priors (centered)

Data are simulated
from two
non-normal
distributions as
described in
Table 1

Parametric 0.143 0.122 0 0.223 0.046 0
Nonparametric

c=5 0.066 0.294 0.94 0.174 0.140 0
c=10 0.040 0.237 0.99 0.115 0.137 0.06
c=100 0.019 0.113 0.98 0.038 0.064 0.29

Second set of priors (not centered)

Parametric 0.168 0.109 0 0.227 0.046 0
Nonparametric

c=5 0.060 0.219 0.86 0.162 0.147 0
c=10 0.052 0.178 0.84 0.121 0.135 0.05
c=100 0.034 0.095 0.74 0.039 0.064 0.34

Table 2 also summarizes results when estimating the prevalence when data are simulated from non-

normal densities. Large bias and very low coverages render the use of the parametric model a very poor

choice compared to the nonparametric models. When n = 1000, the nonparametric models have coverage

probabilities ranging from 0.94 to 0.99. Bias and precision are acceptable under the nonparametric model

for n = 1000, with the smallest bias, 0.019, and the smallest interval width, 0.113, obtained when c = 100.

For a sample size of 5000, credible interval widths decrease under the nonparametric models, resulting in

very poor coverage probabilities, ranging from 0 to 0.29. Despite the low coverage probabilities, the bias
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when c = 100 is only 0.038. Similar bias is obtained under the second set of priors with slightly higher

precision resulting in coverage probabilities ranging from 0.74 to 0.86 for n = 1000. For N = 5000 and with

c = 5 and c = 10, the nonparametric models performed poorly because they are too flexible, with insufficient

information from the priors. Sample size has to be taken into account when selecting a c parameter that

achieves a trade-off between flexibility and identifiability is required, meaning in practice that small values

of c should not generally be used with large sample sizes.

3.4 Randomized Polya trees: A simulated example

As an illustrative example of the use of randomized Polya trees, we simulated one data set, and compared

results from a randomized Polya tree to that from a fixed Polya tree. This dataset was simulated under the

conditions from the second set of simulations described above (Figure 1). We used the centered set of priors

from Table 2 and a sample size of 1000. We used two values for the smoothing parameter in the randomized

Polya tree model, τ = 0.01 and 0.05.

Prevalence estimates (95% CrI) from a simple Polya tree was 0.223 (0.113, 0.331). The randomized Polya

tree model estimates were 0.229 (0.122, 0.353) for τ = 0.01 and 0.238 (0.105, 0.373) for τ = 0.05. We note

very similar point estimates and slightly larger CrI with the randomized Polya tree model comperd to the

non-randomized model, with CrI width increasing with τ . The posterior predictive densities are presented in

Figure 2. The posterior predictive densities are relatively close to the true densities, and as expected, there

was additional smoothness with the randomized Polya tree model.

Figure 2: D+ and D− posterior predictive density estimates under a fixed (left) and a randomized (right)
Polya tree model. In both cases, the first set of priors with c = 10, as described in Table 2, were used.
Dashed and dotted curves represent, respectively, the true D+ and D− densities. Solid blue and black lines
represent, respectively, the estimated D+ and D− test result densities.

4 Comparing the performance of parametric to nonparametric models
using Bayes Factors

In any given analysis of continuous diagnostic testing data, one might need to choose between a parametric

and non-parametric model. The choice can be important, since as our simulations have shown, results can

substantially differ between models. We now demonstrate how Bayes Factors can be calculated to aid in this

decision.

Suppose that we would like to compare two plausible models, M1 and M2. The Bayes factor [18] is defined

as the ratio of the posterior to prior odds of M1 compared to M2. When the two models are equally probable

a priori, the Bayes factor reduces to the ratio of two marginal likelihoods. Many Monte Carlo methods

for computing a marginal likelihood have appeared in the literature. The approach of Chib [19] uses the
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output from the Gibbs sampler. An extension of Chib’s method that uses the Markov chain Monte Carlo

(MCMC) output produced by the Metropolis-Hastings algorithm has been presented by Chib and Jeliazkov

[20]. Chen and Shao [21] used ratio importance sampling and Gelman and Meng [22] used path sampling for

this problem.

Chen [21] proposed a new Monte Carlo method for computing a marginal likelihood in the presence of

latent data from a single (MCMC) run using samples from the joint posterior distribution. Accommodating

latent data is important here, since the unknown disease status for each subject is a latent variable in our

diagnostic testing context. Chen’s method does not require the specific structure or the details of the MCMC

sampling algorithm to be known, and so is widely applicable.

Let X = (x1, ..., xn) be the observed data, m(X) =
∫
f(X,Z|θ)f(θ)dθdZ, the marginal likelihood to be

calculated, and let L(θ∗|X) =
∫
f(X,Z|θ∗)dZ. The point θ∗ is in theory arbitrary, but for efficiency should

be chosen to be a point of high posterior density. According to the method of Chen [21], given a random

sample of size M , {θj , Zj = (z1, ..., zn)j , j = 1, ...,M} from the joint posterior distribution f(θ, Z|X), the

log-marginal likelihood can be estimated as

logm(X) = logL(θ∗|X)− log

 1

M

M∑
j=1

f(θ∗|Zj , X)

f(θj |Zj , X)

 . (3)

4.1 Marginal likelihood under a parametric model

According to (3), application of Chen’s method requires a closed form expression for the posterior density of

θ = (µ0, µ1, σ0, σ1, π) given the latent data. This condition is not satisfied here, but we know that in a normal

model with fixed variance the mean has a closed form density [23]. Therefore, the marginal likelihood can

be obtained by conditioning on (σ0, σ1) and then averaging over the prior density of (σ0, σ1). In order to ap-

ply Chen’s method to calculate m(X|σ0, σ1), it remains to calculate the integral L(µ∗0, µ
∗
1, π
∗|σ0, σ1, X),

since the closed form density f(µ0, µ1, π|σ0, σ1, Z,X) is available. Since σ0 and σ1 are held fixed here,

L(µ∗0, µ
∗
1, π
∗|σ0, σ1, X) can be calculated analytically as

L(µ∗0, µ
∗
1, π
∗|σ0, σ1, X) =

n∏
i=1

{∫
(πf1(xi))

zi((1− π)f0(xi))
1−zidzi

}

=

n∏
i=1

Ebernouli(zi|π)

{
(f1(xi))

zi(f0(xi))
1−zi

}
=

n∏
i=1

πf1(xi) + (1− π)f0(xi). (4)

4.2 Marginal likelihood under a nonparametric model

Recall that under a Polya tree model the vector of parameters consists of θ = (π,Y1,Y0), where π is the

prevalence and Yj denotes the set of branch probabilities associated with Fj , j = 0, 1. Let M(X) be the

marginal likelihood under the nonparametric model. From Bayes theorem, we can write

f(π,Y1,Y0, Z|X) =
f(X,Z|π,Y1,Y0)f(π)f(Y1)f(Y0)

M(X)
.

Integrating both sides with respect to Y1 and Y0, we obtain

f(π, Z|X) =

∫
f(X,Z|π,Y1,Y0)f(π)f(Y1)f(Y0)dY1dY0

M(X)
.
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Since the branch probabilities have closed form beta posterior densities, we can factor out
n∏
i=1

(πg1(xi))
zi

n∏
i=1

((1− π)g0(xi))
1−zif(π) and obtain that

∫
f(X,Z|π,Y1,Y0)f(π)f(Y1)f(Y0)dY1dY0 = φ(X,Z)×

n∏
i=1

(πg1(xi))
zi

n∏
i=1

((1− π)g0(xi))
1−zif(π).

Let h(X,Z|π) = φ(X,Z)×
n∏
i=1

(πg1(xi))
zi

n∏
i=1

((1− π)g0(xi))
1−zi , so that

f(π, Z|X) =
h(X,Z|π)f(π)

M(X)
. (5)

Following Chen [21], we can replace f(π, Z|X) by h(X,Z|π), thus obtaining an expression for the marginal

likelihood similar to what would be obtained in a latent class model where the only parameter is π.

It remains to calculate the integral L(π∗|X) =
∫
h(X,Z|π∗)dZ. We can write

L(π∗|X) =

{
n∏
i=1

(π∗g1(xi) + (1− π∗)g0(xi))

}

×
∫
h(X,Z|π)×

n∏
i=1

(
π∗g1(xi)

π∗g1(xi) + (1− π∗)g0(xi)

)zi n∏
i=1

(
(1− π∗)g0(xi)

π∗g1(xi) + (1− π∗)g0(xi)

)1−zi
dZ

We recognize

f(Z|π∗, X) =

n∏
i=1

(
π∗g1(xi)

π∗g1(xi) + (1− π∗)g0(xi)

)zi n∏
i=1

(
(1− π∗)g0(xi)

π∗g1(xi) + (1− π∗)g0(xi)

)1−zi

as the posterior density of Z in a bi-normal model with fixed parameters, where the prevalence is fixed and

equal to π∗ and where the D− and the D+ densities are fixed and equal to g0 and g1, respectively. In

practice, given a sample of size M , {Zj = (z1, ..., zn)j , j = 1, ...,M} from the posterior density f(Z|π∗, X)

under this bi-normal model, L(π∗|X) can be estimated by{
n∏
i=1

(π∗g1(xi) + (1− π∗)g0(xi))

}
× 1

M

M∑
j=1

h0(x, Zj , π
∗)× h1(X,Zj , π

∗).

Having presented a method for computing the marginal likelihood under both parametric and nonpara-

metric models, we next illustrate the calculation of Bayes Factors using two simulated data sets, one from

normally distributed data, the other where the non-parametric model should better fit the data.

4.3 Simulated examples

We consider data simulated from normal and non-normal densities, similar to the simulations from Section 3,

and illustrated in Figure 1. We again consider sample sizes of 1000, and a true prevalence of 0.25. The two

datasets are fit first to a bi-normal model and then to a Polya tree model, each time using the centered priors

presented in Table 1. We then compare the fit from each model using Bayes factors.

Table 3 contains MCMC estimates of the log marginal likelihood under the parametric models and the

three nonparametric models. As expected, the parametric model has a better fit when compared to non-

parametric models with low values of c (c = 5). The parametric model has slightly better fit than the

nonparametric model with c = 10 and slightly worse fit than the nonparametric model with c = 100. When
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Table 3: Log marginal likelihood and Bayes factor (BF) estimates for both normal and non-normal sampling
situations.

Model Log Marginal BF P (parametric
Likelihood model is better)

Parametric -1696.480 1

Nonparametric (fixed partition)
True population c=5 -1699.175 14.806 0.937

distributions c=10 -1697.800 3.743 0.789
are normal c=100 -1695.932 0.578 0.366

D+ ∼ N(0, 2) Nonparametric (random partition, τ = 0.05)
and c=5 -1699.435 0 0

D− ∼ N(0, 1) c=10 -1697.998 4.563 0.820
c=100 -1695.954 0.591 0.371

Parametric -2737.187 1

Nonparametric (fixed partition)
True population c=5 -2687.952 0 0

distributions c=10 -2699.132 0 0
are not normal c=100 -2741.697 90.922 0.989

D+ ∼ χ2
3 Nonparametric (random partition, τ = 0.05)

and c=5 -2687.298 0 0
D− ∼ 0.5N(5, 1.5) + 0.5N(11, 1.5) c=10 -2698.506 0 0

c=100 -2742.421 187.541 0.995

c = 100, there is probably less uncertainty about the distributions of test results in the nonparametric model

than in the parametric model, which explains why the nonparametric model has a slightly better fit.

Nonparametric models with smaller values of c have better fit when test results are not normally dis-

tributed. Compared to the parametric model, Polya tree models with c = 5 and c = 10 have considerably

better fit. With c = 100, the nonparametric model has poorer fit than the parametric model, with a log-

marginal likelihood difference of 6.5 for the second data set and a difference of 4.5 for the third data set. This

implies that when the data are not normally distributed, using a nonparametric model where the random

probability distribution are forced to be very concentrated around normal base distributions (i.e., using very

high values of c) can lead to a model with very poor fit. For these three simulated datasets randomized Polya

tree models are similar to simple Polya tree models in term of fit.

5 Application to tuberculosis clustering from DNA fingerprint data us-
ing Nearest Genetic Distance data

To return to the tuberculosis clustering problem described in the introduction, we now fit Polya tree models

to an NGD data set. We will compare inferences from a model with fixed and random partitions as well as

compare the fit of the Polya tree model to that from a parametric bi-normal model, using Bayes factors. The

data set consists of test results from 393 subjects with recently diagnosed active TB in Montreal [24].

For our Polya tree model, we used the same prior means and standard deviations for the base dis-

tributions elicited by Ladouceur et al. [6] under a Dirichlet process model. In particular, we take g1 ∼
N(28, 17) and g0 ∼ N(134, 63). The means and standard deviations of these base densities were created by

averaging the information provided by three experts who provided prior densities independently [6]. We set

the depth of our Polya tree to K = 5. The small sample size (393) suggests avoiding large values for c, as

that would be similar to using a parametric model with fixed hyperparameters. Accordingly, in order for

the nonparametric models to retain some flexibility, we chose to run models with c = 2 and c = 5. For the

random partition model we set τ = 0.05. For comparison purposes, we will also fit the same data set to a

bi-normal parametric model, using the following prior densities for the means and the standard deviations:
µ0 ∼ N(134, 20), µ1 ∼ N(28, 10), σ0 ∼ Uniform(43, 83) and σ1 ∼ Uniform(7, 27). These priors were de-
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rived by placing normal densities on the means and uniform priors on the standard deviations and centering

these priors around the means and standard deviations of the base densities elicited by Lacouceur et al. [6].

Posterior predictive densities for the D+ and D− populations are displayed in Figure 3, where we can

see that the random partition model has smoother density plots. Prevalence of clustering estimates are

summarized in Table 4. Results from all parametric and nonparametric models are similar, with an estimate

of the prevalence of approximately 20%. Lengths of the 95% credible intervals from all models are similar and

are close to 10%, a high precision considering the small sample size (n = 393). This can be explained by the

low degree of overlap between the disease and disease-free densities estimated, as shown in Figure 3. The small

overlap can also explain the similarities between the results obtained using parametric and nonparametric

models, even though the estimated densities from the nonparametric model have non-normal shapes.

Figure 3: Posterior density estimates from Polya tree models with a fixed partition with c = 2 (top left) and
c = 5 (top right). The bottom figures represent density estimates from a randomized Polya tree with c = 2
(bottom left ) and c = 5 (bottom right).

Table 4: Posterior estimates of the prevalence parameter across parametric and nonparametric models.

Model Median (95%CrI) for π

Parametric 0.184 (0.121, 0.250)

Nonparametric (fixed parition)
c = 2 0.193 (0.132, 0.254)
c = 5 0.180 (0.127, 0.238)

Nonparametric (random partition, τ = 0.05)
c = 2 0.192 (0.129, 0.254)
c = 5 0.177 (0.119, 0.237)
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Table 5 presents log-marginal likelihood estimates from the parametric and the nonparametric models

under the prior distributions described in Section 4. The nonparametric models offer a better fit than the

parametric bi-normal model, an expected result given the non-normal shape of the density estimates. We

also notice that the simple Polya tree model offers a better fit than the randomized Polya tree model with low

values of c. We note that even though the data is not normal as shown by the Bayes factor, the parametric

and the nonparametric models gave very similar estimates for the prevalence. This can be explained by

similarity of curve shapes in the area of overlap between the clustered and the nonclustered test results.

Table 5: Log marginal likelihood and Bayes factor (BF) estimates across parametric and nonparametric
models.

Model Log Marginal Likelihood BF P (parametric model is better)

Parametric -2138.482 1

Nonparametric (fixed partition)
c=2 -2108.488 0 0
c=5 -2119.717 0 0
c=10 -2127.663 0 0

Nonparametric (random partition, τ = 0.05)
c=2 -2118.064 0 0
c=5 -2123.310 0 0
c=10 -2127.831 0 0

6 Discussion

In this paper we carefully investigated the properties of finite Polya tree models for continuous diagnostic

tests via simulations. These simulations have been carried out under two different scenarios. Acknowledging

that when test results from different disease classifications have a large overlap, strong and accurate prior

information is needed to have any hope of reasonable inferences in this non-identifiable problem, we limited

our simulations to the case with a reasonable overlap given that no other information is available about

the disease status of each individual. Following Ladouceur et al. [6], we considered relatively large sample

sizes only (n = 1000 and n = 5000). Smaller sizes will rarely provide accurate inferences for such difficult

problems. In order to keep the number of simulations manageable, we used the same degree of belief in the

distribution of test data being close to normal from both the diseased and the disease free populations. Other

scenarios are possible where the shape of one density is believed to be closer to normal than the other.

Overall, as expected, the nonparametric Polya tree models that are not too flexible performed better

than the normal model when the true distributions of the data are not normal. To answer the concern about

partition dependence of the Polya tree model, we considered a model based on randomized Polya trees.

Although we did not carry out a full set of simulations to investigate the properties of such model, credible

intervals obtained from a randomized Polya tree model were slightly larger than those obtained under a simple

Polya tree model. While median prevalence estimates were similar for the two models, the randomized Polya

tree presented a more aesthetic appearance, owing to greater smoothness. Finally, we showed how Bayes

Factors can be used to help decide whether a nonparametric or a bi-normal model may better fit the data.

References

[1] Salamon. H., Behr. M., Rhee. J., Small. P. (2000). Genetic distances for the study of infectious disease epidemi-
ology. American Journal of Epidemiology 151, 324–334.

[2] Goetghebeur, E., Liinev, J., Boelaert, M., and Van der Stuyft, P. (2000). Diagnostic test analyses in search
of their gold standard: latent class analyses with random effects. Statistical Methods in Medical Research 9,
231–248.

[3] Rutjes, A., Reitsma, J., Coomarasamy, A., Khan, K., and Bossuyt, P. (2007). Evaluation of diagnostic tests
when there is no gold standard. A review of methods. Health Technology Assessment 50, 1–51.



Les Cahiers du GERAD G–2015–125 13

[4] Joseph, L., Gyorkos, T., and Coupal, L. (1995). Bayesian estimation of disease prevalence and the parameters of
diagnostic tests in the absence of a gold standard. American Journal of Epidemiology 141, 263–272.

[5] Gustafson, P. (2005). On model expansion, model contraction, identifiability and prior information: two illus-
trative scenarios involving mismeasured variables. Statistical Science 20, 111–140.

[6] Ladouceur, M., Rahme, E., Scott, A., Schwartzman, K. and Joseph, L. (2011). Modeling continuous diagnostic
test data using approximate Dirichlet process distributions. Statistics in Medicine 30(21), 2648–2662.

[7] Ferguson, T.S. (1973). A Bayesian analysis of some nonparametric problems. The Annals of Statistics 1, 209–230.

[8] Scott, A., Joseph, L., Bélisle, P., Behr, M. and Schwartzman, K. (2008). Bayesian estimation of tuberculosis
clustering rates from DNA sequence data. Statistics in Medicine 27, 140–156.

[9] Branscum, A.J., Johnson, W.O., Hanson, T.E., and Gardner, I.A., (2008). Bayesian semiparametric ROC curve
estimation and disease diagnosis. Statistics in Medicine 27, 2474–2496.

[10] Paddock, S., Ruggeri, F., Lavine, M. and West, M. (2003). Randomized Polya tree models for nonparametric
Bayesian inference. Statistica Sinica 13, 443–460.

[11] Freedman, D.A. (1963), On the Asymptotic Behavior of Bayes Estimates in the Discrete Case, The Annals of
Mathematical Statistics, 34, 1386–1403.

[12] Fabius, J. (1964), Asymptotic behavior of Bayes estimates, The Annals of Mathematical Statistics, 35, 846–856.

[13] Ferguson, T.S. (1974). Prior distributions on spaces of probability measures. The Annals of Statistics 2, 615-629.

[14] Lavine, M. (1992). Some aspects of Polya tree distributions for statistical modeling. Annals of Statistics 20,
1222–1235.

[15] Lavine, M. (1994). More aspects of Polya tree distributions for statistical modeling. Annals of Statistics 22,
1161–1176.

[16] Mauldin, R.D., Sudderth, W.D. and William, S.C. (1992). Polya trees and random distributions. The Annals of
Statistics 20, 1203–1221.

[17] Dendukuri, N., Rahme, E., Bélisle, P., Joseph, L. (2004). Bayesian sample size determination for prevalence and
diagnostic studies in the absence of a gold standard test. Biometrics 60, 388–397.

[18] Kass, R. and Raftery, A. (2005). Bayes factors. Journal of the American Statistical Association 90, 773–795.

[19] Chib, S. (1995). Marginal likelihood from the Gibbs output. Journal of the American Statistical Association 90,
1313–1321.

[20] Chib, S. and Jeliazkov, I. (2001). Marginal likelihood from the Metropolis-Hastings output. Journal of the
American Statistical Association 96, 270–281.

[21] Chen, M.H. (2005). Computing marginal likelihoods from a single MCMC output. Statistica Neerlandica 59,
16–29.

[22] Gelman, A., and Meng, X. L. (1998). Simulating normalizing constants: From importance sampling to bridge
sampling to path sampling. Statistical Science 13, 163–185.

[23] Gelman, A., Carlin, J., Stern, H., and Rubin, D.B. (2004). Bayesian Data Analysis, Chapman and Hall.

[24] Scott, AN., Menzies, D., Tannenbaum, TN., Thibert, L., Kozak, R., Joseph, L., Schwartzman, K. and Behr,
MA. (2005). Sensitivities and specificities of spoligotyping and mycobacterial interspersed repetitive unit-variable-
number tandem repeat typing methods for studying molecular epidemiology of tuberculosis. Journal of Clinical
Microbiology 43, 89–94.


	Introduction
	Bayesian finite Polya tree models for continuous diagnostic test data
	A fixed partition Polya tree model
	Randomized Polya tree models

	Evaluating the performance of latent class Polya tree models
	Simulated data sets
	Prior distributions
	Results from simulations
	Randomized Polya trees: A simulated example

	Comparing the performance of parametric to nonparametric models using Bayes Factors
	Marginal likelihood under a parametric model
	Marginal likelihood under a nonparametric model
	Simulated examples

	Application to tuberculosis clustering from DNA fingerprint data using Nearest Genetic Distance data
	Discussion

