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auteurs.

La publication de ces rapports de recherche est rendue possible
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Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca





Quality scores in reverse
auctions: Motivations,
information sharing and
credibility

Hedayat Alibeiki

Mehmet Gümüş
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Abstract: Non-price attributes such as prior relationship, product quality, and reliability can be more
important than bidding prices for the buyers when selecting the winner of a reverse auction. In this regard,
in open-ended reverse auctions (also known as buyer-determined auctions), buyers usually evaluate and assign
‘quality score’ (QS) to each supplier. Although QS enables the buyer to incorporate the above-mentioned
non-price attributes in its sourcing decisions, it may have repercussions on the outcome of a reverse auction.
On one hand, the QS influences the relative positions of the suppliers against each other in terms of the
buyer’s sourcing preference. On the other hand, this very characteristics of QS may invalidate its role among
the suppliers as the buyer may become tempted to abuse it in order to regulate the competition towards
its own benefits. In order to analyze the tug of war between the operational and strategic benefits of QS
in a reverse auction setting, in this paper, we develop a bi-level supply chain between a buyer and two
competing suppliers. One of the two suppliers is an incumbent with known track record, whereas the other
one is untested. Ceteris paribus, the buyer calculates the (relative) QS of untested supplier with respect to the
known one, and decides whether or not (and if yes, how) to credibly share this with the two suppliers possibly
via advance minimum revenue guarantees. Analyzing pooling, separating, and semi-separating equilibria of
resulting signalling game between the buyer and the two suppliers, we develop insights on the impact of QS
on the buyer-determined reverse (procurement) auctions. Our results suggest that such advance guarantees
should be offered only to the incumbent supplier when the difference between suppliers’ quality scores is
relatively low. In addition, the degree of price competition among suppliers increases when the degree of
information asymmetry between the upstream and downstream levels of supply chain regarding the quality
scores is sufficiently low. Moreover, when the number of qualified entrants in the auction increases, suppliers’
price competition and buyer’s signaling cost increase, which suggests the buyers not to share the quality
scores information. We have provided the managerial implications of our findings.

Key Words: Reverse (procurement) auction, quality score, asymmetric information, credibility, signaling.
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1 Introduction

An increasing number of buyers nowadays use (electronic) reverse auctions to make their sourcing decisions

mostly because it is believed to save buyers considerable amounts of money by lowering prices. For instance,

Furey (2009) reported that in the early 2010’s, e-sourcing through Ariba, a company specialized in online

procurement services, saved companies 5% to 7% of their procurement costs. Similarly, General Electric

(GE) alone claimed a saving of about $680 million and a net saving of more than 8% in 2001 by using

SourceBid, a reverse auction tool and a part of GE’s Global Exchange Network (GEN). In addition, the U.S.

General Services Administration attributed savings of 12%-48% to the use of procurement auctions (Sawhney

2003). FreeMarkets, one of the leading online auction software providers, reported that its customers saved

approximately 20% on more than $30 billion in purchases between 1995 and 2001 (Anderson and Frohlich

2001).

Reverse auctions in practice are held in different formats. One popular format of reverse auctions corre-

sponds to a buyer-determined auction (Jap 2002), in which suppliers compete on price and after the bidding

is over, the buyer considers non-price attributes such as product quality, reliability, and timely delivery ful-

fillment, and perhaps some other financial concerns such as switching and contractual costs, to award the

contract. This auctioning format has been used for a wide range of products and services such as machined

metal components, printed circuit boards, marketing services, and legal services (Furey 2009). One of the

best known benefits of these auctions is the flexibility of the buyer in that she does not need to award the

contract to the supplier with the lowest price (Anderson and Frohlich 2001, Jap 2002). However, this lack of

commitment can reduce the degree of price competition among suppliers because a supplier does not have to

offer the lowest bid to win the contract. Our findings in fact support the validity of this concern, especially

when the degree of information asymmetry regarding the buyer’s evaluation of non-price attributes is high.

One of the commonly used procedures for determining the winner of the contract in buyer-determined

auctions is that the buyer evaluates each supplier across several non-price dimensions and assigns to him a

score that represents her estimation of suppliers’ expected performance in non-price attributes, and then,

adjusts the bidding prices of the suppliers using these scores. The supplier with the lowest final score (which

includes both price and non-price attributes) is then awarded with the order.1 Hence, for the purpose of this

paper and in accordance with what is being done in practice, we group all the non-price attributes and label

them as quality (Tunca et al. 2014, Engelbrecht-Wiggans and Katok 2007, and Haruvy and Katok 2013 use

a similar approach). We also call the unique score for non-price attributes as Quality Score (QS) and denote

the final adjusted price by Generalized Price (GP).

There is always an inherent uncertainty with respect to the buyer’s understanding and evaluation of

suppliers’ quality scores, especially in buyer-determined procurement auctions. This uncertainty logically

comes from two main sources: (1) lack of knowledge regarding the buyer’s choice of critical no-price factors

as well as her relative emphasis on different factors (attribute choice uncertainty), and (2) lack of knowledge

on the procedure that the buyer takes to evaluate suppliers’ score on each factor (procedural uncertainty).

Depending on the degree of information asymmetry between buyer and suppliers, QS can be decomposed

into a combination of known and hidden factors (KF, and HF, respectively) as follows:

QS = λ×KF + (1− λ)×HF

Note that both forms of QS uncertainties can be represented with the above structure, where λ determines

the visibility of buyer’s evaluation scheme on QS to the suppliers. If, for instance, λ = 1, suppliers have no

uncertainty on the buyer’s selection of attributes as well as the specific procedure employed for evaluating QS.

On the other hand, if λ = 0, the suppliers lack visibility because neither do they have access to the attributes

on which QS is based on nor do they know how QS is calculated. Therefore, in the above expression, the

1According to a case study written by ITBID - a company specialized in e-sourcing services- (2012), in practice, the buyer
usually assigns a quality score (QS) to each supplier based on her estimation of their capabilities in some critical non-price
factors. The “considered price” is calculated by considering both “actual price” and “quality score”. The supplier with the
lowest considered price will be offered the contract.



2 G–2015–115 Les Cahiers du GERAD

relative value of 0 ≤ λ ≤ 1 determines the suppliers’ inability to predict the true value of QS that will be

employed by the buyer to adjust the bid prices.2

Our results suggest that under asymmetric information scenario (i.e., λ = 0), since the suppliers decide

on their prices solely based on their prior beliefs, this natural uncertainty can result in a significant reduction

(resp. increase) in competition degree (resp. offered prices) in upstream channel level. Therefore, the buyer

may be encouraged to fully or partially share the QS information with the suppliers (i.e., shift the value of

λ towards 1). However, there are two important concerns that may preclude this information sharing.

The first concern is the credibility of the information sharing in a competitive supply chain environment.

As proven in various studies, any type of information asymmetry among supply chain parties can create an

incentive for information distortion in order to influence the decisions of uninformed parties. It is easy to

observe that in a buyer-determined auction, the buyer has an incentive to signal distorted quality scores to

force the actual winner to decrease his price due to the fear of losing the auction. This in turn makes the

uninformed parties doubt in credibility of provided information. As a result, the buyer needs to take some

costly actions in order to make the provided information credible for the suppliers. The next concern is just

the opposite to the rationale behind buyer’s sharing of QS information. Indeed, there is a fear that truthfully

sharing the QS information can turn into a competitive disadvantage. For instance, Haruvy and Katok (2013)

identifies situations in which decreasing visibility (increasing uncertainty) leads to more price competition in

the auction which leads to lower costs for the auction holders. The reason is that if the suppliers know the

true information, they can identify situations when they can win the auction by undercutting other suppliers’

prices. In such situations, they intentionally reduce their price only to a level that ensures their success in

the auction.

Even though the mechanism of buyer-determined auctions has been extensively explored in the literature,

to the best of our knowledge, the credibility of QS information sharing and its impact on the upstream

competition degree have not received attention in the reverse auction studies. Therefore, the objectives of

this paper are threefold: (i) to examine when and how the QS information can be credibly shared from the

buyer to the suppliers in buyer-determined reverse auctions; (ii) to identify how it influences the degree of

price competition among the suppliers; (iii) to evaluate the impact of QS information sharing on decisions,

profits, and cost of channel parties.

In order to address these issues, we develop a competitive bi-level supply chain model in which the

downstream party uses a buyer-determined reverse auction for procurement. At the upstream level, there are

two competing heterogeneous sellers (hereinafter refereed to as supplier N and supplier U) with different cost

and quality specifications.3 First, the buyer evaluates non-price attributes and assigns quality scores (QS) to

the participating suppliers. The supplier N is the incumbent supplier, hence, his QS is publicly known. On

the other hand, supplier U is the entrant supplier, whose QS is private information for the suppliers. Here,

the buyer may signal the true value of QS via an advance minimum revenue guarantee. Afterwards, suppliers

compete on prices and submit their bids (quotations). Finally, after assessing the final score/rank for each

supplier from both their bids and the quality scores, the buyer makes her final order allocation decision.

We characterize equilibrium decisions and profit/costs of all the parties in the channel under both symmet-

ric and asymmetric information setting (pooling, separating, and semi-separating). The comparison between

pooling and separating equilibria allows us to evaluate when and how the QS information can be credibly

shared from the buyer to the suppliers and how it affects the degree of price competition between suppliers

and the profits and costs of channel parties.

First of all, the suppliers’ incomplete information (either on the buyer’s choice of non-price attribute or

on the measurement procedure) leads to an uncertainty on their side regarding what price to charge, which,

2This notion of QS is widely used in keyword auctions (a generalized type of forward auctions) as well, as a way to incorporate
non-price attributes in the bid of advertisers (Geddes 2014). Historically, in 2002, Google first introduced an auction design that
ranks advertisers by adjusting their bid prices with click-through rates (CTR). Later, Google introduced both attribute choice
uncertainty by defining ambiguous non-price factors such as the quality of the advertisement text, and procedural uncertainty by
making the ranking formula hidden. Over the years, many search engines follow the footsteps of Google and this trend reduced
the value of λ, which in turn increased the uncertainty of quality scores from the perspective of advertisers. Our results can
provide some explanation for this phenomenon.

3Throughout the paper, we use feminine and masculine pronouns for the buyer and suppliers, respectively.
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in turn, generates an incentive for the buyer to distort her QS information and invalidates the credibility

of the provided information. We show that this distortion can be fixed via an advance minimum revenue

guarantee only if it is offered to the incumbent supplier (supplier N) as long as the relative difference between

quality scores of suppliers U and N is not too low. Secondly, in the symmetric information setting, when

one of the suppliers undercuts his opponent’s price, he does so by taking into account the true value of

his opponent’s QS. However, in the presence of incomplete QS information, the suppliers cannot credibly

infer the true information, which enforces them to decide on their prices only based on their a priori beliefs.

Our results show that the degree of price competition (resp. equilibrium unit prices) in the upstream level

is a decreasing (resp. an increasing) function of the degree of the channel information asymmetry. The

comparison between pooling and separating equilibria suggests that offering advance revenue guarantees to

the incumbent supplier can indeed help the buyer to motivate higher competition levels between suppliers

when the degree of information asymmetry is high. In contrast, when the degree of information asymmetry is

sufficiently low, the maximum level of suppliers’ competition will be obtained under asymmetric information

(even higher than that under symmetric information setting). Next, the comparison of cost and profits under

both pooling and separating equilibria enables us to evaluate when credible QS information sharing is more

preferred [and when it is not] for each supply chain partner. Finally, the analysis of a general case with n > 1

suppliers with known QS and m > 1 new entrants with unknown QS allows us to assess how an increase in

the number of participants in the auction can intensify both the price competition and the cost of credible

information sharing.

This paper is organized as follows: in the next section, we review the related literature. In §3, we develop

the model framework. In §4 and §5, we analyze the symmetric and asymmetric information settings. In §6,

we evaluate the impact of information sharing on the equilibrium decisions, cost, and profits of the channel

partners. As an extension, in §7, we analyze the reverse auction under the presence of multiple incumbent

and entrant suppliers. We conclude in §8.

2 Related literature

Our work fits within the broad range of sourcing and e-sourcing literature. We refer the readers to Elmaghraby

(2000) for a survey of the sourcing literature and to Elmaghraby (2004) and Elmaghraby (2007) for overviews

of online markets and procurement auctions in practice. A recent review of the e-auctions literature is

presented in Gupta et al. (2009). More specifically related to our work, in the heart of the procurement

literature, there is an extent stream of research on understanding the mechanism of reverse auctions in

terms of incorporating non-price attributes. For instance, Santamaŕıa (2015) compares the performance of a

scoring auction, in which suppliers compete on the adjusted bids or scores, with a buyer-determined auction,

in which suppliers compete on the price, and the buyer adjusts a certain number of the bids with the non-

price attributes after the auction to determine the winner; and argues that the choice of procurement auction

depends mainly on the cost advantage of the incumbent and availability of non-price attributes. Chen-Ritzo

et al. (2005) experimentally explores the performance of a multi-attribute auction where bidders can specify

both a price and levels of non-price attributes (quality and lead time) and compares it with a price-only

auction mechanism. Chen et al. (2005) incorporated transportation costs as another non-price attributes

into reverse auctions. In fact, the choice of non-price attributes may differ based on the priority that the

buyer puts on different economic or quality considerations.

Most of the papers in this stream focus on understanding the effect of auction mechanism on the buyer

surplus and on the incumbent and entrant suppliers’ actions in the bidding process. For instance, Tunca et al.

(2014) empirically study multi-dimensional open-ended (buyer-determined) auctions. They provide evidence

that what may be perceived as incumbency bias in reverse auctions can in fact be a revelation of preference for

quality. Zhong and Wu (2006) use data from auctions in the high-tech industry to study bidding behavior in

buyer-determined auctions, when the buyer has preferred and non-preferred suppliers due to the existence of

non-price attributes. They find that preferred suppliers are more likely to win a contract than non-preferred

suppliers, and that final bids from preferred and non-preferred suppliers differ significantly. They argue that

these differences are consequences of the non-price attributes, which play a crucial role not only in the buyer’s
final decision, but also in the bidding strategies of the suppliers. Similarly, Santamaŕıa (2015) shows that in
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buyer-determined auctions, suppliers markup their final bids depending on the distribution of the non-price

attributes, and the markup depends on the type of supplier (entrant or incumbent). In line with the above

papers, we provide an auctioning framework which enables us to characterize the difference between bidding

prices of incumbent and entrant suppliers and the buyer’s preference on credible information sharing given

the distribution of non-price attributes (QS in our paper).

Given the essential role of quality score in our model, this paper is also related to the stream of research

on keyword advertising auctions in which the auction-holder assigns a quality score to each bidder in order to

capture critical non-price features (Liu and Chen 2006, Feng et al. 2007, Weber and Zheng 2007, Chen et al.

2009, Liu et al. 2010). For instance, Liu and Chen (2006) consider a static weighted unit-price auction where

bidders bid on unit prices, and the winner is determined by their bids as well as their past performance.

Chen et al. (2010) extends Liu and Chen’s model by considering the dynamic effects of bidder performance

evolution. Amaldoss et al. (2015) address some limitations of generalized second-price (GSP) auction for

selling advertising slots and evaluate the performance of other new mechanisms used in practice (first-page

bid estimate -FPBE- mechanism first developed by Google). To the best of our knowledge, no paper in this

stream addresses the problem of credible quality score information sharing. Even though we do not consider

a forward keyword auction in this analysis, our results is consistent to the actions taken in the practice with

regard to the quality score information of the auctioneer.

Our paper is also related to the stream of research on information asymmetry in supply chain. The SCM

literature on the effects and implications of information asymmetry can be divided into two general groups.

A group of studies (Corbett and De Groote 2000, Ha 2001) focus on information asymmetry in production

cost of the suppliers, and the other group (Cachon and Lariviere 2001, Li and Scheller-Wolf 2011, Wang et al.

2014, Gümüş 2014) focus on the demand forecast information asymmetry. In contrast, to the best of our

knowledge, this work is the first one that focuses on the information asymmetry on the suppliers’ quality

scores evaluated by the buyer and credible information sharing in buyer-determined reverse auctions. In our

analysis, we use a signaling game framework to model an informed principal who utilizes the advance revenue

guarantee with the aim of credible QS information sharing (see Riley 2001 for extensive literature review on

signaling games).

In practice, QS information is privately held by the downstream member of the supply chain. The buyer

may use her information to decrease her costs even at the expense of the other parties. Hence, the suppliers

are likely not to trust the provided information. This possibility impedes credible information sharing. Recent

studies provide strong evidence that information asymmetry can have significant impacts on the auction’s

results and certainly affects the buyer surplus (Haruvy and Katok 2013, Mithas and Jones 2007). For instance,

Haruvy and Katok (2013) using experimental analyses show that in on-line procurement auctions with open-

bid format in which suppliers bid on price, but exogenous bidder quality affects winner determination, the

buyer surplus significantly decreases when the information about bidders’ quality is public. In line with this

paper, we show that there is an optimal level for information asymmetry, and if the uncertainty increases

above a threshold, the buyer surplus will be hurt.

The next important stream of research related to our study is about advance commitments in the supply

chain. Similar to our use of advance guarantee for signaling quality score information, Klotz and Chatterjee

(1995) use an advance quantity guarantee to the incumbent supplier in exchange for participating in the

procurement auction. Cachon (2004) compares inventory risks under push, pull ,and advance purchase

discount contracts between suppliers and retailers. Özer and Wei (2006) structure an advance purchase

contract that enables credible forecast information sharing between a manufacturer and a retailer. Boyaci

and Özer (2010) study when to start and stop advance selling in order to acquire enough demand information

from retailers for capacity planning by a manufacturing company. Advance commitments also can be from

a retailer to the consumers. Tang et al. (2004) analyze the application of advance purchase discounts from

a retailer to the consumers. Yu et al. (2014) study the role of advance selling commitment from a seller to

consumers in signaling product Quality. Similar to these works, we examine to find out whether the buyer

can use advance revenue guarantees to signal her private information before holding the auction.
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3 Model framework

In order to investigate the impact of information sharing in buyer-determined reverse auctions, we model a

stylized decentralized supply chain consisting of one buyer and two suppliers. One of the suppliers (supplier

N) is well known to the buyer as a local (incumbent) supply source, whereas the other one (U) is untested

for the buyer.

With the aim of choosing the main supply source, the buyer considers a simple reverse (electronic) auction

among the suppliers, in which the suppliers are asked to offer their bidding prices. She assigns a private

quality score (QS) to each supplier based on her estimation of their capabilities in some critical factors such

as product quality, reliability, and timely delivery fulfillment. As we will see below, the quality scores enable

the buyer to incorporate non-price related factors in the deliberation decision of the winner. Let QSi denote

the quality score assigned by the buyer for the supplier i, where i ∈ {N,U}. For the sake of simplicity and

without loss of generality, we normalize QS for supplier N (QSN ) to 1 and for supplier U (QSU ) to α, where

0 < α ≤ 1. Since QS is of critical value in deciding the winner among the suppliers along with their bidding

prices, we assume that the exact value of α is known only to the buyer. On the other hand, the suppliers hold

a-priori belief on α denoted by Fα. For the sake of tractability, we assume that Fα is a uniform distribution

function U defined between α and ᾱ, where without loss of generality, 0 < α ≤ ᾱ ≤ 1. Note that the width

of the range [α, ᾱ] denoted by ∆ = ᾱ−α represents the degree of information asymmetry between the buyer

and the suppliers.

Upon receiving the bid prices, the buyer then calculates a generalized priceGPi(QSi, pi) for each supplier i.

Since the higher the quality score or the lower the bid price is, the more likely the supplier would win the

auction, this imposes certain restrictions on the sensitivity of GPi(QSi, pi) with respect to its arguments

in the sense that it should increase and decrease in QSi, and pi, respectively. In this paper, we assume a

fractional form4 for GPi(QSi, pi) = pi
QSi

. First, note that it satisfies the above sensitivity conditions. Second,

since GPi is generalized price for each supplier and supplier N’s quality score is assumed to be 1, it implies

that in order for supplier U to win the contract against supplier N, he should offer a price that is strictly less

than α× 100% of supplier N’s bidding price pN .

In addition to the quality scores, the suppliers also differ in terms of their cost structures. Let ci denote

the marginal cost of supplier i. Throughout the paper, we assume cU < cN , and discuss briefly how our

results change otherwise. Also, we consider that there is a cap, i.e., reserve price on the bid prices offered by

the suppliers. We denote the reserve price by pr and assume that it is greater than cN . One can interpret the

reserve price as the maximum price the buyer is willing to pay to the suppliers or price in the spot market

to which she has always access. To sum up, the buyer procures from the supplier whose generalized price

GPi is less than that of the other supplier GP−i and reserve price pr, where i and −i ∈ {U,N} and i 6= −i.
Also, in order to focus on the main research questions related to the quality score, we assume that buyer’s

demand is deterministic and equal to Q units.

The timing of decisions and events is shown in Figure 1 and provided as follows.

1. Buyer assigns QSi to supplier i.

2. Buyer decides whether or not to share the quality score information with the suppliers.

3. In response to the buyer’s decision, suppliers update their prior beliefs and simultaneously submit their

bids (unit prices).

4. Based on the unit prices and quality scores of the suppliers and the reserve price, the buyer decides on

the supplier who wins the order allocation and satisfies the end-consumer demand Q.

Before we start the analysis, we summarize the list of notations used for parameters and decision variables

in the paper in Table 1.

Throughout the paper, equilibrium profits/costs and decision variables are annotated with asterisks.

4Note that since what matters the most is the ranking of generalized prices between two suppliers, considering the different
functional forms for GP -function does not alter our results. However, this specific functional form is also in accordance with
the actions in practice (refer to Anderson and Frohlich 2001).
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Table 1: Notation used for model parameters and decision variables.

Model parameters

cU ; cN Marginal cost of suppliers U and N, respectively.
α The quality score for U (QS for N is normalized to one)
U [α, ᾱ] Suppliers prior belief (uniform distribution) regarding α
πU , πN Expected profit of the suppliers U and N, respectively.
TCB Expected cost of the buyer
Q Total demand
pr Reserve price (spot market price)

Decision variables

ηU , ηN Advance order guaranteed to the suppliers U and N, respectively, at a fixed price (pr).
pU ; pN Unit prices quoted by the supplier U and N, respectively.
GPU ;GPN Generalized prices calculated for the supplier U and N, respectively.
qU ; qN Buyer’s order allocation decisions for the supplier U and N, respectively.

4 Symmetric information: Benchmark

To establish a benchmark, in this section, we consider the case where the true value of the quality score α is

known to all the parties in the supply chain. The problem, therefore, transforms to a symmetric information

Stackelberg game between two price-competing suppliers and the buyer. Given the suppliers’ bid prices and

the buyer’s reserve price, it is then straightforward to show that the order would go to supplier i if and only

if GPi < min(pr, GPj), where i 6= j. Plugging this into the buyer’s cost function TCB , we can express:

TCB(pN , pU , α, pr) =


Q× pN pN ≤ pU

α , pN ≤ pr
Q× pU pN > pU

α , pU ≤ pr
Q× pr otherwise

(1)

Given the order allocation and the bid price from supplier j, the best response for the supplier i is to bid

in such a way that his GPi is infinitesimally less than GPj offered by his competitor provided that his bid

price is above his marginal cost and below the reserve price. Hence, the best response function for suppliers

N and U can be expressed as follows:

p∗N (pU ) = min(max(cN ;
pU
α

); pr) (2)

p∗U (pN ) = min(max(cU ;αpN ); pr) (3)

Solving the best response functions simultaneously leads to the equilibrium provided in the following propo-

sition (proofs for all propositions are provided in the appendix).

Proposition 1 Let γ1 = cU/cN and γ2 = cU/pr (where γ2 < γ1 as pr > cN ). Under symmetric information

equilibrium, the buyer orders from supplier U if α > γ1, and from supplier N if α ≤ γ1. For when α < γ2,

buyer orders from N at the reserve price (pr). Complete characterization of equilibrium decisions, profits and

costs for the supply chain parties under symmetric information is provided in Table 2.
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Table 2: Equilibrium decisions, profits, and cost under symmetric information.

Regions 0 < α < γ2 γ2 < α < γ1 γ1 < α < 1

ࢻ
ଶ0ߛଵߛ1


∗ ൌ ேܿ	ߙ	

ܿ



ே
∗ ൌ 	 ܿே

ே
∗ ൌ

ܿ
ߙ


ௌெ∗

Supplier USupplier N

Supplier N’s price

Supplier U’s price

Prices (bids) p∗N pr
cU
α cN

p∗U cU cNα

Order Alloc. q∗N , q∗U Q, 0 0, Q

Suppliers’ π∗N Q(pr − cN ) Q(
cU
α − cN ) 0

Profits π∗U 0 Q(αcN − cU )

Buyer’s Cost TC∗B Qpr Q
cU
α QcNα

Note that when α is relatively high ( γ1 < α), supplier U becomes the sole supplier for the buyer and sets a

price p∗U such that his quality-score adjusted unit price (pUα ) is infinitesimally less than supplier N’s marginal

cost cN . Letting pU
α = cN and solving for p∗U would yield the equilibrium price for supplier U. Likewise, when

α is between γ1 and γ2, supplier N can set p∗N in a similar fashion. Finally, when α is less than γ2, supplier

N always wins by charging infinitesimally less than the reserve price. In Table 2, one important note is that

the supplier U and N’s prices and profits are increasing and decreasing5 in α, respectively, as stated in the

following Corollary 1.

Corollary 1 Under symmetric information setting,

1. the equilibrium bidding price and expected payoff of supplier N (p∗N , π
∗
N ) are decreasing in α, while those

of supplier U (i.e., p∗U and π∗U ) are increasing in α.

2. information setting, by an increase in cU for a fixed cN , supplier U weakly decreases his unit price,

while supplier N (weakly) increases his unit price.

The first part of this corollary in fact explains the true meaning of relative QS (QSUQSN
= α) in the buyer-

determined reverse auctions, which basically means that by an increase in α, indeed, the buyer’s preference in

doing business with supplier U increases and, hence, supplier U can increase his bid and enjoy more expected

profit in the auction. On the other side, supplier N’s price and profit decreases as α increases. Therefore, α

plays a very important role in determining not only the winner, but also the profit that they can make.

The second part of the corollary addresses the effect of relative cost efficiency of the supplier U on

the equilibrium bid prices. The more cost-efficient supplier U is , the higher he would charge against his

competitor.

5 Asymmetric information

In this section, we analyze the equilibrium under asymmetric information setting where the true value of α

is known only to the buyer. We also assume that any information received from the buyer is non-verifiable

by the suppliers. Non-verifiability refers to the situation where the suppliers update their prior belief only

if the buyer has no incentive to manipulate the signal. Hence, in order to credibly share the true value of

α with the suppliers, the buyer would need to provide a costly signal along with his information. In this

paper, we consider a commonly used commitment contract called “minimum revenue guarantee”. Basically,

this contract enables the buyer to insure a supplier with a minimum level of revenue even if the guaranteed

supplier loses the auction. We assume this guarantee is through a pre-determined proportion of total demand

Q at a fixed external price that can be set in a negotiating process. Without loss of generality, we fix this

5Throughout the paper, we use “decreasing” and “increasing” in their weak senses unless otherwise is stated.
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external price to pr for both suppliers so that we can characterize the guarantee only by the proportion of

the demand guaranteed. Let ηi be the guaranteed portion of the demand to the supplier i, i ∈ {N,U}. That

means, the buyer commits to order a minimum of ηi×Q units to the supplier i in such a way that his revenue

is higher than a pre-determined threshold. To clarify, if for instance, the advance guarantee contract is to

be offered only to the supplier N, the buyer guarantees the revenue of ηNQpr to him even if he loses the

auction; therefore, in case if he loses the auction, the buyer orders ηNQ to the supplier N at the negotiated

price and procures the rest of the supply (1 − ηN )Q from supplier U at pU or from the spot market at pr
depending on the result of the auction; however, supplier N obtains the entire order of Q at pN if he wins the

auction (pN ≤ pr; pN ≤ pU
α ). Note that although the advance guarantees in practice are usually offered to

the incumbent suppliers (supplier N in our model), we also consider the possibility of offering the guarantee

to the unknown supplier U for the buyer in order to have a more comprehensive analysis.

The minimum revenue guarantee can be costly to the buyer if the chosen supplier (the supplier whom

the buyer will offer the guarantee) fails the competition. Hence, choices of signaling tool and ηi (i = N or

U) should intuitively reflect the buyer’s prediction of winning chances of suppliers. As in the above example

where the guarantee is offered to supplier N, a buyer may be able to signal a low (resp. high) value of α by

a high (resp. low) revenue guarantee ηN to supplier N to indicate that supplier N has higher (resp. lower)

chance of winning the auction. Next, we examine when the advance guarantee to the suppliers can provide

information about α to them.

Given a minimum revenue guarantee contract, the sequence of events is as follows: (1) Based on her

private information on α, the buyer chooses the supplier that she wants to offer the guarantee (i = U or N),

and guarantees a revenue of ηiQpr to him. (2) suppliers update their prior belief about the true value of α

(recall that suppliers a priori believe that α is uniformly distributed between α and ᾱ). (3) Suppliers decide

on their bid (pU and pN ) simultaneously. (4) The buyer calculates suppliers’ generalized prices (GP ), and

then decides on order allocation based on suppliers’ ranks and the realized reserve price. Recall that the

buyer has to satisfy the entire demand (Q), and the ordering does not depend on the suppliers’ bids or the

quality scores. Four decisions need to be made in this asymmetric information game: the buyer’s choice of

signaling tool (whether N or U), the minimum revenue (the percentage of total quantity ηiQ when the price

is fixed) to be guaranteed to the chosen supplier, suppliers’ bids, and the final procurement decision (order

allocation).

The above sequence leads to a signaling game (Fudenberg and Tirole 1991). The buyer knows the true

value of α and makes an advance guarantee minimizing her expected cost. The suppliers, hence, may be able

to infer the buyer’s private information from her offered guarantee. Full information sharing (exact inference)

is possible only when a buyer with α guarantees an advance order of ηi that is different from η′i of any other

buyer with α′ 6= α. Such equilibrium is referred to as a separating equilibrium. In contrast, the suppliers gain

no new information if the buyer always offers the same revenue guarantee regardless of its private information

α. Such equilibrium is referred to as a pooling equilibrium. Additionally, partial information sharing (non-

exact inference) is also possible when a buyer with any type of α such that α ∈ [αL, αH ] guarantees the same

amount in advance ηi, while other types choose different signals such as η′i 6= ηi. Such equilibrium is referred

to as a semi-separating equilibrium.

Let i (i = N or U) be the selected supplier that the buyer will offer a guarantee of ηi and −i denotes

the other supplier. If supplier i is guaranteed to be offered a minimum revenue of ηiQpr in the auction, he

will naturally increase his minimum bid from ci to a price plowi in which he is indifferent between losing or

winning the auction. Recall that suppliers always compete to take the order even at their lowest possible

price. Hence, the only difference with the symmetric information setting is that their minimum price in the

auction has increased from ci to plowi . The increase in minimum price for the guaranteed supplier directly

depends on the guaranteed revenue.

plowi = ci + ηi(pr − ci) for i = U and N

To clarify with extreme examples, if ηi = 1, supplier i increases his price to pr to make sure that he will

get the whole order at pr (the maximum allowed price); but, if ηi = 0, he has no advantage over the other
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supplier and should compete to take the order even at ci, similar to symmetric information case. Obviously,

there is no increase in the minimum price of the other non-guaranteed supplier ( plow−i = c−i), and he is willing

to take the order even at his marginal cost (c−i).

Given an advance guarantee offer to supplier i, the expected total cost for the buyer under asymmetric

information is

TCB(ηi, α, pN , pU ) =


Qpi

pi
QSi
≤ p−i

QS−i
; pi ≤ pr

(1− ηi)Qp−i + ηiQpr
pi
QSi

> p−i
QS−i

; p−i ≤ pr
Qpr otherwise

(4)

Recall that QSN = 1 and QSU = α. In the buyer’s cost function, first case refers to the situation when

the guaranteed supplier wins the auction at pi while the second case refers to the case when the chosen

supplier fails in the competition. In the case of failure, the guaranteed supplier will have an order of ηiQ at

pr and the other supplier takes the rest of demand at his proposed unit price. Third case refers to all other

situations when the buyer has to procure all the demand at the market price pr. In that case, all the demand

will be ordered to supplier i or only ηi × 100 percent of it to him and the rest to be satisfied from the spot

market.

The suppliers’ expected profits after observing the reserve price are as follows:

πi(ηi, α, ᾱ, p−i) = Q× Emaxpi≤pr ((pi − ci)Prob(i wins); ηi(pr − ci)Prob(−i wins)) (5)

π−i(ηi, α, ᾱ, pi) = (1− ηi)Q× Emaxp−i≤pr ((p−i − c−i)Prob(−i wins); 0) (6)

where Prob(i wins) = Prob( pi
QSi
≤ p−i

QS−i
) and Prob(−i wins) = Prob( pi

QSi
> p−i

QS−i
). The expectations in

both cases are with respect to α. The second term in πi ensures that the supplier i (i = UorN) competes

to win the auction only if he would get a payoff higher than the minimum guaranteed profit. Therefore, he

never bids a price lower than plowi .

In the following two subsections we analyze the pooling and separating (and semi-separating) equilibria

of the signaling game.

5.1 Pooling equilibrium: No information sharing

In a pooling equilibrium, the buyer provides the same guarantee 0 ≤ ηi ≤ 1 to the chosen supplier i = U or N

regardless of the true value of α. Therefore, suppliers cannot update their belief on α; i.e., (α | ηi) ∼ U [α, ᾱ].

In this situation, suppliers’ bidding prices will be solely based on their prior belief.

Note again that plowi is the minimum price that a supplier (i = U,N) bids because we assume that for

a lower price than this threshold the supplier prefers to lose the auction. Also, they will not go beyond the

known reserve price pr because otherwise they lose the auction.

The following lemma helps us in characterizing the equilibrium outcome of the game when suppliers

cannot update their beliefs.

Lemma 1 Under the least costly pooling equilibrium (i.e. ηi = 0 and plowi = 0), given the order allocation

policy and the suppliers’ belief that α is uniformly distributed between α and ᾱ , the simultaneous price

competition between suppliers leads to either of the following five different equilibrium points:

• PE-1: Internal solution of pIntN =
ᾱcN+

√
ᾱ2c2N+8αcNcU

4α and pIntU =
(ᾱ2cN+ᾱ

√
ᾱ2c2N+8αcNcU+4αcU )

8α .

• PE-2: Boundary solution of pN = pr and pU = (ᾱpr + cU )/2

• PE-3: Boundary solution of pN = cN and pU = (ᾱcN + cU )/2

• PE-4: Boundary solution of pN =
√

cNcU
α and pU = cU

• PE-5: Boundary solution if pN = pr and pU = cU
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Knowing the suppliers’ optimal pricing policy, we can now investigate the existence of sustainable pooling

equilibrium in different ranges of α. Note that in order for a pooling equilibrium to be sustainable ηN and

ηU must be independent of realization of α, i.e. η∗i (α) = η∗i for i = N,U for any α ∈ (α, ᾱ). Besides, since

there are multiple potential pooling equilibria, we only focus on the one that is least costly from the buyer’s

perspective. The following proposition characterizes all sustainable pooling equilibria of the game in each

region.

Proposition 2 Depending on the values of α and ᾱ, the pooling equilibrium can be characterized in 5 different

cases as below. Complete characterization of equilibrium decisions, profits and costs for the supply chain

parties under asymmetric information for each case is provided in Table 3.

Case PE1: i.e. α ≤ ((cU+cN ᾱ))
2cN

,α ≤ cN ᾱ
2

cU
, and α ≥ cN (cU+ᾱpr)

2p2
r

. The supplier’s optimal prices will follow

PE-1 (mentioned in Lemma 1). Let γ1 = (1/2)
(ᾱ2cN+ᾱ

√
ᾱ2c2N+8αcNcU+4αcU )

(ᾱcN+
√
ᾱ2c2N+8αcNcU

. The buyer orders from

supplier N if α ≤ γ1, and from supplier U if α > γ1.

Case PE2: i.e. α ≤ cN (cU+ᾱpr)
2p2
r

and α ≤ cN ᾱ
2

cU
. The suppliers’ optimal price would follow PE-2. Let

γ2 = (1/2) (ᾱpr+cU )
pr

. Supplier N gets the order at pr if α ≤ γ2, while supplier U would be considered as

the main source if α > γ2.

Case PE3: i.e., α ≥ ((cU+cN ᾱ))
2cN

. Under this equilibrium, the unit prices offered by suppliers N and U follow

PE-3. In this region, the buyer always orders from supplier U .

Case PE4: i.e. α ≥ cN ᾱ
2

cU
and α ≥ cUcN

p2
r

. Under this equilibrium, unit prices offered by suppliers N and U

follow PE-4. Supplier N always wins the auction at this case .

Case PE5: i.e. α ≥ cN ᾱ
2

cU
and α ≤ cUcN

p2
r

. Under this equilibrium, unit price offered by suppliers N and U

follow PE-5. Supplier N always wins the auction at this case.

1

Regions_AI_G_psuless.prn

1

ഥࢻ

ࢻ

ߙ ൌ
ܿ
ܿே

തߙ ൌ
ܿ
ܿே

ߙ ൌ
1
2
ܿ  ܿே. തߙ

ܿே

ߙ ൌ
ܿே. തଶߙ

ܿ

ߙ ൌ
ܿ. ܿே
ଶ

ߙ ൌ
ܿே. ܿ  .തߙ 

2. ଶ

3

2

1

4

5

Figure 2: Equilibrium characterization under asymmetric information: Pooling equilibrium.
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Table 3: Equilibrium characterization under asymmetric information: Pooling equilibrium.

Regions (α, ᾱ) ∈ PE1 (α, ᾱ) ∈ PE2

Range of α α ≤ γ1 α > γ1 α ≤ γ2 α > γ2

Advance η∗N η∗N ∈
[

0,
(cN ᾱ+

√
c2
N
ᾱ2+8αcNcU−4cNα)

4(α(pr−cN ))

]
η∗N ∈ [0, 1]

Guarantees η∗U η∗U ∈
[

0,
(cN ᾱ

2+ᾱ
√
c2
N
ᾱ2+8αcNcU−4cUα)

8(α(pr−cU ))

]
η∗U ∈

[
0, (1/2)

ᾱpr−cU
pr−cU

]

Prices (bids) p∗N
ᾱcN+

√
ᾱ2c2

N
+8αcNcU

4α pr

p∗U
(ᾱ2cN+ᾱ

√
ᾱ2c2

N
+8αcNcU+4αcU )

8α
cU+prᾱ

2

Order Alloc. q∗N , q∗U Q, 0 0, Q Q, 0 0, Q

Suppliers’ π∗N Q(
ᾱcN+

√
ᾱ2c2

N
+8αcNcU

4α − cN ) 0 Q(pr − cN ) 0

Profits π∗U 0
(ᾱ2cN+ᾱ

√
ᾱ2c2

N
+8αcNcU+4αcU )

8α − cU ) 0 Q(
cU+prᾱ

2 − cU )

Buyer’s Cost TC∗B Q
ᾱcN+

√
ᾱ2c2

N
+8αcNcU

4α Q
(ᾱ2cN+ᾱ

√
ᾱ2c2

N
+8αcNcU+4αcU )

8α Qpr Q(
cU+prᾱ

2 )

Regions (α, ᾱ) ∈ PE3 (α, ᾱ) ∈ PE4 (α, ᾱ) ∈ PE5

Range of α α ≤ α ≤ ᾱ α ≤ α ≤ ᾱ α ≤ α ≤ ᾱ

Advance η∗N η∗N = 0 η∗N ∈
[
0,

√
cNcU/α−cN
pr−cN

]
η∗N ∈ [0, 1]

Guarantees η∗U η∗U ∈
[
0, (1/2)

ᾱcN−cU
pr−cU

]
η∗U = 0 η∗U ∈ [0, 1]

Prices (bids) p∗N cN
√
cNcU
α pr

p∗U
cU+cN ᾱ

2 cU cU

Order Alloc. q∗N , q∗U 0, Q Q, 0 Q, 0

Suppliers’ π∗N 0 Q(
√
cNcU
α − cN ) Q(pr − cN )

Profits π∗U Q(
cU+cN ᾱ

2 − cU ) 0 0

Buyer’s Cost TC∗B Q
cU+cN ᾱ

2 Q
√
cNcU
α Qpr
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Proposition 2 defines different values of ηN and ηU for which the suppliers cannot update their prior

beliefs. One important note is that none of the least costly pooling equilibria can be eliminated using

intuitive criterion (Cho and Kreps 1987) or universal divinity (Banks and Sobel 1987) because in fact no

type of buyer in the defined ranges of ηi has no incentive to deviate to another outcome.

The emergence of regions 3, 4, and 5 where only one supplier wins the auction for the entire range of

α ≤ α ≤ ᾱ is due to the notion of minimum acceptable price and the assumption that the suppliers will stop

decreasing their price at some break-even point. The common property of all the points in these regions is

that they provide a low uncertainty to the suppliers and also show a clear preference from the buyer side

in that the whole range of α is either higher or lower than the ratio cU/cN , the point where the buyer is

indifferent between the suppliers if they both bid on their lowest possible costs (their marginal costs). Such

case usually happens when the suppliers have a good understanding of the buyer’s expectations, and the

comparative performance of the suppliers is well known to each other. But in contrast, when the suppliers

face a high degree of uncertainty in buyer’s quality score assignment, they offer a premium price to maximize

their expected profits. The following proposition proves the effect of uncertainty in belief and suppliers

cost-homogeneity on the unit prices of the suppliers.

Proposition 3 Under asymmetric information, the following statements are true with respect to the effect of

parameters on the suppliers’ optimal prices in pooling equilibria.

1. Both suppliers weakly increase their unit price in response to an increase in cost homogeneity of suppliers

(captured as an increase in cU for a fixed cN ). But this also increases the ratio of pU/pN which leads to

lower chance for U to win the auction. Increasing suppliers’ cost homogeneity (when cU becomes closer

to cN ) also leads to a smaller region 1 and a bigger surface for the combination of regions 2 and 3 in

Figure 2.

2. The equilibrium prices p∗N and p∗U are both weakly increasing at ᾱ (for fixed α) and weakly decreasing

at α (for fixed ᾱ)

As Proposition 3 expresses, in contrast to symmetric information setting, an increase in cost homogeneity

of suppliers leads to an increase in pU , but, in fact, it does not translate to higher profit for him because on

the other side, supplier N increases his price in such a way that decreases pU/pN (e.g. if supplier U have a

%10 increase, supplier N may have %8 increase) and as a result, supplier U’s chance of winning will decrease.

The second part of the proposition addresses the effect of asymmetry degree on the suppliers’ prices:

reducing uncertainty generally leads to a lower unit price from both suppliers. However, this is only true as

long as there is small degree of uncertainty; in fact, there is a threshold for suppliers’ uncertainty regarding the

QS information in which the unit price under symmetric and asymmetric information scenarios become equal.

The following proposition explores these thresholds and find the situations where asymmetric information

setting can result in lower bid prices than symmetric information.

Proposition 4 When the degree of uncertainty is sufficiently low, the winning price in the auction under

pooling equilibrium can be lower than the winning price under symmetric information, i.e.

• for any α < cU
cN

, if ᾱ < cU
cN

and α ≥ cN ᾱ
2

cU
, then p∗PEN ≤ p∗SYMN .

• for any α > cU
cN

, if ᾱ > cU
cN

and α ≥ ((cU+cN ᾱ))
2cN

, then p∗PEU ≤ p∗SYMU .

According to this proposition, low asymmetry between the buyer and the suppliers leads to higher price

competition even compared to when there is no information asymmetry among channel partners.

5.2 Separating equilibrium

In the separating equilibrium, the buyer guarantees different levels of revenues in advance and, hence, suppliers

U and N are able to correctly infer the true value of α. A separating equilibrium in this model must meet

the following requirements so that the credible information sharing becomes possible. Firstly, given the fixed
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Figure 3: The impact of uncertainty on the equilibrium prices under symmetric information vs. pooling
equilibrium.

selected price of pr for the guarantee, the buyer’s advance guarantee ηi(α) : [α, ᾱ] → [0, 1] must be a one-

to-one strategy for the informed buyer. This ensures that the buyer sends different signals for different QS

information. Suppliers then correctly infer the true value of α when they observe the guarantee of ηi(α) that

is expected in equilibrium. In that case, their posterior belief would be α = ηi
−1(ηi(α)) with probability one.

Secondly, the choice of guarantee ηi(α) should be incentive compatible for the buyer so that the buyer has

no incentive to deviate from the equilibrium. To examine if the second requirement meets, we find the best

response of the buyer given the best response of the suppliers at the equilibrium. We conclude by verifying

that the buyer has no incentive to deviate from equilibrium. To do so, we utilize buyer’s cost function and

suppliers’ profit functions given at Equations 4, 5, and 6.

The next lemma characterizes the suppliers’ optimal bids and the equilibrium cost and profits given an

advance minimum revenue guarantee to supplier i = N or U .

Lemma 2 Let assume γN1 = cU
plowN

,γN2 = cU
pr

,γU1 =
plowU
cN

, and γU2 =
plowU
pr

. In the separating equilibrium, after

observing the guarantee ηi to supplier i (i = U or N) and correctly inferring α, the suppliers’ optimal bid

would be as presented in Table 4.

This lemma follows directly from the definition of plowi value for i = N,U and the fact that after receiving

the signal and correctly inferring α, the suppliers biding strategy would be very similar to the symmetric

information case except that the minimum price would be plowi instead of ci for i = N,U . Only in the cases

when the guaranteed supplier fails in the competition, the buyer has to pay ηiQpr and (1 − ηi)Qp−i to the

guaranteed (i) and non-guaranteed (−i) suppliers, respectively.

For the equilibrium to be separating, the buyer should have no incentive to mislead the suppliers. In

other words, a buyer with true value of α must prefer, or at least should be indifferent to offer, the advance

guarantee of ηi(α) to any other guarantee of ηi(α
′) . The necessary condition for meeting this requirement

in the general form is that TCB(ηi(α), pN (α), pU (α), α) ≤ TCB(ηi(α
′), pN (α′), pU (α′), α).

When α and α′ are both in either range of (0, γi2), (γi2, γ
i
1) or (γi1, 1) for i = U,N , where the total cost

function of the buyer changes smoothly (continuous derivative with no breakpoint), this general condition is

equivalent to the first-order condition

∂TCB(ηi(α
′), pN (α′), pU (α′), α)

∂α′
|(α′=α)= 0
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Table 4: Best responses of the suppliers and the buyer after receiving the signal: Separating equilibrium.

0 ≤ ηN ≤ 1

Equilibrium decisions 0 < α ≤ γN2 γN2 ≤ α ≤ γ
N
1 γN1 ≤ α ≤ 1

Prices (bids) p∗N pr
cU
α cN + ηN (pr − cN )

p∗U cU α(cN + ηN (pr − cN ))

Order Alloc q∗N , q∗U Q, 0 ηNQ, (1− ηN )Q

Suppliers’ π∗N Q(pr − cN ) Q(
cU
α − cN ) ηNQ(pr − cN )

Profits π∗U 0 (1− ηN )Q(αplowN − cU )

Buyer’s Cost TC∗B Qpr Q
cU
α Q(ηNpr + (1− ηN )αplowN )

0 ≤ ηU ≤ 1

Equilibrium decisions 0 < α ≤ γU2 γU2 ≤ α ≤ γ
U
1 γU1 ≤ α ≤ 1

Prices (bids) p∗N pr
cU+ηU (pr−cU )

α cN

p∗U cU + ηU (pr − cU ) αcN

Order Alloc q∗N , q∗U (1− ηU )Q, ηUQ 0, Q

Suppliers’ π∗N (1− ηU )Q(pr − cN ) (1− ηU )Q(
plowU
α − cN ) 0

Profits π∗U ηUQ(pr − cU ) Q(αcN − cU )

Buyer’s Cost TC∗B Qpr Q(ηUpr + (1− ηU )
plowU
α ) QαcN

† Note that plowi = ci + ηi(pr − ci) for i = U and N only if the supplier i is offered a minimum revenue of ηiQpr.

assuming that the second order condition would be satisfied. This leads to an ordinary differential equation

(ODE) that should be satisfied in any α. For instance, if the incumbent supplier is guaranteed (i = N) to

have a minimum revenue of ηNQpr at pr if he loses, then for the cases of cU
plowN

< α < α < ᾱ < 1, the following

ODE should be satisfied at any α:

(cN + ηN (α)(pr − cN ))(1− ηN (α)) + [prα− 2αcN − 2αηN (α)(pr − cN ) + pr]
∂ηN (α)

∂α
= 0

The following proposition proves the existence of separating equilibria under certain conditions.

Proposition 5 The following statements are true regarding the possibility of costly signaling for the buyer:

1. Regardless of the suppliers prior belief on α (α , ᾱ), the buyer will never be able to truthfully share the

true value of α using a revenue guarantee to unknown supplier U.

2. The buyer can truthfully share her private information (α) using an advance minimum revenue guar-

antee to the known supplier (ηN ) only when cU/cN ≤ ᾱ ≤ 1; in all other cases when 0 < ᾱ < cU/cN
there is only pooling equilibrium as characterized in Proposition 2. In the separating equilibrium, the

buyer with private information of α guarantees the incumbent supplier a minimum revenue of ηN (α)pr,

as follows:

ηN (α) =

{
f(α) max(α, αm) ≤ α ≤ ᾱ
f(αm) α ≤ α < αm

where f(α) =
C1αpr+C1pr−2C1αcN−

√
C2

1α
2p2
r+2C2

1αp
2
r+C2

1p
2
r−4C1α

2C1α(pr−cN ) , C1 = 1
cN (ᾱpr−ᾱcN+pr)

and αm = (pr−cU )cU
cN ᾱpr−ᾱc2N+cNpr−prcU .
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When the suppliers observe an advance guarantee ηN to supplier N, they update their belief about α

according to the following function:

α(ηN ) =

{
α, ηN ∈ [ηN (ᾱ),min(f(α), f(αm))]

∼ U(α, αm), ηN > min(f(α), f(αm))

and their equilibrium bidding price would be:

(p∗N , p
∗
U ) =

{
(cN + ηN (pr − cN ), α(cN + ηN (pr − cN ))) ηN ∈ [ηN (ᾱ),min(f(α), f(αm))]

(cN + ηN (αm)(pr − cN ), cU ) ηN > min(f(α), f(αm))

In this case, the buyer’s total cost would be fixed equal to ᾱcN for all values of α (α ≤ α ≤ ᾱ).

Proposition 5 shows that the buyer cannot truthfully share the exact value of α with the suppliers by a

revenue guarantee to the entrant supplier U , whereas she might be able to signal her private information by

a guarantee to the known supplier N in cases if α and ᾱ are close enough. The intuitive reason why signaling

α is not feasible using a revenue guarantee to the unknown supplier is that the buyer will be always better

off to signal the lowest possible value of α (which cannot be lower than α) to make sure that the supplier N

loses the auction (because he mistakenly increases his bidding price putting him in the failure position) and

the supplier U wins the auction at its lowest possible price (cU ). In fact, the buyer would be better off to

cheat by switching the winner. One may think that this result is only because we assumed the production

cost of supplier U is lower than that of supplier N(cU < cN ). But our further analysis shows that even if

cU > cN the buyer is still unable to share the true value of α using an advance guarantee to the unknown

supplier.

Proposition 6 If supplier N is more cost efficient than unknown supplier, i.e. cN < cU , then

regardless of the suppliers’ prior belief on α (α and ᾱ), the buyer will never be able to truthfully share the

true value of α by a minimum revenue guarantee to either supplier U or N .

This proposition proves that the buyer can use an advance guarantee to the incumbent supplier as an

informative signal only if all the following requirements are satisfied: 1– The incumbent is assigned a higher
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quality score (αN > αU ), and 2– he is less efficient that the other unknown supplier (cN > cU ); otherwise,

sharing information to the suppliers is not possible by guaranteeing supplier N.

The following proposition investigates the sensitivity of ηN and bid prices of the suppliers to the true

value of α and the suppliers’ belief about it under the separating equilibrium when the buyer commits to

signal an advance minimum revenue guarantee.

Proposition 7 Under asymmetric information when the buyer can truthfully share her private information:

• The equilibrium advance guarantee to supplier N (η∗N ) is increasing in ᾱ and constant in α for all values

of α ∈ (α, ᾱ).

• Supplier N’s price (p∗SEN ) is decreasing in α (for α < αm is constant and then for α > αm becomes

strictly decreasing).

• Supplier U’s price (p∗SEU ) is increasing in α (for α < αm is constant and then for α > αm becomes

strictly increasing).

Interestingly, the buyer’s signaling cost is only dependent to the highest-case scenario for the QS of

unknown supplier (ᾱ) and not the absolute degree of uncertainty measured by ᾱ − α. Also, similar to

the symmetric information scenario, the bid prices of the suppliers pSEU and pSEN increases and decreases,

respectively, with respect to the true value of α under advance revenue guarantee.

6 The impact of credible information sharing

In this section, we compare the impact of buyer’s choice of information sharing (whether pooling or separating

equilibria) on the equilibrium decisions (suppliers’ price and buyer’s order allocation) and costs and profits.

6.1 On equilibrium decisions: Prices/quantities

We do our best to characterize the impact of buyer’s strategic decision of information sharing on the expected

equilibrium unit prices of suppliers and the allocation of order quantities. When the suppliers are certain

that the QS of unknown supplier is significantly low, i.e. α < α < ᾱ < cU
cN

(region C0), the buyer cannot

truthfully signal her true type, i.e. ηN = 0. In contrast, the following proposition concentrate on a special

case when the suppliers a priori believe that the unknown supplier’ QS is high enough and the degree of

asymmetry is low.

Proposition 8 If the suppliers a priori believe that α is high and the degree of information asymmetry is

sufficiently low, i.e. α ≥ cU+cN ᾱ
2cN

(this only can happen when α ≥ cU
cN

at region C1), then:

• The expected equilibrium unit prices are lower under pooling equilibrium than under separating equilib-

rium: p̄∗PEU < p̄∗SEU and p̄∗PEN < p̄∗SEN .

• The expected equilibrium order quantity to supplier N (resp. U) is lower (resp. higher) under pooling

equilibrium than under separating equilibrium: q̄∗PEU > q̄∗SEU and q̄∗PEN < q̄∗SEN .

Therefore, when the uncertainty is low and the suppliers believe that α is considerably high, hiding the

information always leads to a lower expected unit price from both suppliers. Since the buyer has guaranteed

supplier N, his order quantity would be higher under separating than pooling equilibrium. In region C2 of

Figure 5 where the uncertainty is medium or high, everything depends on the value of parameters. In the

most general case, we have 4 different regions in C2, depending on the combination of the possible cases of

pooling (region 1 or 2 in Proposition 2) or separating (fully separating or partially separating) scenarios.

Even though we can find in each subregion the break-even points where decision variables are equal under

pooling and separating equilibria, it is analytically hard to fully characterize all the points in region C2.

Therefore, Figure 5 provides only a particular example when pr/cN is sufficiently large such that we only

have three cases.
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1

1

Figure 2) supplier N's price

1

1

Figure 1) supplier U's price

Regions Supplier N’s price Supplier U’s price

(α, ᾱ) ∈ C0 pPEN = pSEN pPEU = pSEU
(α, ᾱ) ∈ C1 pPEN < pSEN pPEU < pSEU
(α, ᾱ) ∈ C2 pPEN < pSEN if α > αm; pPEN ≥ pSEN o.w. pPEU < pSEU if ∆SE1

pU
> 0; pPEU ≥ pSEU o.w.

1

1

Figure 8) supplier N’s quantity

1

1

Figure 7) supplier U’s quantity

Regions Supplier N’s quantity Supplier U’s quantity

(α, ᾱ) ∈ C0 qPEN = qSEN qPEU = qSEU
(α, ᾱ) ∈ C1 qPEN < qSEN qPEU > qSEU
(α, ᾱ) ∈ C2 qPEN < qSEN if ∆SE1

qN
> 0; qPEN ≥ qSEN o.w. qPEU > qSEU if ∆SE1

qU
> 0; qPEU ≤ qSEU o.w.

Note. The different colored regions in the above figure denote the following impacts of pooling vs separating equilibria on
decision variables: green (light shaded) regions – decision variable lower under pooling; red (dark shaded) regions – decision

variable lower under separating; and, white regions – indifferent between pooling and separating equilibria. ∆SE1
pU

, ∆SE1
qN

, and

∆SE1
qU

are characterized in the appendix.

Figure 5: Effects of pooling vs separating on price/quantities in asymmetric information setting.

6.2 On equilibrium profits/costs

This section establishes the comparative impact of pooling equilibrium on the costs/profits of channel parties

with respect to the separating equilibrium.

In region C0 where the suppliers believe that the buyer is low type (α < α < ᾱ < cU
cN

) there is no

difference between pooling and separating (there is only possibility for pooling equilibrium). But, in other

regions, the buyer’s choice of information sharing can potentially change suppliers’ profits and total costs

of channel parties. The following proposition, fully characterizes this impact in a particular case when the
suppliers a priori believe that the buyer is high type and there is low degree of asymmetry.
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Proposition 9 If the degree of information asymmetry is sufficiently low, i.e. α ≥ cU+cN ᾱ
2cN

(this only can

happen when α ≥ cU
cN

at region C1), then:

• The equilibrium profit of supplier N is lower under pooling equilibrium than under separating equilibrium:

π∗PEN ≤ π∗SEN .

• The equilibrium profit of supplier U is lower under pooling equilibrium than under separating equilibrium

only if pr is sufficiently high, i.e.

π∗PEU ≤ π∗SEU if pr ≥
−cNα+ 4cNσ

2
α,ηN + 2cNµηNα+ 2cNµηN ᾱ+ cU + 2E(η2

Nα)cN − 2cUµηN
2σ2

α,ηN + µηNα+ µηN ᾱ+ 2E(η2
Nα)

• The unit cost of the buyer and the total supply chain’ cost are lower under pooling equilibrium than

under separating equilibrium: TC
∗PE
B ≤ TC∗SEB and TC

∗PE
SC ≤ TC∗SESC .

In this situation, both suppliers are better off if the buyer chooses to share the QS information,

In region C2, at the most general case, we have 4 different regions. Even though we can find in each

subregion the break-even points where pooling=separating it is analytically hard to characterize it perfectly

in region C2.

Therefore, Figure 6 will provide only a particular example when pr/cN is sufficiently large such that we

only have three cases. But in the appendix, we have captured all the break-even points but verifying whether

they are effective or not is not easy.

7 Extension: Multiple suppliers in the auction

In order to see the effect of competition on the equilibrium decisions and buyer’s choice of information sharing,

in this section, we assume there are m untested suppliers and n known suppliers participating in the auction,

where m ≥ 1 and n ≥ 1. To be consistent with the main model, we keep all the essential assumptions stated

in §3 unchanged. We assume all the known suppliers are homogeneous in cost and quality score, i.e. all have

a marginal cost of cN and their quality score is normalized to be equal to one (QSN = 1). The unknown

suppliers are homogeneous in that their marginal cost is cU , but they may differ in terms of their assigned

quality scores. It is a common knowledge among the parties that untested suppliers’ QS’s are uniformly

distributed between some publicly known α and ᾱ.

First, in order to establish a benchmark, we consider the equilibrium under symmetric information

where all the suppliers know their exact QS assigned by the buyer. Assume unknown suppliers’ QS’s

{α1, α2, . . . , αm} are labeled in descending order such that α ≤ αm ≤ . . . α2 ≤ α1 ≤ ᾱ. In the equilib-

rium, if there are multiple number of known suppliers (n > 1), they all keep undercutting each other’s price

upto their marginal cost level (cN ) regardless of the unknown suppliers’ actions; otherwise if n = 1, sup-

plier N only takes into account the value of α1 and offers min(pr,max(cN ,
cU
α1

)). On the other side, if there

are multiple number of unknown suppliers (m > 1), all except the one with the highest QS will offer their

marginal cost, i.e. pi∗U = cU for i = 2, . . . ,m, and the one with the highest QS takes a pricing policy as

p1∗
U = max(cU ,min(cNα1,

cUα1

α2
)),

where the terms cNα1 and cUα1

α2
ensure that his price is low enough to be competitive to the prices offered

by known and other entrant suppliers, respectively. Note that the first-ranked supplier only considers α2,

the value of QS for the second-rank entrant supplier, since he only needs to secure himself against the next

strongest competitor. In the equilibrium, for α1 ≤ cU
cN

, known suppliers win the auction (the buyer may

choose to allocate the order equally among them) and for α1 ≥ cU
cN

, the entrant supplier with the highest QS

(α1) wins the auction.

As observed from the equilibrium unit prices under symmetric information setting, in the most general

case, there are only three pieces of information that are probably worth to be shared: (1) the highest QS (α1),
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1

1

Figure 4) supplier N's profit

1

1

Figure 3) supplier U's profit

Regions Supplier N’s profit Supplier U’s profit

(α, ᾱ) ∈ C0 πPEN = πPEN πPEU = πPEU
(α, ᾱ) ∈ C1 πPEN < πPEN πPEU < πPEU
(α, ᾱ) ∈ C2 πPEN < πSEN if ∆SE1

πN
> 0; πPEN ≥ πSEN o.w. πPEU < πSEU if ∆SE1

πU
> 0; πPEU ≥ πSEU o.w.

1

1

Figure 5) Buyer’s total cost

1

1

Figure 6) Total supply chain cost

Regions Buyer’s cost Total supply chain cost

(α, ᾱ) ∈ C0 TCPEB = TCSEB TCPESC = TCPESC
(α, ᾱ) ∈ C1 TCPEB < TCSEB TCPESC < TCPESC
(α, ᾱ) ∈ C2 TCPEB < TCSEB if ∆SE1

TCB
> 0; TCPEB ≥ TCSEB o.w. TCPESC < TCSESC if ∆SE1

TCSC
> 0; TCPESC ≥ TC

SE
SC o.w.

Note. The different colored regions in the above figure denote the following impacts of pooling vs separating equilibria on decision
variables: green (light shaded) regions - costs/profits lower under pooling; red (dark shaded) regions - costs/profits lower under

separating; and, white regions - indifferent between pooling and separating equilibria. ∆SE1
πN

, ∆SE1
πU

∆SE1
TCB

, and ∆SE1
TCSC

are

characterized in the appendix.

Figure 6: Effects of pooling vs separating on supply chain partners’ profit/costs in asymmetric information
setting.

(2) the second rank QS (α2), and (3) the supplier who possesses the highest rank. In fact, if all the channel

partners have symmetric information regarding these three elements, even full information on the QS of other

suppliers has no extra value and cannot influence the equilibrium outcome of the competition. Hence, we

only focus on possible ways through which the buyer can signal these pieces of information. However, this

needs a complicated three-dimensional signaling analysis. Rather, for the simplicity sake and in order to be

able to study the possibility of information sharing using a signal of two dimensions (ηN , ηU ), let assume that

suppliers’ ranking is a priori known to all the parties.6 This assumption enables us to eliminate the need for

sharing the third dimension of hidden information and simplify the problem to a two-dimensional signaling

6As a matter of fact, it is sufficient to assume that only first-rank supplier is known to all.
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game. Note that even though supplier’s relative rank in terms of QS is assumed to be commonly known, the

exact scores is still unknown to all parties except the buyer.

Under asymmetric information scenario, similar to our main analysis with two suppliers, we only char-

acterize pure (not-mixed) equilibria and specifically focus on symmetric actions from homogeneous parties

(when possible) to ease the complexity of the analysis. The main objective of this section is simply to find

out: (1) the equilibrium decisions under pooling equilibrium, (2) whether the buyer can signal the required

information truthfully using advance minimum revenue guarantees to known suppliers (ηNQpr) and unknown

suppliers (ηUQpr), and finally, (3) the possible impacts of increasing competition (increasing n and m) on

the buyer’s choice of information sharing.

Pooling equilibrium: We characterized the equilibrium decisions under pooling equilibrium when n = m = 1

in Section 5.1. When only the number of known suppliers increases (n > 1,m = 1), both suppliers decrease

their prices to pi∗N = cN for i = 1, . . . , n and p∗U = cU+cN ᾱ
2 . But, when m > 1, n ≥ 1 finding a short

closed-form solution is almost impossible; however, as a general rule, suppliers take the following policy when

offering their prices:

pi∗U = min(pr,max[cU , f
i
U (p∗N , p

1∗
U , . . . , p

i−1∗
U , pi+1∗

U , . . . , pm∗U )]) ∀i = 1, . . . ,m

p∗N =

{
cN n > 1

min(pr,max[cN , fN (p1∗
U , . . . , p

m∗
U )]) n = 1

where the procedure for finding f iU (p∗N , p
1∗
U , . . . , p

i−1∗
U , pi+1∗

U , . . . , pm∗U ) and fN (p1∗
U , . . . , p

m∗
U ) is described in

the appendix.

Separating equilibrium: The case of two competing suppliers m = n = 1 is characterized at Proposition 5.

It is easy to prove that in the case of multiple known suppliers with one new entrant (n > 1,m = 1), the

buyer can still signal the true value of α using a guarantee of ηN
n to each known supplier only when ᾱ > cU

cN
.

Similar to the results of Proposition 5, the buyer’s total cost would be QcN ᾱ.

In the most general case where m > 1, n ≥ 1, as been observed in symmetric information setting, the

buyer only needs to signal the two highest values of suppliers’ QS’s, i.e. α1 and α2 when α1 >
cU
cN

.7 It is

easy to observe that the buyer is never able to signal a low value of α1 using a minimum revenue guarantee

to known or unknown suppliers when the suppliers a priori believe that it is low (ᾱ < cU
cN

), as we proved in

Proposition 5. Therefore, we only focus on the possibility of signaling when ᾱ > cU
cN

. Let assume ηN
n Qpr and

ηU
m−1Qpr are the advance revenue guarantee to each known and unknown supplier, respectively.8

In order to have a separating equilibrium under which credible information sharing becomes possible,

first, there should be a one-to-one projection from the signals, advance guarantees (ηN , ηU ), to the hidden

information (α1, α2), i.e.

(ηN , ηU )(α1,α2) : ([α, ᾱ]2 | α2 < α1)→ [0, 1]2.

This ensures that the buyer sends different signals for different tuple of (α1, α2). Suppliers then correctly

infer the true value of α1 and α2 when they observe the guarantee of ηN (α1, α2) and ηU (α1, α2) that are

expected in equilibrium. In addition, the choice of guarantee should be incentive compatible for the buyer so

that the buyer has no incentive to deviate from the equilibrium. This condition leads to solving the following

system of partial differential equations (PDEs):

7In a situation where α1 ≤ cU
cN

, the buyer only needs to share α1 because knowing the exact value of α2 will not affect the

outcome of the auction when the suppliers know that even the best entrant cannot compete with incumbent suppliers. Note
that in this case, sharing α1 makes sense only when there is one known supplier, n = 1, since in case of multiple incumbent
suppliers n > 1, there is no point in signaling low quality of unknown suppliers as all the known suppliers in the equilibrium
offer cN and win the auction.

8As indicated in the model framework, this is an external price that should motivate suppliers to participate in the auction.
For the sake of notational simplicity and without loss of generality, we assume here that the buyer offers the guarantee to both
incumbent and entrant suppliers at the same price equal to the reserve price pr.
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∂TCB(α1, α2)

∂αi
= 0 ∀i ∈ {1, 2}

where TCB(α1, α2) denotes the total cost of the buyer given her signal is credible to the suppliers.

The following proposition characterizes decision variables in separating equilibrium under asymmetric

information when there are multiple unknown suppliers.

Proposition 10 In the presence of m ≥ 2 unknown suppliers in the auction, if α > cU
cN

, the buyer can signal

(α1, α2) with an equal minimum revenue guarantee to known suppliers ηN
n Qpr and another equal guarantee

to unknown suppliers ηU
m−1Qpr as follows:

ηN (α1, α2) =
α1pr − prα2m+ prα2 + α1cUm− 2α1cU

α1(pr − cU )

ηU (α1, α2) =
(m− 1)(prα2 − α1cU )

α1(pr − cU )

When the suppliers observe advance guarantees of ηN and ηU to known and unknown suppliers, respec-

tively, they update their belief about α1 and α2 accordingly and their equilibrium bidding price would be:

(p∗N , p
i>1∗
U , p1∗

U ) =


(cN + ηN

n (pr − cN )

(cU + ηU
m−1 (pr − cU )))

α1

α2
(cU + ηU

m−1 (pr − cU ))

In this case, the buyer’s total cost would be fixed equal to pr for all values of α1 and α2 (α ≤ α2 < α1 ≤ ᾱ).

Impact of information sharing: According to the above proposition, when the number of new entrants is

more than one, signaling the required information to the suppliers becomes very costly for the buyer compared

to the case where m = 1. On the other hand, under the pooling equilibrium, by increasing the number of new

entrants in the auction m, competition effect increases among suppliers and all the suppliers weakly decrease

their prices. Therefore, it seems that from the buyer’s perspective, pooling equilibrium is more preferred

than separating equilibrium in the presence of multiple new entrants and she will be better off to hide the QS

information from the suppliers when m ≥ 2.9 In fact, when the advance guaranteed price in case of failure
is greater than the marginal cost of the least efficient parties, i.e. pr ≥ cN , and in the presence of multiple

known and unknown suppliers (n ≥ 2 and m ≥ 2), the buyer is always better off under pooling equilibrium

because the unit price under pooling equilibrium, i.e. the winning price, is less than cN while the unit cost

for the buyer under separating equilibrium is pr.

8 Conclusion

In this paper, we analyze how and when a buyer can credibly share her private QS information with her

upstream suppliers, and how it impacts the equilibrium decisions and the profit/costs of channel parities. To

address these questions, we develop a decentralized supply chain model with a buyer and two heterogeneous

suppliers competing for the buyer’s order quantity. We analyze the use of advance revenue commitment from

the buyer to the suppliers as a signaling tool for transferring information on suppliers’ quality scores. These

9This fact can offer an explanation for the recent phenomenon in keyword auctions that many search engines, including
Google and Yahoo!, have made their quality ranking scheme more ambiguous to the participants. For instance, Google started
with a simple ranking system in which all the advertisers could see their own QS immediately (symmetric information), but now
it introduces new known and unknown attributes without informing the bidders of their scores. However, it seems that Google
prefers the participants to be in partial asymmetry because within the current practice, they can see some scores immediately
while their final quality ranking remains unknown. This in fact corresponds to our result that “low asymmetry is the key success
factor for the buyer in buyer-determined auctions”. We refer the readers to Geddes (2014) for a detailed survey on Google
Adwords.
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quality scores denote the buyer’s estimation of the quality of suppliers in non-price factors and basically

reflect the buyer’s preferences over suppliers that will be used to rank them. After observing the advance

guarantee, the suppliers update their beliefs on the true QS, and then compete on prices to earn the order

from the buyer.

We first characterize the equilibrium under symmetric information and show that the comparison between

costs and quality scores of U and N determines the winner of the reverse auction. Specifically, the untested

supplier (U) is likely to win the auction if his relative quality score (QSUQSN
) is higher than his relative cost

advantage, while the known incumbent supplier (N) is preferred when the buyer is more concerned with

the non-price attributes and puts more emphasis on the incumbent’s quality performance compared to an

untested supplier. The analysis under asymmetric information setting comes with new twists to every aspect

of the problem, especially to the credibility of QS information. First, knowing that the buyer would distort

her private information on QS in order to influence the bid prices of the suppliers to her benefit, the suppliers

simply ignore the information shared by the buyer unless she offers an advance minimum revenue guarantee

to the supplier N before the auction starts. We show that this makes buyer’s QS information sharing credible

in the eyes of suppliers however, it leads to extra cost for the buyer. As the signaling cost increases in

the relative differences between quality scores of suppliers U and N, this information sharing strategy is

sustainable for the buyer as long as the relative quality scores of the suppliers U and N is not very low.

Secondly, in the presence of incomplete information, the suppliers decide on their prices based on their a

priori beliefs on the true values of quality scores. Our results show that depending on the choices made by

the suppliers, the strength of price competition (resp. equilibrium price) decreases (resp. increases) by an

increase in the degree of uncertainty. Thirdly, a comparison of the expected cost/profit implications between

sharing and not sharing the QS information enables us to evaluate when each strategy is more preferable

(and when it is not) for each channel partner. Finally, a comprehensive analysis of the auction under the

presence of multiple known and unknown suppliers reveals the new challenges and costs of sharing the QS

information.

The above-mentioned results give some managerial insights on the feasibility of credible information

sharing in competitive supply chains: First, when the degree of information asymmetry is sufficiently low,

the total cost of the buyer and the whole supply chain under incomplete information can surprisingly be

even lower than that under symmetric information. In contrast, when the degree of uncertainty increases, it

leads to higher unit prices from the suppliers. This suggests that the buyers should not disclose quality score

evaluation scheme to the bidders when they are relatively similar to each other in order to foster the degree

of competition amongst them. However, when the suppliers are heterogeneous in terms of quality scores,

the buyer should take necessary actions in order to decrease the degree of asymmetry regarding non-price

attributes.

Next, the buyer has to take some costly action in order to make the information sharing credible for the

suppliers. Advance commitments that are very common in supply chain interactions can serve as a credible

signal in reverse auctions. Furthermore, in order for it to be credible, advance guarantee should be given to

the incumbent only when suppliers believe that unknown supplier’s QS should not necessarily be very low.

This costly action is justifiable only if the degree of information asymmetry is high such as in cases where

the suppliers are not sure of the buyer’s preferences and concerns or when the non-price attributes are not

easy to assess. In those cases, it is worth to incur an additional cost and share the QS information before

the auction.

One important note regarding the advance commitment to suppliers is that no information can be trans-

ferred using a guarantee to unknown suppliers. In fact, provision of revenue guarantee to an unknown supplier

when there is an incumbent with better expected performance in non-price attributes does not convey any

credible information as the buyer has incentive to distort the information in order to reduce her total cost.

This suggests that the buyer should not commit to an untested supplier before the auction even if she does

not pay attention to the non-price factors in ranking of the suppliers.

Finally, when the number of participating entrants (untested suppliers U) increases, the need for sig-

naling QS via advance guarantees decreases. This is because the degree of competition intensifies and the
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signaling cost incurred by the buyer increases as the number of tested and/or untested suppliers increases.

Consequently, even when the degree of information asymmetry is high, the signaling cost dominates the

competition effect, hence, the buyer is better off not to share her private information. That could offer an

explanation for why Google initially started its keyword auctions with fully symmetric information and then

gradually moved to more uncertain settings by introducing the hidden relevance score.

The model presented in this paper can be extended in different directions. First possible extension is to

add other sources of information asymmetry to the model. For instance, in a situation where the buyer faces

uncertain demand, she may have better forecast information than the suppliers. Incorporating forecasting

asymmetry would enable us to see the impact of different types of asymmetry on the contracting decisions. In

addition, suppliers’ production cost and reliability are usually precisely known only to themselves. Including

these factors in the model would provide a more realistic setting, analytically complicated though, that enables

us to see how information richness in two different streams of supply chain can influence the contractual

interactions and the degree of competition.

Moreover, we assumed here that all the parties are risk-neutral. One possibility would be to introduce

risk-aversion into the players’ objective functions. This extension would allow us to see the impact of the

risk characteristics on the choice of sharing or not sharing the information.

Lastly, we believe that the analysis of the possibility and profitability of credible QS information sharing

in buyer-determined auctioning contracts presents fruitful research opportunities and hope that this model

will fuel future research in this direction.

Appendix: Proofs of propositions

Proof of Proposition 1: Under symmetric information, the problem can be analyzed backward by starting

from the buyer’s order allocation in the last stage. Let supplier N and U propose pN and pU per unit and

their quality score assigned by the buyer are QSN = 1 and QSU = α, respectively. Then, the buyer’s total

cost can be expressed as follows.

TCB(pN , pU , α, pr) =


Q× pN pN ≤ pU

α , pN ≤ pr
Q× pU pN > pU

α , pU ≤ pr
Q× pr else

(7)

So, the buyer identifies supplier with the highest generalized price (GP) and if his unit price is less than or

equal to the reserve price (spot market price), she orders the whole demand to the winner, otherwise she

procures from external sources. Therefore, the buyer’s optimal allocation policy can be specified as:

(q∗N (pN , pU , α, pr), q
∗
U (pN , pU , α, pr)) =


(Q, 0) pN ≤ pU

α , pN ≤ pr
(0, Q) pN > pU

α , pU ≤ pr
(0, 0) else

(8)

Given this order allocation policy, the two suppliers engage in a Bertrand price competition in which each

supplier undercuts the other one until one of them reaches to his minimum price (marginal cost). The

suppliers’ expected profit after observing the reserve price is as follows:

πN (α, pU ) = Q×maxpN≤pr
(

(pN − cN )Prob[pN ≤
pU
α

]; 0
)

πU (α, pN ) = Q×maxpU≤pr
(

(pU − cU )Prob[pN >
pU
α

]; 0
)

The second term in the profit functions of suppliers U and N, zero, ensures that pi ≥ ci for i = N and U .

Each supplier wants to maximize his expected profit given the action of the other supplier and the

allocation policy of the buyer. This Bertrand competition results in an equilibrium in which the first-ranked

supplier undercuts the second-ranked by just epsilon (i.e. infinitesimal) amount and wins the auction. In

addition, they both know that the maximum unit price they can offer is pr.
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Given the profit functions of suppliers, their best response functions against each other would be as

follows:

p∗N (pU ) = min(max(cN ;
pU
α

); pr)

p∗U (pN ) = min(max(cU ;αpN ); pr)

Based on the above pricing schemes, in equilibrium one of the following will be true:

1. If cU/cN ≤ α ≤ 1 the buyer procures from supplier U. This is because supplier N cannot offer a lower

price than cN in this range and supplier U can win the auction at a price infinitesimally lower than

cNα.

2. If 0 < α ≤ cU/cN the buyer procures from supplier N. This is because supplier U will be undercut until

he reaches his marginal cost cU while supplier N can win the auction at a price infinitesimally lower

than min(cU/α; pr). Therefore, when cU/pr ≤ α ≤ cU
cN

supplier N’s price would be cU/α and when

0 < α < cU
pr

he will offer pr.

Based on the supplier’s optimal bidding policies, we can fully characterize the optimal order allocation,

suppliers’ profits, and buyer’s cost under symmetric information in three regions of 0 < α < cU
pr

, cUpr ≤ α ≤
cU
cN

,

and cU
cN
≤ α ≤ 1 as presented in Table 2. 2

Proof of Corollary 1: In order to prove this corollary, one should consider the value of bid prices and profits

of suppliers provided in Table 2. To analyze the effect of α, for α > cU/cN the expected bid and profit

of supplier U (cNα and Q[cNα − cU ] respectively) are strictly increasing, while p∗N = cN , π∗N = 0 stay

unchanged. In contrast, when cU/pr ≤ α ≤ cU/cN , the expected bid and profit of supplier N (cU/α and

Q[cU/α − cN ] respectively) strictly increase and p∗U = cU ,π∗U = 0 remain unaffected. Finally, in the last

region of α < cU/pr, the expected bids and profits of both suppliers stay unchanged (p∗U = π∗U = 0 ;p∗N = pr
and π∗N = Q(pr − cN ) ). The first statement follows by considering the effect of α in each region and the

continuity of the price and profit functions of suppliers.

The same procedure applies for proving the effect of cost heterogeneity. By fixing cN and increasing cU ,

the second part of the corollary would easily follow. 2

Proof of Lemma 1 In order to find the optimal pricing policy of the profit-maximizing suppliers under the

least costly pooling equilibrium (ηi = 0), first, assume there is no limit on their prices. Their profit function,

then, would be as follows:

πN = Q(pN − cN )

∫ pU/pN

α
f(α)dα

πU = Q(pU − cU )

∫ ᾱ

pU/pN

f(α)dα

where f(α) is their prior belief regarding the true value of α. Since we mainly focus on the uniform dis-

tribution, f(α) for α ≤ α ≤ ᾱ would be f(α) = U [α, ᾱ] = 1
ᾱ−α . After plugging f(α) in the suppliers’

profit function and taking the first derivative, the best response function of the suppliers will be given as:

p∗N (pU ) =
√

cNpU
α and p∗U (pN ) = ᾱpN+cU

2 .

By solving this system of equation, we find the internal equilibrium (PE-1) of the game when other

constraints are not binding, as follows:

pIntN =
ᾱcN +

√
ᾱ2c2N + 8αcNcU

4α
and pIntU =

(ᾱ2cN + ᾱ
√
ᾱ2c2N + 8αcNcU + 4αcU )

8α

This internal point will be the equilibrium only if it satisfies the upper and lower pricing bounds. Considering

the maximum and minimum prices allowed, the best response of the suppliers is as follows:
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p∗N (pU ) = min(pr, (max[

√
cNpU
α

, cN ]))

p∗U (pN ) = min(pr, (max[
ᾱpN + cU

2
, cU ]))

Therefore, based on these response functions, the optimal pricing would be either of:

• PE-1: Internal solution of pIntN and pIntU if both prices are in the allowed ranges.

• PE-2: Boundary solution of pN = pr and pU = (ᾱpr + cU )/2, in case if pIntN > pr; it is easy to see that

cU ≤ pU = (ᾱpr + cU )/2 ≤ pr.
• PE-3: Boundary solution of pN = cN and pU = (ᾱcN + cU )/2, in case if pIntN < cN ; it is easy to see

that cU ≤ (ᾱcN + cU )/2 ≤ pr.
• PE-4: Boundary solution of pN =

√
cNcU
α and pU = cU , in case if pIntU < cU only if

√
cNcU
α ≤ pr

(otherwise PE-5 happens).

• PE-5: Boundary solution if pN = pr and pU = cU , in case if pIntU < cU and
√

cNcU
α > pr.

Obviously, the following pairs of (pN , pU ) cannot be the outcomes of the game:

• (pr, pr): because if N offers pr the supplier U’s optimal response should be (ᾱpr + cU )/2 which is less

than pr.

• (cN , pr): because by definition supplier U’s optimal price should be always lower than supplier N, i.e.

p∗U (pN ) = ᾱpN+cU
2 < pN .

• (
√

cNpr
α , pr): because even if supplier U offers pr in the equilibrium, supplier N will not go beyond pr,

i.e. pr <
√

cNpr
α .

But (cN , cU ) can be the equilibrium only at one specific point of (α = cU
cN

, ᾱ = cU
cN

) which is basically the

common corner of regions 1, 3, and 4 in Figure 2. 2

Proof of Proposition 2: In a pooling equilibrium, suppliers do not infer the true type of the buyer and hence

rely on their a-priori belief to decide on their prices. Given an advance revenue guarantee ηiQpr ≥ 0 their

optimal pricing policy would be as:

p∗N (pU ) = min(pr, (max[

√
cNpU
α

, plowN ]))

p∗U (pN ) = min(pr, (max[
ᾱpN + cU

2
, plowU ]))

where plowi for i = U,N denotes the minimum price offered by the supplier i, which is either ci (if he is not

offered any guarantee) or ci + ηi(pr − ci) if he is offered a guarantee of ηi.

A least costly pooling equilibrium should meet the following conditions: 1– For the whole range of α, the

buyer should send a fixed signal (a fixed level of revenue should be guaranteed) regardless of her true type

so that no specific information transfers; 2– given the suppliers’ optimal response, the buyer should have no

incentive to deviate from her original signal.

Now, let consider two different signaling scenarios for the buyer: she can make an advance guarantee to

either supplier N or U.

First, assume i = N (ηU = 0, ηN ≥ 0): Here we find all possible values of ηN such that it leads to the

same outcome as when ηN = 0. Given ᾱ, α, cU , cN , and ηN , if plowN > pIntN where pIntN =
ᾱcN+

√
ᾱ2c2N+8αcNcU

4α ,

the equilibrium price for supplier N would be p∗N = plowN . In that case supplier U wins the auction at

pU =
ᾱplowN +cU

2 . Therefore, the buyer’s unit cost would be a direct function of plowN : TCB = Q.(ηNpr + (1−
ηN )(

ᾱplowN +cU
2 )). Consequently, choice of ηN has a direct impact on the buyer’s total cost. Therefore, the
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buyer always prefers to decrease ηN as much as possible. The buyer’s tendency to deviate holds for any value

of ηN > 0. Therefore, a pooling equilibrium with ηN > 0 fails to exist in regions where PE-3 is the outcome

of the least costly game with plowN = cN : i.e. where α ≥ cU+cN ᾱ
cN

.

But if plowN ≤ pIntN any other equilibrium outcome except PE-3 may prevail, i.e. pN can be either pr,

pIntN , or
√

cNcU
α . Total cost of the buyer, therefore, is either QpN (if N wins) or Q(ηNpr + (1− ηN )pU ) (if U

wins). In either case, the total cost of the buyer is independent from the choice of ηN . Hence, the buyer is

indifferent between any value of

• 0 ≤ ηN ≤
(cN ᾱ+

√
c2N ᾱ

2+8αcNcU−4cNα)

4(α(pr−cN )) (η : plowN (η) = pIntN ) when PE-1 is the outcome of the game.

• 0 ≤ ηN ≤ 1 (η : plowN (η) = pr) when PE-2 or PE-5 are the outcome of the game.

• 0 ≤ ηN ≤
√
cNcU/α−cN
pr−cN (η : plowN (η) =

√
cUcN/α) when PE-4 prevails.

By the choice of ηN as mentioned above, the suppliers acquire no extra information and the buyer has no

incentive to deviate.

Second, assume i = U (ηU ≥ 0, ηN = 0): Similarly, here we find all possible values of ηU such that

it leads to the same outcome as when ηU = 0. Given ᾱ, α, cU , cN , and ηU , if plowU > pIntU where pIntU =
(ᾱ2cN+ᾱ

√
ᾱ2c2N+8αcNcU+4αcU )

8α the equilibrium price for supplier U would be p∗U = plowU and for supplier N

min(pr,
√
plowU cN/α). In the case when supplier N wins the auction at pN =

√
plowU cN/α, the buyer’s unit

cost would be a direct function of plowU : TCB = Q.(ηUpr + (1 − ηU )(
√
plowU cN/α)). Consequently, choice of

ηU has a direct impact on the buyer’s total cost. Therefore, the buyer always prefers to decrease ηU as much

as possible. The buyer’s tendency to deviate holds for any value of ηU > 0. Therefore, a pooling equilibrium

with ηU > 0 fails to exist in regions where PE-4 is the outcome of the least costly game with plowU = cU : i.e.

where α ≥ cN ᾱ
2

cU
.

But if pr <
√
plowU cN/α, supplier N’s price as the winning price would be pr and the total cost of the

buyer would be ηUpr + (1 − ηU )pr = pr. As a result, the buyer is indifferent to choose any ηU between

0 and 1.

For other cases, if plowU ≤ pIntU any other equilibrium outcome except PE-4 and PE-5 may prevail, i.e. pU
can be either pIntU , (ᾱcN + cU )/2, or (ᾱpr + cU )/2. Total cost of the buyer, therefore, is either QpU (if U
wins) or Q(ηUpr + (1− etaU )pN ) (if N wins). In either case, the total cost of the buyer is independent from

the choice of ηU . Hence, the buyer is indifferent between any value of

• 0 ≤ ηU ≤
cN ᾱ

2+ᾱ
√
c2N ᾱ

2+8αcNcU−4cUα
8α(pr−cU ) (η : plowU (η) = pIntU ) when PE-1 is the outcome of the game.

• 0 ≤ ηU ≤ ᾱpr−cU
2(pr−cU ) (η : plowU (η) = ᾱpr+cU

2 ) when PE-2 prevails.

• 0 ≤ ηU ≤ ᾱcN−cU
2(pr−cU ) (η : plowU (η) = ᾱcN+cU

2 ) when PE-3 are the outcome of the game.

By the choice of ηU as mentioned above, the suppliers acquire no extra information and the buyer has no

incentive to deviate.

Now, let find different ranges of α and ᾱ where different outcomes of the least costly games (ηi = 0) may

happen. Note that we use ci instead of a general plowi because ηi can be any value between zero and ηmaxi > 0

(found previously) such that it should not affect the equilibrium prices of the suppliers in the competition

compared to the case when ηi = 0; otherwise, the buyer will have an incentive to deviate from equilibrium

as discussed above.

1. To find the region where internal solution (PE-1) is the equilibrium, we should have cN ≤ pIntN ≤ pr

and cU ≤ pIntU ≤ pr. By solving these equations, we get the range of α ≤ cU+cN ᾱ
2cN

, α ≤ cN ᾱ
2

cU
, and



Les Cahiers du GERAD G–2015–115 27

α ≥ cN (cU+ᾱpr)
2p2
r

. In this range, the internal equilibrium outcome would happen. Supplier U wins the

auction if 0 < α < pU
pN

=
(ᾱ2cN+ᾱ

√
ᾱ2c2N+8αcNcU+4αcU )

2(ᾱcN+
√
ᾱ2c2N+8αcNcU )

and in the rest of the range supplier N wins.

2. To find the region where PE-2 happens, we should have pr < pIntN and cU ≤ pU (pr) ≤ pr. By solving

these equations, we get the range of α ≥ cN (cU+ᾱpr)
2p2
r

and α ≤ cN ᾱ
2

cU
. Supplier U wins the auction if

0 < α < pU
pN

= ᾱpr+cU
2pr

and in the rest of the range supplier N wins.

3. In the region where PE-3 happens, we should have pIntN < cN and cU ≤ pU (cN ) ≤ pr. By solving these

equations we get the range of α ≥ cU+cN ᾱ
2cN

. In this region, the buyer always orders from supplier U

because α ≥ pU
pN

= ᾱcN+cU
2cN

.

4. In order to have PE-4 as the equilibrium outcome, we should have pIntU < cU and cN ≤ pN (cU ) ≤ pr,

which leads to a region of α ≥ cN ᾱ
2

cU
and α ≥ cUcN

p2
r

. In this region, the buyer always orders from

supplier N because ᾱ ≤ pU/pN =
√

cUα
cN

.

5. PE-5 can be the outcome of the game if pIntU < cU and pr < pN (cU ), which only occur at a region

of α ≥ cN ᾱ
2

cU
and α ≤ cUcN

p2
r

. Like case 4, in this region also the buyer always orders from N because

ᾱ ≤ pU/pN = cU/pr. 2

Proof of Proposition 3: In order to prove these statements, we focus on the equilibrium prices of both sup-

pliers when the buyer’s advance guarantee conveys no information (Table 3). The effect of cost heterogeneity

of suppliers (captured by increasing cU at a fixed cN ) and lower and upper bounds of suppliers’ belief can be

easily verified by taking the first-order derivative of profit functions with respect to cU , α, and ᾱ, respectively.

It is skipped because of simplicity. 2

Proof of Lemma 2: Assume supplier i = U,N is to be offered an advance revenue guarantee of ηiQpr.

Similar to the symmetric information setting, the buyer’s cost function is as follows:

TCB(pN , pU , α, pr, ηi) =


Q× pi pi/QSi ≤ p−i

QS−i
, pi ≤ pr

Q× p−i pi/QSi >
p−i
QS−i

, p−i ≤ pr
Q× pr else

(9)

It implies that the buyer will surely give the supplier i an order of at least ηiQ even if he loses the competition.

This cost function leads to the following allocation policy.

(q∗i (pN , pU , α, pr, ηi), q
∗
−i(pN , pU , α, pr, ηi)) =


(Q, 0) pi/QSi ≤ p−i

QS−i
, pi ≤ pr

(ηiQ, (1− ηi)Q) pi/QSi >
p−i
QS−i

, p−i ≤ pr
(ηiQ, 0) else

(10)

Similar to the symmetric information setting (Proposition 1), we can find the best response of the suppliers

as following.

p∗N (pU ) = min(max(plowN ;
pU
α

); pr)

p∗U (pN ) = min(max(plowU ;αpN ); pr)

where plowi = ci + ηi(pr − ci) and plow−i = ci for i = U or N as the guaranteed supplier and −i as the other

supplier.

It is easy now to see that the winner of the auction in the equilibrium is

• supplier U for 0 < α <
plowU
plowN

• supplier N for
plowU
plowN

< α ≤ 1

Now by knowing the suppliers’ optimal pricing and the buyer’s optimal order allocation policy, we can

characterize the equilibrium as presented in Table 5. 2
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Table 5: Best responses of the suppliers and the buyer after receiving the signal: Separating equilibrium
(cN < cU ).

Advance
Guarantee 0 ≤ ηN ≤ 1 0 ≤ ηU ≤ 1

(buyer’s signal)

Range of α 0 < α ≤ γN2 γN2 ≤ α ≤ min(1, γN1 ) min(1, γN1 ) ≤ α ≤ 1 0 < α ≤ γU γU ≤ α ≤ 1

Prices p∗N pr
cU
α plowN pr

plowU
α

(bids) p∗U cU cU αplowN plowU plowU

Order q∗N , q∗U Q, 0 Q, 0 ηNQ, (1− ηN )Q (1− ηU )Q, ηUQ (1− ηU )Q, ηUQ
Alloc

Suppliers’ π∗N Q(pr − cN ) Q(
cU
α − cN ) ηNQ(pr − cN ) (1− ηU )Q(pr − cN ) (1− ηU )Q(

plowU
α − cN )

Profits π∗U 0 0 (1− ηN )Q(αplowN − cU ) ηUQ(pr − cU ) ηUQ(pr − cU )

Buyer’s TC∗B Qpr Q
cU
α Q(ηNpr + (1− ηN )αplowN ) Qpr Q(ηUpr + (1− ηU )

plowU
α )

Cost

† Note that plowi = ci + ηi(pr − cN ) for i = U and N only if the supplier i is offered an advance revenue guarantee of ηiQpr.

Proof of Proposition 5: In order to characterize seperating equilibria, we analyze each signaling tool sepa-

rately.

First, assume i = U , i.e. the buyer offers the guarantee to supplier U (ηU ≥ 0). Given the suppliers’

optimal response to the buyer’s signal (Lemma 2), let consider the following scenarios for the prior belief of

the suppliers (α, ᾱ):

1.
plowU
cN

< α < α < ᾱ < 1: suppliers cannot infer any information from ηU offered and, for example,

supplier U can always take pU = cNα and win the auction with no need for more information.

2. 0 < α < α < ᾱ <
plowU
pr

: in this situation, the buyer has no incentive to signal the information, because

in any case her final unit cost would be pr which is already accessible before holding the auction.

3.
plowU
pr

< α < α < ᾱ <
plowU
cN

: In the equilibrium, when the buyer chooses ηU (α̂), the suppliers infer α̂ and

respond accordingly by their price choice. We should find ηU (α) in such a way that the buyer never

finds any incentive to cheat, i.e. TCB(ηU (α), pN (α), pU (α), α) ≤ TCB(ηU (α̂), pN (α̂), pU (α̂), α).

The buyer’s profit if her real type is α and she signals α̂ would be:

TCB(ηU (α̂), pN (α̂), pU (α̂), α) =


ηU (α̂)Qpr + (1− ηU (α̂))Q

plowU
α̂ α̂ = α

ηU (α̂)Qpr + (1− ηU (α̂))Q
plowU
α̂ α̂ > α

QplowU α̂ < α

In order to prevent the buyer with a true type of α to signal an α̂ > α, it is easy to see that ηU (α) should be

increasing in α and take the highest value at α = ᾱ. But no matter how ηU (α) is chosen, the buyer is always

motivated to signal an α̂ < α because in that case TCB(ηU (α̂), pN (α̂), pU (α̂), α) = QplowU which is strictly

lower than TCB(ηU (α), pN (α), pU (α), α) = ηU (α)Qpr + (1 − ηU (α))Q
plowU
α . Therefore, the second condition

for a separating equilibrium cannot be satisfied.

Given the impossibility of signaling α by ηU in all the above scenarios, information sharing is not feasible

in any other possible range of [α, ᾱ] because it should include a subset of the ranges discussed above in which

signaling fails.

Second, assume i = N , i.e. the buyer offers the guarantee to supplier N (ηN ≥ 0). Likewise, the

following scenarios can be examined:

1. 0 < α < α < ᾱ < cU
pr

: the buyer has no incentive to signal the information, because in any case her

final unit cost would be pr which is accessible even without the auction.
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2. cU
pr

< α < α < ᾱ < cU
plowN

: suppliers cannot infer any information from ηN offered and, for example,

supplier N can always take pU = cU/ᾱ and win the auction with no need for more information. In fact,

in this case, the guarantee is not enough to change suppliers’ beliefs.

3. cU
plowN

< α < α < ᾱ < 1: In the equilibrium, when the buyer chooses ηN (α̂), the suppliers infer α̂ and

respond accordingly by their price choice. We should now find ηN (α) in such a way that the buyer

never finds any incentive to cheat, i.e. TCB(ηN (α), pN (α), pU (α), α) ≤ TCB(ηN (α̂), pN (α̂), pU (α̂), α).

The buyer’s profit if her real type is α and she signals α̂ would be:

TCB(ηN (α̂), pN (α̂), pU (α̂), α) =


ηN (α̂)Qpr + (1− ηN (α̂))Qα̂plowN α̂ = α

QplowN α̂ > α

ηN (α̂)Qpr + (1− ηN (α̂))Qα̂plowN α̂ < α

For this to be an equilibrium, the buyer should always be better off (or at least indifferent) to signal her

true type instead of any other wrong value. First, let find the optimal revenue guarantee for which the

buyer never signals a lower value of α. In that case, the minimum value of TCB(ηN (α̂), pN (α̂), pU (α̂), α) =

ηN (α̂)Qpr + (1 − ηN (α̂))Qα̂plowN should be always α̂ = α, or equivalently, first order condition should be

satisfied at α̂ = α.
∂(ηN (α̂)Qpr + (1− ηN (α̂))Qα̂plowN )

∂α̂
|α̂=α = 0.

This leads to the following differential equation:

(cN + ηN (α)(pr − cN ))(1− ηN (α)) + [prα− 2αcN − 2αηN (α)(pr − cN ) + pr]
∂ηN (α)

∂α
= 0.

This equation has to hold for all α ≤ ᾱ, therefore ηN (α) should be of the following form:

ηN (α) =
C1αpr + C1pr − 2C1αcN −

√
C2

1α
2p2
r + 2C2

1αp
2
r + C2

1p
2
r − 4C1α

2C1α(pr − cN )

where C1 is a constant.

This ηN (α) transforms the buyer’s cost function to a fixed constant value equal to TCB = 1−C1cNpr
C1(pr−cN ) .

Therefore, the problem switches to finding the minimum C1 such that ηN (α) is - first, between 0 and 1 for all

values of α < α < ᾱ; -second, one-to-one (because the cost function is continuous in this range, it is sufficient

to have η′N (α) non-negative or non-positive for all the values of α). It is easy to see that C1 = 1
cN (ᾱpr−ᾱcN+pr)

satisfies all the conditions and gives the most efficient signaling tool: ηN (ᾱ) = 0 ; 0 < ηN (α) < 1 (even for

α = 0, lim
α→0

ηN (α) = ᾱcN
pr

< 1); also ηN (α) is strictly decreasing in α and takes the highest value at α = α .

The buyer’s total cost would be then cN ᾱ.

We found a minimum revenue guarantee that prevents the buyer to signal a lower value of α than her

true type. Interestingly, the buyer will never choose to signal a higher value of α̂ > α because in that case:

TCB(ηN (α̂), pN (α̂), pU (α̂), α) = QplowN > cN ᾱ. By utilizing this costly signaling tool, supplier U’s price is

increasing in α while supplier N’s is decreasing until it reaches cN .

There is only one note here: supplier U will not offer a price lower than cU . Therefore, if for any

value of α, the value of α(cN + ηN (α)(pr − cN ) becomes lower than cU (this happens when α < αm =
(pr−cU )cU

cN ᾱpr−ᾱc2N+cNpr−prcU ), the buyer will not guarantee more than a threshold ηN (αm) where αm is the point

in which α(cN +ηN (α)(pr− cN ) = cU . This is because the buyer becomes worse off by continuing to increase

the guarantee for α lower than αm as the supplier U does not decrease his price anymore, while supplier N

increases his price.

Therefore, signaling becomes possible only when αm < ᾱ or equivalently, when ᾱ(cN + ηN (ᾱ)(pr − cN ) ≥
cU , which translate to a situation where ᾱ > cU

cN
.

Since the buyer has no incentive to manipulate this signal, the suppliers will update their belief in the

following fashion. If they observe 0 ≤ ηN ≤ min(ηN (α), ηN (αm)) they update their belief using η−1
N (ηN (α));
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but if they observe any value ηN > min(ηN (α), ηN (αm)) they believe that α ≤ α < αm. In the former case,

the equilibrium price by the suppliers is pN = cN + ηN (pr − cN ) and pU = α(cN + ηN (pr − cN )) while in the

latter, pN = cN + ηN (pr − cN ) and pU = cU . 2

Proof of Proposition 6: Before analyzing the separating equilibrium, it is worthwhile to study the equilibrium

under the symmetric information setting (as benchmark) when cU > cN . Under symmetric information, the

equilibrium bids would be p∗U = cU and p∗N = min(cU/α, pr) for 0 < α ≤ 1. In that case, in equilibrium

supplier N always wins at a price of min(cU/α, pr) and makes some profit (p∗N > cN ).

As we discussed in our previous analysis (Proposition 5), under asymmetric information, if a supplier is

guaranteed to have at least an order of ηiQ, he may feel less pressure on him to win the auction at very low

prices. As a result, supplier i never bids below plowi = ci + ηi(pr − ci) where plowi > ci for i = U or N . The

following lemma characterizes the suppliers’ optimal bids and the equilibrium profits if cU > cN and they

receive truthful information regarding α.

Lemma 3 Let assume γU = plowU /pr ,γN1 = cU/p
low
N ,and γN2 = cU/pr . In the separating equilibrium, after

observing the revenue guarantee ηiQpr to supplier i (i=U or N) and correctly inferring α, the suppliers’

optimal bid would be as presented in the Table 5.

The proof of this lemma directly follows from the definition of plowi and the similarity to the symmetric

information setting when the suppliers become informed of the true type.

A separating equilibrium must satisfy all the requirements mentioned before: a one-to-one signal by a

buyer who should have no incentive to deviate. We first, assume an interior separating equilibrium exists.

Then, according to the Lemma 3, the suppliers’ best response pU and pN and order allocation can be

characterized depending on the buyer’s choice of signal. In the equilibrium, when the buyer chooses ηi(α̂),

the suppliers infer α̂ and bid according to α̂. Following, we analyze each signaling tool separately.

1) Let i = U, i.e. the buyer guarantees a minimum revenue of ηUQpr to supplier U : In the equilibrium,

when the buyer chooses ηU (α̂), the suppliers infer α̂ and respond accordingly by their price choice. We should

find ηU (α̂) in such a way that the buyer never finds any incentive to cheat, i.e. TCB(ηU (α̂), pN (α̂), pU (α̂), α) ≤
TCB(ηU (α), pN (α), pU (α), α).

The buyer’s profit would be

TCB(ηU (α̂), pN (α̂), pU (α̂), α = α̂) = ηU (α̂)Qpr + (1− ηU (α̂))QpN (α̂)

TCB(ηU (α̂), pN (α̂), pU (α̂), α < α̂) = ηU (α̂)Qpr + (1− ηU (α̂))QpN (α̂)

TCB(ηU (α̂), pN (α̂), pU (α̂), α > α̂) = QpU

For this to be an equilibrium, the buyer’s total cost should be minimized at α̂ = α if the true type of the

buyer is α. First, let find the optimal advance guarantee in which the buyer never signals a higher value of α.
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In that case, the following first order condition should be satisfied at α̂ = α:

∂TCB(ηU (α̂), pN (α̂), pU (α̂), α)

∂α̂
|α̂=α=0 .

And, it leads to the following guarantee function:

ηU (α) =
−αpr + 2cU − pr +

√
α2p2

r − 4cUαpr + 2αp2
r + p2

r + 4prC1α− 4cUC1α

2(−pr + cU )

where C1 is a constant and should be chosen such that ηN (α) satisfies all the required conditions and gives the

most efficient signaling tool. It is easy to see that ηN (α) should be increasing in α and takes the highest value

at α = ᾱ. By Using this guarantee, if the buyer sticks to the truthful signaling of α = α̂, his total cost would

be fixed equal to min(pr,
cU
α ) > cU . But, using this signaling tool, the buyer always prefer to guarantee ηU (α̂)

to signal a QS of α̂ far lower than α. In fact by ηU ' 0, the buyer signals that α is very low close to α to receive

bids of pU = cU and pN = min(pr, cU/α). In that case, supplier N loses the auction while supplier U wins at its

lowest possible price cU . Therefore, TCB(ηU (α̂), pN (α̂), pU (α̂), α > α̂) < TCB(ηU (α̂), pN (α̂), pU (α̂), α = α̂)

which makes the separating equilibrium fail to exist and work.

2) Let i = N , i.e. the buyer guarantees a minimum revenue of ηNQpr to the supplier N: In the

equilibrium, the guarantee to supplier N, ηNQpr, cannot be lower than what makes plowN = cU/ᾱ, otherwise

it transforms no information as supplier N can always takes pN = cU/ᾱ and wins the auction with no need

for more information. By a similar reasoning as previous part, we can show that ηN (α) should be decreasing

at α to make sure that the buyer never signals a α̂ lower than α.

TCB(ηN (α̂), pN (α̂), pU (α̂), α = α̂) = ηN (α̂)Qpr + (1− ηN (α̂))QpU (α̂)

TCB(ηN (α̂), pN (α̂), pU (α̂), α > α̂) = ηN (α̂)Qpr + (1− ηN (α̂))QpU (α̂)

TCB(ηN (α̂), pN (α̂), pU (α̂), α < α̂) = QpN

But, in the same fashion as before, with decreasing signal, the buyer would be always motivated to signal

a higher value of α (by a lower guarantee) to mislead both suppliers in a way such that supplier U offers

a higher price than expected in the equilibrium while supplier N offers his lowest possible price and wins

the auction at pN = cU
ᾱ . Therefore, TCB(ηN (α̂), pN (α̂), pU (α̂), α < α̂) < TCB(ηN (α̂), pN (α̂), pU (α̂), α = α̂),

which makes the separating equilibrium fail to exist and work. 2

Proof of Proposition 7: To prove that p∗SEN = cN +ηN (pr−cN ) is decreasing (which is equivalent to showing

that the signal ηN is decreaing at α), we take the first derivative of p∗SEN with respect to α and show that it

is always negative given our assumptions on parameters α, α, ᾱ, cU
cN

, and pr.

∂p∗SEN

∂α
= −

√
C2

1p
4
r(1 + α)2 − 4C1αp2

r − C1p
2
r(1 + α) + 2α

2α2
√
C2

1p
2
r(1 + α)2 − 4C1α

(1)

First, let find the acceptable domain, where the above derivative is meaningful. Domain is the range of

parameters where C1p
2
r(1 + α)2 ≥ 4α, which includes any point of α and any upper and lower bound such

that 0 < α ≤ α ≤ ᾱ ≤ 1. This is because if we plug the real value of C1, in the meaningful region, we should

have
p2
r(1+α)2

cN [pr+ᾱ(pr−cN )] ≥ 4α. The lowest value for the left-hand-side at any given α occurs at ᾱ = 1. And, it is

easy to show that p2
r(1 +α)2 ≥ 4αcN (2pr− cN ) since p2

r ≥ cN (2pr− cN ) (for any cN ≤ pr) and (1 +α)2 ≥ 4α

(for any 0 < α ≤ 1).

Since the denumerator in (1) is always positive; it is sufficient to show that the numerator is always

negative, or √
C2

1p
4
r(1 + α)2 − 4C1αp2

r − C1p
2
r(1 + α) + 2α > 0. (2)

Let denote A = C1p
2
r(1 + α) and B = 4C1αp

2
r; hence we should show that√

A2 −B −A+ 2α > 0. (3)
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And, this holds only if

B < 4Aα− 4α2. (4)

If we replug the original values at (4), we find that the previous inequality (3) holds only if C1p
2
r > 1, or

equivalently when
p2
r

cN [pr + ᾱ(pr − cN )]
> 1. (5)

Given 0 < ᾱ ≤ 1 the minimum of the fraction (the maximum of the denumerator) would be at ᾱ = 1.

Therefore, we should have
p2
r

cN (2pr − cN )
> 1 (6)

which is always the case, since the maximum amount of cN (2pr − cN ) would be at cN = pr and for any

cN < pr we have p2
r > cN (2pr − cN ). If we go back from statement (6) to (1), we have proved that p∗SEN is

strictly decreasing at α everywhere. But, considering the result of Proposition 5, supplier N’s price indeed

would be constant for α < αm (αm given at Proposition 5) and strictly decreasing for values of α ≥ αm.

A simlar approach applies to prove that p∗SEU is increasing at α.

∂p∗SEU

∂α
=

√
C2

1p
4
r(1 + α)2 − 4C1αp2

r − C1p
2
r(1 + α) + 2

2
√
C2

1p
2
r(1 + α)2 − 4C1α

It is sufficient to show that the numerator is always positive, or
√
C2

1p
4
r(1 + α)2 − 4C1αp2

r−C1p
2
r(1+α)+2 > 0.

Therefore, by the same transformation of variables to A and B, we should show that
√
A2 −B−A+2 > 0 .

This holds only if B < 4A − 4. If we replug the original values, we find that the previous inequality holds

only if C1p
2
r > 1, or equivalently when

p2
r

cN [pr+ᾱ(pr−cN )] > 1. And, this is always true as we proved it in

the previous part. Therefore, supplier U’s price would be increasing at α in the accepatable domain which

includes ᾱ > cU
cN

: in fact it remains fixed for α < αm and strictly increases for α ≥ αm . 2

Proof of Proposition 8: First, we characterize the expected value of equilibrium decisions in pooling and

separating equilibria. The expectation in both cases is only with respect to α. The equilibrium decisions does

not depend on α under the pooling equilibrium. Therefore, we can easily capture them from Proposition 2

as presented again in Table 6.

Table 6: Expected value of equilibrium decisions under pooling and separating equilibria for any point in
region C1.

Equilibrium Pooling Separating

Prices (bids) p̄∗N cN cN + µηN (pr − cN )

p̄∗U
cU+cN ᾱ

2 (cNµα + (pr − cN )[σ2
α,ηN

+ µαµηN ])

Order Alloc q̄∗N 0 QµηN
q̄∗U Q Q(1− µηN )

For the separating equilibrium, we first show that in all the points of α ≤ α ≤ ᾱ such that α ≥ cU+cN ᾱ
2cN

fully

separating is possible (Figure 4). To do so, it is sufficient to show that the region α ≥ (pr−cU )cU
cN ᾱpr−ᾱc2N+cNpr−prcU

(the locus of points where fully separating is possible) always include the whole region of α ≥ cU+cN ᾱ
2cN

; and it

is enough to verify that the line α = (pr−cU )cU
cN ᾱpr−ᾱc2N+cNpr−prcU is always lower than α ≥ cU+cN ᾱ

2cN
for cU

cN
< ᾱ < 1

(Figure 4, Proposition 2). Both lines are continous and start from the point (α = cU/cN , ᾱ = cU/cN ).; but

the former and the latter are strictly decreasing and increasing in ᾱ, respectively; i.e.,

α =
(pr − cU )cU

cN ᾱpr − ᾱc2N + cNpr − prcU
∂α

∂ᾱ
= − (pr − cU )cU (cNpr − c2N )

(cN ᾱpr − ᾱc2N + cNpr − prcU )2
< 0

α ≥ cU + cN ᾱ

2cN

∂α

∂ᾱ
=

1

2
> 0
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Hence, the region α ≥ (pr−cU )cU
cN ᾱpr−ᾱc2N+cNpr−prcU always fully include the whole region of α ≥ cU+cN ᾱ

2cN
.

Therefore, under separating equilibrium (Proposition 5), the expected value of equilibrium decisions w.r.t

α is as expressed in Table 6.

Observing the values in the above table and considering that µηN > 0, it is easily verifiable that p̄∗PEN <

p̄∗SEN , q̄∗PEN < q̄∗SEN , and q̄∗PEU > q̄∗SEU . Also, we know that p̄∗SEU > cN (ᾱ+α)
2 and since in the region C3 in

poolig equilibrium (Proposition 2) α > cU
cN

, then we always have p̄∗PEU < p̄∗SEU . 2

Proof of Proposition 9: We first characterize the expected value of equilibrium decisions with respect to α,

according to Propositions 2 and 5, as expressed in the following table.

Table 7: Expected value of equilibrium profits/costs under pooling and separating equilibria for any point in
region C1.

Equilibrium Pooling Separating

Suppliers’ π∗N 0 QµηN (pr − cN )

Profits π∗U Q(
cU+cN ᾱ

2 − cU ) Q[cN
ᾱ+α

2 + (pr − 2cN )(σ2
α,ηN

+ µαµηN ) + (pr − cN )E(η2
Nα) + cUµηN − cU ]

Buyer’s TC
∗
B Q

cU+cN ᾱ

2 QcN ᾱ
Cost

Total Supply TC
∗
CS QcU Q(µηN cN + (1− µηN )cU )

Chain Cost

Based on the table and given that µηN > 0, it is easy to verify that π∗PEN < π∗SEN , TC
∗PE
B < TC

∗SE
B

(because ᾱ > cU
cN

) and TC
∗PE
SC < TC

∗SE
SC . But for supplier U, since q∗SEU < q∗PEU and p∗SEU > p∗PEU , his profit

can be lower or higehr in pooling compared to separating equilibrium.

Pooling equilibrium in the presence of multiple suppliers It is easy to observe that the best response of the

suppliers in a pooling equilibrium where they cannot infer any new information regarding the quality scores,

would be as follows:

pi∗U = min(pr,max[cU , f
i
U (p∗N , p

1∗
U , . . . , p

i−1∗
U , pi+1∗

U , . . . , pm∗U )]) ∀i = 1, . . . ,m

p∗N =

{
cN n > 1

min(pr,max[cN , fN (p1∗
U , . . . , p

m∗
U )]) n = 1

To establish the internal solution of the bid prices in pooling equilibrium, first let assume that n ≥ 2. In

this case, all the incumbent known suppliers will offer p∗N = cN because in a non-cooperative game they just

undercut each other to a level where they cannot decrease their price anymore. Then, the profit function for

an entrant supplier with the rank i ∈ {1, . . . ,m} is as follows:

πiU = (pi − cU )

ᾱ∫
pi/cN

1

ᾱ− α
dαi

∏
j∈{1,...,m},j>i

ᾱ∫
α

ᾱ∫
αjpi
pj

2

(ᾱ− α)2
dαidαj

∏
j∈{1,...,m},j<i

ᾱ∫
α

αipj
pi∫
α

2

(ᾱ− α)2
dαjdαi ∀i ∈ 1, . . . ,m (11)

As above, there are three integration terms in the suppliers’ profit function. They, respectively, represent

the probability of having a better QS-adjusted price (QSAP) than known suppliers, suppliers with lower QS’s,

and suppliers with higher QS ranks. Suppliers’ difference in their QS ranking brings a source of asymmetry

in their pricing decisions. By taking the first derivative of the profit functions of suppliers with respect to

their prices, we come up to a non-linear system of equation with m variables {p1
U , . . . , p

m
U }:

∂πiU
∂pi

= 0 ∀i ∈ {1, . . . ,m}.
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There are some established mathematical and evolutionary algorithms to solve such non-linear system of

equations. For instance, we used fsolve function in MATLAB that can use three different algorithms of

‘trust-region-dogleg’ (default), ‘trust-region-reflective’, and ‘levenberg-marquardt’. Solving this system of

equation will provide the internal solution for the pooling equilibrium, which should be adjusted with the

boundary conditions.

Now, assume n = 1, in this case the profit function of the known supplier and entrant suppliers is as

follows.

πN = (pN − cN )
∏

i∈{1,...,m}

pi/pN∫
α

1

ᾱ− α
dαi

πiU = (pi − cU )

ᾱ∫
pi/pN

1

ᾱ− α
dαi

∏
j∈{1,...,m},j>i

ᾱ∫
α

ᾱ∫
αjpi
pj

2

(ᾱ− α)2
dαidαj

∏
j∈{1,...,m},j<i

ᾱ∫
α

αipj
pi∫
α

2

(ᾱ− α)2
dαjdαi ∀i ∈ 1, . . . ,m

The only difference between πiU when n > 1 with it when n = 1 is that in the latter untested suppliers

should consider an internal price p∗N ≥ cN for the incumbent supplier. Again, we should take the first

derivative of profit function of suppliers w.r.t their prices and then solve the non-linear system of equations

with m+ 1 variables {pN , p1
U , . . . , p

m
U }. 2

Proof of Proposition 10: The buyer’s cost function in case if all the parties infer her true type, would be:

TCB = (ηN (α1, α2) + ηU (α1, α2))pr + (1− ηN (α1, α2)− ηU (α1, α2))[cU + ηU (α1, α2)(
pr − cU
m

)]
α1

α2

In order for this unit cost to be minimized, the first order condition should be satisfied w.r.t. both α1 and

α2. This leads to two partial differential equations (PDEs) as follows:

∂TCB
∂α1

=
(
∂ηN (α1,α2)

∂α1
+ ∂ηU (α1,α2)

∂α1

)
pr+

(
−
(
∂ηN (α1,α2)

∂α1

))
−
(
∂ηU (α1,α2)

∂α1

)
α1

(
cU+ηU (α1, α2)(pr−cU )/m

)
/α2+

(
1−ηN (α1, α2)−ηU (α1, α2)

)(
cU+ηU (α1, α2)(pr−cU )/m

)
/α2+

(
1−ηN (α1, α2)−ηU (α1, α2)

)
α1

(
∂ηU (α1,α2)

∂α1

)
(pr−cU )/(mα2)

∂TCB
∂α2

=
(
∂ηN (α1,α2)

∂α2
+ ∂ηU (α1,α2)

∂α2

)
pr+

(
−
(
∂ηN (α1,α2)

∂α2

))
−
(
∂ηU (α1,α2)

∂α2

)
α1

(
cU + ηU (α1, α2)(pr − cU )/m

)
/α2 +

(
1− ηN (α1, α2)− ηU (α1, α2)

)
α1

(
∂ηU (α1,α2)

∂α2

)
(pr − cU )

/(mα2)−
(
1− ηN (α1, α2)− ηU (α1, α2)

)
α1

(
cU + ηU (α1, α2)(pr − cU )/m

)
/α2

2

Solving this system of equation, the most efficient function for ηN and ηU would be as follows.

ηN (α1, α2) =
α1pr − prα2m+ prα2 + α1cUm− 2α1cU

α1(pr − cU )

ηU (α1, α2) =
(m− 1)(prα2 − α1cU )

α1(pr − cU )

If we plug these two guarantees in total cost of the buyer, we get TCB = pr, which shows in the most

efficient way the buyer has to take a cost of pr which is accessible even without holding the auction. 2
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