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Abstract: We propose an exponential tilting method for exact simulation from the truncated multivari-
ate student-t distribution in high dimensions as an alternative to approximate Markov Chain Monte Carlo
sampling. The method also allows us to accurately estimate the probability that a random vector with mul-
tivariate student-¢ distribution falls in a convex polytope. Numerical experiments show that the suggested
method is significantly more accurate and reliable than its competitors.
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1 Introduction

Let X € R be distributed according to the multivariate student-¢ distribution with v > 0 degrees of freedom.

The density of X is given by
1 ) —(v+d)/2
e X [ 1+ ;HXH

over R?, where
o = I'((d+v)/2)
(mv)4/2T'(v/2)
is a normalizing constant. We write X ~ t,. We are interested in two closely related problems. The first one
is estimating the probability

—(v+d)/2
) I{l < Cx < u}dx, (1)

(=P1<CX<u) :/ c1 (1+1||x||2
R4 14

where I{-} denotes the indicator function and C'is a d x d full rank matrix. The second problem is to simulate
exactly from the truncated (or conditional) density:

e x (14 Lx)2) """ x {1 < cx < v}

£lx) = ; . @

Both of these problems arise frequently in statistical applications; see Genz and Bretz (2002), Genz (2004),
Genz and Bretz (2009), and the references therein.

The purpose of this article is to propose a method for estimating (1) that is more reliable and efficient
than the current state-of-the-art method of Genz (2004), also described in Genz and Bretz (2009), which is
currently the default algorithm in MATLAB® and R. As a byproduct of the design of our algorithm, we can
also sample from the conditional density (2) in high dimensions using an efficient acceptance-rejection scheme
(Kroese et al., 2011, Chapter 3). Currently, the only practical method for simulation from the conditional (2),
when / is a rare-event probability, is by (approximate) Markov Chain Monte Carlo sampling; see Yu and
Tian (2011) and the references therein. Naturally, if £ is not a rare-event probability, say larger than 1074,
then one can simulate exactly from (2) by simulating X ~ t, until the condition 1 < X < u is satisfied.

The idea of our method is to apply a suitable exponential tilting to the estimator proposed by Genz
(2004). Exponential tilting is a popular way to construct a sampling density when applying importance
sampling to estimate tail probabilities for light-tailed distributions (Bucklew, 2004; Asmussen and Glynn,
2007; L’Ecuyer et al., 2010). However, in our numerical simulations we observed significant efficiency gains
even when they do not involve a tail probability setting, suggesting that exponential tilting is useful beyond
its typical range of applications in large deviations.

We choose the tilting parameter by solving a convex optimization problem. This idea is similar to the
recently proposed minimax exponential tilting for the multivariate normal distribution (Botev, 2014), which
relies on constructing a certain log-convex likelihood ratio. The main contribution of this article is to adapt the
method for the multivariate normal to the multivariate student-t case using the fact that one can simulate
a multivariate student-t vector by multiplying a multivariate normal vector with a suitable random scale
variable. The adaptation is not a straightforward task, because we have to change the measure of the scale
variable and most of the simple and obvious changes of measure cause a loss of the crucial log-convexity
property of the likelihood ratio. Fortunately, we were able to find a change of measure of the scale variable
that preserves this desirable log-convexity property. Another contribution in this article is the derivation of
a simple nontrivial lower bound to ¢.

The rest of the paper is organized as follows. We first describe in Section 2 the estimator originally
proposed by Genz (2004). In Section 3 we describe our choice of exponential tilting. The exponential tilting
approach allows us to both estimate ¢ accurately and simulate from the conditional density (2) in up to at
least one hundred dimensions, with minimal additional computational overhead. Finally, in Section 4, we
present numerical results demonstrating the superior practical performance of the new algorithms compared
to the existing state-of-the-art.
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2 An estimator of / by separation of variables

First, note that the multivariate student-¢ distribution forms a location scale family. In other words, if
X ~t, and Y = 1 + AX, then we can write Y ~ t,(j1, AAT), where i and AAT are the location and scale
parameters, respectively. We thus have

PI<CY <) =P(1< LX < u),

where X ~ t,(0, ;) = t,, I; is the d-dimensional identity matrix, 1 = 1- Cp,u=1u-Cp, and the matrix L
satisfies LLT = CAATCT. Hence, without loss of generality we need only consider the standardized versions
(1) and (2).

Let L be the lower triangular Cholesky factor of the positive definite matrix CCT. Then, we can decom-
pose (1) as follows:
(=P(Rl1< VVLZ < Ru),

where R follows the x, distribution with density
e—r2/2+(1/—1) Inr

. forr>0,
wi-1r(w/2)

fulr) =

and Z ~ N(0,I;) is a d-dimensional standard normal, independent of R. This is simply the well-known
distributional result that \/#Z/R ~ t,; see Kroese et al. (2011, Chapter 3). Due to the lower triangular
structure of L, the region Z = {(r,z) : r1 < \/vLz < ru} can be decomposed into

1/2

—1/2 _
= det Thv ULV def -
hir) = —/——< 21 < ——— = w(r)
Ly, Ly,
~ def T lov ™2 — Loy rugv Y% — Lotz def -
lo(r, z1) = < oz < = a(r, 21)
Loo Lo
_ d—1 _ d—1
- det Tlav™ Y2 =307 Lz ruqr™ % =37 Laizi det -
ld('f‘,Zl,...,Zd_l) = < Zd < = Ud(T,Zl,...,Zd_l).

Laq Laq
Let ¢(z; u,X) denote the density of the d-dimensional N(u, ) distribution. For the standard normal, the
density is ¢(z) = ¢(z;0,I4). Then, the decomposition above suggests the sequential importance sampling
estimator
fr(R)$(Z;0, 1a)
9(R,Z)

with (R, Z) distributed according to the sequential importance sampling density

Z:

g(r,z) = g(r)g(z|r) = g(r)gi(z17r)g2(22 7, 21) - - - ga(za | 7, 21, o 2d-1)
on Z. Tt is then natural to choose g(r) = f,(r) and the truncated normal densities:

¢(Zz)ﬂ{l~z < % ~< U;}
®(w;) — ()

gizi|r, 21, . 2i1) = , 1=1,...,d,

where ® is the one-dimensional standard normal cdf. The estimator ¢ then simplifies to

d
loens = [T (®(@) = @(01)) - (3)
k=1

This estimator, proposed by Genz (2004) and discussed in Genz and Bretz (2009), is still the best method
available for the estimation of (1). As we shall see in the numerical section, the variance of (3) can behave
erratically, especially in the tails of the multivariate student-¢ distribution and in cases with strong negative
correlation (as measured by Cov(LZ) = LL"). For this reason, in the next section we consider an alternative
importance sampling density g(r,z) that yields a reliable and accurate estimator of £ in both the tails of the
distribution and in the presence of negative correlation structure.
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3 Estimating for / by an exponentially tilted distribution

3.1 The exponential tilting

Instead of the Genz choice of importance sampling density described in the previous section, consider the
alternative in which g(r, x) is given as follows, where n and 1, ..., uq are real-valued parameters that remain
to be chosen:

_ omn 1) o(rn, 1)
—1_(1)(_77)— B0y forr >0
Dz e, DI{T, < 21 < Tk}

D (i — p) — Pl — k)

g(r)

gk (zE |1 21, 2Km1) = fork=1,...,d.

)

In other words, if TNq ) (1, 0?) denotes the N(u,0?) distribution truncated to the interval (a,b), then

R~ TN(O,OO) (777 1)
Zk |R, Zl, ey Zk—l ~ TN([kﬂlk)(uk’ 1), k= 1, .. .,d.

Denoting g = (1, ..., ta) ", we can write the logarithm of the likelihood ratio as

_ ee]? _ T n*

Y(r,z;m, p) 5~ " Z u—l—?—m—i—(u—l)lnr—i—ln@(n)

d
D @21, 2e1) = ) = U 21 ze) = )|
k=1

so that ¢ = E [ew(R"Zm’“)] for (R,Z) ~ g(r,z). It remains to choose the parameters 7 and p so that the
estimator /1 = e¥(RZinK) has a well-behaved relative error. A simple (heuristic) way of selecting (1, ) in
our setting is to minimize the worst possible behavior of the likelihood ratio e¥("%"H)  In other words, we
solve the optimization program

inf sup t(r,z;n, p). (5)
n’”(r,z)@%

A prime motivation for minimizing (5) is that

Var[ly] = E [exp(20(R, Z; n, )] — £* < exp |2 sup w(nzm,u)} -0,
(rz)eZ%

and we want to select the parameter values that minimize this upper bound on the variance. Another
appealing feature of (5) is that it has a unique solution that can be found by solving a convex optimization
program. The idea is similar to the one described in Botev (2014), where ¢ depends only on z and p. Thus,
we can see in retrospect that the importance function g(r) and its tilting parameter 7 were chosen so that
this convexity is preserved as shown in the following theorem, proved in Appendix A.

Theorem 3.1 (Parameter Selection) For v > 1 the saddle-point program (5) has a unique solution, denoted
(r*,x*;n*, u*), which coincides with the solution of the convex optimization program:

max 1(r,z; 7, 1)
ek ©)
subject to: O /On =0, O/op=0, (r,z)eR.

Note that without the constraint (r,z) € #, the solution of (5) is obtained by setting the gradient of
1 with respect to all of the parameters to zero. This gives the following system of nonlinear equations
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(i=1,...,dand Z ~ N(0,1)):

oy v—1 n+ Z wr (i — i) — (I — Hk)

ar r VUL kPl < Z + py, < iy,
o _ o)
a1 B

d N
({M):—MM— > <Lkl I{i —k}> (uk_“k)—éb(lk—#k)

0z k=it1 P(lx < Z + i < i)
9 _ i — 2+ oty — p) — ¢l — Mk).
Opi P(ly < Z + pu, < iy,

Thus, one way of solving (6) is to solve the nonlinear system (7) and verify that its solution lies in Z. If
the solution lies in Z, then there is nothing else to do. This can be much faster than calling a constrained
optimization solver to solve the convex program (6). However, if the solution of (7) does not lie in %, then
we must use a proper convex solver to tackle (6).

Note that we need not simulate Z;, because the log-likelihood ratio 1) does not depend on z4. In fact,
the independence from z, forces ugy = 0 always, reducing the dimension of the optimization (6) from 2d to
2(d — 1). The proposed estimator is summarized in the following algorithm.

Algorithm 1 : Estimating /.

Require: vectors u,1 of dimension d and lower triangular matrix L. Sample size n.
Solve the convex optimization program (6) to find the unique (n*, pu*).
fori=1,...,ndo

Simulate R ~ TN o) (7", 1)
for k=1,...,d—1do
Simulate Z ~ TN, o (ki,1)
7 + (Zl, cey del,O)T
=R éz <_ exp (1/}(Ra Z7 77*5 H‘*))
DY =Y
A2 1 Zz 1(€ - é)

return ¢ and its estimated relative error a/(yv/n é)

If o* = (r*,z*;n*, u*) and {1, is a lower bound to ¢, we can bound the relative error of the estimator v

by
Var(Z) 1 [*
T <Z B 1) |

One possibility for constructing a nontrivial lower bound on ¢ is given in Section 3.3.

3.2 Exact i.i.d. sample from conditional density

In the previous algorithm, all the n samples are kept, and they are given different weights in the estimator.
But if we want an exact i.i.d. sample of fixed size n (without weighting the observations) from the conditional
density (2), we must proceed differently. The following algorithm does it by acceptance-rejection. It uses
the fact that ¢* yields a nontrivial upper bound to the likelihood ratio exp (¢ (r, z; n*, u*)) < exp(¥p*) and to
the probability ¢ = E [exp(¢¥(R, Z;n*, u*))] < exp(¢p*). This upper bound leads to an acceptance-rejection
scheme with proposal density g(r,z;n*, u*) defined via (4). The acceptance probability in this algorithm is

C/*.
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Algorithm 2 : Exact simulation from f(x) in (2) via acceptance-rejection.

Require: vectors u,l, lower triangular L, and optimal (r*,z*;n*, u*).

repeat

Simulate R ~ TN (7", 1)

for k=1,...,d do

Simulate Zi ~ TN, 7. (15, 1)

Simulate E ~ Exp(1), independently.
until E > ¢(r*, 2% 0%, u*) — (R, Z;n*, u*)
return X « /VZ/R

3.3 A simple lower bound for /¢

Using Jensen’s inequality, it is possible to construct a simple lower bound for £ = P(1 < CX < u), which as
we shall see in the numerical section can sometimes (but not always) be quite tight. Let Y ~ t,(0,X), where
¥ = COCT, and let h be a density on [I,u] € R% Then, £/ = P(1 <Y < u) and applying Jensen’s inequality
to the function 2~2/(*+4) we obtain

h(Y)
1+ %YT21Y]

_ —2/(v+d)
it 14 lyTy-ty) WHd/2
(P(l <YK u))—2/(u+d) = 2/(v+d) <Eh ( v )

—2 +d
<C2 /(v+d) h

[R(Y)|-2/0+

where ¢y = ¢;/ det(£'/?) is a normalizing constant. Therefore,
e 2 1 2 -
(6/en) >0+ < / [h(y)) 77y + / ()77 (y T2 ) dy
1
< [iiay (14 2B, Y5
v

where the density ¢ is defined via h through

so that

) d —(v+d+2)/(v+d)
/ [A(y)] 7 dy = (/ [a(y)] "+d“dy) '
Rearranging the last inequality then yields
id (v+d+2)/2 1 1 —(v+d)/2
e > af fu)#ay) (14 Ser(o V() + 12,(¥] 5B, 1Y) ®)

All terms on the right-hand side of (8) can be computed analytically if we choose the product form ¢(y) =
1, 9x(yx), where g is the density of the univariate student-t¢ distribution truncated to the interval [I5, u]
and with vy, degrees of freedom, location g, and scale 0. The exact analytical expressions for the right-hand
side of (8) are given in Appendix B.

The best lower bound is obtained by maximizing the right-hand side of (8) with respect to {v;, i, 04, i =
1,...,d}. This is the lower bound we use in the numerical experiments in Section 4.

4 A numerical study

In this section we compare the numerical performance of our estimator with that of Genz.
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In all examples the computing time to find the optimal tilting parameter (n*, u*) was insignificant com-
pared to the time it took to evaluate the n iid replications in the ‘for’ loop of Algorithm 1. One reason for
this was that the solution of the nonlinear system (7) always belonged to the set Z and was thus identical
to the solution of the program (6), obviating the need for a convex optimization routine. For this reason, we
only report the relative error of the estimators in our comparison. Note that although in general there are
many ways of decomposing ¥ = CC'T, the proposed methods do not depend on the choice of C for a given

3.

Example 4.1 (Negative Correlation) Consider estimating ¢, where CCT = ¥ is defined via the precision

matrix (Ferndndez et al., 2007):
1 1
Sl=cIg+ o117
313

In the following Table 1 we list the estimates from both methods in columns three and four with their
estimated relative variances in bold font. In addition, we list: a) the best lower bound from (8) in column
two; b) the upper bound ¢* in column five; and c) the estimated acceptance probability £/¢* in column six.

Table 1: Estimates of ¢ for [I,u] = [~1,00]? with v = 10 using n = 10° replications.
d lower bound 2(;91,2 a P* accept. prob.
5 0.15 0.197 (0.21%) 0.197 (0.18%) 0.33 59%

10 0.013 0.032 (0.49%) 0.032 (0.20%) 0.063 50%
20 116 x 10~* 0.00161 (1.8%) 0.00163 (0.23%) 0.00385 42%
30 1.24x107% 153 x107* (2.8%) 1.51x107* (0.26%)  3.92 x 10~* 38%
40 1.54x 1078  1.81 x 107° (5.4%) 2.08 x 107° (0.29%)  5.68 x 107° 36%
50 2.17x 10710 363 x 1076 (15%)  3.74x 107% (0.25%)  1.06 x 1075 35%
100 3.35x 10719 344 x107° (51%)  6.99 x 1072 (0.28%)  2.11 x 10~8 33%
150 1.29 x 10727 6.35 x 10711 (47%) 9.29 x 107! (0.27%) 2.85 x 1010 32%

From the table we can conclude the following. First, the lower bound (8) is not useful in this example.
From a range of simulations we found that the bound is typically tight only when we consider tail-like regions
such as [y,00]? for 4 > 0, which is not the case here. Second, as d increases the performance of the Genz
estimator rapidly deteriorates. In contrast, the relative error of 7 remains stable for all d. The acceptance
probability in column six indicates that Algorithm 3.2 is useful for simulating from the conditional density.
Note that a naive acceptance-rejection scheme in which we simulate X ~ t, until 1 < CX < u is only
practical up to about dimension d = 30, beyond which the acceptance probability ¢ is too small.

Now, consider the same setting, but this time with the orthant region [1,u] = [0, cc].

Table 2: Estimates of £ for [I,u] = [0, 0c0]? with v = 10 using n = 10° replications.

d lower bound ZGenz 7 P* accept. prob.
5 0.00190 0.00193 (0.39%) 0.00192 (0.15%) 0.0030 63%
10 1.55 x 1077 1.69 x 1077 (2.2%)  1.58 x 1077 (0.16%) 2.67 x 1077 59%
20 276 x 10717 118 x 10717 (43%)  2.98 x 107!7 (0.16%)  5.34 x 10717 55%
30 3.20x 10728  1.29 x 10733 (98%) 3.79 x 10728 (0.13%)  6.99 x 10~28 54%
40 6.89 x 10740 - 8.48 x 10740 (0.15%)  1.58 x 10739 53%
50  4.00 x 10752 - 5.23 x 10752 (0.21%)  9.91 x 10752 52%
100 1.02 x 10118 - 1.71 x 1078 (0.19%) 3.33 x 10~ 118 51%
150  5.18 x 107191 - 1.03 x 107190 (0.30%) 2.02 x 107190 50%

The results in the table above indicate that the lower bound is now useful. Another interesting point is
that the performance of the Genz estimator now degrades much more rapidly and fails to give meaningful

estimates for d > 20.
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Although not displayed here, the effect of the exponential tilting is even more dramatic with the tail-like
region [1,00]?. In fact, we conjecture that the proposed estimator exhibits bounded relative error as v 1 oo
when £(y) = P(CX > vCCT1*), where 1* > 0. This would mean that lim SUD.y oo Var(?)/ﬂ2 < oo (L’Ecuyer
et al., 2010). See also Asmussen and Glynn (2007) and Kroese et al. (2011, Chapter 10) for discussions of
efficiency measures when estimating rare-event probabilities.

Example 4.2 (Positive Correlation) Consider the case [1,u] = [1,2]? with
Y=0CCT =(1-o)ly+ o117,

where o = 0.95. The table below displays the results, which suggest that in cases with strong positive
correlation, the estimator £Gen, is more accurate and reliable. Further, we observed that the improvement
due to exponential tilting in such cases is marginal and the lower bound (8) is not tight.

Table 3: Estimates of ¢ for [1,u] = [1,2]¢ with v = 10 using n = 10° replications.

d lower bound ZAGenZ 4 P* accept. prob.
5 0.046 0.099 (0.19%) 0.099 (0.21%) 0.22 44%
30 0.010 0.060 (0.27%) 0.060 (0.29%) 0.20 29%
50 0.0059 0.0520 (0.38%) 0.0518 (0.46%) 0.20 25%
100 0.0022 0.0424 (0.46%) 0.0424 (0.35%) 0.19 22%
150 0.0012 0.037 (0.59%) 0.037 (0.49%) 0.18 20%

Example 4.3 (Random Covariance Matrix) In this example we consider test cases in which ¥ = CCT is a
random draw from a large sample space of possible covariance matrices. A popular method for simulating
random positive-definite test matrices is that of Davies and Higham (2000), who simulate correlation matrices
with eigenvalues uniformly distributed over the simplex {X: )", A\; = d, A; > 0}. Table 4 and Figure 1 below
show the five-number summary and boxplots of the empirical distributions of the relative errors of estimators
7 and denz based on 100 independent trials (100 replications of the entire scheme with a sample size n each).
For each trial we simulated a different (random) scale matrix ¥ according to the mechanism of Davies and
Higham (2000). In this example we set [I,u] = [1,00]'%" and for each of the 100 independent trials we used
n =10°.

2r —
—_
t

15

051

log;o(Rel. Error in %)

-0.5r

4
=
+
0 CGens

Figure 1: Empirical distribution of relative errors of £ and {gen, when [1,u] = [1,00]'% and n = 10°.
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Table 4: A five number summary of the distributions of the relative errors.

min 1-st quartile median  3-rd quartile max

rel. error of £ 0.26% 0.48% 0.56% 0.65% 1.08%
rel. error of £Geny 33% 75% 89% 99% 100%
»* /e 16 46 66 100 470

It is clear that a;enz is not a useful estimator in this setting, because in the best of cases it could only
manage a relative error of about 30%. The last row of Table 4 displays the average number of trials needed
before acceptance in Algorithm 3.2.

For a more challenging example suppose each element of matrix C' is Cauchy distributed with location 0
and scale 0.01%. In other words, C; ; Y t1(0,0.01%) and ¥ = CC'T. Here we consider the case [1,u] = [0, 00]*?.

o~

The following table and graph display the empirical distributions of the relative errors of ¢ and denz based
on 1000 independent replications of the experiment.

2r PR
!
—~ 15¢ ‘
X !
s 1
g
£a)
?_; 0.5f L
o] \
=
g
!
L
-05F T
+
L ‘gGenz
Figure 2: Empirical distribution of relative errors of £ and {gen; when [1,u] = [0, 00]'% and n = 10°.

Table 5: A five number summary of the distributions of the relative errors.

min 1-st quartile median  3-rd quartile max

rel. error of £ 0.20% 0.84% 1.0% 1.4% 3.33%
rel. error of bgen, — 8.4% 38% 53% 5% 99.9%
v* /e 80 500 900 1600 14000

5 Concluding remarks

We have presented a new method for simulation from the truncated multivariate student-¢ distribution and
estimation of the normalizing constant of the associated truncated density. The method combines exponential
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tilting with convex optimization. Numerical experiments suggest that the method is effective in many different
settings and not just in the tails of the distribution. The numerical results also suggest that the approach
yields insignificant improvement over the Genz estimator when we have strong positive correlation. One
reason for this seems to be that the Genz estimator already works quite well in such settings, making it
difficult to improve upon. At the same time the Genz estimator performs extremely poorly in the absence
of positive correlation structure. All of these observations invite further theoretical study. For example, it
would be interesting to see if an efficiency result, such as vanishing relative error, can be established in an
appropriate tail asymptotic regime. We intend to investigate these issues in upcoming work.

Appendix A: Proof of Theorem 1

We show that 9 is a concave function of vector (r,z) and a convex function of (1, ). To this end, recall that
if f:R% x R% — R is a log-concave function, then the marginal

g(x)= [ f(x,y)dy
Rd2
is a log-concave function as well, see Prékopa (1973). Also recall that the indicator function I{x € ¢’} of a
convex set € is a log-concave function of x and that the product of log-concave functions is again log-concave.
We can write

k—1
l
I {ka(x + k) + ZLkizi - T\/—E > 0} =1{(r,z) € €1}
i=1 v
and
TU

k-1
]I{ka(x—i-uk) + ZLkizi ] < 0} =I{(r,z) € 62}

for some convex sets 4 and %,. It follows that
In [y — gu) — (0 — )] = ln/gb(x;(), 1) x I{(r,2) € 1} x I{(r,2) € G>}da

is concave in (r,z) by Prékopa’s result. Since In(r) is concave and the sum of concave functions 2, In(®(tx —
pi) — (I, — pui,)) is concave, it follows that ¢ is concave in (r,z). Next, note that $n* —rn+1In ®(n) is convex
in 7, because (up to a normalizing constant)

1 0
5772 +In®(n) = 1n/ ¢(z) exp(—xn)dx + const.

is the cumulant function of the normal distribution, truncated to the interval (—oo,0]. A similar reasoning
shows that

1 ) U — bk
SHk — Zhbl + ln/~ p(x)dz
l1—pk

is convex in pi and since a sum of convex functions is convex, 1 is convex in the vector (7, ). Thus, the
concave-convex function 1(r,z;n, u) satisfies the saddle-point condition inf, g sup,. ,9(r,z;n, u) = sup,,
inf,) g4 (r, z;m, ). Recall that if for each y the function f(x,y) is convex, then the pointwise supremum
sup,, f(x,y) is also convex. Therefore, inf, y sup,. , ¥ (r,z;m, p) has the same value as the concave optimiza-
tion supnzw(r,z;n,u) subject to the gradient of ¢ with respect to (1, ) being equal to the zero vector.
Imposing the restriction (r,z) € #Z, where Z is a convex set, does not change the argument, which leads us
to the optimization problem (6).

Appendix B: Analytical expressions for lower bound

The right-hand side of (8) is available analytically as follows. Let
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denote the density of univariate student-t¢ distribution with v degrees of freedom, and let

11 v/wta®) |, ,
T, =] - - t27 (1 —t) 2dt
(=) 2<B<u/2,1/2>J€ RS

be the corresponding cdf. Then, we can define and compute the following quantities:

def li — pui Cdef Wi — fli del _
Q= o ) Bz = o , G = l/»b (ﬁz) l/»b (az)
dcf Ull tl,l_ (mlgiﬂi)
Qi(xl) - T; € [liaui]
Ci
Eq. [Xl] — Hs 1 V; 1 1 2
- = — ty, (o) — ty, (Oi v. 4 — ly; \Ps
ot = L () = 0 (8) + o (an)a? = 1, (3059)

ez

E, {Xz' - uir _ =V Ty 2(Bi/ (Vi = 2) /i) = Toi—a(@i/ (Vi — 2) /i)

v, —2 Ci

These calculations give us all quantities on the right-hand size of (8), except for [[g(y)] e dy =

(vi+1)(v+d)

o1t~ — 1, and then use the following

Hif[qi(yi)]vﬁi2 dyr. To compute the last integral let & =
analytical expressions:

_vitl v4d

. I'(vi/2)/vimoic; v;0;
where "igrl UfgiQ = 51;1 and
£, +1
i 1 B 2 (2 F ¥ 2
‘/l, (14‘(%70_/2)) d:v—a“/ gl\/i—kf?Q; ( ( \/fz/l/) Tgi(ai\/fi/u)>.
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