
Les Cahiers du GERAD ISSN: 0711–2440

Scalable adaptative cubic
regularization methods

J.-P. Dussault
D. Orban

G–2015–109

October 2015

Les textes publiés dans la série des rapports de recherche Les
Cahiers du GERAD n’engagent que la responsabilité de leurs
auteurs.

La publication de ces rapports de recherche est rendue possible
grâce au soutien de HEC Montréal, Polytechnique Montréal,
Université McGill, Université du Québec à Montréal, ainsi que
du Fonds de recherche du Québec – Nature et technologies.

Dépôt légal – Bibliothèque et Archives nationales du Québec,
2015.

The authors are exclusively responsible for the content of their
research papers published in the series Les Cahiers du GERAD.

The publication of these research reports is made possible thanks
to the support of HEC Montréal, Polytechnique Montréal, McGill
University, Université du Québec à Montréal, as well as the Fonds
de recherche du Québec – Nature et technologies.

Legal deposit – Bibliothèque et Archives nationales du Québec,
2015.

GERAD HEC Montréal
3000, chemin de la Côte-Sainte-Catherine

Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca

Scalable adaptative cubic
regularization methods

Jean-Pierre Dussault a

Dominique Orban b

a GERAD & Department of Mathematics, Université de
Sherbrooke, Sherbrooke (Québec) Canada, J1K 2R1

b GERAD & Department of Mathematics and Industrial
Engineering, Polytechnique Montréal, Montréal (Québec)
Canada, H3C 3A7

jean-pierre.dussault@usherbrooke.ca

dominique.orban@gerad.ca

October 2015

Les Cahiers du GERAD

G–2015–109

Copyright c© 2015 GERAD

ii G–2015–109 Les Cahiers du GERAD

Abstract: Adaptative cubic regularization (ARC) methods for unconstrained optimization compute steps
from linear systems with a shifted Hessian in the spirit of the modified Newton method. In the simplest case,
the shift is a multiple of the identity, which is typically identified by trial and error. We propose a scalable
implementation of ARC in which we solve a set of shifted systems concurrently by way of an appropriate
Krylov solver.

Key Words: Unconstrained optimization, trust-region algorithms, adaptative cubic regularization.

Acknowledgments: Research partially supported by NSERC Discovery Grants of both authors.

Les Cahiers du GERAD G–2015–109 1

1 Introduction

We consider the unconstrained problem

minimize
x∈Rn

f(x) (1.1)

where f : Rn → R is C2. Adaptive Cubic Regularization (ARC) algorithms, recently explored by Cartis,

Gould, and Toint (2011a,b) are closely related to trust region (TR) methods (Conn, Gould, and Toint, 2000)

in that steps are computed by solving a sequence of regularized subproblems. A major theoretical appeal of

ARC over TR methods is their optimal worst-case complexity property.

Both ARC and TR algorithms make use of the quadratic model

qx(d) = f(x) +∇f(x)d+ 1
2d
T∇2f(x)d,

where we adopt the convention that x, d are column vectors of Rn and ∇f(x) is a line vector (dual of Rn).

At each iteration, ARC minimizes a cubic model (Griewank, 1981)

cαx(d) := qx(d) + 1
3α‖d‖

3, (1.2)

where α > 0 plays a role similar to the trust-region radius in TR methods.1

As in trust-region methods, solving (1.2) involves the solution of a shifted linear system

(∇2f(x) + λI)d = −∇f(x). (1.3)

In particular, building on the Steihaug-Toint approach, GLTR continues to explore the boundary of the

ball once attained. At some matrix storage cost, an enhanced approximation becomes then available. For

large scale applications, most of the subproblems may well be approximately solved without the refinment

and thus reduce to the Steihaug-Toint solution. However, as developed in Cartis et al. (2011a), to apply this

strategy for the ARC method requires matrix storage and computations from the very first iteration, which

makes the use of the approach unlikely for large scale problems.

Dussault (2015) develops the ARCq variant, which uses the usual quadratic model but retains the cubic
subproblem to compute regularized Newton steps and obtains simple proofs highlighting the key properties

that ensure worst-case complexity.

In this paper, we propose ARCqK, an implementation of ARCq that obtains approximate solutions to

(1.2) using the shifted CG-Lanczos iterative method, a Lanczos implementation of the conjugate gradient
algorithm that solves several shifted systems simultaneously proposed by Frommer and Maass (1999). The

shifted CG-Lanczos uses the same number of matrix-vector products as the classical CG-Lanczos method.

The only additional cost resides in a few scalar and vector operations for each value of the shift.

The rest of this paper is organized as follows. We first recall the ARCq algorithm and its complexity

analysis in §2. We introduce ARCqK and analyze its worst case complexity. We then introduce the CG-Lanczos
method to solve the shifted systems and analyze its computational complexity. Before concluding, we report

on numerical experience on problems with n = 10, 000 and 100, 000 variables.

2 The ARCq algorithm

The basic algorithm, described as Algorithm 2.1, is very similar to the basic trust-region method: ARCq uses

the cubic regularized model to compute the direction d but the quadratic model in the algorithm flow.

Theorem 2.1 (Dussault (2015)) Let {xk} be the sequence generated by Algorithm 2.1. If {f(xk)} is bounded

below and there exists a constant L > 0 such that ‖∇2f(xk)‖ ≤ L for all k, then every cluster point of {xk}
satisfies the second order necessary optimality conditions.

1
α corresponds to 1/σ in the notation of Cartis et al. (2011b)

2 G–2015–109 Les Cahiers du GERAD

Algorithm 2.1 ARCq algorithm.

Model Algorithm(x, α, f)

{ Given: x; }
{ objective function f ; }
{ initial value for α. }
repeat

d ← Solve Model(c, x, α)
∆f ← f(x)− f(x+ d)
∆q ← q(0)− q(d)
ρ ← ∆f

∆q

if (ρ < 0.25) then α ← α/2 {Unsuccessful}
else

x ← x+ d {Successful}
if (ρ > 0.75) then

α ← 2 ∗ α {Very successful}

until (termination criterion)
Result ← x

2.1 ARCq complexity bounds

A global minimizer dk of cαkxk (d) satisfies (Cartis et al., 2011a, Theorem 3.1)

∇f(xk) + dTk

(
∇2f(xk) + λkI

)
= 0, (2.1a)

∇2f(xk) + λkI � 0. (2.1b)

From (Cartis et al., 2011a, Theorem 3.1), we have λk = ‖dk‖/αk, which yields the following result.

Lemma 2.2 Assume dk is a global minimizer of cαkxk (d). Then,

∆qxk(dk) = f(xk)− qxk(dk) ≥ 1

2αk
‖dk‖

3.

The next result states that whenever ∇2f is Lipschitz continuous (with constant LH), αk is bounded away

from zero.

Lemma 2.3 If αk < 4/LH , then αk+1 ≥ αk. Thus, αk ≥ 1/L0 := min(α0, 1/(8LH)) for all k ≥ 0.

The next result states how accurately (1.3) should be solved.

Lemma 2.4 ‖dk‖ ≥ κg
√
‖∇f(xk+1)‖ for all successful iterations k, where

κg :=

√
1

1
2LH + L0

.

With those three properties, we may obtain the worst case complexity bound.

Theorem 2.5 (ARCq complexity bound) The maximum number of successful iterations of ARCq is |Sj | ≤
4L0

κ
3
gε

3
2

(f(x0)− f(xlow)) = Lsε−
3
2 . The maximum number of successful and unsuccessful iterations is

|Sj |+ |Uj | ≤ ε
− 3

2 (2Ls + log(α0/ᾱ)) .

Les Cahiers du GERAD G–2015–109 3

Proof. For any k < k(ε), ∇f(xk) > ε. The lemmas 2.2 and 2.4 combine to obtain

f(xk)− qk(dk) ≥
κ3
g

L0

ε
3
2 .

For successful iterates,
f(xk)−f(xk+1)

f(xk)−qk(dk) ≥
1
4 so that

f(xk)− f(xk+1) ≥ 1

4
(f(xk)− qk(dk)) ≥

κg
4L0

ε
3
2 .

Summing over all successful iterates before k(ε), and assuming that the monotonically decreasing sequence

{f(xk)} is bounded below by flow, we get (for j = k(ε))

f(x0)− flow ≥
∑
k∈Sj

(f(xk)− f(xk+1)) ≥ |Sj |
κ3
g

4L0

ε
3
2 ,

which we use to bound |Sj | ≤ 4L0

κ
3
gε

3
2

(f(x0)− f(xlow)) = Lsε−
3
2 .

To bound the number of unsuccessful iterations, note that the algorithm flow ensures that

2αk ≥ αk+1, ∀k ∈ Sj

and
1

2
αi ≥ αi+1,∀i ∈ Uj .

Therefore, α02|Sj |−|Uj | ≥ αj so that |Sj | − |Uj | ≥ log
(
ᾱ
α0

)
which yields

|Uj | ≤
⌈
|Sj |+ log(

α0

ᾱ
)
⌉
≤
⌈
ε−

3
2 (Ls + ε

3
2 log(

α0

ᾱ
))
⌉

(2.2)

so that for ε < 1, the total number of iterations, both successful and unsuccessful

|Sj |+ |Uj | ≤ ε
− 3

2

(
2Ls + log

(α0

ᾱ

))

3 Shifted-systems formulation

Lemma 2.2 ensures ∆qxk(dk) ≥ 1
2λk‖dk‖

2. In addition, Lemma 2.4 ensures that ‖gk+1‖ ≤ 1
2LH‖dk‖

2 +λk‖dk‖.
The proof of Theorem 2.5 relies on the fact that λk = Ω(‖dk‖) in Lemma 2.2 and that λk = O(‖dk‖) in

Lemma 2.4. Thus, the complexity bound holds if λk = Θ(‖dk‖), which occurs if dk is computed as a global

minimiser of the cubic model, for in that case λk = ‖dk‖/αk.

We now propose a way to compute values of λk and dk that satisfy λk = Θ(‖dk‖) as well as∇2f(x)+λkI � 0.

The key idea is to discretize the half line 0 < λ < ∞ into values 0 < λ0 < · · · < λm < ∞. For reasons

motivated by finite precision arithmetic, we impose 10−15 ≤ λi ≤ 1015 for i = 0, . . . ,m. A simple choice

consists in setting λi+1 = βλi, for some β > 0. For instance, β = 10 yields the 31 values λi = 10i for

i = −15, . . . , 15. The computational feasibility of such a procedure is detailed in §4 and comes from the

fact that an appropriate shifted CG-Lanczos implementation obtains all m+ 1 (approximate) solutions of

d(λi)
T (∇2f(x) + λiI) ≈ −∇f(x)T , or establishes that ∇2f(x) + λiI 6� 0, at modest extra cost compared to

that of a single linear system.

During the simultaneous solution of the shifted systems, parameter values λi for which ∇2f(x) + λiI 6� 0

are eliminated. The solution of each remaining system is interrupted as soon as the residual ri := ∇f(xk) +

4 G–2015–109 Les Cahiers du GERAD

dTk (∇2f(xk) + λiI) is sufficiently small. Among those remaining parameters, we select one that most closely

satisfies αλi = ‖d(λi)‖. We select values λk and dk so

∇f(xk) + dTk (∇2f(xk) + λkI) = rk, (3.1a)

dTk (∇2f(xk) + λkI)dk ≥ 0 (3.1b)

1

β

‖dk‖
τ

αk
≤ λk ≤ β

‖dk‖
τ

αk
. (3.1c)

As explained below, the parameter 0 < τ ≤ 1 allows for inexact solves.

We now have all the ingredients to state the ARCqK algorithm, keeping in mind that the step d(λ) is

computed by the shifted CG-Lanczos algorithm described and analyzed in §4.

One important difference between ARCq and ARCqK is that in the latter, almost nothing is computed

during unsuccessful iterations.

Algorithm 3.1 ARCqK.

ARCqK (x, α, f)

{ Given: x; }
{ objective function f ; }
{ initial value for α; }
{ shifts λ : 0 < λ0 < . . . λm <∞. }
repeat

d(λ) ← solve(∇2f(x),∇f(x), λ)
success ← false
i+ ← min0≤i≤m :

(
∇2f(x) + λiI

)
� 0

{ target value should be close to satisfy αλ = ‖d‖. }
j ← arg min

i
+≤i≤m(target(i) = |αλi − ‖d(λi)‖|)

repeat

d ← d(λj)
∆f ← f(x)− f(x+ d)
∆q ← q(0)− q(d)
ρ ← ∆f

∆q

if (ρ < 0.25) then

{ Go to next value of the shift λ. }
α ← ‖dj+1‖/λj+1 {Unsuccessful}
j ← j + 1

else
success ← true
x ← x+ d {Successful}
if (ρ > 0.75) then

α ← 2 ∗ α {Very successful}

until (success)
until (termination criterion)
Result ← x

3.1 Worst-case complexity analysis

The complexity analysis follows the same pattern as the analysis of ARCq. We obtain bounds similar to

lemmas 2.2–2.4 from which the result will follow.

Les Cahiers du GERAD G–2015–109 5

Lemma 3.1 Assume λk and dk satisfy (3.1a)–(3.1c). Then,

∆qxk(dk) = f(xk)− qxk(dk) ≥ ‖dk‖
1+τλk
2

− rkdk ≥
‖dk‖

2+τ

2βαk
− rkdk.

Proof. f(xk) − qxk(dk) = −(∇f(xk)dk + 1
2d
T
k∇

2f(xk)dk) and using (3.1a) and (3.1c), −(∇f(xk)dk+

dTk∇
2f(xk)dk) = λk‖dk‖

1+τ

2 − rkdk, which using (3.1b) and (3.1c) combines to f(xk)− qxk(dk) ≥ ‖dk‖
2+τ

2βαk
−

rkdk.

By imposing the stopping tolerance on the residual rk to ensure rkdk ≤
‖dk‖

1+τ
λk

4 or rkdk ≤
‖dk‖

2+τ

4βαk
, we get

the bound ∆qxk(dk) ≥ ‖dk‖
2+τ

4βαk
.

Corollary 3.2 Under the same assumptions as lemma 3.1, assume further that

rkdk ≤ ‖dk‖
1+τλk
4

or (3.2)

rkdk ≤ ‖dk‖
2+τ

4βαk
; (3.3)

then, ∆qxk(dk) ≥ ‖dk‖
2+τ

4βαk
.

We next observe that whenever ∇2f is Lipschitz continuous (with constant LH), αk is actually bounded

away from zero.

Lemma 3.3 If rkdk ≤
‖dk‖

2+τ

4βαk
and αk <

1
16βLH

, then αk+1 ≥ αk. Thus, αk ≥ min(α0,
1

32βLH
) := 1

L
K
0

for all

k ≥ 0.

Proof. By rewriting the expression ρk = f(xk)−f(xk+dk)
f(xk)−qxk (dk) as

ρk = 1 +
qxk(dk)− f(xk + dk)

∆qxk(dk)

and noting from corollary 3.2 that ∆qxk(dk) ≥ ‖dk‖
2+τ

4βαk
while qxk(dk)− f(xk + dk) ≤ LH‖dk‖

3, we consider

separately the cases ‖dk‖ ≥ 1 and ‖dk‖ ≥ 1. When ‖dk‖ ≥ 1, we get that LH‖dk‖
3 ≤ LH

When ‖dk‖ ≤ 1, ρk > 0.75 whenever αk <
1

16βLH
and thus αk ≥ 1

32βLH
.

Next is a requirement to solve sufficiently precisely the Newton equation. We need to further restrict rk such

that for some ξ > 0,

‖rk‖ ≤ ξ‖dk‖
1+τ (3.4)

This does not readily follow from (3.2) or (3.3) since rkdk could be negative, or close to zero while rk would

be large.

Lemma 3.4 If ‖rk‖ ≤ ξ‖dk‖
1+τ , ‖dk‖ ≥ κ

K
g

√
‖∇f(xk+1)‖ for all successful iterations k, where

κKg :=

√
1

1
2LH + 2βLK0 + ξ

.

6 G–2015–109 Les Cahiers du GERAD

Proof. Denoting gk+1 = g(xk + dk) = ∇f(xk + dk) and gk accordingly, we use a generalization of the

fundamental theorem of integral calculus (Ortega, 1990, §8.1.2) to write

gk+1 = gk +

∫ 1

0

dTkH(xk + τdk)dτ

On the other hand, dk satisfies (3.1a)

∇cαkxk (dk) = gk + dk(H(xk) + λkI) = rk

so that

‖gk+1‖ = ‖gk+1 −∇c
αk
xk

(dk)‖ =

∥∥∥∥(∫ 1

0

dTkH(xk + τdk)dτ

)
− dTk (H(xk) + λkI) + rk

∥∥∥∥
=

∥∥∥∥(∫ 1

0

dTk (H(xk + τdk)−H(xk))dτ

)
− λkd

T
k + rk

∥∥∥∥
≤ ‖dk‖

∥∥∥∥(∫ 1

0

LHτdkdτ

)∥∥∥∥+ ‖λkdk‖+ ‖rk‖

≤
((

LH
2

+
β

αk

)
‖d‖1−τ + ξ

)
‖dk‖

1+τ

≤
((

LH
2

+ βLK0

)
‖d‖1−τ + ξ

)
‖dk‖

1+τ

The complexity result follows directly from the lemmas above.

Theorem 3.5 (Complexity bound of ARCq K) The maximum number of successful iterations of ARCq K is

|Sj | ≤ 4L
K
0

κ
K
g

3
ε
τ+2
τ+1

(f(x0)− f(xlow)) = Lsε−
τ+2
τ+1 . The maximum number of successful and unsuccessful iterations

is

|Sj |+ |Uj | ≤ ε
− τ+2
τ+1

(
2Ls + log

(α0

ᾱ

))
Remark 1 The above result is optimal. For very large problems, it may happen that the tolerances required on

rk are impractical. Then, we may sacrifice optimality to develop a workable implementation.

Remark 2 The conditions on the residual rk combine to ‖rk‖ ≤
λk‖dk‖

τ

4 ≤ β‖dk‖
1+τ

4αk
. From an asymptotic

point of view, this is coherent with usual truncated Newton criteria since close to a strong second order point,

‖dk‖ = ‖∇f(xk)‖.

3.2 Asymptotic analysis

The asymptotic analysis follows from the fact that close to a strong second order point, ‖dk‖ = ‖∇f(xk)‖ =

‖xk−x
∗‖. For our computations, ‖dk‖ = ‖∇f(xk)‖ is always true. Lemma 3.4 ensures ‖∇f(xk+1)‖ = ‖dk‖

1+τ .

Close to the second order point, ‖∇f(xk)‖ = ‖xk − x
∗‖ yields quadratic local convergence order.

4 CG-Lanczos implementation

We now describe how we solve a sequence of shifted linear systems simultaneously in a way that is consistent

with the minimization of (1.2). Our implementation is an adaptation of Frommer and Maass (1999).

Algorithm 4.1 describes the CG-Lanczos with shifts implementation for a generic symmetric system

Mx = b with shifts λi, i.e.,

(M + λiI)x = b, i = 1, . . . ,m. (4.1)

Les Cahiers du GERAD G–2015–109 7

In Algorithm 4.1, boldface quantities are block quantities with one component per shift parameter. Initialization

statements initialize all m+ 1 values of a given block variable to identical copies of the right hand side value.

For instance, the statement p = b means that n × (m+ 1) array p is initialized to m + 1 copies of b. The

statement σ = β means that all m+ 1 elements of the array σ are initialized to β. For conciseness, the shifts

are gathered in the array λ.

Algorithm 4.1 Lanczos-CG with shifts for (4.1)

1: Set x0 = 0, β0v0 = b, p0 = b,
2: set v−1 = 0, σ0 = β0, ω−1 = 0, γ−1 = 1,
3: for j = 0, 1, 2, . . . do
4: δj = vTj Mvj // Lanczos part of the iteration
5: βj+1vj+1 = Mvj − δjvj − βjvj−1

6: δj = δj + λ // CG part of the iteration in block form
7: γj = 1/(δj − ωj−1/γj−1)

8: ωj = (βj+1γj)
2

9: σj+1 = −βj+1γjσj
10: xj+1 = xj + γjpj
11: pj+1 = σj+1vj+1 + ωjpj

A few observations about Algorithm 4.1 are in order. Firstly, note that a single operator-vector product is

required per iteration, and takes place in the Lanczos part of the iteration, which is independent of the shifts.

The extra cost incurred by requesting the solution of multiple shifted systems is confined to the CG part of
the iteration, which only performs scalar and vector operations.

Secondly, recall that the vectors vj are orthonormal in exact arithmetic while the search directions pj are

(M + λI)-conjugate for as long as negative curvature is not detected.

Finally, Algorithm 4.1 neither forms nor recurs the residual rj = b−Mxj . A recursion argument shows

that rj = σjvj , and by orthogonality, ‖rj‖ = σj is available at no extra cost.

Because we use adaptative stopping tolerances, not all systems will require the same number of iterations

and we terminate iterations corresponding to values of the shift for which either the required tolerance is

reached, or negative curvature is detected.

We now describe how negative curvature may be detected during the iterations of Algorithm 4.1. Because

the argument is independent of the shift, we assume that m = 1 and λ1 = 0, i.e., we solve the system Mx = b

with the Lanczos variant of CG. At iteration j,

δj = vTj Mvj ,

where the vectors {vj} are orthonormal. If negative curvature is present, δj may never reveal so, but pTj Mpj
will. We seek a cheap expression to check the sign of pTj Mpj where the vectors {pj} are M -conjugate. At

iteration j, pj = rj + ωj−1pj−1, where rj = b−Mxj is updated cheaply via rj = σjvj , and ωj−1 and σj are

scalars. Thus

pTj Mpj = pTj Mrj + ωj−1p
T
j Mpj−1

= pTj Mrj

= rTj Mrj + ωj−1p
T
j−1Mrj

= σ2
j δj + ωj−1p

T
j−1Mrj .

The iterates are updated according to xj = xj−1 + γj−1pj−1, so that

rj = b−Mxj = b−Mxj−1 − γj−1Mpj−1 = rj−1 − γj−1Mpj−1.

8 G–2015–109 Les Cahiers du GERAD

By orthogonality,

rTj rj = rTj rj−1 − γj−1r
T
j Mpj−1 = −γj−1r

T
j Mpj−1,

and therefore

pTj−1Mrj = − 1

γj−1

rTj rj = − 1

γj−1

σ2
j .

Finally, using the update formula for γj , we may also write

pTj Mpj = σ2
j (δj − ωj−1/γj−1) = σ2

j /γj .

Therefore the sign of γj is the same as that of pTj Mpj .

5 Large scale numerical examples

In order to assess the scalability of our implementation, we performed some numerical experiments using

adaptations and modifications of some CUTE problems Lukšan, Matonoha, and Vlček (2010). The Figure 5.1
illustrates the relative merit of our scalable implementation ARCqK with the L-BFGS-B solver.

In order to illustrate the really large scale applicability we picked an example, cragglvy and boosted its

dimension to n = 10 000 000.

The statistics for ARCqK suggest good scalability properties, at least on such an instance.

Table 5.1: ARCqK shows remarkable consistency, probably due to a well conditioned Hessian

ARCqK

n m #functions #gradients #hessian vector products

10 000 000 31 39 39 172
1 000 000 31 39 39 179
10 000 000 6 39 39 172

The statistics for L-BFGS-B show more severe increase of number of evaluations when the number of pairs

of vectors is kept low.

Table 5.2: L-BFGS-B for this instance benefits from using more pairs in the limited memory strategy

L-BFGS-B

n m #functions #gradients

10 000 000 6 352 355
1 000 000 6 303 306
10 000 000 31 145 148

Conclusion

We have introduced a new scalable implementation of the variant ARCq of the adaptative regularization by

cubics. Our implementation is based on Levenberg-Marquardt shifted linear systems of equations which we

solve all at once.

Les Cahiers du GERAD G–2015–109 9

Figure 5.1: Comparison with L-BFGS-B using at most 20000 evaluations (functions, gradients, hessian vector
products) with stopping criterion ‖∇f(x∗)‖∞ ≤ max(10−10‖∇f(x0)‖∞, 10−6)

References
C. Cartis, N.I.M. Gould, and Ph.L. Toint. Adaptive cubic regularisation methods for unconstrained optimization.

Part I: motivation, convergence and numerical results. Mathematical Programming, 127(2):245–295, 2011a. DOI:
10.1007/s10107-009-0286-5.

C. Cartis, N.I.M. Gould, and Ph.L. Toint. Adaptive cubic regularisation methods for unconstrained optimization. Part
II: worst-case function- and derivative-evaluation complexity. Mathematical Programming, 130(2):295–319, 2011b.
DOI: 10.1007/s10107-009-0337-y.

A.R. Conn, N.I.M. Gould, and Ph.L. Toint. Trust-Region Methods, volume 1 of MPS/SIAM Series on Optimization.
SIAM, Philadelphia, USA, 2000. DOI: 10.1137/1.9780898719857.

J.-P. Dussault. Simple unified convergence proofs for trust region and a new ARC variant. Technical report, Université
de Sherbrooke, 2015. www.optimization-online.org/DB FILE/2015/06/4939.html.

A. Frommer and P. Maass. Fast CG-based methods for Tikhonov-Phillips regularization. SIAM Journal on Scientific
Computing, 20(5):1831–1850, 1999. DOI: 10.1137/S1064827596313310.

A. Griewank. The modification of Newton?s method for unconstrained optimization by bounding cubic terms. Technical
Report NA/12, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, 1981.

L. Lukšan, C. Matonoha, and J. Vlček. Modified CUTE problems for sparse unconstrained optimization. Technical
Report 1081, Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod Vodárenskou věž́ı,
18207 Prague 8, Czech Republic, 2010.

J.M. Ortega. Numerical analysis: A second course. Number 3 in Classics in Applied Mathematics. Society for Industrial
and Applied Mathematics, Philadelphia, PA, 1990.

http://dx.doi.org/10.1007/s10107-009-0286-5
http://dx.doi.org/10.1007/s10107-009-0337-y
http://dx.doi.org/10.1137/1.9780898719857
http://www.optimization-online.org/DB_FILE/2015/06/4939.html
http://dx.doi.org/10.1137/S1064827596313310

	Introduction
	The ARCq algorithm
	ARCq complexity bounds

	Shifted-systems formulation
	Worst-case complexity analysis
	Asymptotic analysis

	CG-Lanczos implementation
	Large scale numerical examples

