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du Fonds de recherche du Québec – Nature et technologies.
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Abstract: The facility layout problem is a well-known operations research problem that arises in multiple
applications. This paper is concerned with the multi-row layout problem in which one-dimensional depart-
ments are to be placed on a given number of rows so that the sum of the weighted center-to-center distances
is minimized. While the optimal solution for a single-row problem will normally have no spaces between
departments, for multi-row layout problems it is necessary to allow for the presence of spaces of arbitrary
lengths between departments. We consider the special case of equidistant row layout problems in which all
departments have the same length, taken to be unity without loss of generality. For this class of problems we
prove two theoretical results that facilitate the handling of spaces. First we show that although the lengths
of the spaces are in general continuous quantities, every multi-row equidistant problem has an optimal solu-
tion on the grid. This implies that only spaces of unit length need to be used when modeling the problem,
and hence that the problem can be formulated as a purely discrete optimization problem. Second we state
and prove exact expressions for the minimum number of spaces that need to be added so as to preserve at
least one optimal solution. One important consequence of these results is that multi-row equidistant layout
problems can be modeled using only binary variables; this has a significant impact for a computational per-
spective. These results are used to formulate two new models for the equidistant problem, an integer linear
optimization model and a semidefinite optimization model. Special attention is paid to the double-row layout
case that has received much attention recently and is particularly important in practice. Our computational
results with the new formulations as well as with a recent formulation by Amaral show that the semidefinite
approach dominates for medium- to large-sized instances and that it is well-suited for providing high-quality
lower bounds for large-scale instances in reasonable computation time. Specifically for double-row instances,
we attain global optimality for some instances with up to 25 departments, and achieve optimality gaps smaller
than 1% for instances with up to 50 departments.

Acknowledgments: A short paper with a brief outline of the ideas as specialized to the double-row problem
and without any technical details, was accepted for the proceedings of OR 2014.

The authors thank A.R.S. Amaral for providing us with his instances and C. Helmberg for making us his
bundle solver ConicBundle as well as his odd-cycle separator, an adapted version of the one by M. Jünger,
available. The work of the first author was partially supported by a Discovery Grant from the National
Science and Engineering Research Council (NSERC) of Canada. The second author was partially supported
by the European Union and the Free State of Saxony funding the cluster eniPROD at Chemnitz University
of Technology.
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1 Introduction

The facility layout problem is a well-known operations research problem that arises in multiple applications.

The problem consists in finding an optimal location of departments inside a plant according to a given

objective function. In general, the objective function may reflect transportation costs, the construction

cost of a material-handling system, or simply adjacency preferences among departments. For example, the

placement of machines that form a production line inside a plant is a layout problem in which one wishes to

minimize the total cost of the material flow between the machines.

The variety of applications means that facility layout encompasses a broad class of optimization problems.

This paper is concerned with the Multi-Row Equidistant Facility Layout Problem (MREFLP). This is one of

several row-layout problems that are of interest in the design of flexible manufacturing systems (FMSs). FMSs

are automated production systems that typically consist of numerically controlled machines and material

handling devices under computer control with the materials handled by devices such as automated guided

vehicles (AGVs). It is well-known that the layout of the machines of an FMS has a significant impact on

the productivity of the facility, and furthermore that a poor layout is likely to reduce the flexibility of an

FMS [27]. Among most frequently encountered layout types in practice are the single-row and multi-row

layouts (Figure 1). If all the departments are to be placed in only one row, then we have an instance of the

Single-Row Facility Layout Problem (SRFLP), while if more than one row can be used, then the problem is

a Multi-Row Facility Layout Problem (MRFLP). We are interested here in the (SREFLP) and the (MREFLP)

which are respectively the special cases of the (SRFLP) and (MRFLP) in which all the machines have the same

length.

a.) AGV

M4M3M2M1

b.)

AGV

M5M4

M1 M2 M3

Figure 1: AGV handling materials in a single-row layout (a) and a double-row layout (b).

Single-Row Layout. Arguably the simplest layout problem is that of a single-row layout. An instance of the

Single-Row Facility Layout Problem (SRFLP) consists of n one-dimensional machines, with given positive

lengths l1, . . . , ln, and pairwise weights wij often referred to as connectivities. The optimization problem can

be written down as

min
π∈Πn

∑
i,j∈[n]
i<j

wijz
π
ij , (1)

where Πn is the set of permutations of the indices [n] := {1, 2, . . . , n} and zπij is the center-to-center distance

between machines i and j with respect to a particular permutation π ∈ Πn.

Under the assumption that the weights wij are non-negative, the optimal solution will have no empty

spaces between departments. Hence the (SRFLP) consists of finding a permutation of the departments that

minimizes the total weighted sum of the center-to-center distances. Note that the assumption that wij ≥ 0

also ensures boundedness of the objective value of the optimal layout.

Beyond the arrangement of machines in FMSs [31], practical applications of the (SRFLP) include the

arrangement of rooms on a corridor in hospitals, supermarkets, or offices [48], and the assignment of airplanes

to gates in an airport terminal [50]. Accordingly several heuristic algorithms have been suggested for the

(SRFLP); among the best ones to date are [15, 38, 44].

Global optimization approaches for the (SRFLP) are based on relaxations of integer linear programming

(ILP) and semidefinite programming (SDP) formulations. The strongest ILP approach is an LP-based cutting

plane algorithm using betweenness variables that can solve instances with up to 35 departments within a few

hours [1]. The strongest SDP approach to date using products of ordering variables is even stronger and can

solve instances with up to 42 departments within a few hours [37].
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In this context let us recall that SDP is the extension of LP from the set of non-negative vectors to the

cone of symmetric positive semidefinite matrices. A (primal) SDP problem can be expressed as

inf {〈C,X〉 : X ∈ P}, where P := {X : 〈Ai, X〉 = bi, i ∈ [m], X < 0} ,

where the data matrices Ai, i ∈ [m], and C are symmetric. For further information on SDP we refer the

reader to the handbooks [5, 53]. In particular, a survey of global optimization approaches for the (SRFLP)

can be found in [6].

This leads us to one of the problems addressed in this paper. The Single-Row Equidistant Facility Layout

Problem (SREFLP) is the special case of the (SRFLP) in which the department lengths are all equal. The

(SREFLP) arises in several applications, including sheet-metal fabrication [4], printed circuit board and disk

drive assembly [13], and the optimal design of a flowline in a manufacturing system [55]. Furthermore

Bhasker and Sahni [9] applied the (SREFLP) to minimize the total wire length needed when arranging circuit

components on a straight line.

The (SREFLP) is also a special case of the Quadratic Assignment Problem (QAP) (see e. g. [12, 40]). While

exact methods and heuristics especially designed for the (SREFLP) clearly outperform general methods for

the (QAP), this is not the case for recent approaches to the (SRFLP) [34]. Indeed the most effective global

optimization approaches for the (SRFLP) are also the best ones for the (SREFLP). Hence to date the (SREFLP)

can also be solved to optimality for instances with up to 42 departments within a few hours.

In contexts other than manufacturing, the (SREFLP) is usually called weighted Linear Arrangement (LA).

This problem was originally proposed by Harper [25, 26] to develop error-correcting codes with minimal

average absolute errors. It is NP-hard [21], and remains so even if all weights are binary and the underlying

graph is bipartite [20]. It follows that all the problems considered in this paper are also NP-hard, as they are

extensions of (LA).

Multi-Row Layout. The Double-Row Facility Layout Problem (DRFLP) is a natural extension of the (SRFLP)

in the manufacturing context when one considers that an AGV can support stations located on both sides of

its linear path of travel (see Figure 1). The (DRFLP) is especially relevant for real-world applications because

this is a common approach in practice for improved material handling and space usage, and thus real factory

layouts most often reduce to a combination of single-row and double-row problems.

Row layout can be further generalized to the Multi-Row Facility Layout Problem (MRFLP) where the de-

partments are arranged along several parallel rows. An instance of the (MRFLP) consists of n one-dimensional

departments with given positive lengths l1, . . . , ln, pairwise non-negative weights wij between the depart-

ments, and a set R := {1, . . . ,m} of rows available for placing the departments. The objective is to find

an assignment r : [n] → R of departments to rows, and feasible horizontal positions for the centers of the

departments within the assigned rows, i. e., a function

p : [n]→ R satisfying
li + lj

2
≤ |p(i)− p(j)| if r(i) = r(j),

such that the total weighted sum of the center-to-center distances between all pairs of departments is mini-

mized. Our formulation of the (MRFLP) is thus:

min
r,p

∑
i,j∈[n]
i<j

wij |p(i)− p(j)| (2)

s. t.
li + lj

2
≤ |p(i)− p(j)|, i 6= j, and r(i) = r(j). (3)

The (MRFLP) has numerous applications such as computer backboard wiring [49], campus planning [17],

scheduling [23], typewriter keyboard design [43], hospital layout [18], the layout of machines in an automated
manufacturing system [32], balancing hydraulic turbine runners [39], numerical analysis [11], optimal digital

signal processors memory layout generation [52]. Different extensions of the (MRFLP) like considering a
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clearance between any two adjacent machines given as a fuzzy set [22] or the design of an FMS in one or

multiple rows [19] have been proposed and tackled with genetic algorithms.

Somewhat surprisingly, the development of exact algorithms for the (DRFLP) and the (MRFLP) has re-

ceived only limited attention in the literature. In the 1980s Heragu and Kusiak [31] proposed a non-linear

programming model and obtained locally optimal solutions to the (SRFLP) and the (DRFLP). Recently Chung

and Tanchoco [14] (see also Zhang and Murray [56]) focused exclusively on the (DRFLP) and proposed a mixed

integer linear programming (MILP) formulation that was tested in conjunction with several heuristics for

assigning the departments to the rows. Their approach was able to solve instances with up to 10 depart-

ments. Amaral [2] proposed an improved MILP formulation that allowed him to solve instances with up to

12 departments to optimality. Most recently Hungerländer and Anjos [36] proposed an SDP approach for

the general (MRFLP) that is however only applicable to small instances with less than 12 departments.

Again our interest in this paper is on the case of (MREFLP) that has all the department lengths equal.

With respect to this special case, Amaral [3] proposed an MILP formulation tailored to the Minimum Duplex

Arrangement Problem, which in our terminology corresponds to the (DREFLP). His approach allows to exploit

the sparsity of the instances considered and is able to solve randomly generated instances with at most 10

(very dense instances) to 20 (very sparse instances) departments. For more details on this formulation we

refer to Subsection 3.1.

A Toy Example. We illustrate the (SREFLP) and the (MREFLP) with the help of a toy example. We consider

6 equidistant departments and the following given pairwise weights:

w12 = w13 = w14 = w23 = w24 = w34 = 2, w15 = w25 = w36 = w46 = 1.

Figure 2 illustrates the optimal layouts and corresponding total costs when using between one and four rows.

a.)

AGV

5 21 3 4 6

b.)

AGV

5

2

1 3

4

6

c.)
Robot

2

1 3

4

5 6

d.)
Robot

2

1

3

4

5

6

Figure 2: a.) Optimal (SREFLP) solution with total cost of 26.
b.) Optimal (DREFLP) solution with total cost of 12.
c.) Optimal solution for the (MREFLP) with 3 rows with total cost of 8.
d.) Optimal solution for the (MREFLP) with 4 rows with total cost of 4.

Outline. This paper is structured as follows. In Section 2 we state and prove our theoretical results on the

structure of optimal layouts. Namely that the (MREFLP) always has an optimal solution on the grid, and that

we can give exact expressions for the minimum number of spaces that need to be added to an instance of

the (MREFLP) so that from an optimal solution to the resulting “space-free” problem we can recover at least

one optimal solution for the (MREFLP) instance. One consequence of these results is that the (MREFLP) can
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be modeled using solely binary variables. In Section 3 we focus on the double-row case, recalling an MILP

formulation for the (DREFLP) by Amaral [3] and presenting two new models for that problem, one based on

ILP and the other on SDP. In Section 4 we show how the three models can be extended to the general multi-

row case, and in Section 5 we describe a suitable combination of optimization methods to obtain strong lower

bounds and feasible layouts using the presented models. Section 6 reports the results of our computational

experiments to assess the practical performance of the different approaches. Finally, Section 7 concludes the

paper and summarizes some directions for future research.

2 The structure of optimal layouts

The definition of the (MREFLP) implicitly allows the spaces between two departments to be of arbitrary

length. For this reason most optimization models in the literature use continuous variables to model the

distances between departments.

In this section we prove two theoretical results about the structure of optimal layouts. We first show that

the (MREFLP) always has an optimal solution on the grid. The key insight here is that restricting the spacing

between departments to be formed using spacing departments preserves at least one optimal solution. Second

we give exact expressions for the minimum number of such spacing departments required for each combination

of numbers of departments and rows so as to preserve at least one optimal solution. One consequence of

these results is that the (MREFLP) can be modeled using solely binary variables.

These results are of intrinsic theoretical interest because they reveal hitherto hidden structural properties

of the (MREFLP). Moreover they are of use to improve the practical performance of the optimization models

that we propose in Sections 3 and 4.

2.1 A combinatorial property of multi-row layouts

Theorem 1 is a special case of [35, Theorem 2]:

Theorem 1 There is always an optimal solution to the (MREFLP) on the grid.

Proof. Let an optimal solution of the (MREFLP) be given. We define an integer grid such that the centers

of the departments with the leftmost centers are on a grid point. Next we divide the departments into two

sets, a set S containing those with their centers already on the grid, and a set T containing the others. We

assume w. l. o. g. that the indices of the departments in S are all smaller than the indices of the departments

in T : i < j, ∀ i ∈ S, j ∈ T .

Observe that there exists ε > 0 sufficiently small so that we can move all the departments in T simultane-

ously, either to the left or to the right, by a distance ε. This holds because all departments have (the same)

integer length, and because the departments in S are arranged on the grid. The change in the objective

function from any such shift of the departments in T is given by

δ =
∑
i∈T

ε ∑
j∈S, j<̇i

wij − ε
∑

j∈S, i<̇j

wij


for a shift to the left, and by −δ for a shift to the right, where i<̇j means that the center of j is to the right

of the center of i, and ε is chosen small enough such that no department in T traverses a grid point. Due to

the optimality of the given layout, δ has to be equal to zero because otherwise a shift either to the left (for

δ < 0) or to right (for δ > 0) would improve the objective value. Hence the proposed shifting operation does

not change the objective value.

Let us choose ε as the largest value such that the center of at least one department in T lies on a grid point

after the shifting operation (to the left or right). If we apply this shifting to the given optimal solution, we can

now move that department to the set S. Repeatedly applying this operation to the remaining departments

allows us to arrange all departments on the grid in at most n − 1 steps without changing the objective

value.
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Theorem 1 is illustrated in Figure 3. For layouts fulfilling the grid property, we say that department i

lies in column j if the center of i is located at the jth grid point. For example department 5 lies in column 4

in Figure 3.

Note that the grid property is automatically fulfilled for layouts corresponding to the graph version of

the (MREFLP), i. e., an extension of (LA) where two or more nodes can be assigned to the same position.

Hence by Theorem 1 the Minimum Duplex Arrangement Problem considered in [3] is a special case of the

(DREFLP).

s

s

d3

sd1

d2

d4

d5

d6

d7

d8

s

s

s

Row 1

Row 2

Figure 3: Illustration of the grid property of layouts. Note that for such layouts all departments and spaces
have equal size.

From now on we restrict our attention to layouts fulfilling the grid property. This restriction is clearly

advantageous from both a theoretical as well as a practical point of view.

2.2 Bounds on the number of spaces

In this subsection we are interested in the minimum number of spacing departments, or simply spaces, that

must be added to an instance of the (MREFLP) so that we can recover at least one optimal solution for the

original (MREFLP) instance from the optimal solution to the resulting problem. Clearly this number is a

function of the number of departments and the number of rows, but since we do not have a priori knowledge

about the structure of optimal solutions for given cost coefficients, it does not depend on the weights wij
(other than assuming their non-negativity).

In the following theorem we make three additional assumptions that allow us to reduce the number of

spaces needed. Note that at least one optimal layout is preserved under these assumptions (see Lemma 3

below for a formal proof of this statement).

Assumption 1 Columns that contain only spaces can be deleted. Equivalently, if we number the columns

from 1 to n there exists k′ ∈ [n] such that each column with index at most k′ contains at least one

department.

Assumption 2 If two non-empty neighboring columns contain altogether no more than m departments, then

all corresponding departments can be assigned to the left column and the right column can be deleted.

Thus with k′ as in Assumption 1 we know that columns i and i + 1 with i ∈ [k′ − 1] contain at least

m+ 1 departments.

Assumption 3 If d > 2m and the first column and the third column contain in total at most m departments,

then all corresponding departments can be assigned to the third column and the first column can be

deleted.

A similar argument holds for columns k′ − 2 and k′ with k′ as in Assumption 1.

These assumptions are illustrated in Figure 4 where the left-hand side depicts a feasible layout and the

right-hand side depicts the adaptation of that layout so that the respective assumption holds. Note that the

adaptations cannot worsen the objective value of the layout.

We can now state the second theorem.

Theorem 2 The number of columns sufficient to preserve at least one optimal layout for an instance with d

departments is

1. equal to 1 if d ≤ m, and equal to 2 if m < d < 3
2m+ 3

2 ;

2. equal to
⌈

2d
3

⌉
− 1 for the (DREFLP) with d ≥ 9;
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d1
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d1
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Assumption 2:
d1
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Assumption 3:
d1

d4

d2

d3

d5

d6

d7

d8

Figure 4: Illustration of Assumptions 1, 2 and 3.

3. equal to
⌊

2d
m+1

⌋
for the (MREFLP) with an odd number of rows m; and

4. equal to 2l+1 for the (MREFLP) with an even number of rows m and d ∈ {m2 +2+(m+1)(l−1), . . . , m2 +

1 + (m+ 1)l} for some l ∈ N.

To prove Theorem 2, we begin by using the fact that Theorem 1 allows us to assume that the departments

of the (MREFLP) are arranged on a grid. Hence we can represent an optimal solution of the (MREFLP) by an

assignment α : [d]→ [d] of the d departments to d different columns with the interpretation

α(i) = j, if department i ∈ [d] lies in column j ∈ [d], (i, j ∈ [d]) (4)

and at most m departments are assigned to each column j ∈ [d], i. e.,

|{i ∈ [d] : α(i) = j}| ≤ m.

Indeed, the modeling approach in [3] directly reflects the assignment (4) (see Subsection 3.1 for details).

Furthermore, there always exists an optimal solution α∗ : [d]→ [d] that fulfills additional structural properties

that we already depicted in Figure 4 and now formally describe and prove in the next lemma.

Lemma 3 Let d,m ∈ N. Then there always exists an optimal solution α∗ : [d]→ [d] of the (MREFLP) (fulfilling

the grid structure) that assigns each department i ∈ [d] to a column α∗(i) ∈ [d] which fulfills the following

properties:

1. There exists a k′ ∈ [d] such that |{i ∈ [d] : α∗(i) = l}| ≥ 1 for all l ∈ [d], l ≤ k′, and |{i ∈ [d] : α∗(i) ≥
k′ + 1}| = 0.

2. If |{i ∈ [d] : α∗(i) = j}| > 0 and |{i ∈ [d] : α∗(i) = j + 1}| > 0 for some j ∈ [d], j < d, then

|{i ∈ [d] : α∗(i) = j}|+ |{i ∈ [d] : α∗(i) = j + 1}| ≥ m+ 1.

3. Let d > 2m. Then |{i ∈ [d] : α∗(i) ≥ k′+ 1}| = 0 and |{i ∈ [d] : α∗(i) = k′}| > 0 for some k′ ∈ [d] imply

|{i ∈ [d] : α∗(i) = k′ − 2}|+ |{i ∈ [d] : α∗(i) = k′}| ≥ m+ 1. Furthermore |{i ∈ [d] : α∗(i) = 1}|+ |{i ∈
[d] : α∗(i) = 3}| ≥ m+ 1.

Proof. Let d,m ∈ N and α∗ be an optimal solution of the (MREFLP) fulfilling the grid structure.

1. If |{i ∈ [d] : α∗(i) = j − 1}| = 0 and |{i ∈ [d] : α∗(i) = j}| ≥ 1 for some j ∈ [d], then the assignment α′

with

α′(l) =

{
α∗(l), α∗(l) < j,

α∗(l)− 1, otherwise,

for l ∈ [d] is optimal for the (MREFLP), too, because the distances between departments are not enlarged.

The repeated “deletion” of empty columns proves the statement.
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2. Assume that |{i ∈ [d] : α∗(i) = j}| + |{i ∈ [d] : α∗(i) = j + 1}| ≤ m for some j ∈ [d], j < d. Then α′

with

α′(l) =

{
α∗(l), α∗(l) ≤ j,
α∗(l)− 1, otherwise,

for l ∈ [d] is a feasible multi-row assignment and it is even optimal, because all distances are not

enlarged (some are even shortened) and there are at most m departments in each row. Applying

this approach repeatedly we get an optimal assignment ᾱ such that |{i ∈ [d] : ᾱ(i) = j}| > 0 and

|{i ∈ [d] : ᾱ(i) = j + 1}| > 0 for some j ∈ [d− 1] imply |{i ∈ [d] : ᾱ(i) ∈ {j, j + 1}}| > m.

3. Now assume, w. l. o. g., that there exists an optimal solution α∗ of the (MREFLP) and k′ ∈ [d] such

that |{i ∈ [d] : α∗(i) = k′}| > 1, |{i ∈ [d] : α∗(i) ≥ k′ + 1}| = 0. By the previous statements we may

assume |{i ∈ [d] : α∗(i) = k′ − 1}| > 0 and —{i ∈ [d] : α∗(i) ∈ {k′ − 1, k′}}| > m. If, additionally

|{i ∈ [d] : α∗(i) ∈ {k′ − 2, k}}| ≤ m, the solution α′ with

α′(l) =

{
α∗(l)− 2, α∗(l) = k′,

α∗(l), otherwise,

for l ∈ [d] is optimal, too, because all distances between departments are not enlarged.

We are now ready to prove Theorem 2.

Proof. (of Theorem 2) We prove each of the claims of Theorem 2 in turn.

• Proof of 1: Let d,m ∈ N be given. If d ≤ m, it is clear that arranging all departments in one column

leads to costs of zero. Furthermore, as long as m < d < 3
2m + 3

2 there exists an arrangement such

that only two columns are used because, w. l. o. g., we can assume that the first two columns contain

m+1 departments and that the second column contains maximal dm2 e of these departments. Then, the

remaining departments could also be included in one of the first two columns, either all in the second

column or also some of them in the first column.

• Proof of 2: Let m = 2, d ≥ 9 and let α∗ be an optimal solution of the (DREFLP) fulfilling the grid

structure as well as the properties described in Lemma 3. So we might assume that there exists a

k′ ∈ [d] such that |{i ∈ [d] : α∗(i) = l}| ≥ 1 for all l ∈ [d], l ≤ k′ and |{i ∈ [d] : α∗(i) > k′}| = 0. (Note,

d ≥ 9 implies k′ ≥ 5.) By Lemma 3 the solution α∗ fulfills |{i ∈ [d] : α∗(i) ∈ {j, j + 1}}| ≥ 3 for all

j ∈ [d], j < k′, as well as |{i ∈ [d] : α∗(i) ∈ {1, 2, 3}}| ≥ 5 and |{i ∈ [d] : α∗(i) ∈ {k′−2, k′−1, k′}}| ≥ 5.

We consider two cases for k′. If (k′ − 6) mod 2 ≡ 0, then the first k′ columns contain at least

10 + (k′ − 6) 3
2 = 3

2k
′ + 1 departments. Otherwise, if (k′ − 6) mod 2 ≡ 1, then the first k′ columns

contain at least 5 + (k′− 3) 3
2 = 3

2k
′+ 1

2 departments. Now, assume for a contradiction, that k′ ≥
⌈

2d
3

⌉
.

Then the first k′ columns contain at least
⌈(

3
2

⌈
2d
3

⌉
+ 1

2

)⌉
> d departments, a contradiction. So the

statement follows.

• Proof of 3: Let m be odd and d > 2m. Let α∗ be an optimal solution of the (MREFLP) that fulfills all

properties described in Lemma 3. We might assume by Lemma 3 that there exists k′ ∈ [d] such that

|{i ∈ [d] : α∗(i) = l}| ≥ 1 for all l ∈ [d], l ≤ k′ and |{i ∈ [d] : α∗(i) ≥ k′ + 1}| = 0. Then we know

by Lemma 3 that |{i ∈ [d] : α∗(i) = j}| + |{i ∈ [d] : α∗(i) = j + 1}| ≥ m + 1 for all j ∈ [d], j < k′.

Assume now, for a contradiction, that k′ >
⌊

2d
m+1

⌋
, then the k′ columns contain at least m+1

2 · k′ ≥
m+1

2 (
⌊

2d
m+1

⌋
+ 1) > d departments, a contradiction.

• Proof of 4: Let m be even and d > 2m. Let α∗ be an optimal solution of the (MREFLP) that fulfills all

properties described in Lemma 3. Assume d ∈ {m2 + 2 + (m+ 1)(l− 1), . . . , m2 + 1 + (m+ 1)l} for some

l ∈ N. We might assume by Lemma 3 that there is a k′ ∈ [d] such that |{i ∈ [d] : α∗(i) = m}| ≥ 1 for all

m ∈ [d], m ≤ k′ and |{i ∈ [d] : α∗(i) ≥ k′ + 1}| = 0. Then we know by Lemma 3 that |{i ∈ [d] : α∗(i) =
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j}| + |{i ∈ [d] : α∗(i) = j + 1}| ≥ m + 1 for all j ∈ [d], j < k′. Assume now, for a contradiction, that

k′ ≥ 2l+2. Then the first k′ columns contain at least 2l+2
2 (m+1) = (m+1)l+m+1 > (m+1)l+m

2 +1 ≥ d
departments, a contradiction.

Table 1 gives exact values for the minimum number of columns for small values of d and problems with

two to four rows.

Table 1: Minimum number of columns needed for instances of (MREFLP) with d ≤ 16 and m = 2, 3, 4.

d 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 rows 1 1 2 2 3 4 4 5 5 6 7 7 8 9 9 10
3 rows 1 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8
4 rows 1 1 1 1 2 2 2 3 3 4 4 4 5 5 5 6

Let us give small toy examples for which the optimal layout contains many spaces and hence the number

of columns given in Table 1 is necessary: consider problems with m = 3 rows, d = 2l departments for some

l ∈ N, and with weights wi(i+1) = 1, i = 1, 3, 5, . . . , 2l− 1, and wij = ε otherwise. For ε sufficiently small, the

optimal solution contains exactly one space in each column; the case with d = 10 is shown on the left-hand

side of Figure 5. Note that in this example the objective value is not worsened if we reduce the number of

rows from three to two.

Next let us point out that for the (MREFLP) with an even number of rows ¿ 2, the exact calculation of the

bounds is quite involved and might be slightly improved if d cannot be written as m
2 + 1 + (m+ 1)l for some

l ∈ N. Nevertheless, although the number of spaces seems large, sometimes no improvement is possible if

we want to preserve an optimal solution. To see this consider a problem with four rows and 13 departments

with w12 = w13 = w45 = w67 = w68 = w9 10 = w11 12 = w11 13 = 1 and all other weights equal to a small

ε > 0, then all optimal solutions have a structure like the one visualized on the right-hand side of Figure 5.

In this case d = 13 = 4
2 + 1 + 5l with l = 2.

Figure 5: Worst-case examples for Theorem 2.

Theorem 2 allows us to reduce the number of spaces, and hence of variables, both in the MILP model

from Amaral [3] and in the new ILP and SDP formulations proposed in Section 3. This theorem also helps to

eliminate some of the symmetries in the problem, for example the position of empty columns, and hence to

obtain stronger global bounds from all the relaxations. The computational results in Section 6 demonstrate

the practical impact of Theorem 2.

3 Three modeling approaches for double-row layouts

In this section we focus on the double-row case. First we recall a MILP formulation for the (DREFLP) by

Amaral [3]. Second, we present two new models for the (DREFLP): the first one is an ILP formulation that
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uses betweenness variables together with variables modeling whether pairs of departments are assigned to

the same column, and the second one is an SDP formulation based on products of ordering variables.

We note that in the approaches discussed below we do not assign the departments to a specific row (as

was done for instance in recent SDP-based approaches to the (MRFLP) [36]). We instead ensure that at most

m departments are assigned to each column.

3.1 A MILP formulation related to the quadratic assignment problem

To the best of our knowledge the paper by Amaral [3] contains the only approach tailored specifically for

the (DREFLP). Let us briefly outline his ILP formulation. We introduce the binary variables zip ∈ {0, 1}, i ∈
[d], p ∈ [c] (c the number of columns), with the interpretation

yip =

{
1, department i is assigned to column p,

0, otherwise.

Using these variables we can rewrite the objective function (2) for the (DREFLP) as∑
i,j∈[d],
i<j

∑
p,q∈[c],
p<q

wij(q − p)yipyjq.

This quadratic objective function is linearized by introducing the binary variables1

zipjq =

{
1, if department i is assigned to column p and department j is assigned to column q,

0, otherwise,

with i, j ∈ [d], p, q ∈ [c] and (i 6= j, p < q) ∨ (i < j, p = q), wij > 0. Hence the (DREFLP) can be formulated

as the following MILP:

min
∑

i,j∈[d], i<j
wij>0

∑
p,q∈[c],
p<q

wij(q − p)zipjq (5)

s. t.
∑
p∈[c]

yip = 1, i ∈ [d], (6)

∑
i∈[d]

yip ≤ 2, p ∈ [c], (7)

yip + yjq − zipjq ≤ 1, i, j ∈ [d], p, q ∈ [c], (i 6= j, p < q) ∨ (i < j, p = q), wij > 0, (8)

yip ∈ {0, 1}, i ∈ [d], p ∈ [c], (9)

zipjq ∈ [0, 1], i, j ∈ [d], p, q ∈ [c], (i 6= j, p < q) ∨ (i < j, p = q), wij > 0. (10)

Note that the constraints

zipjq ≤ yip, zipjq ≤ yjq, i, j ∈ [d], p, q ∈ [c], (i 6= j, p < q) ∨ (i < j, p = q), wij > 0

of the standard linearization can be omitted because the weights wij , i, j ∈ [d], i 6= j, are assumed to be

non-negative. In order to tighten this formulation Amaral [3] also applied the techniques of Sherali-Adams

[46, 47]. This results in the following tighter MILP formulation:

min
∑

i,j∈[d], i<j,
wij>0

∑
p,q∈[c],
p<q

wij(q − p)zipjq

s. t. (6)–(10),

1Note that Amaral [3] introduced more binary variables y and z than we do, as he set the number of columns c to d.
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∑
j∈[d], j>i,
wij>0

zipjp ≤ yip, i ∈ [d], p ∈ [c], (11)

∑
j∈[d], j<i,
wij>0

zjpip ≤ yip, i ∈ [d], p ∈ [c], (12)

∑
q∈[c],
q>p

zipjq +
∑
q∈[c],
q<p

zjqip + zipjp ≤ yip, i, j ∈ [d], i < j, wij > 0, p ∈ [c], (13)

∑
j∈[d], j 6=i,
wij>0

zipjq ≤ 2yip, i ∈ [d], p, q ∈ [c], p < q, (14)

∑
j∈[d], j 6=i,
wij>0

zjqip ≤ 2yip, i ∈ [d], p, q ∈ [c], q < p. (15)

3.2 An ILP formulation related to the linear ordering problem

In this subsection we present a new ILP formulation for the (DREFLP). This formulation is an extension of

the model proposed in [1] for the (SRFLP). We use additional variables to model that two departments can be

assigned to the same column and additionally fill up the c columns with spaces (i. e., departments of length

1 and weights of zero). We collect all these spaces in a set S. To simplify notation we set the total number

of departments (original ones plus spaces) to n := 2c and the number of spaces is thus s = n− d. After the

insertion of spaces we deal in fact with a space-free problem, and by Theorems 1 and 2 the optimal solution

of the corresponding optimization problem is ensured to be an optimal solution of the (DREFLP).

Our model makes use of binary betweenness variables

bijk = bkji ∈ {0, 1}, i, j, k ∈ [n], i < k, i 6= j 6= k,

and of binary column overlap variables

aij = aji ∈ {0, 1}, i, j ∈ [n], i < j.

These two sets of variables have the following interpretations:

bijk =

{
1, if department j lies between departments i and k,

0, otherwise,

aij =

{
1, if departments i and j are assigned to the same column,

0, otherwise.

Our resulting formulation of the (DREFLP) is

min
∑

i,j∈[n], i<j

wij

2 ·

 ∑
k∈[n]\{i,j}

bikj + 2(1− aij)

 (16)

s. t. aij + aik + ajk + bijk + bikj + bjik = 1, i, j, k ∈ [n], i < j < k (17)∑
j∈[n]\{i}

aij = 1, i ∈ [n], (18)

bihj + bihk + bjhk ≤ 2, i, j, k, h ∈ [n], i < j < k 6= h, i 6= h 6= j, (19)

− bihj + bihk + bjhk + bikj ≥ 0, i, j, k, h ∈ [n], i < j < k 6= h, i 6= h 6= j, (20)

+ bihj − bihk + bjhk + bikj ≥ 0, i, j, k, h ∈ [n], i < j < k 6= h, i 6= h 6= j, (21)

+ bihj + bihk − bjhk + bikj ≥ 0, i, j, k, h ∈ [n], i < j < k 6= h, i 6= h 6= j, (22)



Les Cahiers du GERAD G–2015–06 11

− bihj + bihk + bjhk + ahk ≥ 0, i, j, k, h ∈ [n], i < j < k 6= h, i 6= h 6= j, (23)

+ bihj − bihk + bjhk + ahk ≥ 0, i, j, k, h ∈ [n], i < j < k 6= h, i 6= h 6= j, (24)

+ bihj + bihk − bjhk + ahk ≥ 0, i, j, k, h ∈ [n], i < j < k 6= h, i 6= h 6= j, (25)

bijk ∈ {0, 1}, i, j, k ∈ [n], i < j, i 6= k 6= j, (26)

aij ∈ {0, 1}, i, j ∈ [n], i < j. (27)

The objective function (16) counts all departments that lie between the departments i and j, and because

of the double-row structure the corresponding sum is divided by two. We count wij towards the cost if

departments i and j do not lie in the same column.

Equations (17) express that three different departments lie either in three different columns such that one

of the betweenness variables equals one or that exactly two of the three departments lie in the same column

such that the associated overlap variable is one. With equations (18) we ensure that each department i ∈ [n]

lies in the same column with exactly one other department. Inequalities (19) to (25) are extensions of the

inequalities in [1] for the SRFLP: inequality (19) ensures that a department h cannot lie between each two

of the three departments i, j, k ∈ [n] \ {h}, i < j < k, and inequalities (20)–(25) ensure that if department

h lies between departments i and j, then h lies also between i, k or j, k or it lies in the same column as k,

which also implies that k lies between i and j.

Due to the introduction of spaces our model contains some symmetries that should be broken to improve

the practical performance of the model. The following constraints enforce an order of the s spaces such that

space i lies left of space j or is in the same column as j iff i < j, i, j ∈ S:

aij = 0, i, j ∈ S, i+ 2 ≤ j, (28)

bijk = 1, i, j, k ∈ S, i+ 4 ≤ j + 2 ≤ k, (29)

bijk = 0, i, j, k ∈ S, i 6= k, (j > max{i, k} ∨ j < min{i, k}). (30)

A further way to improve the presented model is to include an adapted variant of certain inequalities for

the (SRFLP) proposed by Amaral [1].

Observation 4 Let β ∈ N, β ≥ 4, be even and let T ⊆ [n] with |T | = β. For a partition of T in T1, T2, {k}
such that T = T1∪̇T2∪̇{k}, (T1 ∩ T2 = ∅, k /∈ T1, k /∈ T2) and |T1| = β

2 the following inequalities are valid for

the (DREFLP) ∑
p,q∈T1,
p<q

bpkq +
∑

p,q∈T2,
p<q

bpkq −
∑
p∈T1,
q∈T2

bpkq ≤
∑
p∈T2

akp, (31)

∑
p,q∈T1,
p<q

bpkq +
∑

p,q∈T2,
p<q

bpkq −
∑
p∈T1,
q∈T2

bpkq ≤
∑

p,q∈T1, o∈T2,
p<q

bpoq. (32)

Proof. Let β ∈ N, β ≥ 4, even and T ⊆ [n] with |T | = β be given. We consider a partition of T into

T1, T2, {k} such that T = T1∪̇T2∪̇{k} and |T1| = β
2 (so |T2| = β

2 − 1). In order to prove that inequalities (31)

and (32) are valid for the (DREFLP) we consider a fixed double-row assignment α : [n]→ [n2 ] that assigns each

of the n departments (original and spaces) to one of the columns. We define σ1
1 := |{i ∈ T1 : α(i) < α(k)}|,

σ2
1 := |{i ∈ T2 : α(i) < α(k)}|, σ1

2 := |{i ∈ T1 : α(i) > α(k)}|, σ2
2 := |{i ∈ T2 : α(i) > α(k)}|, σ1

3 := |{i ∈
T1 : α(i) = α(k)}|, σ2

3 := |{i ∈ T2 : α(i) = α(k)}|. Then σ1
1 + σ1

2 + σ1
3 = β

2 , σ2
1 + σ2

2 + σ2
3 = β

2 − 1 and

σ1
3 + σ2

3 ≤ 1. The left-hand side of (31) and (32) calculates to

σ1
1σ

1
2 + σ2

1σ
2
2 − σ1

1σ
2
2 − σ1

2σ
2
1 = −(σ1

1 − σ2
1)2 + σ1

1 − σ2
1 − σ1

1σ
1
3 + σ1

1σ
2
3 + σ1

3σ
2
1 − σ2

1σ
2
3 =: γ.

We consider three cases:

• σ1
3 = σ2

3 = 0: Then γ = −(σ1
1 − σ2

1)2 + σ1
1 − σ2

1 = −(σ1
1 − σ2

1)(σ1
1 − σ2

1 − 1) ≤ 0 and with aij ≥ 0, i, j ∈
[n], i < j, bijk, i, j, k ∈ [n], i < k, |{i, j, k}| = 3, the validity follows in this case.
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• σ1
3 = 1, σ2

3 = 0: Then γ = −(σ1
1−σ2

1)2+σ1
1−σ2

1−σ1
1+σ2

1 = −(σ1
1−σ2

1)2 and with aij ≥ 0, i, j ∈ [n], i < j,

bijk, i, j, k ∈ [n], i < k, |{i, j, k}| = 3, the validity follows in this case.

• σ1
3 = 0, σ2

3 = 1: Then γ = −(σ1
1 − σ2

1)2 + σ1
1 − σ2

1 + σ1
1 − σ2

1 = −(σ1
1 − σ2

1)(σ1
1 − σ2

1 − 2). This term is

positive if and only if σ1
1 − σ2

1 = 1 by the integrality of the σji .

So, it suffices to show that the right-hand sides of (31) and (32) are at least one if σ1
3 = 0, σ2

3 = 1 and

σ1
1 − σ2

1 = 1. For (31) the term σ2
3 = 1 implies the existence of an o ∈ T2 that lies in the same column as

k. Considering (32), σ2
3 = 1 and σ1

1 − σ2
1 = 1 imply σ1

1 > 0, σ1
2 > 0 and so there exist p, q ∈ T1, p 6= q, and

o ∈ T2 such that o lies between p, q.

Taking β = 4 we obtain exactly (20)–(25). In comparison to the variant for the (SRFLP) we added∑
p∈T2

arp or
∑
p,q∈T1,o∈T2,p<q

bpoq to the previous right-hand side with value zero, respectively.

3.3 An SDP formulation related to the linear ordering problem

We now present another new formulation for the (DREFLP). This formulation is based on a quadratic formu-

lation using ordering variables that we rewrite using symmetric matrices. The matrix-based formulation is

then relaxed into an SDP problem, and this SDP relaxation can be tightened using several classes of valid

constraints.

Our quadratic formulation is based on the ordering variables xij , i, j ∈ [n], i 6= j, defined as:

xij =

{
1, if department i lies left of department j,

−1, otherwise.
(33)

We observed in Subsection 3.2 that the center-to-center distances between departments can be encoded using

betweenness variables and column overlap variables. Because we are willing to work with quadratic terms,

we can express both of these variables using the ordering variables:

bikj = 1
4 (xikxkj + xjkxki + xik + xkj + xjk + xki) +

1

2
, i, j, k ∈ [n], i < j,

aij = − 1
2 (xij + xji), i, j ∈ [n], i < j.

(34)

It directly follows that we can rewrite the objective function (16) as a linear-quadratic function of the ordering

variables:

K +
∑
i,j∈[n]
i<j

wij
8

 ∑
k∈[n]

k 6=i, k 6=j

(xikxkj + xjkxki)

+
∑
i,j∈[n]
i<j

wij
4

(xij + xji), (35)

where K is a constant defined as

K := n

 ∑
i,j∈[n]
i<j

wij
4

 . (36)

Any feasible ordering of the departments has to satisfy the 3-cycle inequalities

−1 ≤ xij + xjk − xik ≤ 1, i, j, k ∈ [n], i 6= j 6= k, i 6= k. (37)

It is well known that the 3-cycle inequalities together with integrality conditions on the ordering variables

suffice to describe feasible orderings, see e.g. [51, 54]. In the present context we need the following additional

constraints

xij + xji ≤ 0, i, j ∈ [n], i < j, (38)

that model the fact that:
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• either department i lies to the left of department j;

• or department j lies to the left of department i;

• or both departments are assigned to the same column.

Note from the definition of the ordering variables that if two departments i and j are placed in different

columns then xij + xji equals zero, while if they are assigned to the same column the sum is −2. This

observation is often used in models using ordering variables, such as the ones for the (SRFLP), to halve the

number of variables because they require that xij + xji = 0, i. e., no two departments can overlap. While

some overlap is allowed here, we can ensure that exactly two departments are assigned to each column using

the constraints ∑
j∈[n]\{i}

(xij + xji) = −2, i ∈ [n]. (39)

Next we collect the ordering variables in a vector x and reformulate the (DREFLP) as a quadratic program

in ordering variables.

Theorem 5 Minimizing the objective function (35) over x ∈ {−1, 1}n(n−1) and (37)–(39) solves the (DREFLP).

Proof. The constraints (37)–(39) together with the integrality conditions on x suffice to induce feasible

double-row layouts and the definition of the objective function ensures that the distances between departments

are computed correctly.

We can rewrite the quadratic objective function (35) in matrix notation to obtain:

min {〈CX , X〉+ c>x x+K : x ∈ {−1, 1}n(n−1) satisfies (37)–(39)}, (DREFLP)

where X := xx> and the cost matrix CX and the cost vector cx are deduced from (35):

〈CX , X〉 =
∑
i,j∈[n]
i<j

wij
8

∑
k∈[n]
i 6=k 6=j

(xikxkj + xjkxki),

c>x x =
∑
i,j∈[n]
i<j

wij
4

(xij + xji).

We can further rewrite the above formulation as an SDP by relaxing the nonconvex equation X−xx> = 0

to the positive semidefinite constraint

X − xx> < 0.

Moreover, the main diagonal entries of X correspond to squared {−1, 1} variables, hence diag(X) = e, the

vector of all ones. To simplify notation let us introduce

Z = Z(x,X) :=

(
1 x>

x X

)
, (40)

where dim(Z) = n(n−1)+1. By the Schur complement lemma [10, Appendix A.5.5], X−xx> < 0⇔ Z < 0.

Hence any feasible layout is contained in the elliptope

E := {Z : diag(Z) = e, Z < 0}.

In order to express constraints on x in terms of X, they have to be reformulated as quadratic conditions in

x. A natural way to do this for the 3-cycle inequalities |xij + xjk − xik| = 1 consists in squaring both sides.

Additionally using x2
ij = 1, we obtain

xij,jk − xij,ik − xik,jk = −1, i, j, k ∈ [n], i 6= j 6= k, i 6= k. (41)

Now we can formulate the (DREFLP) as a semidefinite optimization problem in binary variables.
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Theorem 6 The problem

min
{
K + 〈CZ , Z〉 : Z satisfies (41), Z ∈ E , x ∈ {−1, 1}n(n−1) satisfies (38) and (39)

}
where Z is given by (40), K is defined in (36) and the cost matrix CZ is given by

CZ :=

(
0 1

2cx
1
2cx CX

)
,

is equivalent to the (DREFLP).

Proof. Since x2
i = 1, i ∈ {1, . . . , n(n − 1)} we have diag(X − xx>) = 0, which together with X − xx> < 0

shows that in fact X = xx> is integral. Hence the 3-cycle equations (41) ensure that |xij + xjk − xik| = 1

holds. But the constraints (37)–(39) together with the integrality of x suffice to induce feasible double-row

layouts due to Theorem 5. Finally the definition of K and CZ ensures that the distances between departments

are computed correctly.

Dropping the integrality condition on the first row and column of Z yields the basic semidefinite relaxation

of the (DREFLP):

min {K + 〈CZ , Z〉 : Z satisfies (41), Z ∈ E , x satisfies (38) and (39)} . (SDPbasic)

There are several ways to tighten the above relaxation. First we will concentrate on finding further valid

equality constraints. Let us start with showing that the equations (17) from our ILP model are already

described via 3-cycle equations (41).

Lemma 7 The equations (17),

aij + aik + ajk + bijk + bikj + bjik = 1, i, j, k ∈ [n], i < j < k,

can be expressed as the sum of two equations of the form (41).

Proof. Applying (34) to (17) gives

xik,kj + xjk,ki + xij,jk + xkj,ji + xji,ik + xki,ij = −2, i, j, k ∈ [n], i < j < k,

which is the sum of the following two equations from (41):

xij,jk + xki,ij + xjk,ki = −1, xik,kj + xkj,ji + xji,ik = −1.

Next we add symmetry-breaking constraints arising from the addition of spaces (as already seen in Sub-

section 3.2):

x21 = −1, (42)

xij = 1, i, j ∈ S, i+ 2 ≤ j, (43)

xij = −1, i, j ∈ S, j < i, (44)

xi(i+1),ki − xki − xi(i+1) = −1,

xi(i+1),k(i+1) − xk(i+1) − xi(i+1) = −1,
i ∈ S, i 6= n, k ∈ [d]. (45)

Constraint (42) breaks the symmetry of the overall arrangement. Constraints (43) ensure that two spaces i

and j can only be assigned to the same column if i + 1 = j. Equations (44) guarantee that in all layouts

considered the spaces have increasing labels when going from left to right. Finally constraints (45) are related

to Assumption 1 in Subsection 2.2: if two spaces i, j ∈ S lie in the same column, then each department k ∈ [d]

has to lie left to them (see also Figure 4).
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Lemma 8 The ILP symmetry-breaking equations (28)–(30) can be derived from (43)–(45).

Proof. Using equations (34) that relate the variables of the ILP and SDP models, we get:

• Let i, j ∈ S, i+ 2 ≤ 2, then aij = − 1
2 (xij + xji) = − 1

2 (1− 1) = 0.

• Let i, j, k ∈ S, i + 4 ≤ j + 2 ≤ k, then bijk = 1
4 (xijxjk + xkjxji + xij + xjk + xkj + xji) + 1

2 =
1
4 (1 · 1 + (−1) · (−1) + 1 + 1− 1− 1) + 1

2 = 1.

• Let i, j, k ∈ S, i 6= k, j > max{i, k}, then bijk = 1
4 (xijxjk + xkjxji + xij + xjk + xkj + xji) + 1

2 =
1
4 (−xij − xkj + xij − 1 + xkj − 1) + 1

2 = 0.

• Let i, j, k ∈ S, i 6= k, j < min{i, k}, then bijk = 1
4 (xijxjk + xkjxji + xij + xjk + xkj + xji) + 1

2 =
1
4 (−xjk − xji − 1 + xjk − 1 + xji) + 1

2 = 0.

Equations (43) and (44) allow us to reduce the size of the semidefinite problem when it comes to the

computational experiments in Section 6. However this requires all constraints containing the relevant variables

to be transformed accordingly. While this is a straightforward exercise, it involves much technical detail that

does not provide further insights. For this reason, we do not include the details of this transformation or of

the resulting constraints. (For the same reason, we also chose not to exploit (42) though this could be done

in principle.)

Again because we allow quadratic terms, we can express the inequalities (38) as equations:

xijxji + xij + xji = −1, i, j ∈ [n], i < j. (46)

Equation (46) is valid because either xij = xji = −1 (both departments lie in the same column) or xij+xji =

0 and xijxji = −1 (they lie in different columns).

The theoretically smoothest way to deal with equations (39) would be to use them to reduce the dimension

of the problem by n (for details see [33, Proposition 4.4]). Unfortunately this would make the practical

implementation much more complicated. An alternative is to lift (39) into quadratic space via multiplication

by an arbitrary ordering variable xlm, l,m ∈ [n], l 6= m, and the addition of the resulting linear-quadratic

equations to the semidefinite relaxation:∑
j∈[n]
j 6=i

(xijxlm + xjixlm) = −2xlm, i, l,m ∈ [n], l 6= m. (47)

Another class of valid inequalities for our model are the triangle inequalities of the max-cut polytope, see

e.g. [16]: Since Z is generated as the outer product of the vector
(
1 x

)>
that has merely {−1, 1} entries in

the non-relaxed SDP formulation, any feasible layout also belongs to the metric polytope M:

M =

Z :


−1 −1 −1
−1 1 1

1 −1 1
1 1 −1


 zij

zjk
zik

 ≤ e, 1 ≤ i < j < k ≤ n(n− 1) + 1

 . (48)

We note that M is defined through ≈ 4n6 facets.

In summary we get the following tractable semidefinite relaxation of the (DREFLP):

min {K + 〈CZ , Z〉 : Z ∈ E ∩M satisfies (41)–(47)} . (SDPfull)

All variables in Z with cost coefficient greater than zero appear in a 3-cycle equality (41) or in equations (47)

and thus are tightly constrained in the relaxation. Such tightly constrained variables are also the reason why

the various linear and semidefinite relaxations for the (SRFLP) that are based on betweenness or ordering

variables produce very tight bounds in the root node relaxation even for large instances.
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4 Extending the models to the multi-row case

In this section we generalize the approaches for double-row problems in the previous section to multi-row

problems. Given the set [d] of departments with unit length, we seek an arrangement of these in m ∈ N rows

such that the weighted sum of the pairwise distances is minimized. Based on the study of optimal solutions,

we present adapted versions of the MILP, ILP and SDP models from the double-row case.

We again use Theorem 2 to reduce the (MREFLP) to a space-free version by introducing enough spacing

departments. Let c be the minimal number of columns needed in order to preserve at least one of the original

optimal solutions. Then our transformed problem has n := cm departments, where s = n− d are spaces.

Extending the MILP formulation from Subsection 3.1. There is a straightforward way to extend the model

by Amaral [3] to the multi-row case using the same variables. It suffices to change constraint (7) to∑
i∈[d]

yip ≤ m, p ∈ [c], (49)

and we obtain a formulation for the m-row case by optimizing (5) subject to (6), (49), and (8)–(10). For the

tighter MILP formulation, (14) and (15) can be adjusted similarly.

Extending the ILP formulation from Subsection 3.2. A formulation of the space-free (MREFLP) is given by

min
∑

i,j∈[n],
i<j

wij

m ·

 ∑
k∈[n]\{i,j}

bikj +m(1− aij)

 (50)

s. t. (19)–(27)

aij + bijk + bikj + bjik ≤ 1, i, j, k ∈ [n], i < j < k (51)

aik + bijk + bikj + bjik ≤ 1, i, j, k ∈ [n], i < j < k (52)

ajk + bijk + bikj + bjik ≤ 1, i, j, k ∈ [n], i < j < k (53)

aij + ajk − aik ≤ 1, i, j, k ∈ [n], i < k, i 6= j 6= k, (54)∑
j∈[n]\{i}

aij = m− 1, i ∈ [n], (55)

∑
i,j,k∈[n],

i<k, j 6=k, j 6=i

bijk = m3

(
c

3

)
. (56)

Inequalities (51)–(53) express that three departments i, j, k ∈ [n], i < j < k, either lie next to each other or

at least two of them are in the same column. Note, in the double-row case we could use the strengthened

version (17). The inequalities (54) enforce the transitivity property that if departments i and j as well as j

and k lie in the same column, then i and k also lie in the same column. Equations (55) are the generalization

of (18) for the (DREFLP): each i lies in the same column as m−1 other departments (possibly spaces). Finally,

we know exactly how many betweenness variables equal 1 in a feasible solution: let c1, c2, c3 ∈ {1, . . . , c} be

three different columns of a solution, then for each choice of one department from each of the three columns

we count 1 towards the left-hand side of (56).

Extending the SDP formulation from Subsection 3.3. The starting point for our semidefinite relaxation

for the (MREFLP) is again a quadratic problem in ordering variables. We use the x-variables defined in (33)

and the 3-cycle inequalities (37) as well as (38). We change (39) to∑
j∈[n]\{i}

(xij + xji) = −2m+ 2, i ∈ [n], (57)

and adjust the objective function (35)

Km +
∑

i,j∈[d],
i<j

wij

4m

∑
k∈[n]\{i,j}

(xikxkj + xjkxki) +
∑

i,j∈[d],
i<j

(m−1)wij

2m (xij + xji), (58)
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where Km = n
2m

∑
i,j∈[d],
i<j

wij .

The following result for the (MREFLP) follows directly from Theorem 5.

Corollary 9 Minimizing (58) over x ∈ {0, 1}n(n−1) and (37), (38), (57) solves the (MREFLP).

In analogy to the double-row case, we can rewrite the (MREFLP) in matrix notation as

min {〈CmX , X〉+ cmx x+Km : x ∈ {−1, 1}n(n−1) satisfies (37),(38) and (57)}, (MREFLP)

where X := xx> and the cost matrix CmX and cost vector cmx are deduced from (58). Rewriting the above

formulation along the lines of the double-row case gives

min
{
Km + 〈CmZ , Z〉 : Z satisfies (41), Z ∈ E , x ∈ {−1, 1}n(n−1) satisfies (38) and (57)

}
where Z is given by (40), Km is defined in (58) and the cost matrix CmZ is given by

CmZ :=

(
0 1

2c
m
x

1
2c
m
x CmX

)
.

The basic semidefinite relaxation of the (MREFLP) reads

min {Km + 〈CmZ , Z〉 : Z satisfies (41), Z ∈ E , x satisfies (38) and (57)} . (SDPmbasic)

In order to strengthen this relaxation we use∑
j∈[n]\{i}

(xijxkl + xjixkl) = (−2m+ 2)xkl, i, k, l ∈ [n], k 6= l, (59)

which can be derived by multiplying (57) for fixed i with an x-variable xkl, k, l ∈ [n], k 6= l. Furthermore

we can use (46) instead of (38).

Finally, we add constraints to break the symmetry of the spaces S:

xij = 1, i, j ∈ S, i+m ≤ j, (60)

xij = −1, i, j ∈ S, j < i, (61)

xij,ki − xki − xij = −1, i, j ∈ S, j = i+m− 1, k ∈ [d], (62)

xij,kj − xkj − xij = −1, i, j ∈ S, j = i+m− 1, k ∈ [d], (63)

−xi(i+j),i(i+k) + xi(i+k) − xi(i+j) = −1, i ∈ S, j, k ∈ N, k < j < m, i+ j ≤ n. (64)

The constraints (60) and (61) express that two spaces i, j ∈ S, i < j, can only lie in the same column if

i+m > j. If two spaces i, (i+m− 1) ∈ S lie in the same column each of the original departments k ∈ [d] lies

left to them, see (62)–(63). Furthermore, if two spaces i, (i+ j) ∈ S lie in the same column, then all spaces

i + 1, . . . , i + j − 1 also lie in this column by equation (64). Additionally, we can use equation (42) and the

triangle inequalities described in (48).

In summary we obtain the following tractable semidefinite relaxation of the (MREFLP):

min {Km + 〈CmZ , Z〉 : Z ∈ E ∩M satisfies (41), (42), (46) and (59)–(64)} . (65)

5 Implementation

In this section we give details on our implementation of exact approaches based on each of the three formu-

lations proposed for the (DREFLP) and (MREFLP). In Subsection 5.1 we discuss how we computationally solve

the respective linear and semidefinite optimization problems to obtain lower bounds on the optimal solution.

In Subsection 5.2 we describe heuristics for the semidefinite approach that yield feasible layouts and hence

upper bounds to the optimal solution. For the MILP and ILP approaches, the standard solvers provide upper

bounds. The combination of upper and lower bounds gives for each instance both a feasible solution and a

proof of how far this solution is (at most) from the true optimum.
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5.1 Computing the lower bounds

For the Amaral model (6)–(15) we included all the constraints directly and used Gurobi 5.6 [24] as ILP solver.

We considered two different versions. Given d departments, we tested both the model allowing d columns

per row (as suggested originally by Amaral [3]) and the one with a reduced number of positions according to

Theorem 2.

For our new ILP model (17)–(27), tests with Gurobi showed that one should not add all equations at

once, but should separate inequalities (19)–(25). We separate (19)–(25) dynamically in a branch-and-cut

approach for linear 0-1 problems. These inequalities contain the inequalities (20)–(25) that are important for

the success of the approach in [1]. We decided to not additionally separate (31), (32) because only handling

(19)–(25) is already computationally challenging. Indeed, we do not add all violated inequalities in each step

but rather restrict the number of cutting planes to 1000 in each iteration to keep the computational effort

reasonable. The same separation procedure was applied in the multi-row case.

For the SDP approach, we solve our new SDP relaxation using a spectral bundle method [29, 30] in

conjunction with primal cutting plane generation [28]. In general the solution of the relaxation is not integer

but nevertheless we obtain a lower bound on the layout problem (see [7, 28] for the application of a spectral

bundle method in the solution of the max-cut problem and the bisection problem).

One of the main advantages of the spectral bundle method is the ability to exploit the sparsity of the

semidefinite relaxation [28]. In the objective function all the entries xij,kl with |{i, j, k, l}| = 4 have value

zero, and the support of equations (41)–(46) is also small. However (47) as well as the triangle inequalities

of the metric polytope M have a larger support. In order to keep the small support consisting of the

first row and column and the entries xij,kl with i, j, k, l ∈ [n], i 6= j, k 6= l, |{i, j, k, l}| ≤ 3, we restrict to

inequalities (47) with i ∈ {l,m}, i. e., we only multiply (39) for i ∈ [n] fixed with xlm, l,m ∈ [n], l 6= m, if

i ∈ {l,m}. Additionally we do not include the triangle inequalities and instead add the odd-cycle inequalities

[8] (transformed to the -1/1-setting) on the small support of the objective function, where the coefficient

matrix is interpreted as the adjacency matrix of a graph. In our experiments we used a separator by

C. Helmberg that is an adapted variant of the one by M. Jünger. Note that if we worked with the full

support (and thus on a complete graph) and exactly separated the triangle inequalities, then there is no need

for an additional odd-cycle separator because all odd-cycles with length at least five are not chordless and

are so implied by the other constraints [8].

As mentioned before, (43)–(44) for (DREFLP) and (60)–(61) for (MREFLP) are used to reduce the size of the

semidefinite relaxations. In our implementation we add all the equations of (SDPfull) and (65) respectively

from the beginning (except the ones with large support mentioned above), and then iteratively include the

odd-cycle inequalities. After 50 (null or descent) steps of the spectral bundle method we determine violated

odd-cycle inequalities and restrict the separation to at most 100 additional constraints. In order to speed up

the implementation we also delete constraints if they are not important anymore, see e.g. [7].

5.2 Details on the heuristics used

Gurobi provides upper bounds while solving the MILP and the ILP formulations. We describe here how we

derive feasible layouts using SDP primal information. Let
(
1 x̃

)
denote the first row of the SDP matrix

Z. Hence x̃ gives the values of the x-variables in the relaxation. Given a partial solution consisting of k

completely filled columns, k ∈ {0, . . . , nm} (we arrange departments and spaces simultaneously), we determine

and position the next column in a greedy fashion. First, we determine for each subset T of the remaining

departments and spaces with |T | = m the sum τT =
∑
i,j∈T,i 6=j x̃ij . A small value of τT indicates that the

m elements of T should be arranged in the same column.2 Hence we choose the smallest τT and arrange the

according departments that we denote by C in the same column. Finally we decide on the position of the

new column using again the information encoded in x̃.

More precisely let N ⊂ [n] denote the set of all departments and spaces that have already been assigned

and set l = |N |
m . The function αpart : N →

[
|N |
m

]
gives an assignment of the elements of N to the |N |m columns.

2Note that if all departments in T lie in the same column, then
∑

i,j∈T,i 6=j x̃ij = −m(m− 1).
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Now we calculate for the departments in C

γp =
∑

i∈C, j∈N
αpart(j)<p

x̃ji +
∑

i∈C, j∈N
αpart(j)≥p

x̃ij ,

for all possible positions p ∈ [l + 1]. Finally we determine p̂ = argmaxp∈[l+1] γp, update αpart by

αpart(i)←


p̂, i ∈ C,
αpart(i), i ∈ N,αpart(i) < p̂,

αpart(i) + 1, i ∈ N, p̂ ≤ αpart(i),

and set N ← N ∪ C.

After the layout is complete, we try to improve it using a 3-OPT heuristic that searches for advantageous

exchanges of two or three departments in a greedy fashion. We also test if the solution can be improved by

reallocation of any column or by exchanging two or three columns.

Unfortunately, the heuristic described above is only useful in practice if the number of rows m is small,

say m ≤ 3, because of significant memory requirements for larger m. For this reason, we propose a closely

related heuristic for larger m.

To reduce memory requirements we determine the departments that lie in the same row in an alternative

way. We start with the pair {i, j} ⊂ [n]\N of the currently unassigned departments that minimizes x̃ij + x̃ji
and setD = {i, j}. Next we add the department k ∈ [n]\(N∪D) toD that minimizes the sum

∑
l∈D(x̃kl+x̃lk).

We iterate until |D| = m and set N ← N ∪D. If every department has been assigned to a column, we finally

determine the order of the columns in the same way as above. For m = 2 the two heuristics are exactly the

same. Additionally we used the first heuristic for m = 3 and the second cheaper one for m ∈ {3, 4, 5}.

6 Computational experiments

In this section we present some computational results for DRFLP instances from the literature as well as

instances originally studied for the SREFLP. All experiments were conducted on an Intel Core i7 CPU 920

with 2.67 GHz and 12 GB RAM in single processor mode using openSUSE Linux 12.2.

We test the instances used for the SREFLP in [34], all instances proposed for the (DREFLP) by Amaral [3]
(denoted by A-d-{edge probability}), where the pairwise weights wij are either zero or one because of the

underlying graph problem, and the small instances constructed by Hungerländer and Anjos [36] (denoted by

E-d-{edge probability}). All instances together with current best upper and lower bounds are available at

http://www.miguelanjos.com/flplib.

In Tables 8–11 in the appendix we state the source, the density and the best (SREFLP) value of each

instance as well as the best upper and lower bounds for the considered single- and multi-row problems. This

also shows the effect on the optimal value (or on the value of the best known solution) of a growing number

of rows. Also note that most benchmark instances from the layout literature are very dense.

In the following we compare the computation times and final gaps, calculated by the solution approaches

presented above. We set the time limit to one hour and extend it to five hours for some larger instances. We

calculate the gap between the best layout found3 and the best lower bound obtained by upper bound
lower bound −1, given

in percent. We denote the original approach proposed by Amaral [3] using exactly d columns by MILP I and

the approach to solve the same model using the reduced number of columns preserving at least one optimal

solution according to Theorem 2 by MILP II. The results for our double- and multi-row ILP models can be

found in the columns ILP and for our semidefinite programming model in the columns SDP.

3We always use only the layouts found by the heuristic of the respective approach, except for one case: For the instance
“A-14-20” with m = 2 the SDP heuristic does not find the optimal layout after one hour, although the lower bound is already
tight after less then 6 minutes.

http://www.miguelanjos.com/flplib
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The performance of the integer linear programming models changes significantly depending on the number

of rows considered. The ILP is the best approach for small- to medium-sized instances with d ≤ 17 in the

case m = 2, see Tables 2–6. But for larger m, the solution times are much higher than in the case m = 2

and the obtained lower bounds are rather weak, see Tables 3–5. Often the ILP solver has problems finding

a good upper bound. Hence even small instances with d = 10 could not be solved within the time limit of

one hour. One explanation for this behavior could be that equations (17) for m = 2 are rather strong in

comparison to inequalities (51)–(53) for m ≥ 3. Furthermore, ILP and SDP both suffer from the fact that

for larger d, the number of spaces (additional departments) needed grows with m, see also Table 1 for large

d. Thus we present the results of the ILP only for the instances where it is a possible alternative to SDP

(m = 2, d ∈ {16, . . . , 20} and d ≤ 15, m arbitrary).

Considering the results for MILP I and MILP II, we observe that reducing the number of columns in the

model by Amaral [3] helps to reduce the computation times considerably. Nevertheless our computational

results suggest that this improvement is not enough to create a competitive solution approach in general.

For quite small instances with d ≤ 15 one hour is sometimes not enough to solve all instances to optimality

using MILP II. For this reason we do not present any further experiments for MILP I and MILP II with

d ≥ 16. Comparing different numbers of rows, we observe that the bounds and the solution times of MILP II

improve if m increases. One explanation for this behavior is that for larger m the number of columns needed

is reduced, and hence the number of variables is also smaller than for m = 2. In summary MILP II is in

most cases the worst approach for instances with m = 2 and d ≥ 13, especially if the density of the instances

is high, but it is also sometimes the best algorithm if m is large and d is small (d ≤ 13).

The lower bounds derived with the SDP approach are often very strong, independent of the number of

rows. To demonstrate this, we tested the SDP approach with a time limit of five hours for all instances with

d ≥ 16. Because of the long computation times and high gaps we do not enlarge the time limit for the ILP

and the MILP. Table 7 shows that especially if d ≥ 30 then major improvements in the gaps are achieved

with the increased time limit: most gaps are below three percent. Looking at the upper bound, our SDP

construction heuristics yields significantly better solutions (especially for large d) than the MILP and the

ILP.

In summary, we conclude that MILP II is the overall best choice for instances with d ≤ 13 and m ≥ 3,

the ILP approach is overall the best choice for d ≤ 17 and m = 2, and for all other instances the SDP

is the best choice. Moreover the SDP approach is well-suited for providing high-quality lower bounds for

large-scale instances in reasonable computation time. Hence it seems promising to use the SDP relaxation

within a branch-and-bound scheme. Because there is at present no commercial or other software that does

this automatically for SDP relaxations, this possibility is a non-trivial computational project beyond the

scope of this paper, and is thus left for future research.



L
es

C
ah
iers

d
u
G
E
R
A
D

G
–2015–06

21

Table 2: Computation times (in mm:ss) for small instances with up to 9 departments and between 2 and 5 rows. All of these instances were solved to
optimality within one hour of computation time by all four solution approaches.

m = 2 m = 3 m = 4 m = 5

Instance opt MILP I MILP II ILP SDP opt MILP I MILP II ILP SDP opt MILP I MILP II ILP SDP opt MILP I MILP II ILP SDP

A-9-10 2 00:01 00:00 00:00 00:00 0 00:00 00:00 00:01 00:00 0 00:00 00:00 00:09 00:01 0 00:00 00:00 10:58 00:04
A-9-20 9 00:02 00:00 00:00 00:00 6 00:02 00:00 00:17 00:06 3 00:00 00:00 00:00 00:01 3 00:01 00:00 00:06 00:12
A-9-30 3 00:00 00:00 00:00 00:00 2 00:00 00:00 00:03 00:03 1 00:00 00:00 00:03 00:01 1 00:00 00:00 00:21 00:06
A-9-40 11 00:03 00:00 00:01 00:01 7 00:02 00:00 00:22 00:09 5 00:01 00:00 00:03 00:03 4 00:01 00:00 00:07 00:16
A-9-50 18 00:16 00:01 00:01 00:02 11 00:07 00:00 00:07 00:06 7 00:03 00:00 00:00 00:01 5 00:02 00:00 00:02 00:05
A-9-60 23 00:19 00:01 00:01 00:02 15 00:10 00:00 00:25 00:49 9 00:03 00:00 00:00 00:01 7 00:02 00:00 00:01 00:04
A-9-70 38 00:57 00:12 00:00 00:21 23 00:20 00:02 00:34 00:03 18 00:13 00:00 00:54 02:27 13 00:07 00:00 00:07 00:31
A-9-80 51 02:10 00:20 00:01 01:08 30 00:48 00:02 02:27 00:01 24 00:23 00:01 03:25 03:58 17 00:11 00:00 00:01 00:31
A-9-90 45 01:43 00:19 00:00 00:18 27 00:18 00:02 01:45 00:01 21 00:17 00:01 01:17 00:58 15 00:05 00:00 00:01 00:18
A-10-10 2 00:01 00:00 00:01 00:01 1 00:00 00:00 03:20 00:07 0 00:00 00:00 13:09 00:04 0 00:00 00:00 00:27 00:04
A-10-20 3 00:01 00:00 00:00 00:00 3 00:01 00:00 00:21 03:03 1 00:01 00:00 00:19 00:05 1 00:01 00:00 00:11 00:05
A-10-30 7 00:04 00:01 00:00 00:01 5 00:04 00:00 00:08 00:55 3 00:01 00:00 00:06 00:19 1 00:01 00:00 00:00 00:02
A-10-50 28 00:44 00:09 00:00 00:01 19 00:37 00:05 51:29 02:10 13 00:13 00:01 06:14 00:35 9 00:04 00:00 00:02 00:13
A-10-60 25 00:47 00:06 00:02 04:10 15 00:15 00:02 32:11 00:25 11 00:09 00:01 08:53 00:38 8 00:03 00:00 00:01 00:14
E-5-50 13 00:00 00:00 00:00 00:00 6 00:00 00:00 00:00 00:00 4 00:00 00:00 00:00 00:00 0 00:00 00:00 00:00 00:00
E-5-100 46 00:00 00:00 00:00 00:00 27 00:00 00:00 00:00 00:00 17 00:00 00:00 00:00 00:00 0 00:00 00:00 00:00 00:00
E-6-50 45 00:00 00:00 00:00 00:00 29 00:00 00:00 00:00 00:09 22 00:00 00:00 00:00 00:03 12 00:00 00:00 00:00 00:03
E-6-100 99 00:01 00:00 00:00 00:00 56 00:00 00:00 00:00 00:00 49 00:00 00:00 00:00 00:19 29 00:00 00:00 00:00 00:22
E-7-50 51 00:01 00:00 00:00 00:07 31 00:01 00:00 00:00 00:23 17 00:00 00:00 00:00 00:00 9 00:00 00:00 00:00 00:01
E-7-100 126 00:06 00:00 00:00 00:47 79 00:04 00:00 00:01 00:33 50 00:01 00:00 00:00 00:01 40 00:01 00:00 00:00 00:09
E-8-50 64 00:02 00:00 00:00 00:03 37 00:01 00:00 00:02 00:09 26 00:01 00:00 00:00 00:10 25 00:01 00:00 00:00 00:36
E-8-100 191 00:23 00:04 00:00 00:11 125 00:11 00:01 01:30 00:33 74 00:06 00:00 00:00 00:01 70 00:04 00:00 00:00 01:49
E-9-50 118 00:18 00:02 00:00 02:12 70 00:09 00:00 00:15 00:49 55 00:06 00:00 00:32 04:09 40 00:02 00:00 00:03 02:21
E-9-100 306 03:09 00:20 00:00 02:50 181 00:42 00:03 00:49 00:10 140 00:28 00:01 01:30 03:03 100 00:12 00:00 00:01 00:41
O-5 70 00:00 00:00 00:00 00:00 38 00:00 00:00 00:00 00:00 32 00:00 00:00 00:00 00:05 0 00:00 00:00 00:00 00:00
O-6 136 00:01 00:00 00:00 00:00 72 00:00 00:00 00:00 00:00 64 00:00 00:00 00:00 00:02 28 00:00 00:00 00:00 00:01
O-7 236 00:05 00:00 00:00 00:13 144 00:02 00:00 00:01 00:13 102 00:01 00:00 00:00 00:03 76 00:01 00:00 00:00 00:07
O-8 366 00:20 00:03 00:00 00:01 250 00:12 00:01 02:20 01:46 148 00:04 00:00 00:00 00:03 138 00:05 00:00 00:00 02:34
O-9 508 02:33 00:19 00:00 00:28 302 00:41 00:02 00:09 00:20 238 00:20 00:01 00:46 02:44 168 00:13 00:00 00:01 01:01
Y-6 630 00:01 00:00 00:00 00:02 350 00:00 00:00 00:00 00:00 315 00:00 00:00 00:00 02:07 193 00:00 00:00 00:00 02:18
Y-7 899 00:08 00:01 00:00 01:15 577 00:04 00:00 00:03 02:01 383 00:02 00:00 00:00 00:09 311 00:01 00:00 00:00 00:41
Y-8 1095 00:39 00:08 00:00 00:27 728 00:17 00:02 05:39 01:17 430 00:05 00:00 00:00 00:01 394 00:06 00:00 00:00 00:23
Y-9 1401 04:03 00:25 00:00 01:37 848 00:59 00:05 01:19 00:04 658 00:39 00:01 02:23 10:17 476 00:13 00:00 00:01 01:16
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Table 3: Computation times and gaps for instances with between 10 and 15 departments. Not all methods were able to solve these instances to optimality
in the time limit of one hour.

Gap (%) Time (hh:mm:ss) Gap (%) Time(hh:mm:ss)

Instance opt MILP I MILP II ILP SDP MILP I MILP II ILP SDP opt MILP I MILP II ILP SDP MILP I MILP II ILP SDP

m = 2 m = 3

E-10-50 191 0.0 0.0 0.0 0.0 00:02:02 00:00:20 00:00:05 00:05:52 114 0.0 0.0 0.0 0.0 00:00:37 00:00:04 00:01:52 00:00:32
E-10-100 427 0.0 0.0 0.0 0.0 00:19:58 00:01:38 00:00:01 00:01:39 277 0.0 0.0 17.4 0.0 00:04:52 00:00:32 01:00:00 00:01:42
E-11-100 539 23.9 0.0 0.0 0.0 01:00:00 00:31:05 00:00:02 00:04:08 351 0.0 0.0 13.6 0.0 00:26:48 00:01:55 01:00:00 00:06:48
N-15 1064 153.3 68.4 0.0 0.0 01:00:00 01:00:00 00:13:16 00:08:37 668 76.7 16.8 32.3 0.0 01:00:00 01:00:00 01:00:00 00:11:24
O-10 670 0.0 0.0 0.0 0.0 00:07:24 00:01:21 00:00:00 00:00:20 450 0.0 0.0 16.0 0.0 00:02:02 00:00:23 01:00:00 00:02:12
O-15 2556 296.9 139.3 0.0 0.0 01:00:00 01:00:00 00:02:49 00:10:06 1660 165.2 38.6 12.2 0.0 01:00:00 01:00:00 01:00:00 00:53:27
S-12 2167 84.7 17.4 0.0 0.0 01:00:00 01:00:00 00:00:02 00:01:40 1404 48.9 0.0 19.4 0.1 01:00:00 00:37:31 01:00:00 01:00:00
S-13 2940 155.9 58.1 0.0 0.0 01:00:00 01:00:00 00:00:29 00:17:55 1938 92.1 12.7 19.4 0.6 01:00:00 01:00:00 01:00:00 01:00:00
S-14 3608 187.9 74.6 0.0 0.0 01:00:00 01:00:00 00:00:56 00:55:57 2408 159.2 43.4 23.2 0.2 01:00:00 01:00:00 01:00:00 01:00:00
S-15 4466 391.9 131.2 0.0 0.3 01:00:00 01:00:00 00:02:54 01:00:00 2883 192.1 44.8 15.6 0.0 01:00:00 01:00:00 01:00:00 00:51:32
Y-10 1697 0.0 0.0 0.0 0.0 00:27:02 00:03:08 00:00:00 00:00:57 1140 0.0 0.0 25.1 0.0 00:08:37 00:00:53 01:00:00 00:14:28
Y-11 2008 41.4 3.3 0.0 0.0 01:00:00 01:00:00 00:00:07 00:03:57 1314 3.7 0.0 17.0 0.0 01:00:00 00:02:59 01:00:00 00:09:21
Y-12 2342 92.6 22.2 0.0 0.0 01:00:00 01:00:00 00:00:02 00:01:33 1510 33.5 0.0 20.3 0.0 01:00:00 00:39:51 01:00:00 00:06:34
Y-13 2730 138.2 49.5 0.0 0.0 01:00:00 01:00:00 00:00:19 00:25:06 1798 89.7 13.6 17.0 0.0 01:00:00 01:00:00 01:00:00 00:50:55
Y-14 3164 196.3 113.1 0.0 0.0 01:00:00 01:00:00 00:02:22 00:15:15 2110 157.6 48.9 22.3 0.1 01:00:00 01:00:00 01:00:00 01:00:00
Y-15 3676 357.2 114.3 0.0 0.3 01:00:00 01:00:00 00:02:33 01:00:00 2357 204.1 45.0 13.6 0.0 01:00:00 01:00:00 01:00:00 00:06:18

m = 4 m = 5

E-10-50 89 0.0 0.0 9.9 0.0 00:00:20 00:00:01 01:00:00 00:03:35 59 0.0 0.0 0.0 0.0 00:00:09 00:00:00 00:00:00 00:00:32
E-10-100 209 0.0 0.0 17.4 0.0 00:01:55 00:00:11 01:00:00 00:13:20 133 0.0 0.0 0.0 0.0 00:00:26 00:00:00 00:00:00 00:00:13
E-11-100 256 0.0 0.0 15.8 0.4 00:06:45 00:00:22 01:00:00 01:00:00 191 0.0 0.0 0.0 0.0 00:02:16 00:00:02 00:10:32 00:13:18
N-15 500 38.9 0.0 41.2 0.6 01:00:00 00:39:50 01:00:00 01:00:00 382 0.0 0.0 24.0 1.3 00:41:45 00:02:20 01:00:00 01:00:00
O-10 334 0.0 0.0 14.8 0.0 00:01:03 00:00:06 01:00:00 00:03:17 222 0.0 0.0 0.0 0.0 00:00:20 00:00:00 00:00:00 00:02:02
O-15 1250 106.3 26.3 31.4 1.4 01:00:00 01:00:00 01:00:00 01:00:00 914 62.1 0.0 17.8 0.0 01:00:00 00:09:26 01:00:00 00:11:10
S-12 995 0.0 0.0 14.9 0.0 00:45:02 00:01:06 01:00:00 00:08:40 841 0.0 0.0 19.1 0.0 00:27:09 00:00:58 01:00:00 00:33:11
S-13 1413 48.7 0.0 30.2 0.0 01:00:00 00:54:59 01:00:00 00:42:47 1132 36.4 0.0 24.0 0.3 01:00:00 00:02:58 01:00:00 01:00:00
S-14 1794 114.1 41.1 40.0 2.1 01:00:00 01:00:00 01:00:00 01:00:00 1369 59.0 0.0 22.3 0.0 01:00:00 00:06:39 01:00:00 00:37:36
S-15 2175 149.7 37.3 40.7 1.2 01:00:00 01:00:00 01:00:00 01:00:00 1612 98.0 10.9 22.0 0.3 01:00:00 01:00:00 01:00:00 01:00:00
Y-10 845 0.0 0.0 21.8 0.0 00:02:49 00:00:16 01:00:00 00:19:12 530 0.0 0.0 0.0 0.0 00:00:32 00:00:01 00:00:00 00:01:35
Y-11 947 0.0 0.0 19.4 0.0 00:12:57 00:00:33 01:00:00 00:05:45 724 0.0 0.0 0.0 0.0 00:03:37 00:00:06 00:42:39 00:18:17
Y-12 1070 0.0 0.0 15.3 0.0 00:35:45 00:01:02 01:00:00 00:01:25 908 0.0 0.0 19.3 0.0 00:28:25 00:00:53 01:00:00 00:27:49
Y-13 1314 63.2 0.0 30.1 0.0 01:00:00 00:20:12 01:00:00 00:45:32 1048 24.3 0.0 23.7 0.6 01:00:00 00:02:50 01:00:00 01:00:00
Y-14 1574 113.0 41.2 41.3 1.8 01:00:00 01:00:00 01:00:00 01:00:00 1201 76.9 0.0 23.3 0.6 01:00:00 00:10:28 01:00:00 01:00:00
Y-15 1782 180.6 41.8 41.4 1.1 01:00:00 01:00:00 01:00:00 01:00:00 1322 101.5 13.2 22.5 0.4 01:00:00 01:00:00 01:00:00 01:00:00
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Table 4: Computation times and gaps for small instances from Amaral [3] with d ∈ {10, 11, 12, 13, 14},m ∈ {2, 3}. Not all methods were able to solve
these instances to optimality in the time limit of one hour.

Gap (%) Time (hh:mm:ss) Gap (%) Time (hh:mm:ss)

Instance opt MILP I MILP II ILP SDP MILP I MILP II ILP SDP opt MILP I MILP II ILP SDP MILP I MILP II ILP SDP

m = 2 m = 3

A-10-40 30 0.0 0.0 0.0 0.0 00:02:21 00:00:09 00:00:01 00:00:17 20 0.0 0.0 5.3 0.0 00:00:38 00:00:06 01:00:00 00:01:43
A-10-70 49 0.0 0.0 0.0 0.0 00:03:55 00:00:31 00:00:01 00:00:02 33 0.0 0.0 10.0 0.0 00:01:43 00:00:17 01:00:00 00:01:24
A-10-80 65 0.0 0.0 0.0 0.0 00:13:43 00:01:51 00:00:00 00:00:04 44 0.0 0.0 25.7 0.0 00:03:28 00:00:42 01:00:00 00:07:09
A-10-90 65 0.0 0.0 0.0 0.0 00:11:28 00:01:52 00:00:00 00:00:05 44 0.0 0.0 25.7 0.0 00:03:32 00:00:33 01:00:00 00:04:38
A-11-10 0 - - - - 00:00:00 00:00:00 00:00:15 00:00:01 0 - - - - 00:00:00 00:00:00 00:01:58 00:00:07
A-11-20 17 0.0 0.0 0.0 0.0 00:00:42 00:00:12 00:00:02 00:00:31 11 0.0 0.0 0.0 0.0 00:00:28 00:00:04 00:49:57 00:06:41
A-11-30 25 0.0 0.0 0.0 0.0 00:01:45 00:00:19 00:00:02 00:00:13 16 0.0 0.0 0.0 0.0 00:00:50 00:00:06 00:01:47 00:00:23
A-11-40 30 0.0 0.0 0.0 0.0 00:01:53 00:00:26 00:00:09 00:00:26 20 0.0 0.0 05.3 0.0 00:00:36 00:00:06 01:00:00 00:11:32
A-11-50 51 0.0 0.0 0.0 0.0 00:06:05 00:01:17 00:00:07 00:00:49 34 0.0 0.0 13.3 0.0 00:01:59 00:00:27 01:00:00 00:04:60
A-11-60 37 0.0 0.0 0.0 0.0 00:01:22 00:00:29 00:00:01 00:00:07 24 0.0 0.0 0.0 0.0 00:00:44 00:00:09 00:01:50 00:00:12
A-11-70 54 0.0 0.0 0.0 0.0 00:16:12 00:02:25 00:00:03 00:01:57 35 0.0 0.0 6.1 0.0 00:02:60 00:00:25 01:00:00 00:01:30
A-11-80 74 0.0 0.0 0.0 0.0 00:35:21 00:09:54 00:00:02 00:00:55 49 0.0 0.0 16.7 0.0 00:07:56 00:01:07 01:00:00 00:03:29
A-11-90 101 36.5 16.1 0.0 0.0 01:00:00 01:00:00 00:00:04 00:07:14 66 8.2 0.0 20.0 0.0 01:00:00 00:04:04 01:00:00 00:04:16
A-12-10 1 0.0 0.0 0.0 0.0 00:00:00 00:00:00 00:00:10 00:00:02 1 0.0 0.0 0.0 0.0 00:00:00 00:00:00 00:12:04 00:01:23
A-12-20 11 0.0 0.0 0.0 0.0 00:00:15 00:00:03 00:00:03 00:00:04 7 0.0 0.0 0.0 0.0 00:00:02 00:00:02 01:00:00 00:01:11
A-12-30 13 0.0 0.0 0.0 0.0 00:00:41 00:00:07 00:00:03 00:00:16 8 0.0 0.0 0.0 0.0 00:00:22 00:00:02 01:00:00 00:01:51
A-12-40 37 0.0 0.0 0.0 0.0 00:35:05 00:00:54 00:00:03 00:00:12 24 0.0 0.0 4.3 0.0 00:03:08 00:00:29 01:00:00 00:01:43
A-12-50 43 0.0 0.0 0.0 0.0 00:07:19 00:01:08 00:00:04 00:00:38 27 0.0 0.0 0.0 0.0 00:01:41 00:00:30 01:00:00 00:00:43
A-12-60 53 0.0 0.0 0.0 0.0 00:51:40 00:02:11 00:00:02 00:00:49 33 0.0 0.0 3.1 0.0 00:04:25 00:00:46 01:00:00 00:00:25
A-12-70 77 24.2 0.0 0.0 0.0 01:00:00 00:27:12 00:00:04 00:00:57 49 0.0 0.0 11.4 0.0 00:40:15 00:01:43 01:00:00 00:00:60
A-12-80 102 61.9 9.7 0.0 0.0 01:00:00 01:00:00 00:00:01 00:00:17 65 10.2 0.0 16.1 0.0 01:00:00 00:05:31 01:00:00 00:00:12
A-12-90 108 52.1 24.1 0.0 0.0 01:00:00 01:00:00 00:00:04 00:00:26 70 29.6 0.0 22.8 0.0 01:00:00 00:13:01 01:00:00 00:01:04
A-13-10 2 0.0 0.0 0.0 0.0 00:00:01 00:00:00 00:00:17 00:00:05 1 0.0 0.0 0.0 0.0 00:00:00 00:00:00 00:50:47 00:00:38
A-13-20 24 0.0 0.0 0.0 0.0 00:05:16 00:00:29 00:00:38 00:03:22 15 0.0 0.0 0.0 0.0 00:01:01 00:00:07 01:00:00 00:03:03
A-13-30 38 0.0 0.0 0.0 0.0 00:13:42 00:01:30 00:00:53 00:01:16 25 0.0 0.0 8.7 0.0 00:04:51 00:00:33 01:00:00 00:03:02
A-13-40 42 31.2 0.0 0.0 0.0 01:00:00 00:06:38 00:00:07 00:02:03 27 0.0 0.0 3.8 0.0 00:10:59 00:00:33 01:00:00 00:02:57
A-13-50 68 44.7 0.0 0.0 0.0 01:00:00 00:18:59 00:00:42 00:04:54 44 12.8 0.0 7.3 0.0 01:00:00 00:02:48 01:00:00 00:03:52
A-13-60 70 29.6 0.0 0.0 0.0 01:00:00 00:17:23 00:00:11 00:02:05 46 0.0 0.0 4.5 0.0 00:44:06 00:02:14 01:00:00 00:06:27
A-13-70 105 72.1 12.9 0.0 0.0 01:00:00 01:00:00 00:06:56 00:04:55 69 38.0 0.0 16.9 0.0 01:00:00 00:12:26 01:00:00 00:11:16
A-13-80 138 126.2 43.8 0.0 0.0 01:00:00 01:00:00 00:00:03 00:04:08 90 76.5 0.0 15.4 0.0 01:00:00 00:51:03 01:00:00 00:03:32
A-13-90 153 146.8 56.1 0.0 0.0 01:00:00 01:00:00 00:00:09 00:10:42 101 110.4 11.0 20.2 0.0 01:00:00 01:00:00 01:00:00 00:53:40
A-14-10 4 0.0 0.0 0.0 0.0 00:00:02 00:00:01 00:00:31 00:00:18 3 0.0 0.0 0.0 0.0 00:00:02 00:00:01 01:00:00 00:06:15
A-14-20 24 0.0 0.0 0.0 0.0 00:03:45 00:00:36 00:19:20 00:05:44 16 0.0 0.0 14.3 6.7 00:01:21 00:00:10 01:00:00 01:00:00
A-14-30 36 0.0 0.0 0.0 0.0 00:40:52 00:07:46 00:02:03 00:03:39 24 0.0 0.0 33.3 0.0 00:12:18 00:02:01 01:00:00 00:19:60
A-14-40 43 26.5 0.0 0.0 0.0 01:00:00 00:15:18 00:01:41 00:02:40 28 0.0 0.0 33.3 0.0 00:21:14 00:01:30 01:00:00 00:08:31
A-14-50 94 118.6 46.9 0.0 0.0 01:00:00 01:00:00 00:19:16 00:05:02 63 70.3 0.0 18.9 1.6 01:00:00 00:21:16 01:00:00 01:00:00
A-14-60 99 86.8 39.4 0.0 0.0 01:00:00 01:00:00 00:10:18 00:01:12 65 54.8 0.0 12.1 0.0 01:00:00 00:17:05 01:00:00 00:03:19
A-14-70 138 133.9 86.5 0.0 0.0 01:00:00 01:00:00 00:08:36 00:08:57 92 114.0 22.7 22.7 0.0 01:00:00 01:00:00 01:00:00 00:35:22
A-14-80 167 153.0 74.0 0.0 0.0 01:00:00 01:00:00 00:00:21 00:04:32 111 122.0 22.0 24.7 0.0 01:00:00 01:00:00 01:00:00 00:13:02
A-14-90 187 179.1 96.8 0.0 0.0 01:00:00 01:00:00 00:14:15 00:03:17 125 160.4 42.0 31.6 0.8 01:00:00 01:00:00 01:00:00 01:00:00
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Table 5: Computation times and gaps for small instances from Amaral [3] with d ∈ {10, 11, 12, 13, 14},m ∈ {4, 5}. Not all methods were able to solve
these instances to optimality in the time limit of one hour.

Gap (%) Time (hh:mm:ss) Gap (%) Time (hh:mm:ss)

Instance opt MILP I MILP II ILP SDP MILP I MILP II ILP SDP opt MILP I MILP II ILP SDP MILP I MILP II ILP SDP

m = 4 m = 5

A-10-40 13 0.0 0.0 0.0 0.0 00:00:12 00:00:01 00:04:16 00:00:07 10 0.0 0.0 0.0 0.0 00:00:10 00:00:00 00:00:04 00:00:12
A-10-70 24 0.0 0.0 9.1 0.0 00:00:35 00:00:06 01:00:00 00:00:59 16 0.0 0.0 0.0 0.0 00:00:15 00:00:00 00:00:01 00:00:07
A-10-80 32 0.0 0.0 14.3 0.0 00:01:33 00:00:08 01:00:00 00:03:03 21 0.0 0.0 0.0 0.0 00:00:27 00:00:01 00:00:00 00:00:06
A-10-90 32 0.0 0.0 14.3 0.0 00:01:22 00:00:05 01:00:00 00:02:12 21 0.0 0.0 0.0 0.0 00:00:25 00:00:00 00:00:01 00:00:04
A-11-10 0 - - - - 00:00:00 00:00:00 00:37:50 00:00:08 0 - - - - 00:00:00 00:00:00 00:06:01 00:00:04
A-11-20 8 0.0 0.0 14.3 0.0 00:00:12 00:00:00 01:00:00 00:01:09 5 0.0 0.0 0.0 0.0 00:00:06 00:00:00 00:00:01 00:00:04
A-11-30 12 0.0 0.0 0.0 0.0 00:00:27 00:00:01 01:00:00 00:00:49 8 0.0 0.0 0.0 0.0 00:00:13 00:00:00 00:00:05 00:00:06
A-11-40 14 0.0 0.0 0.0 0.0 00:00:22 00:00:01 01:00:00 00:00:47 11 0.0 0.0 0.0 0.0 00:00:16 00:00:00 00:07:14 00:01:38
A-11-50 24 0.0 0.0 9.1 0.0 00:00:48 00:00:05 01:00:00 00:01:11 18 0.0 0.0 0.0 0.0 00:00:31 00:00:00 00:05:39 00:03:10
A-11-60 18 0.0 0.0 0.0 0.0 00:00:26 00:00:01 00:05:02 00:00:37 14 0.0 0.0 0.0 0.0 00:00:16 00:00:00 00:00:55 00:00:52
A-11-70 26 0.0 0.0 13.0 0.0 00:01:38 00:00:06 01:00:00 00:04:40 19 0.0 0.0 0.0 0.0 00:00:36 00:00:01 00:03:42 00:01:13
A-11-80 36 0.0 0.0 12.5 0.0 00:05:23 00:00:16 01:00:00 00:03:54 27 0.0 0.0 0.0 0.0 00:01:27 00:00:02 00:20:52 00:03:11
A-11-90 48 0.0 0.0 20.0 0.0 00:13:44 00:00:40 01:00:00 00:03:46 37 0.0 0.0 8.8 0.0 00:04:15 00:00:06 01:00:00 00:10:08
A-12-10 0 - - - - 00:00:00 00:00:00 00:03:54 00:00:06 0 - - - - 00:00:00 00:00:00 01:00:00 00:00:27
A-12-20 5 0.0 0.0 0.0 0.0 00:00:04 00:00:00 00:00:18 00:00:27 4 0.0 0.0 0.0 0.0 00:00:02 00:00:00 00:01:24 00:02:03
A-12-30 5 0.0 0.0 0.0 0.0 00:00:07 00:00:00 00:02:48 00:00:21 4 0.0 0.0 0.0 0.0 00:00:08 00:00:00 01:00:00 00:01:25
A-12-40 16 0.0 0.0 0.0 0.0 00:01:07 00:00:01 00:06:57 00:00:09 15 0.0 0.0 15.4 0.0 00:00:54 00:00:02 01:00:00 00:15:13
A-12-50 20 0.0 0.0 0.0 0.0 00:00:45 00:00:02 00:25:15 00:01:21 17 0.0 0.0 13.3 0.0 00:00:34 00:00:02 01:00:00 00:08:46
A-12-60 24 0.0 0.0 0.0 0.0 00:01:08 00:00:03 01:00:00 00:00:35 21 0.0 0.0 16.7 0.0 00:01:34 00:00:07 01:00:00 00:17:52
A-12-70 34 0.0 0.0 0.0 0.0 00:02:49 00:00:08 01:00:00 00:00:06 30 0.0 0.0 15.4 0.0 00:03:04 00:00:12 01:00:00 00:26:15
A-12-80 47 0.0 0.0 9.3 0.0 00:15:20 00:00:26 01:00:00 00:00:13 40 0.0 0.0 14.3 0.0 00:12:02 00:00:28 01:00:00 00:15:27
A-12-90 50 0.0 0.0 13.6 0.0 00:16:58 00:00:38 01:00:00 00:00:22 42 0.0 0.0 13.5 0.0 00:10:45 00:00:29 01:00:00 00:20:46
A-13-10 1 0.0 0.0 0.0 0.0 00:00:00 00:00:00 01:00:00 00:01:28 1 0.0 0.0 0.0 0.0 00:00:00 00:00:00 01:00:00 00:01:36
A-13-20 11 0.0 0.0 10.0 0.0 00:00:35 00:00:02 01:00:00 00:04:13 9 0.0 0.0 12.5 0.0 00:00:22 00:00:01 01:00:00 00:12:14
A-13-30 19 0.0 0.0 18.8 0.0 00:01:58 00:00:08 01:00:00 00:19:49 14 0.0 0.0 7.7 0.0 00:00:45 00:00:02 01:00:00 00:01:40
A-13-40 20 0.0 0.0 17.6 0.0 00:02:21 00:00:12 01:00:00 00:07:48 16 0.0 0.0 14.3 0.0 00:01:56 00:00:02 01:00:00 00:05:03
A-13-50 32 0.0 0.0 23.1 0.0 00:10:45 00:00:49 01:00:00 00:05:22 26 0.0 0.0 23.8 0.0 00:04:03 00:00:13 01:00:00 00:09:35
A-13-60 33 0.0 0.0 13.8 0.0 00:12:30 00:00:43 01:00:00 00:04:53 26 0.0 0.0 13.0 0.0 00:03:16 00:00:11 01:00:00 00:07:40
A-13-70 50 0.0 0.0 25.0 0.0 00:50:12 00:01:49 01:00:00 00:12:21 41 0.0 0.0 20.6 2.5 00:31:39 00:00:29 01:00:00 01:00:00
A-13-80 66 46.7 0.0 22.2 0.0 01:00:00 00:05:15 01:00:00 00:16:37 53 15.2 0.0 15.2 0.0 01:00:00 00:01:06 01:00:00 00:11:55
A-13-90 74 39.6 0.0 27.6 0.0 01:00:00 00:14:12 01:00:00 00:48:06 58 18.4 0.0 18.4 0.0 01:00:00 00:01:50 01:00:00 00:09:02
A-14-10 1 0.0 0.0 0.0 0.0 00:00:01 00:00:00 01:00:00 00:02:57 1 0.0 0.0 0.0 0.0 00:00:01 00:00:00 00:05:53 00:00:45
A-14-20 11 0.0 0.0 10.0 0.0 00:01:21 00:00:07 01:00:00 00:16:15 8 0.0 0.0 0.0 0.0 00:00:23 00:00:00 01:00:00 00:01:28
A-14-30 18 0.0 0.0 28.6 5.9 00:03:34 00:00:40 01:00:00 01:00:00 13 0.0 0.0 8.3 0.0 00:01:56 00:00:05 01:00:00 00:03:06
A-14-40 21 0.0 0.0 31.2 0.0 00:07:14 00:01:17 01:00:00 00:53:19 16 0.0 0.0 14.3 0.0 00:02:36 00:00:02 01:00:00 00:11:06
A-14-50 47 42.4 0.0 46.9 2.2 01:00:00 00:07:14 01:00:00 01:00:00 35 0.0 0.0 20.7 0.0 00:12:46 00:00:20 01:00:00 00:11:11
A-14-60 49 19.5 0.0 32.4 0.0 01:00:00 00:05:46 01:00:00 00:43:05 37 0.0 0.0 12.1 0.0 00:34:09 00:00:24 01:00:00 00:03:30
A-14-70 68 54.5 0.0 38.8 1.5 01:00:00 00:41:36 01:00:00 01:00:00 52 15.6 0.0 15.6 0.0 01:00:00 00:01:22 01:00:00 00:06:24
A-14-80 83 62.7 10.7 38.3 1.2 01:00:00 01:00:00 01:00:00 01:00:00 64 28.0 0.0 18.5 0.0 01:00:00 00:03:41 01:00:00 00:09:16
A-14-90 93 93.8 31.0 38.8 1.1 01:00:00 01:00:00 01:00:00 01:00:00 71 65.1 0.0 18.3 0.0 01:00:00 00:07:01 01:00:00 00:14:20
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Table 6: Computation times (in hh:mm:ss) and gaps (in percent) for medium-sized instances solved with SDP and with ILP in the case m = 2.

m = 2 m = 3 m = 4 m = 5

ILP 1h SDP 1h SDP 5h SDP 1h SDP 5h SDP 1h SDP 5h SDP 1h SDP 5h

instance ub gap time gap time gap time ub gap time gap time ub gap time gap time ub gap time gap time

A-20-10 12 20.0 01:00:00 9.1 01:00:00 9.1 05:00:00 7 16.7 01:00:00 16.7 05:00:00 4 33.3 01:00:00 0.0 03:50:42 3 0.0 00:26:33
A-20-20 73 87.2 01:00:00 0.0 00:33:30 49 4.3 01:00:00 2.1 05:00:00 34 3.0 01:00:00 0.0 01:21:34 27 3.8 01:00:00 0.0 01:36:52
A-20-30 111 68.2 01:00:00 0.0 00:20:13 74 1.4 01:00:00 1.4 05:00:00 54 3.8 01:00:00 1.9 05:00:00 42 2.4 01:00:00 0.0 02:28:39
A-20-40 149 50.5 01:00:00 0.0 00:35:02 98 1.0 01:00:00 0.0 01:13:53 73 2.8 01:00:00 1.4 05:00:00 58 3.6 01:00:00 1.8 05:00:00
A-20-50 249 11.2 01:00:00 0.0 00:52:37 166 1.2 01:00:00 0.6 05:00:00 122 1.7 01:00:00 0.8 05:00:00 96 2.1 01:00:00 1.1 05:00:00
A-20-60 345 28.7 01:00:00 0.3 01:00:00 0.0 01:21:58 229 0.9 01:00:00 0.4 05:00:00 167 0.6 01:00:00 0.0 01:51:21 132 0.8 01:00:00 0.8 05:00:00
A-20-70 385 25.0 01:00:00 0.0 00:20:58 258 1.6 01:00:00 0.4 05:00:00 187 0.5 01:00:00 0.5 05:00:00 146 0.7 01:00:00 0.0 01:20:43
A-20-80 434 17.0 01:00:00 0.2 01:00:00 0.0 01:17:34 290 1.4 01:00:00 0.7 05:00:00 211 1.0 01:00:00 0.5 05:00:00 165 0.6 01:00:00 0.0 03:47:42
A-20-90 521 6.8 01:00:00 0.2 01:00:00 0.2 02:12:30 347 0.9 01:00:00 0.0 03:51:36 252 0.0 00:41:05 197 0.0 00:23:50
N-16a 1496 0.0 00:21:48 0.0 00:09:33 1002 0.9 01:00:00 0.0 02:15:36 706 0.0 00:16:06 584 2.3 01:00:00 0.0 03:11:45
N-16b 1168 0.0 00:06:02 0.0 00:06:15 792 1.7 01:00:00 0.8 05:00:00 570 1.6 01:00:00 0.0 03:25:47 462 2.7 01:00:00 0.9 05:00:00
N-17 1678 0.0 00:35:31 0.0 00:27:20 1114 1.3 01:00:00 0.0 02:23:52 808 0.0 00:28:04 662 2.8 01:00:00 0.5 05:00:00
N-18 1970 0.0 00:34:44 0.0 00:45:05 1292 0.6 01:00:00 0.4 05:00:00 972 1.7 01:00:00 0.0 01:19:23 772 2.3 01:00:00 0.0 03:44:02
N-20 2782 38.8 01:00:00 0.0 00:31:52 1856 1.6 01:00:00 0.5 05:00:00 1360 2.0 01:00:00 1.0 05:00:00 1068 1.9 01:00:00 0.7 05:00:00
O-20 6414 20.9 01:00:00 0.0 00:54:27 4284 1.3 01:00:00 0.4 05:00:00 3118 0.8 01:00:00 0.1 05:00:00 2444 1.0 01:00:00 0.5 05:00:00
S-16 5446 0.0 00:20:56 0.0 00:12:41 3638 1.0 01:00:00 0.0 04:55:13 2600 0.0 00:48:46 2094 1.5 01:00:00 0.0 03:40:35
S-17 6577 0.0 00:35:02 0.3 01:00:00 0.0 01:49:13 4354 0.6 01:00:00 0.3 05:00:00 3225 2.0 01:00:00 0.9 05:00:00 2577 1.7 01:00:00 0.4 05:00:00
S-18 7788 0.2 01:00:00 0.1 01:00:00 0.0 05:00:00 5110 0.2 01:00:00 0.1 05:00:00 3892 1.9 01:00:00 1.0 05:00:00 3083 2.8 01:00:00 1.1 05:00:00
S-19 9343 1.1 01:00:00 0.5 01:00:00 0.3 05:00:00 6190 1.2 01:00:00 0.7 05:00:00 4599 2.2 01:00:00 1.2 05:00:00 3614 1.4 01:00:00 0.6 05:00:00
S-20 10841 8.5 01:00:00 0.1 01:00:00 0.0 02:58:26 7227 1.2 01:00:00 0.6 05:00:00 5260 0.4 01:00:00 0.2 05:00:00 4105 0.0 01:00:00 0.0 01:03:54
Y-20 6046 9.3 01:00:00 0.0 01:00:00 0.0 01:34:03 4033 0.9 01:00:00 0.4 05:00:00 2934 0.4 01:00:00 0.1 05:00:00 2282 0.0 00:17:29
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Table 7: Computation times (in hh:mm:ss) and gaps (in percent) for large instances solved with SDP.

m = 2 m = 3 m = 4 m = 5

SDP 1h SDP 5h SDP 1h SDP 5h SDP 1h SDP 5h SDP 1h SDP 5h

instance best ub gap time gap time best ub gap time gap time best ub gap time gap time best ub gap time gap time

A-25-10 41 2.5 01:00:00 0.0 01:05:06 27 8.0 01:00:00 3.8 05:00:00 20 25.0 01:00:00 11.1 05:00:00 15 7.1 01:00:00 0.0 03:16:36
A-25-20 110 0.9 01:00:00 0.0 03:08:29 74 7.2 01:00:00 4.2 05:00:00 55 14.6 01:00:00 5.8 05:00:00 40 2.6 01:00:00 0.0 02:10:41
A-25-30 222 0.5 01:00:00 0.0 03:01:22 146 1.4 01:00:00 0.0 04:01:29 110 5.8 01:00:00 1.9 04:01:29 87 4.8 01:00:00 1.2 05:00:00
A-25-40 400 1.0 01:00:00 0.3 05:00:00 265 1.9 01:00:00 0.8 05:00:00 198 4.2 01:00:00 2.1 05:00:00 156 4.7 01:00:00 2.6 05:00:00
A-25-50 511 0.4 01:00:00 0.4 05:00:00 340 2.1 01:00:00 1.2 05:00:00 254 4.1 01:00:00 2.4 05:00:00 196 1.6 01:00:00 0.5 05:00:00
A-25-60 549 0.9 01:00:00 0.4 05:00:00 364 1.7 01:00:00 1.1 05:00:00 271 3.0 01:00:00 1.9 05:00:00 212 2.4 01:00:00 1.4 05:00:00
A-25-70 660 0.9 01:00:00 0.3 05:00:00 438 1.6 01:00:00 0.7 05:00:00 325 2.8 01:00:00 1.2 05:00:00 255 2.0 01:00:00 1.2 05:00:00
A-25-80 910 0.4 01:00:00 0.3 05:00:00 604 1.0 01:00:00 0.7 05:00:00 450 2.0 01:00:00 1.4 05:00:00 350 0.6 01:00:00 0.3 05:00:00
A-25-90 1084 0.4 01:00:00 0.4 05:00:00 721 1.1 01:00:00 0.7 05:00:00 537 1.7 01:00:00 1.3 05:00:00 417 0.2 01:00:00 0.0 01:54:59
N-21 2512 0.5 01:00:00 0.0 01:04:30 1664 2.0 01:00:00 1.3 05:00:00 1248 3.7 01:00:00 1.9 05:00:00 972 3.3 01:00:00 0.7 05:00:00
N-22 3064 0.9 01:00:00 0.2 05:00:00 2034 2.8 01:00:00 0.8 05:00:00 1510 2.2 01:00:00 0.9 05:00:00 1188 2.8 01:00:00 0.0 04:08:02
N-24 4120 2.4 01:00:00 0.6 05:00:00 2712 1.5 01:00:00 0.6 05:00:00 2010 3.4 01:00:00 1.3 05:00:00 1624 4.3 01:00:00 2.1 05:00:00
N-25 4604 1.9 01:00:00 0.0 04:41:49 3062 1.8 01:00:00 0.7 05:00:00 2286 4.4 01:00:00 2.0 05:00:00 1796 3.2 01:00:00 1.3 05:00:00
N-30 8230 1.6 01:00:00 0.4 05:00:00 5442 2.4 01:00:00 0.7 05:00:00 4086 4.3 01:00:00 2.1 05:00:00 3232 4.5 01:00:00 2.1 05:00:00
S-21 12431 0.6 01:00:00 0.2 05:00:00 8144 0.2 01:00:00 0.0 03:26:10 6136 2.1 01:00:00 1.6 05:00:00 4849 2.7 01:00:00 1.8 05:00:00
S-22 14208 0.1 01:00:00 0.0 05:00:00 9484 1.4 01:00:00 0.8 05:00:00 7082 2.1 01:00:00 1.2 05:00:00 5623 2.9 01:00:00 1.3 05:00:00
S-23 16521 0.8 01:00:00 0.4 05:00:00 10974 1.3 01:00:00 0.7 05:00:00 8159 1.5 01:00:00 0.9 05:00:00 6523 2.7 01:00:00 1.1 05:00:00
S-24 18658 0.3 01:00:00 0.1 05:00:00 12349 0.5 01:00:00 0.2 05:00:00 9147 0.8 01:00:00 0.3 05:00:00 7342 1.9 01:00:00 1.1 05:00:00
S-25 21172 0.8 01:00:00 0.4 05:00:00 14070 1.2 01:00:00 0.9 05:00:00 10487 2.2 01:00:00 1.5 05:00:00 8149 0.4 01:00:00 0.0 05:00:00
Y-25 10170 0.8 01:00:00 0.3 05:00:00 6761 1.3 01:00:00 0.8 05:00:00 5049 2.5 01:00:00 1.7 05:00:00 3930 1.0 01:00:00 0.5 05:00:00
Y-30 13790 0.5 01:00:00 0.1 05:00:00 9133 1.0 01:00:00 0.3 05:00:00 6889 2.8 01:00:00 1.8 05:00:00 5386 1.5 01:00:00 0.6 05:00:00
Y-35 19087 0.5 01:00:00 0.3 05:00:00 12705 1.7 01:00:00 0.5 05:00:00 9492 3.6 01:00:00 1.4 05:00:00 7504 2.1 01:00:00 0.8 05:00:00
Y-40 23749 0.9 01:00:00 0.4 05:00:00 15825 3.5 01:00:00 1.3 05:00:00 11785 4.9 01:00:00 1.5 05:00:00 9381 5.0 01:00:00 1.4 05:00:00
Y-45 31442 1.6 01:00:00 0.7 05:00:00 20896 4.5 01:00:00 1.5 05:00:00 15663 9.6 01:00:00 2.5 05:00:00 12442 7.8 01:00:00 2.1 05:00:00
Y-50 41517 3.2 01:00:00 0.9 05:00:00 27674 8.1 01:00:00 2.0 05:00:00 20809 15.7 01:00:00 4.5 05:00:00 16475 10.3 01:00:00 2.8 05:00:00
Y-60 55996 11.7 01:00:00 1.9 05:00:00 37279 18.3 01:00:00 4.1 05:00:00 27913 21.7 01:00:00 6.6 05:00:00 22370 24.8 01:00:00 6.5 05:00:00
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7 Conclusions and future work

We considered the special case of equidistant row layout problems in which all departments have the same

length. We showed that only spaces of unit length need to be used when modeling the problem, and we stated

and proved exact expressions for the minimum number of spaces that need to be added so as to preserve at

least one optimal solution. These results show that the multi-row equidistant layout can be modeled using

only binary variables; this has a significant impact for a computational perspective. Using these results we

proposed two new models for the equidistant problem, an ILP model and an SDP model. Our computational

results show that the SDP approach dominates for medium- to large-sized instances and that it is well-suited

for providing high-quality lower bounds for large-scale instances in reasonable computation time. Specifically

for double-row instances, we attain global optimality for some instances with up to 25 departments, and

achieve optimality gaps smaller than 1% for instances with up to 50 departments.

On the theoretical side, it remains an open question to extend the theoretical results to general double-row

or multi-row problems. From the computational perspective, one direction for future research is the use of

the SDP relaxation within a branch-and-bound scheme. While there is at present no commercial or other

generally available software that does this automatically for SDP relaxations, this possibility is well worth

exploring given the high-quality lower bounds provided by the SDP approach.

Appendix

Details on benchmark instances used

The following tables state the source, the density and the optimal solution or best bounds for our benchmark

instances with m ∈ [5] rows.
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Table 8: Characteristics and optimal results for small instances with 5 to 15 departments.

Instance Source Size Density Optimal solution

(n) (%) m = 1 m = 2 m = 3 m = 4 m = 5

E-5-50

[36]

5 50 30 13 6 4 0
E-5-100 5 100 95 46 27 17 0
E-6-50 6 50 100 45 29 22 12
E-6-100 6 100 216 99 56 49 29
E-7-50 7 50 106 51 31 17 9
E-7-100 7 100 252 126 79 50 40
E-8-50 8 50 136 64 37 26 25
E-8-100 8 100 397 191 125 74 70
E-9-50 9 50 240 118 70 55 40
E-9-100 9 100 618 306 181 140 100
E-10-50 10 50 387 191 114 89 59
E-10-100 10 100 873 427 277 209 133
E-11-100 11 50 1085 539 351 256 191

N-15 [41] 15 71 2186 1064 668 500 382

O-5

[42]

5 100 150 70 38 32 0
O-6 6 100 292 136 72 64 28
O-7 7 100 472 236 144 102 76
O-8 8 100 784 366 250 148 138
O-9 9 100 1032 508 302 238 168
O-10 10 100 1402 670 450 334 222
O-15 15 100 5134 2556 1660 1250 914

S-12

[45]

12 100 4431 2167 1404 995 841
S-13 13 100 5897 2940 1938 1413 1132
S-14 14 100 7316 3608 2408 1794 1369
S-15 15 100 8942 4466 2883 2175 1612

Y-6

[55]

6 100 1372 630 350 315 193
Y-7 7 100 1801 899 577 383 311
Y-8 8 100 2302 1095 728 430 394
Y-9 9 100 2808 1401 848 658 476
Y-10 10 100 3508 1697 1140 845 530
Y-11 11 100 4022 2008 1314 947 724
Y-12 12 100 4793 2342 1510 1070 908
Y-13 13 100 5471 2730 1798 1314 1048
Y-14 14 100 6445 3164 2110 1574 1201
Y-15 15 100 7359 3676 2357 1782 1322
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Table 9: Characteristics and optimal results for medium-sized to large instances with 16 to 60 departments.

Instance Source Size Density Optimal solution

(d) (%) m = 1 m = 2 m = 3 m = 4 m = 5

N-16a

[41]

16 78 3050 1494 1002 706 584
N-16b 16 70 2400 1168 [786,792] 570 462
N-17 17 74 3388 1678 1114 808 662
N-18 18 74 3986 1970 [1287,1292] 972 772
N-20 20 74 5642 2782 [1847,1856] [1347,1360] [1061,1068]
N-21 21 65 5084 2512 [1643,1664] [1225,1248] [965,972]
N-22 22 66 6184 [3059,3064] [2018,2034] [1497,1510] 1188
N-24 24 67 8270 [4097,4120] [2696,2712] [1985,2010] [1590,1624]
N-25 25 67 9236 4604 [3040,3062] [2242,2286] [1773,1796]
N-30 30 67 16494 [8194,8230] [5406,5442] [4001,4086] [3165,3232]

O-20 [42] 20 100 12924 6414 [4265,4284] [3115,3118] [2431,2444]

S-16

[45]

16 100 11019 5446 3638 2600 2094
S-17 17 100 13172 6577 [4343,4354] [3196,3225] [2568,2577]
S-18 18 100 15699 [7787,7788] [5107,5110] [3854,3892] [3048,3083]
S-19 19 100 18700 [9311,9343] [6149,6190] [4545,4599] [3593,3614]
S-20 20 100 21825 [10837,10841] [7186,7227] [5248,5260] 4105
S-21 21 100 24891 [12406,12431] 8144 [6042,6136] [4762,4849]
S-22 22 100 28607 [14202,14208] [9412,9484] [6997,7082] [5549,5623]
S-23 23 100 33046 [16448,16521] [10900,10974] [8086,8159] [6450,6523]
S-24 24 100 37498 [18646,18658] [12325,12349] [9116,9147] [7261,7342]
S-25 25 100 42349 [21091,21172] [13951,14070] [10332,10487] [8148,8149]

Y-20

[55]

20 100 12185 6046 [4018,4033] [2930,2934] 2282
Y-25 25 100 20357 [10139,10170] [6709,6761] [4967,5049] [3912,3930]
Y-30 30 100 27673 [13771,13790] [9107,9133] [6764,6889] [5355,5386]
Y-35 35 100 38194 [19025,19087] [12636,12705] [9357,9492] [7447,7504]
Y-40 40 100 47561 [23648,23749] [15616,15825] [11615,11785] [9253,9381]
Y-45 45 99 [62849,62904] [31237,31442] [20592,20896] [15283,15663] [12182,12442]
Y-50 50 99 [83086,83127] [41156,41517] [27129,27674] [19915,20809] [16032,16475]
Y-60 60 97 [111884,112126] [54925,55996] [35803,37279] [26180,27913] [21007,22370]
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Table 10: Characteristics and optimal results for the instances from Amaral [3] with d ∈ {9, 10, 11, 12}.

Instance Size Density Optimal solution

(d) (%) m = 1 m = 2 m = 3 m = 4 m = 5

A-9-10 9 14 5 2 0 0 0
A-9-20 9 31 19 9 6 3 3
A-9-30 9 17 7 3 2 1 1
A-9-40 9 33 23 11 7 5 4
A-9-50 9 47 36 18 11 7 5
A-9-60 9 56 48 23 15 9 7
A-9-70 9 78 76 38 23 18 13
A-9-80 9 92 102 51 30 24 17
A-9-90 9 86 90 45 27 21 15
A-10-10 10 11 6 2 1 0 0
A-10-20 10 16 9 3 3 1 1
A-10-30 10 24 16 7 5 3 1
A-10-40 10 53 62 30 20 13 10
A-10-50 10 53 59 28 19 13 9
A-10-60 10 47 50 25 15 11 8
A-10-70 10 76 101 49 33 24 16
A-10-80 10 91 134 65 44 32 21
A-10-90 10 91 134 65 44 32 21
A-11-10 11 5 3 0 0 0 0
A-11-20 11 29 36 17 11 8 5
A-11-30 11 40 51 25 16 12 8
A-11-40 11 44 62 30 20 14 11
A-11-50 11 62 103 51 34 24 18
A-11-60 11 55 75 37 24 18 14
A-11-70 11 65 108 54 35 26 19
A-11-80 11 82 149 74 49 36 27
A-11-90 11 96 202 101 66 48 37
A-12-10 12 8 5 1 1 0 0
A-12-20 12 20 24 11 7 5 4
A-12-30 12 23 28 13 8 5 4
A-12-40 12 42 76 37 24 16 15
A-12-50 12 48 88 43 27 20 17
A-12-60 12 55 108 53 33 24 21
A-12-70 12 70 158 77 49 34 30
A-12-80 12 85 208 102 65 47 40
A-12-90 12 88 218 108 70 50 42
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Table 11: Characteristics and optimal results for the instances from Amaral [3] with d ∈ {13, 14, 20, 25}.

Instance Size Density Optimal solution

(d) (%) m = 1 m = 2 m = 3 m = 4 m = 5

A-13-10 13 9 7 2 1 1 1
A-13-20 13 28 49 24 15 11 9
A-13-30 13 37 77 38 25 19 14
A-13-40 13 40 85 42 27 20 16
A-13-50 13 53 136 68 44 32 26
A-13-60 13 56 141 70 46 33 26
A-13-70 13 72 211 105 69 50 41
A-13-80 13 87 277 138 90 66 53
A-13-90 13 92 306 153 101 74 58
A-14-10 14 9 10 4 3 1 1
A-14-20 14 25 49 24 16 11 8
A-14-30 14 30 74 36 24 18 13
A-14-40 14 35 87 43 28 21 16
A-14-50 14 56 191 94 63 47 35
A-14-60 14 62 201 99 65 49 37
A-14-70 14 75 279 138 92 68 52
A-14-80 14 86 336 167 111 83 64
A-14-90 14 91 380 187 125 93 71
A-20-10 20 9 25 12 7 4 3
A-20-20 20 22 148 73 [48,49] 34 27
A-20-30 20 30 225 111 [73,74] [53,54] 42
A-20-40 20 37 300 149 98 [72,73] [57,58]
A-20-50 20 53 502 249 [165,166] [121,122] [95,96]
A-20-60 20 67 693 345 [228,229] 167 [131,132]
A-20-70 20 71 777 385 [257,258] [186,187] 146
A-20-80 20 77 873 434 [288,290] [210,211] 165
A-20-90 20 88 1048 [520,521] 347 252 197
A-25-10 25 11 84 41 [26,27] 20 15
A-25-20 25 18 225 110 [71,74] [52,55] 40
A-25-30 25 30 444 222 146 [108,110] [86,87]
A-25-40 25 44 802 [399,400] [263,265] [194,198] [152,156]
A-25-50 25 53 1023 [509,511] [336,340] [248,254] [195,196]
A-25-60 25 55 1098 [547,549] [360,364] [266,271] [209,212]
A-25-70 25 64 1322 [658,660] [435,438] [321,325] [252,255]
A-25-80 25 81 1820 [907,910] [600,604] [444,450] [349,350]
A-25-90 25 91 2169 [1080,1084] [716,721] [530,537] 417
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