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2015.

GERAD HEC Montréal
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Abstract: Since the financial crisis of 2007–2009, there has been a renewed interest toward quantifying more
appropriately the risks involved in financial positions. Popular risk measures such as variance and value-at-risk
have been found inadequate as we now give more importance to properties such as monotonicity, convexity,
translation invariance, scale invariance, and law invariance. Unfortunately, the challenge remains that it is
unclear how to choose a risk measure that faithfully represents the decision maker’s true risk attitude. In
this work, we show that one can account precisely for (neither more nor less than) what we know of the
risk preferences of an investor/policy maker when comparing and optimizing financial positions. We assume
that the decision maker can commit to a subset of the above properties (the use of a law invariant convex
risk measure for example) and that he can provide a series of assessments comparing pairs of potential risky
payoffs. Given this information, we propose to seek financial positions that perform best with respect to
the most pessimistic estimation of the level of risk potentially perceived by the decision maker. We present
how this preference robust risk minimization problem can be solved numerically by formulating convex
optimization problems of reasonable size. Numerical experiments on a portfolio selection problem, where
the problem reduces to a linear program, will illustrate the advantage of accounting for the fact that the
information about risk perception is limited.



Les Cahiers du GERAD G–2015–05 1

1 Introduction

Since the financial crisis of 2007-2009, there has been a renewed interest toward quantifying more appropri-

ately the amount of risk involved in financial positions. While it appears that not so long ago, value at risk

(VaR) seemed like the most natural measure to quantify risk, there is now a growing dissatisfaction about
this measure which is accused of leading to excessive risk-taking, to ignorance of outcomes in the tails of

distributions and to indirectly create a false sense of security (see Basel Committee on Banking Supervision

(2012) and Einhorn (2008) for some discussions about its use in the Basel II Accord).

In search for an alternative, there has been extensive recent work attempting to define the properties that

should be satisfied by a reasonable measure of risk. In Föllmer and Schied (2002), the authors identified prop-

erties that have since then be considered legitimate by many investors, banking institutions and regulators,

namely monotonicity, convexity, and translation invariance. The measures that satisfy these properties are
known as convex risk measures. The measure becomes a coherent risk measure if it is in addition “positively

homogeneous”. Finally, in Kusuoka (2001), the author introduced the axiom of “law-invariance” which states

that risk should depend solely on the distribution of future returns. These properties have led to a rise in

popularity of a risk measure known under many names : tail conditional expectation (see Artzner et al.

(1999)), expected shortfall, conditional value at risk (see Rockafellar and Uryasev (2000)), average value at
risk, etc.

While conditional value at risk (CVaR) is now being used in a wide range of field of applications such as
health care (see Chan et al. (2014)), supply chain (see Carneiro et al. (2010)), network design (see Babazadeh

et al. (2011)), vehicle routing (see Toumazis and Kwon (2013)), energy (see Jabr (2005)), etc., there is still

some resistance in the risk management community toward adopting such a measure as a golden standard for

risk management. The issue that CVaR is not statistically elicitable is discussed in Cont et al. (2010), which

refers to that it cannot be measured using statistically robust procedures and is not well fit for backtesting.
CVaR is also too limiting to capture the risk attitude of the decision maker. In particular, this has raised the

need for new measures that can express in simple terms a larger spectrum of risk attitudes. The importance

of this need gave rise to the introduction of a generalization of CVaR measures known under the name of

spectral risk measure (most likely coined in Acerbi (2002)) which employs a weighted combination of CVaR
measures.

Along the new development of risk measures, to this day however, the community of risk management

experts have still not engaged in a serious discussion about procedures that can be used by decision makers
to guide them in identifying a measure that is well fit to characterize their own subjective perception of risks.

Comparatively, the literature that covers the Von-Neuman Morgenstein expected utility framework is much

richer on this topic perhaps due to its longer history. Most textbooks on decision analysis (see Clemen and

Reilly (1999)) will for instance propose preference elicitation methods that are based on pairwise comparison
of lotteries. More recently, efforts have even be made to account for incomplete preference information in

such a framework. For instance, the authors in Chajewska et al. (2000) represent the knowledge of the

decision maker’s preferences using a probability distribution over the plausible risk preference relations in

order to integrate this additional layer of uncertainty in the estimation of expected utility. Alternatively,

in Armbruster and Delage (2015) and in Hu and Mehrotra (2015) the idea is to formulate a set of plausible
risk preference relations and seek decisions that are optimal with respect to worst-case expected utility or

worst-case certainty equivalent. Similar ideas have also been proposed in the context of multi-attribute utility

theory. In particular, one might refer to Boutilier et al. (2006) where decisions were rather supported through

the evaluation of regret experienced after implementation and once true preferences are revealed. The lack
of similar literatures however in the context of risk measures directs us to the following question:

“How can one capture and account for limited information about the risk preferences of an

investor/decision/policy maker (hereafter referred to as the decision maker) when using a convex risk
measure to compare and optimize financial positions?”

In this work, we show that one can actually compare and optimize financial positions using a convex risk
measure that accounts precisely for (neither more nor less than) what is known of his preferences regarding

risk. We assume that the decision maker can agree with a subset of the axioms of convex risk measures
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(monotonicity, translation invariance, scale invariance, and law invariance) and that he can provide a series

of assessment comparing pairs of potential risky payoffs. In practice, the latter might be obtained from a

risk tolerance assessment survey such as in Grable and Lytton (1999) with questions like :

“You are on a TV game show and can choose one of the following. Which would you take?

A) $1,000 in cash;

B) A 50% chance at winning $5,000;

C) A 25% chance at winning $10,000;

D) A 5% chance at winning $100,000.”

Alternatively, if the perception of risk is dependent on the realization of specific events (i.e. the law invariance
axiom is not entirely satisfied), risky payoffs might be compared in terms of these uncertain events.

“You believe that the economy of the country where you are investing has 50% chance of falling
in a recession in the coming year. Which investment would you take?

A) An investment that is certain to yield a 5% return;

B) An investment that loses 10% of its value in the case of a recession, but yields 30% return

otherwise

C) An investment that has 50% chance of losing 10% of its value and 50% chance of yielding

30% return no matter whether there is a recession or not.”1

Given the information above, the framework we propose allows one to identify financial positions that

perform best with respect to the most pessimistic estimation of the level of risk potentially perceived by

such a decision maker. Given that the outcome space is finite and that the payoff function is concave with

respect to the set of alternatives, we also present how this “robust” risk minimization problem can be solved
efficiently by formulating convex optimization problems of reasonable size. Numerical experiments on a

portfolio selection problem, where the optimization problem reduces to a linear program, will also illustrate

the advantages of accounting for the fact that one’s risk perception might be more sophisticated than a simple

expected shortfall representation and illustrate how the information about risk perception can be used to
improve the quality of the portfolio that is proposed.

To the best of our knowledge, this novel “preference robust” risk minimization framework provides for
the first time 1) a language that can be used to interact with decision makers who are not well trained in the

use of quantitative measures to acquire information about their preference regarding risk, together with 2)

the means of identifying and optimizing a risk measure that is specifically designed (or ”personalized”) for

every different decision maker. Unlike work such as Armbruster and Delage (2015) that relies on expected
utility theory, because our framework is inspired by convex risk measures, it will not require the decision

maker to agree with the independence axiom which is subject to a non-negligible amount of controversy and

known to raise important practical issues such as portrayed by Ellsberg’s paradox (see Ellsberg (1961)). On

the other hand, it will rely more heavily on the hypothesis of translation invariance which, although well

accepted in a number of banking applications, might limit its application to contexts where absolute risk
aversion appears relatively constant.2 Finally, considering that communicating with a human is subject to

misinterpretation and more importantly that human are not always perfectly logical beings (see the work on

cognitive biases pioneered by Tversky and Kahneman (1974)), we indicate how inconsistencies in the decision

maker’s assessments might be identified and potentially corrected for.

In what follows, we start in Section 2 by presenting the type of information that we assume can be obtained

from the decision maker regarding his perception of risk. In particular, we will expose four fundamental
hypotheses that need to be made regarding how he qualitatively compares the risk associated to different

financial positions in order to employ a convex risk measure representation. The specificity of the risk measure

1Here, with option B, we are able to identify decision makers that are more willing to accept some losses when the economy
is doing poorly in general.

2Note that the fact that risk measures such as CVaR have been successfully adopted by such a wide range of field of
applications seems to testify that the translation invariance hypothesis is not so limiting in practice.
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will be obtained by specifying properties like scale invariance and law invariance, and most importantly by

providing a list of pairs of uncertain payoffs ordered from least risky to most risky. We then introduce the

preference robust risk minimization framework and establish that making decisions using this framework
is consistent with each hypothesis that is made. In Section 3 we present how the preference robust risk

minimization framework formulated based on the available information can be reduced to a mathematical

program of reasonable size. We complete the exposition of our framework by illustrating in Section 4 how it

can be applied to a portfolio optimization problem. Finally, we conclude in Section 5 and briefly discuss how

the framework could be modified to account for errors in the comparisons of payoffs due to the presence of
cognitive biases.

Remark 1.1 While the six hypotheses that are made in Section 2 about how risk is perceived will be shown

equivalent to the popular axioms of convex risk measures, we believe essential that such hypotheses be

expressed in terms of properties of a risk preference relation, i.e. statements that avoid the need to express
how much riskier a position is compared to another. Indeed, from the point of view of decision making,

the quantification of risk is an inherently subjective process and cannot be confirmed through any type of

physical measurement. For this reason, following a similar philosophy as was followed in expected utility

theory, we prefer presenting hypotheses that must be made about a risk preference relation in order to

enable the use of a convex risk measures as a characterization. A side product of this conceptual choice is to
facilitate the adoption of our risk management framework by individuals that are less comfortable formulating

judgments about how a quantitative risk measure should behave. This being said, we welcome the readers

that are experts in the use of convex risk measures to simply interpret our six hypotheses as their respective

equivalent in terms of axiom, namely monotonicity, convexity, translation invariance, scale invariance, and
law invariance.

2 Preference robust risk minimization

Given an outcome space Ω with a finite number of outcomes, we consider a decision maker that is offered

alternatives which will affect the payoff he will achieve. In particular, each alternative is associated to a
random variable Z : Ω → R which captures the uncertainty he has in the payoff that will be achieved. Note

that since Ω is finite, for simplicity of exposure we can represent any random variable Z as a vector ~Z in RM

with M = |Ω|, and will let RM be the set of all random variables on this finite outcome space.

Assuming that the decision maker is able for any pair (~Z1, ~Z2) ∈ RM × RM of risky payoffs to establish

whether ~Z1 is no more risky than ~Z2 or the opposite, we denote by � the risk preference relation that

captures either of the assessment through ~Z1 � ~Z2 or ~Z2 � ~Z1 respectively, and by ~Z1 ∼ ~Z2 when both
are true (i.e. risk is exactly the same). Further assuming that this preference relation respects transitivity

and continuity,3 then by the utility representation theorem in Debreu (1954) one can always identify a “risk

measure” ρ : RM → R that captures the decision maker’s risk preferences, and formulate the risk minimization

problem as
min
x∈X

ρ(~Z(x)), (1)

where X ⊆ R
n is a convex set of feasible alternatives, ~Z(x) is the vector representing the random payoff

that is achieved when implementing x. Throughout the following sections, we will make four fundamental

hypotheses about the decision maker’s risk preference relation � :

1. (Monotonicity) If a random payoff Z1 dominates Z2 over Ω, i.e. Z1(ω) ≥ Z2(ω) , ∀ω ∈ Ω, then Z1 must

be no more risky than Z2.

2. (Strict monotonicity for certain payoffs) a certain amount is always strictly less risky than a certain

strictly lower amount.

3. (Quasi-convexity) If two random payoffs Z1 and Z2 are considered no more risky than a third one Z3,

then any convex combination of Z1 and Z2 is also considered no more risky then Z3.

3The transitivity property states that if Z1 is preferred (in the sense of �) to Z2 and Z2 is preferred to Z3 then it must be
that Z1 is preferred to Z3. The continuity property states that for any Z1 and any sequence Z′

k
preferred to Z1 and converging

to Z2, it must be that Z2 is preferred to Z1, and similarly if the preference is in the opposite direction.
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4. (Translation invariance) Adding or subtracting the same certain amount of cash to two random payoffs

should not affect whether one is no more risky than another.

The first two hypotheses are fairly natural since we are talking about monetary amounts. The quasi-convexity
hypothesis is also reasonable since it states that diversification should not be considered to increase risk.

Although translation invariance is the hypothesis that can be most subject to controversy, it has been widely

used in the literature on risk measures. The motivation might be considered two-fold. First, it is coherent

with the common banking principle that if a certain amount needs to be reserved in order for the risk of a

position to become acceptable, then a second position that guarantees to payoff exactly c$ more than the first
one should require c$ less to be reserved. Secondly, from an operational point of view, it conveniently allows

for decisions that do not involve uncertain outcomes to be treated separately (as they often are anyway) thus

helping to reduce the complexity of problems.4

The set of risk measures that satisfy these properties can be shown to be the set of convex risk measures:

R :=







ρ : RM → R

∣
∣
∣
∣
∣
∣
∣
∣

~Z1 ≥ ~Z2 ⇔ ρ(~Z1) ≤ ρ(~Z2)

θρ(~Z1) + (1 − θ)ρ(~Z2) ≥ ρ(θ ~Z1 + (1 − θ)~Z2) , ∀ ~Z1, ~Z2, 0 ≤ θ ≤ 1

ρ(~Z + c) = ρ(~Z)− c
ρ(0) = 0







,

where one can respectively recognize the popular monotonicity, convexity, and translation invariance axioms,

and where the last constraint is a normalization constraint chosen, without loss of generality, such that each

member of R represents a unique risk preference relation and more importantly such that ρ(~Z) returns the

negative of the certain amount considered to have equivalent risk to Z.5 We refer the reader to Appendix A

for a detailed proof.

In order to solve problem (1), ones needs to have in hand complete information about the decision maker’s

risk preferences. Unfortunately, in practice it is unavoidable that the knowledge about these risk preferences

is at best incomplete or even possibly inaccurate. Indeed although any measure ρ from the set R might

appear legitimate to use in problem (1), the possibility that the selected ρ might capture a notion of risk that

is very different from what is intended can be worrisome as it might lead to severe underestimation of risk.
This motivates the idea of accounting for ambiguity about the risk measure ρ through a robust optimization

framework. In particular, given a set of risk measures R ⊆ R that are deemed to be potential candidates

for representing one’s risk preferences, we will seek the solution that minimizes the largest risk that might

be perceived by the decision maker. In other words, we are interested in solving the following optimization
problem :

min
x∈X

̺R(~Z(x)) , (2)

where ̺R(~Z(x)) := supρ∈R ρ(~Z(x)) and with R ⊆ R. Note that problem (2) is a convex optimization problem

when each term of ~Z(x) is a concave function of x, in other words when Z(x, ω) is a concave function of x

for all ω ∈ Ω.

In fact, since we impose that ρ(0) = 0 for all ρ ∈ R, one can also interpret problem (2) as searching for

the decision that maximizes the lowest certain payoff which might be perceived equivalent in terms of risk to
the resulting payoff. Mathematically speaking, when choosing among all random payoffs Z(x) achievable by

adjusting x ∈ X , our approach seeks to maximize the optimal value of :

min
z,ρ∈R

z (3a)

subject to z ∼ρ Z(x) , (3b)

4Indeed, given that a decision involves choosing between either random payoffs Z1 or Z2 and choosing among a set of
deterministic payoffs Y = {y1, y2, . . . , ym}. The choice between Z1 and Z2 can be made independently of the choice among Y
since the difference between the total risk of Z1 + y and Z2 + y is the same as between Z1 and Z2 no matter what y is.

5This is without loss of generality since ρ′(~Z) := ρ(~Z)− ρ(0) always captures the same attitude as ρ(·).
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where Z1 ∼ρ Z2 captures to the condition that Z1 is exactly as risky as Z2 according to the plausible risk

preference relation expressed by ρ.6 This has an important implication that the financial decisions that our

approach proposes will only engage the decision maker in a position that he considers no more risky than the
position of earning the best-available certain payoff. Namely, given a solution x∗ ∈ X that maximizes (3),

for any ρ̄ ∈ R we have that Z(x∗) �ρ̄ Z(x̄) for any x̄ ∈ X for which Z(x̄, ω) = Z(x̄, ω′) for any ω and ω′ in

Ω.7

Of course, problem (2) is only interesting if one formulates R in a way that accurately captures his

knowledge about ρ. For instance, it is clear that if the risk perception has been fully and exactly specified,

thenR should reduce to a singleton {ρ̄} and problem (2) becomes equivalent to minx∈X ρ̄(~Z(x)). At the other
end of the spectrum, since ρ(~Z) := maxi−~Zi is a member of R and clearly provides the maximum estimates

of risk, simply using R makes the problem reduce to the more classical robust optimization formulation

minx∈X maxω∈Ω −Z(x,w) which will typically be considered overly conservative.

We are therefore in need of imposing additional structure on the risk measures of R. Specifically we will

consider injecting three types of information in the description of R: scale invariance, law invariance, and
elicited preference information. These take the following form:

5. (Scale invariance) If a random payoff Z1 is considered no more risky than Z2, then a scaled version

λZ1, with λ ≥ 0, is considered no more risky than the scaled random payoff λZ2.

6. (Law invariance) Given some probability measure F over the σ-algebra of Ω, if Z1 and Z2 have the

same distribution based on F then Z1 is considered exactly as risky as Z2.

7. (Elicited comparisons) Given a set of pairs of random payoffs E := {(Wk, Yk)}Kk=1, for each of these

pairs, the random payoff Wk is known to be no more risky than Yk.

When imposing scale invariance on measures in R, one can demonstrate (see Appendix A) that the set of

risk measures reduces to the set of coherent risk measures, where scale invariance plays the role of “cash

invariance”.
RCoh :=

{

ρ ∈ R

∣
∣
∣ ρ(λ~Z) = λρ(~Z) , ∀ ~Z ∈ R

M , ∀λ ≥ 0
}

.

Similarly, making the law invariance hypothesis will reduce the set of convex risk measure to the popular set

of law-invariant convex risk measures:

RLaw :=
{

ρ ∈ R

∣
∣
∣ ρ(~Z1) = ρ(~Z2) , ∀Z1 ≡F Z2

}

,

where ≡F stands for equal in distribution. Finally, the final hypothesis allows one to specify in more refined

details a list of statements that the risk measure should respect:

REl(E) :=
{

ρ ∈ R

∣
∣
∣ ρ( ~Wk) ≤ ρ(~Yk) , ∀ k ∈ {1, 2, . . . ,K}

}

.

The concept of scale invariance (a.k.a. cash-invariance) and law-invariance are the most important prop-

erties that have been discussed in recent literature on convex risk measures. Given that it might be unclear

whether decision makers truly feel comfortable with the notion of scale invariance and whether they can
specify in a precise way the probability measure F , we leave it optional to impose either of them or both.

Note that while it is true that these assumptions might not always be well justified, as we will see later

in practice they can be very useful for narrowing down what are the potential ρ and identifying decision

that perform well. Note that both of these assumptions can also be approximated by requiring the decision
maker to compare a sufficient list of random payoffs and including this information in the form of elicited

comparisons.

In summary, we will consider the following four sets of risk measures, each of which involves different

combination of the three hypotheses above.

6The equivalence can be motivated as follow. First, the constraint indicates that ρ(z) = ρ(~Z(x)). By translation invariance

and the fact that ρ(0) = 0, the constraint is further reduced to −z = ρ(~Z(x)). Finally, a simple replacement of z := −ρ(~Z(x))

demonstrates that the optimal value of problem (3) is indeed equal to infρ∈R −ρ(~Z(x)). A random payoff Z(x) that maximizes
this measure over x ∈ X necessarily achieves optimality in problem (2).

7Letting CEρ̄(Z(x)) denote the optimal value of problem (3) when ρ is fixed to ρ̄, one can establish that CEρ̄(Z(x̄)) =
minρ∈R CEρ(Z(x̄)) ≤ minρ∈R CEρ(Z(x∗)) ≤ CEρ̄(Z(x∗)) .
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REl(E) ,

RCE(E) := RCoh ∩REl(E) ,

RLE(E) := RLaw ∩REl(E) ,

RCLE(E) := RCoh ∩RLaw ∩REl(E) .

Proposition 2.1 Given any set R ∈ {REl,RCE ,RLE ,RCLE}, the risk measure implied by ̺R(~Z) := supρ∈R

ρ(~Z) is itself a member of R.

Proof. We expose the proof for the case R = RCLE which can easily be modified to address the other cases.

Let’s consider ̺R(~Z) := supρ∈RCLE
ρ(~Z), in order to show that ̺R ∈ RCLE one needs to show that it satisfies

all the axioms of a coherent law-invariant risk measure plus the set of elicited comparison constraints. Firstly,

̺R is monotone since given ~Z1 ≥ ~Z2, we have that

̺R(~Z1) = sup
ρ∈RCLE

ρ(~Z1) ≤ sup
ρ∈RCLE

ρ(~Z2) = ̺R(~Z2) ,

since every risk measure in RCLE respects monotonicity. Secondly, ̺R respects translation invariance since

̺R(~Z + c) = sup
ρ∈RCLE

ρ(~Z + c) = sup
ρ∈RCLE

ρ(~Z)− c = ̺R(~Z)− c ,

again mostly due to the fact that each risk measure in RCLE respects translation invariance. Convexity is a

little more complicated to demonstrate:

̺R(θ ~Z1 + (1 − θ)~Z2) = sup
ρ∈RCLE

ρ(θ ~Z1 + (1− θ)~Z2) ≤ sup
ρ∈RCLE

θρ(~Z1) + (1− θ)ρ(~Z2)

≤ sup
ρ∈RCLE

θρ(~Z1) + sup
ρ∈RCLE

(1 − θ)ρ(~Z2) = θ̺R(~Z1) + (1− θ)̺R(~Z2) ,

given that each member of RCLE respects convexity and that the supremum of a sum is always smaller than

the sum of the supremums. Finally, the last three properties follow using similar arguments:

Scale invariance: ̺R(λ~Z) = sup
ρ∈RCLE

ρ(λ~Z) = sup
ρ∈RCLE

λρ(~Z) = λ̺R(~Z)

Law invariance: ̺R(~Z1) = sup
ρ∈RCLE

ρ(~Z1) = sup
ρ∈RCLE

ρ(~Z2) = ̺R(~Z2) , ∀Z1 ≡F Z2

Elicited comparisons: ̺R( ~Wk) = sup
ρ∈RCLE

ρ( ~Wk) ≤ sup
ρ∈RCLE

ρ(~Yk) = ̺R(~Yk) , ∀ k .

This first result is interesting for two reasons. First, it ensures that the robust framework that we propose

compares random payoffs in a way that is coherent with what is known of the decision maker’s perception.
Furthermore, the fact that supρ∈R ρ(·) is itself a risk measure is already a good indicator that it is possible to

capture this measurement using a tractable representation. We will specifically identify such representations

in the next three sections.

3 Optimizing preference robust risk measures

Our focus will initially be on identifying tractable methods for evaluating the worst-case risk measure ̺R(~Z)
and for optimizing problem (2) in a context where R = REl, i.e. that the risk measure that captures the

decision maker’s perception is only known to be a convex risk measure together with the information about a

list of pairwise comparisons (E). The main machinery behind our work will be the manipulation of acceptance

sets that is intimately associated to any convex risk measure. Let us recall some of its relevant definitions

here.
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Definition 3.1 (Föllmer and Schied (2002)) Any given convex risk measure ρ ∈ R induces an acceptance set

Aρ := {~Z ∈ R
M | ρ(~Z) ≤ 0} ,

that is convex and monotone in the sense that

~Z1 ∈ Aρ, ~Z2 ≥ ~Z1 ⇒ ~Z2 ∈ Aρ ,

and completely determines ρ such that

ρ(~Z) = inf
m∈R

{m | ~Z +m ∈ Aρ} .

Conversely, given a convex and monotone acceptance set A ⊂ RM containing all points that are considered

acceptable, the risk measure

ρA(~Z) := inf
m∈R

{m | ~Z +m ∈ A}

is a convex risk measure. It is also known that if ρ is a coherent risk measure, then Aρ is convex conique

and monotone, and conversely that any such acceptance set can be used to construct a coherent risk measure

ρA(~Z).

Intuitively, the points in the set Aρ are considered acceptable because they do not require additional

capital in order to be risk free (i.e. that they are less risky than the zero payoff). Moreover, the definition

of a risk measure through ρA(~Z) has played an important role in the adoption of convex risk measure by

appealing to common sense which expects that a risk measure should inform of the minimum amount of

capital required to render a random payoff acceptable in terms of risk.

The key of our analysis lies in studying the worst-case risk measure ̺R(~Z) under the form

̺R(~Z) = sup
A:ρA∈R

inf
m∈R

{m | ~Z +m ∈ A} ,

where ̺R(~Z) returns the largest amount of capital that could be required to guarantee that Z will be
considered risk free. Since the optimal value of the above form can be attained by a convex risk measure (due

to ̺R ∈ R), the problem can be equivalently stated as searching for a worst-case acceptance set A such that

ρA = ̺R. All our results presented in the following sections are established based on the findings that such a

set A can be efficiently constructed. We will initially address how to optimize problem (2) under convex risk

measures and elicited comparisons, REl. We will then quickly address the case of coherent risk measures,
RCE , and complete the story with the additional notion of law invariance, RLE and RCLE .

3.1 The case of convex risk measures

We start this section by considering a special case of ̺R(~Z) when R = REl(E) with E := {(Wk, 0)}Kk=1. We

show how the value of ̺R(~Z) in this case can be obtained by solving a finite dimensional linear program.

This will provide valuable insights in order to obtain our results for the more general form.

Proposition 3.2 Given a set of acceptable random payoffs {Wk}Kk=1 and any random payoff Z, the value

̺REl(E0)(
~Z) with E0 := {(Wk, 0)}Kk=1 and REl(E0) 6= ∅ is obtained as the optimal value of the following linear

program:

̺REl({(Wk,0)}K
k=1)

(~Z) = min
t,θ

t, (4a)

s.t. ~Z + t ≥ Wθ, (4b)

1
⊤θ ≤ 1, θ ≥ 0, (4c)

where t ∈ R, θ ∈ RK , ~Z ∈ RM is the vector representing the outcomes of Z, and W is a M × K matrix

composed of the random payoff vectors { ~Wk}k=1,...,K as its column vectors, i.e. W = [ ~W1
~W2 · · · ~WK ]. Fur-

thermore, in order to verify that REl({(Wk, 0)}Kk=1) 6= ∅, one can simply check that the optimal value of

problem (4) is zero when ~Z = ~0.
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Proof. Following Definition 3.1, all convex risk measures can be described through their acceptance sets. We

can therefore focus on the set of acceptance set candidates

A := {A ⊆ R
M | ρA ∈ REl({(Wk, 0)}

K
k=1)} ,

and we wish to evaluate supA∈A
ρA(~Z). It is not hard to see that for any two sets A1 ∈ A and A2 ∈ A, if

A1 ⊆ A2 then, we have that ρA1(~Z) ≥ ρA2(~Z). We will show that

A∗ := {~Z ∈ R
M | ∃θ ∈ R

K , ~Z ≥
K∑

k=1

θk ~Wk,
∑

k

θk ≤ 1, θ ≥ 0}.

is both a subset of any other sets of A and a member of A. From there one can easily conclude that

ρA∗ ≤ sup
A∈A

ρA(~Z) ≤ ρA∗ .

Problem (4) follows from the definition of ρA∗ .

To show that A∗ ⊆ A for all A ∈ A, one simply needs to observe that A∗ is the set of points that dominate

some convex combinations of the set ~0 ∪ { ~Wk}
K
k=1 and must therefore be included in any convex monotone

set containing ~0 ∪ { ~Wk}Kk=1. Note that the zero vector ~0 is implicitly part of all acceptable random payoff
since REl(E) ⊆ R which imposes that ρ(0) = 0.

In the other direction, we need to verify that A∗ contains the points { ~Wk}Kk=1, and is convex and monotone

and evaluate ρA∗(0) = 0. The first part is obvious. Convexity is verified as follows. Given ~Z1 ∈ A∗ and
~Z2 ∈ A∗, there must exist two convex combination θ1 and θ2 such that ~Zi ≥

∑

k θ
i
k
~Wk when i = 1, 2.

Therefore, given any 0 ≤ α ≤ 1, one can confirm that

α~Z1 + (1− α)~Z2 ≥ α
∑

k

θ1k ~Wk + (1− α)
∑

k

θ2k ~Wk =
∑

k

(αθ1k + (1 − α)θ2k) ~Wk ,

thus that α~Z1 + (1− α)~Z2 is in A∗.

Secondly, monotonicity is verified in a similar way. Given any ~Z1 ∈ A∗, there exists a convex combination
θ1 such that ~Z1 ≥

∑

k θ
1
k
~Wk. Hence, using the same θ1, we can verify that any ~Z2 ≥ ~Z1 satisfies

~Z2 ≥ ~Z1 ≥
∑

k

θ1k
~Wk ,

and is therefore also a member of A∗.

Finally, by construction ρA∗(~0) ≤ 0 since ~0 ∈ A∗. Also, since A∗ ⊆ A for all A ∈ A, it must be that

ρA∗(0) ≥ ρA(0) = 0, or otherwise one just established that REl({(Wk, 0)}Kk=1) = ∅.

The intuition here is simple. Among all the candidate acceptance sets associated to convex risk measures

and that are consistent with the stated acceptable points, the worst-case acceptance set is simply the smallest

monotone polyhedron that covers the convex hull of these acceptance points.

We are now ready for a more interesting result which shows that the preference robust risk minimization

problem can be solved efficiently although it involves a worst-case analysis over an infinite dimensional space

R, or alternatively over a set A of infinite size.

Proposition 3.3 Given a set E of K comparisons, let the set {Xj}Jj=1 := ~0 ∪
⋃K

k=1{Wk, Yk} be the set of all

random payoffs involved in one of the elicited comparison and the zero payoff which we identify as X1. The

preference robust risk minimization problem (2) with REl(E) is equivalent to the optimization problem:

min
x∈X ,t,θ

t, (5a)

subject to ~Z(x) + t ≥ Xθ + δ̄⊤θ, (5b)
~1⊤θ = 1, θ ≥ 0. (5c)
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where t ∈ R, θ ∈ RJ , X := [ ~X1, ~X2, . . . , ~XJ ], and where δ̄ ∈ RJ is the optimal solution of the linear program

max
δ,{yj}J

j=1

J∑

j=1

δj , (6a)

subject to δi ≤ δj , ∀ (i, j) ∈ Ē (6b)

( ~Xi − ~Xj)
Tyj + δi − δj ≥ 0 , ∀ i 6= j (6c)

~1⊤yj = 1, yj ≥ 0, ∀j (6d)

δ1 = 0 , (6e)

where each yj ∈ RM and where Ē is the set of edges in the partial ordering of {Xj}Jj=1 described by the

elicited comparisons: i.e.

Ē := {(i, j) ∈ {1, 2, . . . , J}2 | (Xi, Xj) ∈ E} .

Moreover, problem (5) is a convex optimization problem when each term (~Z(x))i is a concave function of x,

and problem (6) is feasible if and only if REl(E) is non-empty.

While we defer the proof to Appendix B, it is worth mentioning that the steps consist, as was the case

for Proposition 3.2, in showing that the acceptance set

A(X, δ) := {~Z ∈ R
M | ∃θ ∈ R

K , ~Z ≥
K∑

k=1

θk( ~Xk + δk),
∑

k

θk = 1, θ ≥ 0}

with δ = δ̄ is always a worst-case acceptance set when evaluating the risk of any Z(x). In particular,

the set A(X, δ) takes the shape of the monotone convex hull of the points { ~Xj + δj}Jj=1. In problem (6),

the constraints (6c) and (6d) ensure that the values of δ satisfy ρA(X,δ)( ~Xj) = δj, which together with the

constraints δi ≤ δj in (6b) exactly impose that ρA(X,δ)( ~Xi) ≤ ρA(X,δ)( ~Xj). The constraint that δ1 = 0 ensures

that the risk measure evaluated at zero payoff gives zero.

Example 3.1 In a portfolio optimization example, we have that Z(x) = ξ⊤x with ξ : Ω → Rn the random

vector of uncertain investment return rates and x ∈ Rn the wealth allocation vector. Hence, the preference
robust risk minimization problem reduces to

min
x∈X ,t,θ

t,

subject to ξ(ω)⊤x+ t ≥
∑

j Xj(ω)θj + δ̄⊤θ , ∀ω ∈ Ω

~1⊤θ = 1, θ ≥ 0,

where ξ(ω) is the vector of returns achieved for each asset under outcome ω and Xj(ω) is the payoff returned

for ω by the random payoff Xj used in the elicited comparisons. The set X is defined via linear portfolio

constraints. For simplicity, we consider X := {x | ~1⊤x = W}, where W is the total wealth to be invested.
One should note that this optimization problem takes the shape of a linear program with O(n+K) decision

variables and O(M + K) constraints. Yet, in order to identify δ̄, problem (6) must first be solved which

also takes the form of a linear program but with O(MK) decision variables and O(K2) constraints. In both

cases, the linear programs can be considered of reasonable sizes and solution times should scale reasonably
well with the problem dimensions.

3.2 The case of coherent risk measures

Following closely the steps we took to show the tractability for the case of convex risk measures, we can prove

quite straightforwardly the tractability for the case of coherent risk measures. In particular, we can carry

over the same intuition regarding the construction of the worst-case acceptance set given in Proposition 3.2

to the case of coherent risk measures. In the former, given a set of acceptance points {Wk}
K
k=1 the worst-case

acceptance set was shown to be the smallest monotone polyhedron that covers all the acceptance points. In
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the latter, as any candidate acceptance set A should additionally satisfies ~Z ∈ A ⇒ λ~Z ∈ A, which is by

definition a cone, the worst-case acceptance set would thus be the smallest monotone polyhedral cone that

covers all the acceptance points {Wk}
K
k=1. Recall that such a polyhedral cone admits the representation of

{~Y ∈ RM | ~Y ≥
∑K

k=0
~Wkθk, θk ≥ 0, ~W0 = ~0}. A rigorous proof that validates this intuition is omitted here

as it is almost identical to the proof of Proposition 3.2.

Once we confirmed the structure of the worst-case acceptance set, the preference robust risk minimization
problem (2) with RCE(E) can be found as tractable as with REl(E). In particular, we arrive at the following

result, which can be proved following identical steps as in appendix B.

Proposition 3.4 Given a set E of K comparisons, let the set {Xj}Jj=1 := ~0∪
⋃K

k=1{Wk, Yk} be the support set

of all random payoffs involved in one of the elicited comparison and the zero payoff which we identify as X1.
The preference robust risk minimization problem (2) with RCE(E) is equivalent to the optimization problem:

min
x∈X ,t,θ

t, (7a)

subject to ~Z(x) + t ≥ Xθ + δ̄⊤θ, (7b)

θ ≥ 0, (7c)

where t ∈ R, θ ∈ RJ , X := [ ~X1, ~X2, . . . , ~XJ ], and where δ̄ ∈ RJ is the optimal solution of the linear program

max
δ,{yj}J

j=1

J∑

j=1

δj , (8a)

subject to δi ≤ δj , ∀ (i, j) ∈ Ē (8b)

− ~XT
j yj − δj ≥ 0 , ∀ j = 1, . . . , J (8c)

~XT
i yj + δi ≥ 0 , ∀ i 6= j (8d)

~1⊤yj = 1, yj ≥ 0, ∀j (8e)

δ1 = 0 , (8f)

where each yj ∈ RM , and where Ē is the set of edges in the partial ordering of {Xj}Jj=1 described by the

elicited comparisons: i.e.

Ē := {(i, j) ∈ {1, 2, . . . , J}2 | (Xi, Xj) ∈ E} .

Moreover, problem (7) is a convex optimization problem when each term (~Z(x))i is a concave function of x,

and problem (8) is feasible if and only if RCE(E) is non-empty.

Comparing Proposition 3.3 and 3.4, one can see they differ in that the constraint 1
⊤θ = 1 in Proposi-

tion 3.3 is dropped in Proposition 3.4 due to the use of of a polyhedral cone, rather than a polyhedron, to

represent the worst-case acceptance set.

Example 3.2 The portfolio optimization example in Example 3.1 can be reformulated as the following pref-

erence robust risk minimization problem based on Proposition 3.4:

min
x∈X ,t,θ

t,

subject to ξ(ω)Tx+ t ≥
∑

j Xj(ω)θj + δ̄⊤θ , ∀ω ∈ Ω

θ ≥ 0.

This is a linear program with O(n + K) decision variables and O(M + K) constraints. The parameter δ̄

can be generated from the linear program (8) that has O(MK) decision variables and O(K2) constraints.

Comparing with Example 3.1, one can see the sizes of the above linear program and the linear program (8)

grow in the same order as the linear programs formulated based on convex risk measures.
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3.3 The case of law-invariant risk measures

To incorporate further the law invariance hypothesis, we now consider the sets of risk measures

RLE(E) := RLaw ∩REl(E) ,

RCLE(E) := RCoh ∩RLaw ∩REl(E) .

We start by focusing on the following setting, which helps best understand the complexity involved in dealing

with these sets and the techniques required to resolve the complexity.

Assumption 3.5 The probability measure F associated to the discrete probability space is the uniform measure,
i.e. P ({ωi}) = 1/M for any ωi ∈ Ω. Recall that |Ω| = M .

As would be shown later, in this setting the hypothesis of law invariance is tightly connected to the notion

of permutation which we define in detail below.

Definition 3.6 A permutation over M elements is a bijection function σ : {1, ...,M} → {1, ...,M}. We

call the random variable permutation operator σ, the operator that permutes the values associated to each

outcome of a random variable according to the bijection σ. Mathematically speaking, we have that (σ( ~X))i =

X(ωσ−1(i)). We will denote with Σ the set of all random variable permutation operators in the Ω outcome

space.

Actually, under the law invariance assumption, one quickly realizes that any preference of the type W � Y

implies that σ(W ) � σ′(Y ) for all pair (σ, σ′) of permutation operators. This is simply due to the fact that

σ(Z) ≡F Z (i.e. in distribution) when F is the uniform distribution no matter what permutation operator

is used. Hence we must have that σ(W ) � W � Y � σ′(Y ). This leads us to consider an augmented set of
elicited comparison

Σ(E) := {(W,Y )|∃σ′ ∈ Σ, σ′ ∈ Σ, (σ(W ), σ′(Y )) ∈ E}.

Risk measures that are known to comply with the elicited comparisons E and to be law invariant should also

respect preference orderings described in the augmented set Σ(E). What is more interesting is actually the
reverse statement, which we prove in the following lemma that robust risk measures if constructed directly

based on the augmented set Σ(E) would coincide with the law invariant measures based on E . This result

shifts the complexity of incorporating the hypothesis of law invariance from the set of law-invariant risk

measures RLE(E) to the set of convex risk measures REl(Σ(E)) (or from RCLE(E) to RCE(Σ(E))).

Lemma 3.7 The preference robust risk measure ̺RLE(E)(~Z) := supρ∈RLE(E) ρ(
~Z) is equivalent to ̺RLE(Σ(E))

(~Z) and ̺REl(Σ(E)) (~Z). Similarly, the preference robust risk measure ̺RCLE(E)(~Z) is equivalent to ̺RCLE(Σ(E))

(~Z) and ̺RCE(Σ(E))(~Z).

Proof. In the case of robust convex risk measures, one can first establish that ̺RLE(E)(~Z) = ̺RLE(Σ(E))(~Z) if

it can be verified that RLE(E) = RLE(Σ(E)). This can be done with the following argument. Given that the
later set imposes more constraints on the risk measure, it must be that RLE(E) ⊇ RLE(Σ(E)). In fact, given

any ρ ∈ RLE(E), one can confirm that it is a member of RLE(Σ(E)) since for any pair (W ′, Y ′) ∈ Σ(E), there
must be a comparison (W,Y ) ∈ E and a pair of permutation operators (σW , σY ) such that W ′ = σW (W )

and Y ′ = σY (Y ), hence that

ρ( ~W ′) = ρ(σW ( ~W )) = ρ( ~W ) ≥ ρ(~Y ) = ρ(σY (~Y )) = ρ(~Y ′) ,

where the second and third equalities are due to the fact that ρ is law invariant.

Next, we prove that ̺RLE(Σ(E))(~Z) is equivalent to ̺REl(Σ(E))(~Z). Since RLE(Σ(E)) ⊆ REl(Σ(E)), we

must have that ̺RLE(Σ(E))(~Z) ≤ ̺REl(Σ(E))(~Z). To get the reverse, we can consider that given any ρ ∈

REl(Σ(E)), one can construct a new risk measure ρΣ(~Z) := maxσ∈Σ ρ(σ(~Z)). It is clear that ρΣ ∈ RLE(Σ(E))
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and that ρΣ(~Z) ≥ ρ(~Z).8 We can conclude that

̺REl(Σ(E))(~Z) = sup
ρ∈REl(Σ(E))

ρ(~Z) ≤ sup
ρ∈RLE(Σ(E))

ρ(~Z) = ̺RLE(Σ(E))(~Z) .

Hence, we know that

̺RLE(Σ(E))(~Z) ≤ ̺REl(Σ(E))(~Z) ≤ ̺RLE(Σ(E))(~Z) .

The proof for the case of robust coherent risk measures is similar.

The complexity of constructing risk measures ̺REl(Σ(E))(~Z) (resp. ̺RCE(Σ(E))(~Z)) lies in the size of the

augmented set Σ(E), which grows exponentially with respect to the number of elicited comparisons. Our

next result is to show that the convex optimization problems formulated based on Proposition 3.3 (resp.

Proposition 3.4) for ̺REl(Σ(E))(~Z) (resp. ̺RCE(Σ(E))(~Z)) can be reduced to problems whose size no longer
depend on the size of the set of permutations and grow polynomially with the number of elicited comparisons.

In the following lemma, we present first the reduced formulation for the offline optimization problem (6) in

Proposition 3.3 with the augmented set Σ(E).

Lemma 3.8 The optimization problem

max
δ,{yj,σ}J

j=1,σ∈Σ

J∑

j=1

∑

σ∈Σ

δj,σ, (9a)

subject to δi,σ ≤ δj,σ′ , ∀ (i, j) ∈ Ē , ∀σ ∈ Σ, ∀σ′ ∈ Σ (9b)

(σ( ~Xi)− σ′( ~Xj))
Tyj,σ′ + δi,σ − δj,σ′ ≥ 0 , ∀ i 6= j, ∀σ ∈ Σ, ∀σ′ ∈ Σ (9c)

~1⊤yj,σ = 1, yj,σ ≥ 0, ∀ j, ∀σ ∈ Σ (9d)

δ1,σ = 0, ∀σ ∈ Σ , (9e)

where Ē is the set of edges in the partial ordering of {Xj}Jj=1 described by the elicited comparisons: i.e.

Ē := {(i, j) ∈ {1, 2, . . . , J}2 | (Xi, Xj) ∈ E} ,

has an optimal solution for which δj,σ = δj,σ′ for all j, all σ ∈ Σ, and all σ′ ∈ Σ. Furthermore, it reduces to

solving the following linear programming problem

max
δ,{yj}J

j=1,{vi,j ,wi,j}
i=J,j=J
i=1,j=1

|Σ|
J∑

j=1

δj , (10a)

subject to δi ≤ δj , ∀ (i, j) ∈ Ē (10b)

~1⊤vi,j + ~1⊤wi,j − ~X⊤
j yj + δi − δj ≥ 0 , ∀ i 6= j (10c)

~Xiy
⊤
j − vi,j~1

⊤ − ~1wi,j ≥ 0 , ∀ i 6= j (10d)

~1⊤yj = 1, yj ≥ 0 , ∀ j (10e)

δ1 = 0 , (10f)

where each yj ∈ RM , each vi,j ∈ RM , and each wi,j ∈ RM .

Proof. To demonstrate this lemma, we will prove that given any feasible solution (δ, {yj,σ}
J
j=1,σ∈Σ), one can

construct a feasible solution

8We use the fact W ≡F Y ⇔ ∃σ : ~Y = σ( ~W ) here. The direction ⇐ is clear as discussed. To see ⇒, note that following
Assumption 3.5, any law FX can be expressed by P (X = xk) = |{ω ∈ Ω | X(ω) = xk}|/M, ∀k. W ≡F Y implies that

|{ω ∈ Ω | W (ω) = xk}| = |{ω ∈ Ω | Y (ω) = xk}|,∀k. ~Y = σ( ~W ) easily follows.
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δ̄i,σ :=
1

|Σ|

∑

σ′∈Σ

δi,σ′ , ∀σ ∈ Σ, ∀i = 1, ..., J

ȳi,σ :=
1

|Σ|
σ

(
∑

σ′∈Σ

σ′−1
(yi,σ′)

)

, ∀σ ∈ Σ, ∀i = 1, ..., J

that achieves the same objective value and has the added property that the value of δ̄i,σ is the same for all

permutations.

First, the objective is necessarily the same since

J∑

j=1

∑

σ∈Σ

δ̄j,σ =

J∑

j=1

∑

σ∈Σ

1

|Σ|

∑

σ′∈Σ

δj,σ′

=

J∑

j=1

∑

σ′∈Σ

∑

σ∈Σ

1

|Σ|
δj,σ′

=

J∑

j=1

∑

σ′∈Σ

δj,σ′ .

Next, we confirm one constraint at a time that each of constraints (9b) to (9e) are satisfied. For con-

straint (9b), we have that:

δ̄i,σ =
1

|Σ|

∑

σ′′∈Σ

δi,σ′′ ≤
1

|Σ|

∑

σ′′′∈Σ

δj,σ′′′ = δ̄j,σ′ .

In the case of constraint (9c), the work is a bit more tedious

(σ( ~Xi)− σ′( ~Xj))
Tȳj,σ′ + δ̄i,σ − δ̄j,σ′

= (σ( ~Xi)− σ′( ~Xj))
T 1

|Σ|
σ′

(
∑

σ′′∈Σ

σ′′−1
(yj,σ′′)

)

+ δ̄i,σ − δ̄j,σ′

=
1

|Σ|

∑

σ′′∈Σ

(σ′−1
(σ( ~Xi))− ~Xj)

Tσ′′−1
(yj,σ′′) + δ̄i,σ − δ̄j,σ′

=
1

|Σ|

∑

σ′′∈Σ

(σ′′(σ′−1
(σ( ~Xi)))− σ′′( ~Xj))

T(yj,σ′′) + δ̄i,σ − δ̄j,σ′

≥
1

|Σ|

∑

σ′′∈Σ

δj,σ′′ − δi,σ′′◦σ′−1◦σ + δ̄i,σ − δ̄j,σ′ = 0 ,

where we used the fact that

(σ′′(σ′−1
(σ( ~Xi)))− σ′′( ~Xj))

T(yj,σ′′ ) ≥ δj,σ′′ − δi,σ′′◦σ′−1◦σ

and in the last step we used the fact the sum is over all possible permutations. Finally, constraints (9d)

and (9e) can easily be verified.

~1⊤ȳj,σ =
1

|Σ|
~1⊤σ

(
∑

σ′∈Σ

σ′−1
(yj,σ′)

)

=
1

|Σ|

∑

σ′∈Σ

~1⊤σ′−1
(yj,σ′) =

1

|Σ|

∑

σ′∈Σ

~1⊤yj,σ′ = 1

δ̄1,σ =
1

|Σ|

∑

σ′∈Σ

δ1,σ′ = 0 .

This completes the proof that problem (9) has an optimal solution for which δj,σ = δj,σ′ for all j, all σ ∈ Σ,

and all σ′ ∈ Σ.
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Given the existence of an optimal solution with such structure it is possible to simplify the problem by

optimizing only over all δj,σ = δj and yi,σ := σ (yi). This gives rise to the following problem:

max
δ,{yj}J

j=1

J∑

j=1

∑

σ∈Σ

δj ,

subject to δi ≤ δj , ∀ (i, j) ∈ Ē

(σ( ~Xi)− ~Xj)
Tyj + δi − δj ≥ 0 , ∀ i 6= j, ∀σ ∈ Σ (11)

~1⊤yj = 1, yj ≥ 0, ∀ j

δ1 = 0 ,

where we used the fact that
~1⊤σ(yj) = ~1⊤yj

and the fact that

(σ( ~Xi)− σ′( ~Xj))
Tσ′(yj) + δi − δj = (σ′−1

(σ( ~Xi))− ~Xj)
Tyj + δi − δj .

We are left with constraint (11) which can be stated as

min
σ∈Σ

σ( ~Xi)
Tyj − ~XT

j yj + δi − δj ≥ 0 , ∀ i 6= j , (12)

and that we will reduce using duality theory.

Consider that minσ∈Σ σ( ~Xi)
Tyj is equal to the optimal value of the optimization problem

min
Q

y⊤Q ~X

subject to Q⊤~1 = ~1

Q~1 = ~1

Qk,l ∈ {0, 1} , k = 1, ...,M, l = 1, ...,M

where Q ∈ RM×M . Due to the result of Birkhoff (1946), the above problem, also known as linear assignment

problem, can be solved exactly by relaxing the binary constraints into the constraint that each variable is
real valued between 0 and 1. Since the relaxed form of this problem satisfies Slater conditions, we have that

strict duality holds thus that the optimal value can also be obtained through the following dual problem :

max
v,w

~1⊤v + ~1Tw

subject to ~Xy⊤ − v~1⊤ − ~1w⊤ ≥ 0 ,

where v ∈ RM and w ∈ RM . When replacing the first term of the constraint stated in equation (12),

we get that constraint (11) is satisfied as long as there exists a set of values for vi,j and wi,j that satisfy
constraints (10c) and (10d). This completes our proof.

We are left with showing that the problem (5) in Proposition 3.3 can as well be reduced a problem

independent of the size of the set of permutations Σ. We prove this in the following proposition, which also
wraps up our result for the case of law-invariant risk measures based on a uniform probability measure.

Proposition 3.9 Given a set E of K comparisons, let the set {Xj}Jj=1 := ~0∪
⋃K

k=1{Wk, Yk} be the support set

of all random payoffs involved in one of the elicited comparison and the zero payoff which we identify as X1.

When the distribution on the discrete probability space is uniform, the preference robust risk minimization
problem (2) with RLE(E) is equivalent to the optimization problem:
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min
x∈X ,t,θ,{Qj}

t, (13a)

subject to ~Z(x) + t ≥
∑

j Qj
~Xj + δ̄⊤θ, (13b)

Qj
~1 = θj , ∀ j (13c)

Q⊤
j
~1 = θj , ∀ j (13d)

~1⊤θ = 1 (13e)

θ ≥ 0, Qj ≥ 0 ∀ j (13f)

where t ∈ R, θ ∈ R
J , and each Qj ∈ R

M×M , and where δ̄ ∈ R
J is the optimal solution of the linear

program (10). Moreover, problem (13) is a convex optimization problem when each term (~Z(x))i is a concave

function of x, and problem (10) is feasible if and only if RLE(E) is non-empty.

Proof. Based on Lemma 3.7, we have that the preference robust risk minimization problem (2) with RLE(E)
is equivalent to using the set of risk measure REl(Σ(E)). According to Proposition 3.3, minimizing this

preference robust risk measure can be achieved by solving:

min
x∈X ,t,λ

t,

subject to ~Z(x) + t ≥
∑

j,σ λj,σ(σ( ~Xj) + δ̄j,σ)
∑

j,σ λj,σ = 1, λ ≥ 0 ,

where λ ∈ RJ×|Σ|, and where δ̄j,σ is an optimal solution to problem (9). Yet, according to Lemma 3.8,

problem (9) reduces to problem (10) which always identifies solution for which δ̄j,σ is constant over σ ∈ Σ.
This means that the optimization problem described above reduces to:

min
x∈X ,t,λ,θ

t,

subject to ~Z(x) + t ≥
∑

j,σ

λj,σσ( ~Xj) +
∑

j

θj δ̄j

θj =
∑

σ∈Σ

λj,σ , ∀ j

∑

j,σ

λj,σ = 1, λ ≥ 0 ,

which can easily be shown equivalent to

min
x∈X ,t,λ′,θ

t,

subject to ~Z(x) + t ≥
∑

j

θj(
∑

σ

λ′
j,σQσ) ~Xj +

∑

j

θj δ̄j

∑

σ∈Σ

λ′
j,σ = 1 , ∀ j, λ′ ≥ 0 ,

∑

j

θj = 1, θ ≥ 0 ,

where Qσ ∈ RM×M is the permutation matrix associated to the σ permutation operator. One can finally

realize that for each j, the set captured by {
∑

σ λ
′
j,σQσ |

∑

σ∈Σ λ′
j,σ = 1, λ′

j,σ ≥ 0 ∀σ , } describes the

convex hull of all permutation matrices which is known given the result of Birkhoff (1946) to be equivalently
represented by {Qj ∈ RM×M | Qj

~1 = ~1, Q⊤
j
~1 = ~1, Qj ≥ 0}. Using this simpler representation we obtain the

following optimization problem
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min
x∈X ,t,θ,{Qj}

t,

subject to ~Z(x) + t ≥
∑

j

θjQj
~Xj +

∑

j

θj δ̄j

Qj
~1 = ~1 , Q⊤

j
~1 = ~1

∑

j

θj = 1

Qj ≥ 0, θj ≥ 0 , ∀ j .

This last version of the problem reduces to problem (13) when replacing Q′
j := θjQj .

Up to this point, we have unraveled how to account in the optimization model for the law invariance

hypothesis when the probability measure is uniform. Our next step is to show how this result can be

generally applied in practice. In particular, let us consider how preference elicitation would actually work for

a decision maker whose risk perception depends only on distribution of Z (i.e. its cumulative mass function),
rather than how Z actually maps from Ω to R. Given that when asked to compareW to Y , the decision maker

really only compares their respective distribution FW and FY , we can assume without loss of generality that

preferences are stated in terms of distributions, which is also potentially more practical. Elicited comparisons

therefore take the shape of the set {(FW
k , FY

k )}Kk=1 indicating that for each k the distribution FW
k is perceived

at most as risky as FY
k . For simplicity of exposure, we also make the following assumption.

Assumption 3.10 The random variable Z(x) can be expressed as Z(x) := r(x, ξ) for some random vector

ξ : Ω → Rm with finite support S ∈ Rm such that S := {ξ1, ξ2, . . . , ξMξ
} and probability vector pξ ∈ RMξ such

that pξi = P (ξ = ξi) for all i, and some function r : Rn × Rm → R that is concave in x over the set X for

any ξi ∈ S.

Under the law-invariance assumption, the preference robust risk minimization problem (2) can then be

presented as

min
x∈X

sup
ρ∈RLE({(FW

k
,FY

k
)}K

k=1)

ρ(~Z(x)), (14)

where we overloaded the definition of RLE so that

RLE({(F
W
k , FY

k )}Kk=1) := RLE({(Wk, Yk)}
K
k=1)

with Wk and Yk chosen as any random variable that respectively have the distributions FW
k and FY

k .

We show in the following proposition that the above problem can also be reformulated into a tractable

convex optimization reformulation given that the following assumption holds.

Assumption 3.11 All probability distributions employ rational numbers as probability values.

The key idea behind the proof of the following result, which we defer to Appendix C, is that with As-

sumption 3.11 we can map any given distribution to a random payoff in a high-dimensional outcome space

endowed with a uniform probability measure. In that space, the results of Lemma 3.8 and Proposition 3.9

can be applied. Thereafter, it is possible to reduce the problem formulated in that high-dimensional space to

an equivalent optimization problem with dimensionality depending only on the sizes of the supports of the
distributions that are involved.

Proposition 3.12 Given a set E of K comparisons, let the set {Fj}Jj=1 be the set of all distributions in-

volved in one of the elicited comparison and the distribution of a zero payoff identified as F1. Further-

more, for each j ∈ {1, 2, . . . , J}, let the pair ( ~Xj , p
j) ∈ R

Mj × R
Mj capture the distribution of Fj such

that Fj =
∑Mj

i=1 p
j
iDirac(( ~Xj)i), with Dirac(( ~Xj)i) is the Dirac measure that puts all of its weight on

( ~Xj)i. Given that Assumptions 3.10 and 3.11 hold, the preference robust risk minimization problem (2) with
RLE({(FW

k , FY
k )}Kk=1) is equivalent to the optimization problem:
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min
x∈X ,t,θ,{Cj}

t, (15a)

subject to ~Zξ(x) + t ≥
∑

j Cj
~Xj + δ̄⊤θ, (15b)

Cj
~1 = θj , ∀ j (15c)

(Πj ◦ Cj)
⊤~1 = θj , ∀ j (15d)

~1⊤θ = 1 (15e)

θ ≥ 0, Cj ≥ 0 ∀ j (15f)

where ◦ is the Hadamard product,9 t ∈ R, θ ∈ RJ , and each Cj ∈ RMξ×Mj , and where ~Zξ(x) refers to the

vector [r(x, ξ1) r(x, ξ2) . . . r(x, ξMξ
)]⊤. Furthermore, for each j, the matrix Πj ∈ RMξ×Mj is defined such

that (Πj)m,n = pξm/pjn. Finally, the parameter δ̄ ∈ RJ is the optimal solution of the following linear program.

max
δ,{yj}J

j=1,{vi,j ,wi,j}
i=J,j=J
i=1,j=1

J∑

j=1

δj , (16a)

subject to δi ≤ δj , ∀ (i, j) ∈ Ē (16b)

~1⊤vi,j + ~1⊤wi,j − ~X⊤
j yj + δi − δj ≥ 0 , ∀ i 6= j (16c)

Πi,j ◦ ( ~Xiy
⊤
j )− vi,j~1

⊤ −Πi,j ◦ (~1w
⊤
i,j) ≥ 0 , ∀ i 6= j (16d)

~1⊤yj = 1, yj ≥ 0 , ∀ j (16e)

δ1 = 0 , (16f)

where δ ∈ RJ , yj ∈ RMj , wi,j ∈ RMj , vi,j ∈ RMi , where the matrix Πi,j ∈ RMi×Mj is defined such that

(Πi,j)m,n := pim/pjn, and finally where Ē is the set of edges in the partial ordering of {Fj}
J
j=1 described by the

elicited comparisons. Namely,

Ē := {(i, j) ∈ {1, 2, . . . , J}2 | (Fi, Fj) ∈ {(FW
k , FY

k )}Kk=1} .

Moreover, problem (15) is a convex optimization problem when each term r(x, ξi) is a concave function of x,
and problem (16) is feasible if and only if RLE({(FW

k , FY
k )}Kk=1) is non-empty.

Example 3.3 In a portfolio optimization example, we assume the vector of returns achieved for each asset

follows a multivariate distribution such that P (ξ = ξi) = pξi for each i = 1, ...,Mξ. The preference robust risk

minimization problem reduces to

min
x∈X ,t,θ,{Cj}J

j=1

t, (17a)

subject to ξ⊤i x+ t ≥
∑

j

(Cj)i,:~Sj + δ̄⊤θ, i = 1, ...,Mξ (17b)

Cj
~1 = θ, ∀ j ∈ {1, ..., J} (17c)

(Πj ◦ Cj)
⊤~1 = θj , ∀ j ∈ {1, ..., J} (17d)

Cj ≥ 0, ∀ j ∈ {1, ..., J} (17e)

~1⊤θ = 1, θ ≥ 0. (17f)

This is a linear program with O(n + M̄2K) decision variables and O(M̄2K) constraints, where M̄ denotes

the size of the largest support of all distributions involved, i.e. M̄ = max{Mξ,M1,M2, . . . ,MJ}. The linear

program (16) that generates the parameter δ̄ has O(M̄K2) decision variables and O(M̄2K2) constraints.
Note that while the computational burden associated to problem (16) grows quadratically with respect to

the number of comparisons K, this problem needs only to be solved once after meeting with the investor.

Once this is done, the portfolio can easily be re-optimized as new market information is received by solving

problem (17) which size grows only linearly in K.

9The Hadamard product of two matrices of same size is defined as (A ◦B)i,j := Ai,jBi,j .
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We end this section by considering the last set of measuresRCLE(E), which incorporates all the properties

addressed earlier. Using the same notation for the case of RLE(E), we can write the preference robust risk

minimization problem (2) with the set RCLE(E) as

min
x∈X

sup
ρ∈RCLE({(FW

k
,FY

k
)})

ρ(~Z(x)), (18)

where RCLE is again overloaded to take as argument comparisons of distributions. We show in the following

proposition that the optimization problem (18) is just as tractable as the problem (14).

The result below can be obtained by applying similar steps we took in Appendix C to prove Proposi-

tion 3.12.

Proposition 3.13 Given a set E of K comparisons, let the set {Fj}Jj=1 be the set of all distributions in-

volved in one of the elicited comparison and the distribution of a zero payoff identified as F1. Further-

more, for each j ∈ {1, 2, . . . , J}, let the pair ( ~Xj , p
j) ∈ RMj × RMj capture the distribution of Fj such

that Fj =
∑Mj

i=1 p
j
iDirac(( ~Xj)i), with Dirac(( ~Xj)i) is the Dirac measure that puts all of its weight on

( ~Xj)i. Given that Assumptions 3.10 and 3.11 hold, the preference robust risk minimization problem (2)

with RCLE({(FW
k , FY

k )}Kk=1) is equivalent to the optimization problem (15) from which constraint (15e) is

removed, and where δ̄ is the optimal solution of problem (16) with constraint (16c) replaced with

− ~X⊤
j yj − δj ≥ 0, ∀j

~1⊤vi,j + ~1⊤wi,j + δi ≥ 0 , ∀ i 6= j .

Again, the modified version of problem (15) is a convex optimization problem when each term r(x, ξi) is a

concave function of x, and the revised version of problem (16) is feasible if and only if RCLE({(FW
k , FY

k )}Kk=1)

is non-empty.

4 Numerical experiments

In this section, we illustrate the use of robust risk measure framework on a portfolio optimization problem.

Namely, we consider the situation of a financial adviser that is asked by his client to propose an investment

strategy among a specific set of assets so that the risk exposure is as low as possible. A priori, the adviser is

not aware of how client perceives risk and might simply assume that this client will be happy with a portfolio

that minimizes an arbitrary conditional value at risk (CVaR) measure such as the 20% CVaR. Unfortunately,
this might not be how this investor perceives risk hence the motivation for using our framework.

In this context, the investor is first asked whether he agrees with the monotonicity, strict monotonicity

for certain payoffs, quasi-convexity, and translation invariance conditions, and can further be asked if he is

comfortable with the scale or law invariance axioms. Once it is done, the set of plausible risk measures can be

further refined by presenting to him a set of pairs of random payoffs to compare. If the client agreed with law
invariance, then he can be asked to compare cumulative mass functions, otherwise it is necessary to describe

to him what the payoffs are obtained for each potential future state of the world. Alternatively, the client

can also be asked, from a given list of random payoffs, what the certain amount of payoff is that he considers

equivalent to each payoff in the list, or the range that contains the certainty equivalent to each payoff. As
an example, we present in Figure 1(a) three random returns X1(ω), X2(ω), and X3(ω) constructed based

on selected 13 weeks of returns, i.e. |Ω| = 13, and present in Figure 1(b) the respective cumulative mass

functions FX1 , FX2 , and FX3 . One can see that comparing random returns is considerably more involved

than comparing their cumulative functions, as the former is state-dependent. In addition, from (b) we can

see that if the client agreed with law invariance, comparing X1 and X3 becomes unnecessary since FX1

dominates FX3 , which implies that there exists a permutation σ such that X1 ≥ σ(X3), and by monotonicity

ρ(X1) ≤ ρ(σ(X3)), ∀σ. Note that in the case that the client does not agree with the scale invariance, care

has to be taken to clearly indicate to the client that Figure 1 is presented based on returns. His preferences

could depend on the total amount of wealth he decides to invest.



Les Cahiers du GERAD G–2015–05 19

The nth state

1 2 3 4 5 6 7 8 9 10 11 12 13

R
et

ur
n 

(i
n 

p.
p.

)

-1

-0.5

0

0.5

1

1.5

X
1
 

X
2

X
3

(a)

Return (in p.p.)
-1 -0.5 0 0.5 1 1.5

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

0

0.2

0.4

0.6

0.8

1

FX
1

FX
2

FX
3

(b)

Figure 1: Three risky returns and their cumulative mass functions

Finally, the adviser must then solve the appropriate model presented in one of the previous sections

in order to obtain a portfolio that is robust with respect to the existing ambiguity about the client’s risk

perception.

The specifics of our experimentation are as follows. We consider a week long investment on a set of four

assets. We simulate our client investor by assuming that his perception of risk is exactly captured by the

spectral risk measure function:

ρ̄(~Z) := 0.1 · CVaR20%(~Z) + 0.9 ·E[−~Z] .

Note that while the simulated investor will always make comparisons of random payoffs according to this

mathematical representation, neither the investor nor his adviser have the means of identifying precisely this
function. In order to focus on issues related to the identification of the right risk exposure, we assume that

both the investor and his adviser have reached a consensus on the probabilistic model that should be used.

In particular, they assume that each of the last 13 weeks of the term provides an equiprobable scenario for

the joint set of weekly returns generated by the assets. Since the true risk measure is not known by the
adviser, it is plausible to think that if he was to commit to a certain risk measure, he might choose the

20%-CVaR or the expected loss. With our framework, the adviser instead would be able to ask the investor

to estimate the certainty equivalent of a set of random payoffs, each constructed by sampling a random set of

13 weekly returns from a historical dataset for a range of reference years. It is expected that a larger number

of these certainty equivalent estimates will lead to less conservative solutions. Specifically, we compare the
performances of the portfolios that are obtained using the following risk measures: CVaR20%(~Z), expected

loss, i.e. E[−~Z], robust risk measure with REl, with RCE , with RLE , with RCLE , and investor’s true risk

measure: ρ̄(~Z). The resulting performances will all be evaluated as truly perceived by the investor, i.e.

evaluated using ρ̄(~Z). Note that ρ̄(~Z) is normalized so that it returns the certain loss that is considered
equivalent to Z.

We run 5000 experiments using historical stock market data about 335 companies that are part of the

S&P 500 index during the period from January 1994 until December 2013. Each experiment consists of
drawing 4 assets randomly from the pool of 335 and a random week in the period from January 2004 to

December 2013, and require each method to propose a portfolio using the distributional model constructed

based on the latest 13 weekly returns, and subject to the constraints ~1⊤x = 1 and x ≥ 0. To simulate

elicited comparisons, we require the investor to estimate the certainty equivalent of up to 500 random payoffs
constructed based on historical data extracted from the period between January 1994 to December 2003.

In each experiment, we evaluate the in-sample performance of each resulting portfolio using ρ̄(~Z) based on

the same 13 weekly returns used in optimizing the portfolio, and then calculate the realized return of each

resulting portfolio based on the week that immediately follows. The average of the in-sample performance

over 5000 experiments is presented in Figure 2, whereas in Figure 3 the statistics of realized returns in terms
of average, 20%-CVaR, and ρ̄ risk measure are presented as out-of-sample performance.

When studying Figure 2, one should notice that when the wrong risk measure is used in the optimization
model (specifically the expected loss or 20% CVaR measure), the performance of the portfolio that is obtained

is necessarily biased. On the other hand, when a preference robust risk measure is used, the true perceived
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Figure 2: Comparison of the average perceived risk (in lost percentile points) for the portfolio obtained
using either CVaR minimization, expected loss minimization or the minimization of a preference robust risk
measure with certainty equivalent knowledge for up to 500 random payoffs (including the null payoff) in
a set of 5000 experiments. We also report the best average perceived risk that could be obtained if the
representation of this perception was exactly known.

risk can quickly be improved by either making further hypotheses about the risk preference relation, like
coherence or law invariance, or by increasing the knowledge about the risk measure through making the

comparison of more uncertain payoffs. Based on this set of experiments, we observe that when the investor

agrees with law invariance knowing the certainty equivalent of as little as 10 random payoffs is sufficient to

approximate fairly accurately his attitude with respect to risk. Otherwise, the same accuracy can theoretically

be achieved by assessing the certainty equivalent of a larger number of random payoffs. The results however
seem to indicate that the price for doing so is high. Indeed, while one might not be entirely comfortable

with the law invariance hypothesis, the reported performances for REl and RCE seem to indicate that an

impracticable number of questions need to be answered by the investor in order to identify a legitimate

portfolio. Note that in this regard we have good hope that preference elicitation strategies along the lines
of what was presented in Section 4.3.1 of Armbruster and Delage (2015) might significantly improve the

convergence.

The out of sample statistics presented in Figure 3 do illustrate how methods that are based on expected

loss, CVaR, and the ρ̄ risk measure generally propose portfolios that perform better in terms of these specific

statistics. More importantly, two key observations can be made in these figures. First, it appears in Figure 3
(c) that the convergence of the performance of preference robust risk minimization methods to the best

perceivable risk is much improved in terms of the number of questions that need to be answered. We believe

this to be due to the fact that the historical data somehow mis-estimates the odds of possible future payoffs

thus reducing the value of reaching high accuracy in the risk measure that is employed. The second key

observation lies in Figure 3 where one should notice that all preference robust risk minimization methods
propose portfolios that are more conservative than the portfolios optimized based on the ρ̄ risk measure in

terms of 20% CVaR. We believe this is an important feature of these methods; namely, that in case of doubt

about how risk should be measured, our framework will encourage investing conservatively. In other words,

our framework will wait to have sufficient information indicating that the decision maker does not worry so
much about tail events (i.e. low probability CVaR) before suggesting portfolios that achieve poorly for such

events.

5 Conclusion

In this work, we propose for the first time a framework that can be used to interact with a decision maker

who seeks to optimize a financial position, and to identify, based on information that is gathered about

the decision maker’s subjective perception of risk, a well-motivated convex risk measure to employ. Unlike
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Figure 3: Statistic about the out of sample performance of the portfolios proposed by the different methods
when implementing then on the week following the analysis. (a) compares the average return over the 5000
experiments. (b) compares the 20% CVaR of the empirical distribution described by the returns obtained in
the 5000 experiments. (c) presents the risk as perceived by the investor for this distribution.
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previous discussions about what makes a good risk measure, we employ a language that is entirely based on

assessing which random payoffs are considered less/as/more risky than the others, and resolve any ambiguity

that is left regarding the final selection of an appropriate measure using a conservative point of view. In our
opinion, the value of such a framework is two-fold. First, it should allow a better adoption of risk measures

in fields of practice where the stake-holders are not comfortable with the statements that quantify how large

the risk is (e.g. “returns of investment #1 are three times more risky then those of investment #2”) or

where stake-holders are unable for some payoffs to decide which one they would prefer being exposed to.

Secondly, this framework has the potential to clarify what the responsibilities of a decision maker are when
interacting with a risk management consultant. Namely, the decision maker should understand and decide

which hypothesis he accepts among hypotheses 1 to 7, and only include in E the pairs of random payoffs that

he feels comfortable with. Once this is confirmed, and possibly even signed off in the form of a contract, our

framework will ensure that the financial decision that is made never engages the decision maker in a position
that has risks that are unjustified when compared to any payoff that can be achieved with certainty (refer to

Section 2 for a discussion).

From a numerical point of view, we demonstrated that under reasonable concavity assumptions about
the random mapping ~Z(x), the decision problem reduces to a convex optimization problem of reasonable size

and can thus be solved efficiently using interior point algorithms. In case of a portfolio optimization problem,

the problem further reduces to a linear program for which we illustrated that under the hypothesis of law

invariance it is possible to assess fairly precisely the structure of the risk measure after only a few comparisons

(possibly less than 10 questions). Of course, it will be interesting to confirm these insights on a more diverse
set of decision problems and to investigate more seriously what schemes could guide the preference elicitation

process.

Finally, given that in practice we cannot expect perfect accuracy when comparisons in E are made by
human beings, it is possible that the information obtained about R be inconsistent thus making it impossible

to identify a risk measure that is consistent with all the information. While it was shown in Section 3 how

one can diagnose such a situation, i.e. that R is effectively empty, it is worth briefly indicating how such an

impasse can be resolved. The most reasonable hypothesis is potentially that comparisons that are described
in E are being corrupted by some perception noise. Namely, this would imply that each pair (Wk, Yk) ∈ E
truly only indicates that Wk + εk is less risky than Yk for some small perturbation term εk. For this reason,

it might be more appropriate to replace REl(E) with

REl(E ,Γ) :=






ρ ∈ R

∣
∣
∣
∣
∣
∣

∃ ε ∈ R
K ,

ρ( ~Wk)− εk ≤ ρ(~Yk) , ∀ k ∈ {1, 2, . . . ,K}
εk ≥ 0 , ∀ k ∈ {1, 2, . . . ,K}

‖ε‖ ≤ Γ






,

for some choice of norm ‖ · ‖ and total perturbation Γ.

Perhaps the simplest implementation of such an approach would be to use the infinity norm (i.e. ‖ε‖ =
maxk εk). In this case, the problem reduces to calibrating Γ by seeking the smallest positive perturbation

ε̄ ∈ R which ensures that REl({(Wk + ε̄, Yk)}Kk=1) is non-empty. This is equivalent to doing a search

over the interval [0, supk,ω∈Ω Yk(ω)−Wk(ω)] for the smallest value that makes the relevant problem among

problems (6), (8), (16), or its revised version in Proposition 3.13 feasible after replacing the constraints

δi ≤ δj , ∀ (i, j) ∈ Ē

with

δi − ε ≤ δj , ∀ (i, j) ∈ Ē .

One can then account for REl(E , ε̄) instead of REl(E) in each formulation by simply employing REl({(Wk +

ε̄, Yk)}Kk=1).

A Reduction to convex, coherent and law-invariant risk measures

In order to show that hypotheses 1 to 4 are equivalent to imposing that the risk measure be a convex risk

measure, and that with hypotheses 5 and 6 the set of risk measure becomes equivalent to coherent and law
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invariant risk measures respectively, we start by demonstrating how each hypothesis about the risk preference

relation implies that a certain constraint must be imposed on the risk measure that will be used. We then make

sure that the risk measures that are circumscribed by these constraints represent risk preference relations
that satisfy the spelled out hypotheses. Note that the equivalence between hypothesis 7 and REl is trivial

to verify.

One can easily verify, following the Debreu’s representation theorem, that the monotonicity property as

presented in hypothesis 1 is equivalent to the monotonicity axiom of convex risk measures:

Z1(ω) ≥ Z2(ω) , ∀ω ∈ Ω ⇒ ρ(~Z1) ≤ ρ(~Z2) .

Secondly, strict monotonicity for certain payoffs ensures that every random payoff has a well-defined and

unique certainty equivalent, i.e. CE(Z) is the cash amount that is considered as risky as Z. Hence, without
loss of generality we can normalize the risk measure such that ρ(~Z) = −CE(Z) simply by considering

ρ′(~Z) = f(ρ(~Z)), with f(y) = sup{z ∈ R|ρ(−z) ≤ y}. Indeed, we have that ρ′(~Z) = f(ρ(~Z)) = −CE(Z), and

ρ′(~Z) always captures the same preferences since f(·) is strictly increasing by strict monotonicity.

Using the notion that ρ(~Z) is the negative of the certainty equivalent of Z, one can show that translation
invariance as presented in hypothesis 4 implies the cash invariance axiom of convex risk measures. Since, we

have that

ρ(~Z) = ρ(CE(Z)) ⇒ ρ(~Z) = ρ(−ρ(~Z)) (19)

it must be that

ρ(~Z) ≤ ρ(−ρ(~Z)) ⇒ ρ(~Z + c) ≤ ρ(−ρ(~Z) + c) = ρ(~Z)− c ,

and similarly that,
ρ(~Z) ≥ ρ(−ρ(~Z)) ⇒ ρ(~Z + c) ≥ ρ(−ρ(~Z) + c) = ρ(~Z)− c ,

where the last equalities of the above two are due to (19) again. Hence, we must have that ρ(~Z+c) = ρ(~Z)−c.

Together with translation invariance, quasi-convexity is actually equivalent to the convexity axiom of
convex risk measures. Specifically, since we have that

ρ(~Zi + ρ(~Zi)) = ρ(~Zi)− ρ(~Zi) = 0 ≤ ρ(0), i = 1, 2,

i.e. ~Z1+ρ(~Z1) and ~Z2+ρ(~Z2) are considered less risky than the zero payoff, we must have by quasi-convexity

that

ρ(θ(~Z1 + ρ(~Z1)) + (1 − θ)(~Z2 + ρ(~Z2))) ≤ ρ(0) = 0 .

Hence, it must be the case that

ρ(θ ~Z1 + (1− θ)~Z2 + θρ(~Z1) + (1− θ)ρ(~Z2)) = ρ(θ ~Z1 + (1− θ)~Z2)− θρ(~Z1)− (1− θ)ρ(~Z2) ≤ 0 ,

so that ρ(·) must respect convexity.

In the case of scale invariance as presented in hypothesis 5, a similar argument as for translation invariance

can be made. Since we have that ρ(~Z) = −CE(Z), it must be that ρ(~Z) = ρ(−ρ(~Z)) and hypothesis 5 is

equivalent to saying that ρ(λ~Z) ≤ ρ(−λρ(~Z)) = λρ(~Z) and that ρ(λ~Z) ≥ ρ(−λρ(~Z)) = λρ(~Z).

Finally, as stated in hypothesis 6, law invariance implies that if Z1 and Z2 have the same distribution

then ρ(~Z1) = ρ(~Z2).

For completeness, we verify the other direction, in other words that the constraints we impose in the

definitions of R, RCoh, and RLaw do imply that the risk measures ρ that are members of the different

set of risk measures can only represent preference relations Z1 �ρ Z2 ⇔ ρ(~Z1) ≤ ρ(~Z2) that agree with
hypotheses 1 to 7. First, the monotonicity and convexity axioms ensure that ρ is both finite, given that Ω is

a finite outcome space, and concave hence continuous. Based on its construction, the risk preference relation

�ρ is therefore necessarily complete, transitive, and continuity. Furthermore, one easily verifies that the

monotonicity axiom guarantees that if ~Z1 ≥ ~Z2 then ρ(~Z1) ≤ ρ(~Z2) and thus ~Z1 is considered no more risky

than ~Z2. Translation invariance ensures both strict monotonicity for certain payoffs and the stated translation
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invariance hypothesis 4. Finally, convexity of risk measures ensures that the preferences it captures satisfy

the quasiconvexity hypothesis since:

ρ(θ ~Z1 + (1− θ)~Z2) ≤ θρ(~Z1) + (1− θ)ρ(~Z2) ≤ max(ρ(~Z1); ρ(~Z2)) ≤ ρ(~Z3) .

Regarding scale invariance, the argument is trivial when the constraint imposed in the definition of RCoh

is imposed. Regarding the law invariance axiom of risk measures, the constraint imposed in the definition of

RLaw states that if all Z’s that are identically distributed, then they must also have the same level of risk

according to ρ(·).

B Proof of Proposition 3.3

Lemma B.1 Given a set E of K comparisons, let the set {Xj}Jj=1 := ~0 ∪
⋃K

k=1{Wk, Yk} be the support set

of all random payoffs involved in one of the elicited comparison and the zero payoff which we identify as
X1. Given any random payoff Z, the worst-case risk measure of Z under REl(E) is the optimal value of the

following optimization problem:

̺REl(E)(
~Z) = max

δ∈∆
ρA(X,δ)(~Z)

where A(X, δ) denotes the monotone convex hull of the set { ~Xj + δj}Jj=1 which admits the following repre-

sentation

A(X, δ) = {~Z ∈ R
M | ∃θ ∈ R

J , ~Z ≥ Xθ + δ⊤θ, ~1⊤θ = 1, θ ≥ 0},

where the matrix X ∈ R
M×J is composed by reference points { ~Xj}j=1,...,J as its column vectors, i.e. X =

[ ~X1, ~X2 · · · ~XJ ], and where the set ∆ is the set represented by

∆ := {δ ∈ R
J | ρA(X,δ)( ~Xi + δi) ≥ 0, i = 1, ..., J, δ1 = 0, δi ≤ δj , ∀ (i, j) ∈ Ē} .

The intuition behind the lemma above is fairly straightforward. For a given random payoff, the search
for the acceptance set that leads to the worst-case risk reduces to searching among the feasible risk values

δ ∈ ∆ for the reference set of random payoffs {Xj}Jj=1. Once this is done, the worst-case risk is obtained by

considering the monotone convex hull of the points ~Xj + δj . Note that at this point, it is not clear whether

the worst-case acceptance set is independent of the random payoff Z that is analyzed or not.

Proof. First, we decompose the worst-case analysis in two steps: a first search over how much risk might be

evaluated at the points in { ~Xj}Jj=1

̺REl(E)(
~Z) = max

δ
sup

ρ∈Rδ({( ~Xj ,δj)}J
j=1)

ρ(~Z) (20a)

subject to δi ≤ δj ∀ (i.j) ∈ Ē (20b)

δ1 = 0 (20c)

Rδ({( ~Xj , δj)}
J
j=1) 6= ∅ , (20d)

where Rδ({( ~Xj , δj)}Jj=1) ⊂ R is the set of convex risk measures that consider the risk of each ~Xj to be

respectively δj , i.e. that ρ(·) ∈ Rδ({( ~Xj , δj)}Jj=1) if and only if it is a convex risk measure that evaluates

ρ( ~Xj) = δj . Hence if ρ ∈ Rδ({( ~Xj , δj)}Jj=1), then it necessarily satisfies the elicited comparison.

In order to show that constraints (20b) to (20d) are equivalent to the set ∆, one needs to establish that

constraint (20d) is equivalent to ρA(X,δ)( ~Xj + δj) ≥ 0 , ∀ j. The statement that for all δ ∈ RJ ,

ρA(X,δ)( ~Xj + δj) ≥ 0 , ∀ j ⇒ Rδ({( ~Xj , δj)}
J
j=1) 6= ∅
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is somewhat trivial since A(X, δ) is constructed to make each ~Xj + δj acceptable and therefore

0 ≥ ρA(X,δ)( ~Xj + δj) ≥ 0 ⇒ ρA(X,δ)( ~Xj + δj) = 0 ⇒ ρA(X,δ)( ~Xj) = δj ,

so that ρA(X,δ) ∈ Rδ({( ~Xj , δj)}
J
j=1) 6= ∅.

In the other direction, if Rδ({( ~Xj , δj)}Jj=1) 6= ∅. Let A′ denote an acceptance set such that ρA′ ∈

Rδ({( ~Xj , δj)}Jj=1). Since ρ( ~Xj) = δj implies that ρ( ~Xj + δj) = 0, each random payoff Xj + δj must therefore

be members of A′. Provided that A(X, δ) is the smallest monotone convex set containing all ~Xj + δj (see

proof of Proposition 3.2), it is necessarily the case that A(X, δ) ⊆ A′ and that

ρA(X,δ)( ~Xj + δj) ≥ ρA′( ~Xj + δj) = ρA′( ~Xj)− δj = 0 ,

where the first equality comes from tanslation invariance and the second from the definition of A′.

We are left with showing that for any δ such that Rδ({( ~Xj , δj)}
J
j=1) 6= 0, and any Z, we have that

sup
ρ∈Rδ({( ~Xj ,δj)}J

j=1)

ρ(~Z) = ρA(X,δ)(~Z) .

Yet, in this regard, we just showed that ρA(X,δ)(·) is always a member of Rδ({( ~Xj , δj)}Jj=1) when the latter

in non-empty, and is a subset of any member of Rδ({( ~Xj , δj)}Jj=1). Hence, it must be that

ρA(X,δ)(~Z) ≥ sup
ρ∈Rδ({( ~Xj ,δj)}J

j=1)

ρ(~Z) ≥ ρA(X,δ)(~Z) .

This completes the proof.

In order to establish that the worst-case δ ∈ ∆ does not depend on the random payoff ~Z that is evaluated,

we will show through the following two lemmas that: first ρA(X,δ)(~Z) is non-decreasing in δ; second, that
problem (6) returns a vector δ̄ for which each entry is at the maximum value that it can achieve. Together

with Lemma B.1, this completes the proof of Proposition 3.3 since we can conclude that

max
δ∈∆

ρA(X,δ)(~Z) = ρA(X,δ̄)(~Z) .

Lemma B.2 Given any random payoff Z, the risk measure ρA(X,δ)(~Z) is non-decreasing in δ.

Proof. Let δ1 ≥ δ2, and let (t1, θ1) and (t2, θ2) be the optimal solutions of

min
t,θ

t

subject to ~Z + t ≥ Xθ + δ⊤θ

~1⊤θ = 1, θ ≥ 0

when δ = δ1 and δ = δ2 respectively. Since θ1 ≥ 0, we have

~Z + t1 ≥ Xθ1 + δ⊤1 θ1 ≥ Xθ1 + δ⊤2 θ1 ,

hence (t1, θ1) is a feasible solution when δ = δ2. Since t2 is the optimal solution when δ = δ2, we have

t2 ≤ t1.

Lemma B.3 Let δ̄ be the optimal solution of maxδ∈∆

∑

j δj, then each δ̄i is the optimal value of maxδ∈∆ δi.
Furthermore, the problem maxδ∈∆

∑

j δj is equivalent to problem (6).
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Proof. We first present problem maxδ∈∆

∑

j δj in details to help with the discussion:

max
δ

J∑

j=1

δj , (21a)

subject to δi ≤ δj , ∀ (i, j) ∈ Ē (21b)

ρA(X,δ)( ~Xj + δj) ≥ 0 , ∀ j = 1, . . . , J (21c)

δ1 = 0 . (21d)

Next, we let δ̂(i) be the optimal solution of problem (21) when the objective replaced with the objective

of maximizing δi. One can actually show that the solution δ̄ composed such that δ̄i = δ̂
(i)
i is feasible for

problem (21) and therefore an optimal solution of this problem.

In the case of constraint (21b), by construction of δ̄ we have that δ̄ ≥ δ̂(i) for all i. Therefore, one can

confirm that for a pair (i, j) ∈ Ē

δ̄i = δ̂
(i)
i ≤ δ̂

(i)
j ≤ δ̂

(j)
j = δ̄j .

As for constraint (21c), for any fixed j, the representation of this constraint which is based on optimization
states that

min
t,θ

t ≥ 0

subject to ~Xj + δj + t ≥ Xθ + δ⊤θ

~1⊤θ = 1 , θ ≥ 0 .

After replacing t′ := t+ δj − δ⊤θ, one obtains the equivalent constraint:

min
t′,θ

t′ − δj + δ⊤θ ≥ 0 (22)

subject to ~Xj + t′ ≥ Xθ

~1⊤θ = 1 , θ ≥ 0 .

One can verify that δ̄ satisfies this constraint since for all feasible t′ and θ, one has that

t′ − δ̄j + δ̄⊤θ = t′ − δ̂
(j)
j +

∑

i

δ̂
(i)
i θi ≥ t′ − δ̂

(j)
j +

∑

i

δ̂
(j)
i θi ≥ 0 .

In order to show that the optimization problem maxδ∈∆

∑

j δj is equivalent to problem (6), we make use

of duality to reformulate each of the constrains (21c). In particular, for a fixed j the constraint takes the

explicit form presented in (22). One can verify that Slater condition is always respected for this minimization
problem with t′ = 0 and θ = ej where ej is the vector of all zeros except for a one at the j-th entry. Duality

theory therefore states that the following constraint is equivalent:

max
y,φ

− ~XT
j y − δj + φ ≥ 0

subject to ~XT
i y + δi − φ ≥ 0 , ∀ i = 1, . . . , J

~1⊤y = 1, y ≥ 0 ,

where y ∈ RM and φ ∈ R are the respective dual variables of the two constraints. Necessarily, the maximiza-

tion evaluation of this constraint can be merged to the outer maximization problem (21) as long as y and φ
are properly indexed with j. In other words, for each j, add yj ∈ RM and φj ∈ R as decision variables and

replace the constraint with:

− ~XT
j yj − δj + φj ≥ 0

~XT
i yj + δi − φj ≥ 0 , ∀ i = 1, . . . , J

~1⊤yj = 1, yj ≥ 0 .
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Yet, one can even see that the constraints reduce to

~XT
j yj + δj − φj = 0

~XT
i yj + δi − φj ≥ 0 , ∀ i 6= j

~1⊤yj = 1, yj ≥ 0 ,

so that decision variable φj can be replaced to get

( ~Xi − ~Xj)
Tyj + δi − δj ≥ 0 , ∀ i 6= j

~1⊤yj = 1, yj ≥ 0 ,

This completes the proof as we are obtaining problem (6).

C Proof of Proposition 3.12

Given all the set of distributions {Fj}j=1,...,J involved in E and the distribution of ξ, our first step is to

convert each distribution to a random payoff in an outcome space endowed with a uniform probability

measure. We can achieve this by first representing each probability value using a common denominator M .

This can be done since each probability value is a rational number and there are a finite number of them.
Without loss of generality, we can then assume that all distributions are induced from an outcome space

Ω′ := {ω̃d}d=1,...,M endowed with a uniform probability measure P , i.e. P ({ω̃d}) = 1/M , d = 1, ...,M . In

this space, a distribution Fj given in the form of P (Xj = xk) = pjk, k = 1, ...,Mj can be expressed as a

random payoff in Ω′ that takes the form

~X ′
j = h(Fj) = [( ~Xj)1 · · · ( ~Xj)1

︸ ︷︷ ︸

π
(j)
1

( ~Xj)2 · · · ( ~Xj)2
︸ ︷︷ ︸

π
(j)
2

· · · ( ~Xj)Mj
· · · ( ~Xj)Mj

︸ ︷︷ ︸

π
(j)
Mj

]⊤, (23)

where π
(j)
k = pjk ·M for k = 1, ...,Mj, and we use h(·) to stand for an operator that maps a given distribution

to a random payoff as described above. Each entry of this M -dimensional vector corresponds to the mapping
from an outcome ω̃ ∈ Ω′ to a real value. A similar mapping can be used for ~Z(x) with

~Z ′(x) = [r(x, ξ1) · · · r(x, ξ1)
︸ ︷︷ ︸

π
ξ
1

r(x, ξ2) · · · r(x, ξ2)
︸ ︷︷ ︸

π
ξ
2

· · · r(x, ξMξ
) · · · r(x, ξMξ

)
︸ ︷︷ ︸

π
ξ

Mξ

]⊤,

To facilitate the exposition of the proof below, we use ljk to denote the set of indexes ljk := {k′ ∈

N|( ~X ′
j)k′ = ( ~Xj)k}. Using this notation, we can say that ( ~X ′

j)d = ( ~Xj)k for all d ∈ ljk. Similarly, we will refer

to lξk := {k′ ∈ N|(~Z ′(x))k′ = r(x, ξk)}. By such conversions, we can reformulate the problem (14) into

min
x∈X

sup
ρ∈RLE({h(FW

k
),h(FY

k
)}K

k=1)

ρ(~Z ′(x)),

which admits a convex optimization formulation following Lemma 3.8 and Proposition 3.9. In the next two

corollaries, we show how the convex reformulation can be further reduced.

Corollary C.1 The optimization problem (10) in Lemma 3.8 with ~X ′
i = h(Fi) and ~X ′

j = h(Fj) can be reduced

to the problem of (16).

Proof. Consider first the constraints (10c) and (10d)

~1⊤vi,j + ~1⊤wi,j − ~X ′⊤
j yj + δi − δj ≥ 0 i 6= j (24)

~X ′
iy

⊤
j − vi,j~1

⊤ − ~1w⊤
i,j ≥ 0 i 6= j (25)
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For any fixed i and k ∈ {1, ...,Mi}, we can re-write the constraint (25) as

(vi,j)d ≤ ( ~Xi)k(yj)m − (wi,j)m, ∀d ∈ lik , ∀m ∈ {1, ...,M} .

Observe that each entry of (vi,j)d in this range is bounded above by the same value for any fixed y∗j and w∗
i,j .

Observe also that increasing (vi,j)d will not violate any other constraint in (10). Thus, for any given optimal

solution v∗i,j with (v∗i,j)d1 6= (v∗i,j)d2 for some d1, d2 ∈ lik, we can always increase each entry of (v∗i,j)d up to

the same value (the upper bound) and obtain a new optimal solution v∗∗ that satisfies (v∗i,j)d1 = (v∗i,j)d2 for

any d1, d2 ∈ lik.

Therefore, we can impose (vi,j)d = (ṽi,j)k, ∀d ∈ lik, where ṽi,j ∈ RMi and reformulate the constraints into

~1⊤(π(i) ◦ ṽi,j) + ~1⊤wi,j − ~X ′⊤
j yj + δj − δi ≥ 0 ∀i 6= j (26)

~Xiy
⊤
j − ṽi,j~1

⊤ − ~1w⊤
i,j ≥ 0 ∀i 6= j. (27)

Next, suppose that ṽ∗i,j , w
∗
i,j , y

∗
j , δ

∗
i , δ

∗
j are an optimal solution of the problem (10) with (10c) and (10d)

replaced by the above two sets of constraints (26) and (27). We claim that the solution ṽ∗i,j , δ
∗
i , δ

∗
j together

with the newly constructed y∗∗j and w∗∗
i,j :

(y∗∗j )d̂ := (1/π
(j)

k(j,d̂)
)
∑

d∈l
j

k(j,d̂)

(y∗j )d

(w∗∗
i,j)d̂ = (1/π

(j)

k(j,d̂)
)
∑

d∈l
j

k(j,d̂)

(w∗
i,j)d ,

where k(j, d̂) refers to the only index such that d̂ ∈ ljk, will also be optimal. Substituting this new solution

into the constraint (26), we have

~1⊤(π(i) ◦ ṽ∗i,j) + ~1⊤w∗∗
i,j −

~X ′⊤
j y∗∗j + δ∗i − δ∗j

= ~1⊤(π(i) ◦ ṽ∗i,j) +
∑Mj

k=1 π
(j)
k (1/π

(j)
k )

∑

d∈l
j

k
(w∗

i,j)d

−
∑Mj

k=1(
~Xj)kπ

(j)
k (1/π

(j)
k )

∑

d∈l
j

k
(y∗j )d + δ∗i − δ∗j

= ~1⊤(π(i) ◦ ṽ∗i,j) + ~1⊤w∗
i,j − ~X ′⊤

j y∗j + δ∗i − δ∗j ≥ 0

To verify the feasibility of the second constraint (27), let us consider the following derivations for any fixed
j and fixed k ∈ {1, 2, . . . ,Mj}:

~Xiy
∗
j
⊤ − ṽ∗i,j~1

⊤ − ~1w∗
i,j

⊤ ≥ 0

⇒ ~Xi(
∑

d∈l
j

k

(y∗j )d)− ṽ∗i,jπ
(j)
k − ~1(

∑

d∈l
j

k

(w∗
i,j)d) ≥ 0

⇒ ~Xi(1/π
(j)
k )(

∑

d∈l
j

k

(y∗j )d)− ṽ∗i,j − ~1(1/π
(j)
k )(

∑

d∈l
j

k

(w∗
i,j)d) ≥ 0

⇒ ~Xiy
∗∗⊤
j − ṽ∗i,j~1

⊤ − ~1w∗∗⊤
i,j ≥ 0.

where the first step is obtained by summing the columns in the range ljk for the matrix on the lefthand side
of the inequality.

It is straightforward to see ~1⊤y∗∗j = ~1⊤y∗j = 1, which verifies the feasibility of the constraint (10e).

Thus, we can impose that (yj)d = (ỹj)k(j,d) for all j and d, where ỹj ∈ RMj , and that (wi,j)d = (w̃i,j)k d ∈

ljk, where w̃i,j ∈ RMj , and reformulate the constraints (26), (27) and (10e) into
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~1⊤(π(i) ◦ ṽi,j) + ~1⊤(π(j) ◦ w̃i,j)− ~X⊤
j (π(j) ◦ ỹj) + δj − δi ≥ 0 ∀i 6= j

~Xiỹ
⊤
j − ṽi,j~1

⊤ − ~1w̃⊤
i,j ≥ 0 ∀i 6= j

~1⊤(π(j) ◦ ỹj) = 1.

Let v̂i,j = π(i) ◦ ṽi,j , ŵi,j = π(j) ◦ w̃i,j , and ŷj = π(j) ◦ ỹj. The above second constraint becomes

~Xi((π
(j))−1 ◦ ŷj)

⊤ − ((π(i))−1 ◦ v̂i,j)~1
⊤ − ~1((π(j))−1 ◦ ω̃i,j)

⊤ ≥ 0 ,

where (π(i))−1 satisfies (π(i))−1 ◦ (π(i)) = ~1. Finally, multiplying (π(i)~1⊤) to the inequality we have

(π(i)~1⊤) ◦
(

~Xi((π
(j))−1 ◦ ŷj)

⊤ − ((π(i))−1v̂i,j)~1
⊤ − ~1((π(j))−1 ◦ w̃i,j)

⊤
)

≥ 0

⇒ Πi,j ◦ ~Xiŷj
⊤ − v̂i,j~1

⊤ −Πi,j ◦ ~1ω̃
⊤
i,j ≥ 0,

where Π ∈ R
Mi×Mj and

Πi,j = (π(i))((π(j))−1)⊤,

as described in the corollary. This completes the proof.

Note that in the proof below, for simplicity we will use the notation

V(a1:a2,b1:b2) =






Va1,b1 · · · Va1,b2

...
. . .

...
Va2,b1 · · · Va2,b2






to describe a submatrix of a matrix V . The notation V(:,k) (respectively V(k,:)) will refer to the kth-column

(respectively kth-row) of the matrix V .

Corollary C.2 The problem (13) in Proposition 3.9 with ~Z ′(x) and ~X ′
j = h(Fj) can be reduced to the problem

of (15)

Proof. Suppose that x∗, t∗, θ∗, {Q∗
j} are an optimal solution of (13). We claim that the solution x∗, t∗, θ∗

together with the newly constructed Q∗∗
j such that for all k ∈ {1, 2, . . . ,Mj}:

Q∗∗
j (:, ljk) := (1/π

(j)
k )

∑

d∈l
j

k

Q∗
j (:, d)~1

⊤

is also optimal.

Substituting into the constraint (13b), we have that for each j ∈ {1, ..., J} ,

Q∗∗
j

~X ′
j =

Mj∑

k=1

π
(j)
k · (( ~Xj)k/π

(j)
k )




∑

d∈l
j

k

(Q∗
j )(:,d)



 =

Mj∑

k=1

( ~Xj)k




∑

d∈l
j

k

(Q∗
j )(:,d)



 = Q∗
j
~X ′
j.

Substituting into the constraint (13c), we have for each j ∈ {1, ..., J}

Q∗∗
j
~1 =

Mj∑

k=1

π
(j)
k · (1/π

(j)
k )




∑

d∈l
j

k

(Q∗
j )(:,d)



 = Q∗
j
~1 = θ∗j .

Substituting into the constraint (13d), we have for each j ∈ {1, ..., J} and for each d̃ ∈ {1, ...,M} we have
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(Q∗∗⊤
j

~1)d̃ = (1/π
(j)

k(j,d̃)
)

M∑

m=1

∑

d∈l
j

k(j,d̂)

(Q∗
j )m,d

= (1/π
(j)

k(j,d̃)
)

∑

d∈d∈l
j

k(j,d̂)

M∑

m=1

(Q∗
j )m,d

= (1/π
(j)

k(j,d̃)
)

∑

d∈d∈l
j

k(j,d̂)

θ∗j = θ∗j .

As x∗, t∗, θ∗, {Q∗∗
j } satisify all constraints and t∗ remains the same minimum value, x∗, t∗, θ∗, {Q∗∗

j } are

also an optimal solution. Therefore, we can impose that for all j and all k ∈ {1, 2, . . . ,Mj} we have that
(Qj)(:,lj

k
) = (Q̃j)(:,k)~1

⊤, where Q̃j ∈ RM×Mj , and reformulate (13) into

min
x∈X ,t,θ,{Q̃j}

t (28a)

subject to ~Z ′(x) + t ≥
∑

j

((~1π(j)⊤) ◦ Q̃j) ~Xj + δ̄⊤θ (28b)

((~1π(j)⊤) ◦ Q̃j)~1 = θj , ∀j (28c)

Q̃j

⊤~1 = θj , ∀j (28d)

~1⊤θ = 1 (28e)

θ ≥ 0, Q̃j ≥ 0, ∀j. (28f)

Next, suppose that x∗, t∗, θ∗, {Q̃∗
j} is the optimal solution for the above problem. We claim that that the

solution x∗, t∗, θ∗ together with the newly constructed Q̃∗∗
j such that for all k = 1, ...,Mξ and all d̃ ∈ lξk we

have that

(Q̃∗∗
j )(d̃,:) = (1/πξ

k)
∑

d∈l
ξ

k

(Q̃∗
j )(d,:)

is also optimal.

Substituting into the constraint (28b), we have for all d̃ ∈ {1, ...,M} we have that




∑

j

((~1π(j)⊤) ◦ Q̃∗∗
j ) ~Xj





d̃

= (1/πξ

k(j,d̃)
)

(
∑

d∈l
ξ

k(j,d̃)

∑

j(π
(j)⊤ ◦ Q̃∗

j (d, :))
~Xj

)

≤ (1/πξ

k(j,d̃)
)(
∑

d∈l
ξ

k(j,d̃)

(~Z ′(x))d + t∗ − δ̄⊤θ∗)

= (1/πξ

k(j,d̃)
)(πξ

k(j,d̃)
((~Z ′(x))d̃ + t∗ − δ̄⊤θ∗)

= (~Z ′(x))d̃ + t∗ − δ̄⊤θ∗.

Substituting into the constraint (28c), we have for each j and for all d̃ ∈ {1, ...,M} that

(

((~1π(j)⊤) ◦ Q̃∗∗
j )~1

)

d̃
= (1/πξ

k(j,d̃)
)

Mj∑

m=1

π(j)
m

∑

d∈l
ξ

k(j,d̃)

(Q̃∗
j )(d,m)

=(1/πξ

k(j,d̃)
)
∑

d∈l
ξ

k(j,d̃)

Mj∑

m=1

(π(j)
m )(Q̃∗

j )(d,m)

=(1/πξ

k(j,d̃)
)
∑

d∈l
ξ

k(j,d̃)

θ∗j = θ∗j .
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Substituting into the constraint (28d), we have

Q̃∗∗⊤
j

~1 =

Mξ∑

k=1

πξ
k · (1/πξ

k)
∑

d∈l
ξ

k

(Q̃∗
j )(d,:) = Q̃∗⊤

j
~1 = θ∗j .

As x∗, t∗, θ∗, {Q̃∗∗
j } satisfy all constraints and t∗ remains the same minimum value, x∗, t∗, θ∗, Q̃∗∗

j are also

an optimal solution. We can now impose that for all k ∈ {1, 2, . . . ,Mξ} we have that (Q̃j)(lξ
k
,:) =

~1(Q̂j)(k,:),

where Q̂j ∈ RMξ×Mj , and reformulate the problem (28) into

min
x∈X ,t,θ,{Q̂j}

t

subject to ~Zξ(x) + t ≥
∑

j

((~1π(j)⊤) ◦ Q̂j) ~Xj + δ̄⊤θ,

((~1π(j)⊤) ◦ Q̂j)~1 = θj , ∀j

((πξ~1⊤) ◦ Q̂j)
⊤~1 = θj , ∀j

~1⊤θ = 1

θ ≥ 0, Q̂j ≥ 0, ∀j.

Finally, Let Q̂′
j = (~1π(j)⊤) ◦ Q̂j. The left-hand-side of the above third constraint can be written as ((πξ~1⊤) ◦

((~1(π(j))−1⊤) ◦ Q̂′
j) = (πξ((π(j))−1)⊤) ◦ Q̂′

j . Having Πj = πξ((π(j))−1)⊤, we arrive at the formulation.
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