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Abstract: Decentralized stochastic control refers to the multi-stage optimization of a dynamical system by
multiple controllers that have access to different information. Decentralization of information gives rise to
new conceptual challenges that require new solution approaches. In this expository paper, we use the notion
of an information-state to explain the two commonly used solution approaches to decentralized control: the
person-by-person approach and the common-information approach.
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1 Introduction

Centralized stochastic control refers to the multi-stage optimization of a dynamical system by a single con-
troller. Stochastic control, and the associated principle of dynamic programming, have roots in statistical
sequential analysis [2] and have been used in various application domains including operations research [23],
economics [29], engineering [6], computer science [26], and mathematics [5]. The fundamental assumption
of centralized stochastic control is that the decisions at each stage are made by a single controller that has
perfect recall, that is, a controller that remembers its past observations and decisions. This fundamental
assumption is violated in many modern applications where decisions are made by multiple controllers. The
multi-stage optimization of such systems is called decentralized stochastic control or dynamic team theory.

Decentralized stochastic control started with seminal work of Marschak and Radner [17, 25] on static
systems that arise in organizations and of Witsenhausen [34–36] on dynamic systems that arise in systems
and control. We refer the reader to [4, 12] for a discussion of the history of decentralized stochastic control
and to [14,21,39] for survey of recent results.

Decentralized stochastic control is fundamentally different from, and significantly more challenging than,
centralized stochastic control. Dynamic programming, which is the primary solution concept of centralized
stochastic control, does not directly work in decentralized stochastic control. New ways of thinking need to
be developed to address information decentralization. The focus of this expository paper is to highlight the
conceptual challenges of decentralized control and explain the intuition behind the solution approaches. No
new results are presented in this paper; rather we present new insights and connections between existing
results. Since the focus is on conceptual understanding, we do not present proofs and ignore the technical
details, in particular, measurability concerns, in our description.

We use the following notation. Random variables are denoted by upper case letters; their realizations by
the corresponding lower case letters; and their space of realizations by the corresponding calligraphic letters.
For integers a ≤ b, Xa:b is a short hand for the set {Xa, Xa+1, . . . , Xb}. When a > b, Xa:b refers to the
empty set. In general, subscripts are used as time index while superscripts are used to index controllers. P(·)
denotes the probability of an event and E[·] denotes the expectation of a random variable. For a collection of
functions g, the notations Pg(·) and Eg[·] indicate that the probability measure and the expectation depend
on the choice of the functions g. Z>0 denotes the set of positive integers and R denotes the set of real
numbers.

2 Decentralized stochastic control: Models and problem formula-
tion

2.1 State, observation, and control processes

Consider a dynamical system with n controllers. Let {Xt}∞t=0, Xt ∈ X , denote the state process of the
system. Controller i, i ∈ {1, . . . , n}, observes the process {Y it }∞t=0, Y it ∈ Yi, and generates a control process
{U it}∞t=0, U it ∈ U i. The system yields a reward {Rt}∞t=0. These processes are related as follows:

1. Let Ut := {U1
t , . . . , U

n
t } denote the control action of all controllers at time t. Then, the reward at

time t depends only on the current state Xt, the future state Xt+1, and the current control actions
Ut. Furthermore, the state process {Xt}∞t=0 is a controlled Markov process given {Ut}∞t=0, i.e., for any
A ⊆ X and B ⊆ R, and any realization x1:t of X1:t and u1:t of U1:t, we have that

P
(
Xt+1 ∈ A, Rt ∈ B | X1:t = x1:t,U1:t = u1:t

)
= P

(
Xt+1 ∈ A, Rt ∈ B | Xt = xt,Ut = ut

)
. (1)

2. The observations Yt := {Y 1
t , . . . , Y

n
t } depend only on current state Xt and previous control actions

Ut−1, i.e., for any Ai ⊆ Yi and any realization x1:t of X1:t and u1:t−1 of U1:t−1, we have that

P
(
Yt ∈

n∏
i=1

Ai
∣∣∣ X1:t = x1:t,U1:t−1 = u1:t−1

)
= P

(
Yt ∈

n∏
i=1

Ai
∣∣∣ Xt = xt,Ut−1 = ut−1

)
. (2)
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2.2 Information structure

At time t, controller i, i ∈ {1, . . . , n}, has access to information Iit which is a superset of the history
{Y i1:t, U i1:t−1} of the observations and control actions at controller i and a subset of the history {Y1:t,U1:t−1}
of the observations and control actions at all controllers, i.e.,

{Y i1:t, U i1:t−1} ⊆ Iit ⊆ {Y1:t,U1:t−1}.

The collection (Iit , i ∈ {1, . . . , n}, t = 0, 1, . . . ), which is called the information structure of the system, cap-
tures who knows what about the system and when. A decentralized system is characterized by its information
structure.

2.3 Control strategies and problem formulation

Based on the information Iit available to it, controller i chooses action U it using a control law git : Iit 7→ U it .
The collection of control laws gi := (gi0, g

i
1, . . . ) is called a control strategy of controller i. The collection

g := (g1, . . . ,gn) is called the control strategy of the system.

The optimization objective is to pick a control strategy g to maximize the expected discounted reward

Λ(g) := Eg
[ ∞∑
t=0

βtRt

]
(3)

for a given discount factor β ∈ (0, 1).

2.4 Relationship to other models

The decentralized control problem formulated above is closely related to dynamic games; in particular to
dynamic cooperative games. The key difference between the two models is that in decentralized control
all controllers have a common objective while in game theory each player has an individual objective. To
highlight this fact, decentralized control problems are also referred to as dynamic teams.

In cooperative game theory, the concepts of bargaining and contracts are used to study when coalitions are
formed and how members of the coalition split the value. In decentralized stochastic control, splitting of the
value between the members is not modeled. In this regard, decentralized control is simpler than cooperative
games.

In dynamic game theory, the concepts of sequential rationality and consistency of beliefs are used to refine
Nash equilibria. In decentralized control, all controllers have the same objective so many of the conceptual
difficulties of non-cooperative game theory do not arise.

Although decentralized control is conceptually simpler than the corresponding game theoretic setup, the
optimization problem formulated above is non-trivial and the corresponding setup of dynamic cooperative
games with incomplete information is an open area of research.

2.5 An example

To illustrate these concepts, let’s consider a stylized example of a communication system in which two devices
transmit over a multiple access channel.

Packet arrival at the devices. Packets arrive at device i, i ∈ {1, 2}, according to Bernoulli processes {W i
t }∞t=0

with success probability pi. Device i may store N i
t ∈ {0, 1} packets in a buffer. If a packet arrives when

the buffer is full, the packet is dropped.
Channel model. At time t, the channel-state St ∈ {0, 1} may be idle (St = 0) or busy (St = 1). The

channel-state process {St}∞t=0 is a Markov process with known initial distribution and transition matrix
P =

[
α0 1−α0

1−α1 α1

]
. The channel-state process is independent of the packet-arrival process at the device.
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System dynamics. At time t, device i, i ∈ {1, 2}, may transmit U it ∈ {0, 1} packets, U it ≤ N i
t . If only one

device transmits and the channel is idle, the transmission is successful and the transmitted packet is
removed from the buffer. Otherwise the transmission is unsuccessful. The state of each buffer evolves
as

N i
t+1 = min{N i

t − U it (1− U
j
t )(1− St) +W i

t , 1}, ∀i ∈ {1, 2}, j = 3− i. (4)

Each transmission costs c and a successful transmission yields a reward r. Thus, the total reward for
both devices is

Rt = −(U1
t + U2

t )c+ (U1
t ⊕ U2

t )(1− St)r

where ⊕ denotes the XOR operation.
Observation model. Controller i, i ∈ {1, 2}, perfectly observes the number N i

t of packets in the buffer. In
addition, both controllers observe the one-step delayed control actions (U1

t−1, U
2
t−1) of each other and the

channel state if either of devices transmit. Let Ht denote this additional observation. Then Ht = St−1
if U1

t−1 + U2
t−1 > 0, otherwise Ht = E (which denotes no channel-state observation).

Information structure and objective. The information Iit available at device i, i ∈ {0, 1}, is given by Iit =

{N i
1:t, H1:t, U

1
1:t−1, U

2
1:t−1}. Based on the information available to it, device i chooses control action U it

using a control law git : Iit 7→ U it . The collection of control laws (g1,g2), where gi := (gi0, g
i
1, . . . ), is

called a control strategy. The objective is to pick a control strategy (g1,g2) to maximize the expected
discounted reward

Λ(g1,g2) := E(g1,g2)
[ ∞∑
t=0

βtRt

]
.

We make the following assumption in the paper.

(A) The arrival process at the two controllers is independent.

2.6 Conceptual difficulties in finding an optimal solution

There are two conceptual difficulties in the optimal design of decentralized stochastic control:

1. The optimal control problem is a functional optimization problem where we have to choose an infinite
sequence of control laws g to maximize the expected total reward.

2. In general, the domain Iit of control laws git increases with time. Therefore, it is not immediately clear
if we can solve the above optimization problem; even if it is solved, it is not immediately clear if we
can implement the optimal solution.

Similar conceptual difficulties arise in centralized stochastic control where they are resolved by identifying
an appropriate information-state process (see Definition 1 below) and solving a corresponding dynamic
program. It is not possible to directly apply such an approach to decentralized stochastic control problems.

In order to better understand the difficulties in extending the solution techniques of centralized stochastic
control to decentralized stochastic control, we revisit the main results of centralized stochastic control in the
next section.

3 Overview of centralized stochastic control

A centralized stochastic control system is a special case of a decentralized stochastic control system in which
there is only one controller (n = 1), and the controller has perfect recall (I1t ⊆ I1t+1), i.e., the controller
remembers everything that it has seen and done in the past. For ease of notation, we drop the superscript i
and denote the observation, information, control action, and control law of the controller by Yt, It, Ut,
and gt, respectively. Using this notation, the information available to the controller at time t is given by
It = {Y1:t, U1:t−1}. The controller uses a control law gt : It 7→ Ut to choose a control action Ut. The collection
g = (g0, g1, . . . ) of control laws is called a control strategy.
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The optimization objective is to pick a control strategy g to maximize the expected discounted reward

Λ(g) := Eg
[ ∞∑
t=0

βtRt

]
(5)

for a given discount factor β ∈ (0, 1).

In the centralized stochastic control literature, the above model is sometimes referred to a partially
observable Markov decision process (POMDP). The solution to a POMDP is obtained in two steps [6].

1. Consider a simpler model in which the controller perfectly observes the state of the system, i.e., Yt = Xt.
Such a model is called a Markov decision process (MDP). Show that there is no loss of optimality in
restricting attention to Markov strategies, i.e., control laws of the form gt : Xt 7→ Ut. Obtain an optimal
control strategy of this form by solving an appropriate dynamic program.

2. Define a belief state of a POMDP as the posterior distribution of Xt given the information at the
controller, i.e., Bt(·) = P(Xt = · | It). Show that the belief state is a MDP, and use the results for
MDP.

A slightly more general approach is identify an information-state process of the system and present the
solution in terms of the information state. We present this approach below.

Definition 1 A process {Zt}∞t=0, Zt ∈ Zt, is called an information-state process if it satisfies the following
properties:

1. Zt is a function of the information It available at time t, i.e., there exist a series of functions {ft}∞t=0

such that
Zt = ft(It). (6)

2. The process Zt is a controlled Markov process controlled by {Ut}∞i=0, that is for any A ⊆ Zt+1 and any
realization it of It and any choice ut of Ut, we have that

P(Zt+1 ∈ A | It = it, Ut = ut) = P(Zt+1 ∈ A | Zt = ft(it), Ut = ut). (7)

3. Zt absorbs the effect all the available information on the current rewards, i.e., for any B ⊆ R, and any
realization it of It and any choice ut of Ut, we have that

P(Rt ∈ B | It = it, Ut = ut) = P(Rt ∈ B | Zt = ft(it), Ut = ut). (8)

In general, a system may have more than one information-state process. The following theorems hold for
any information-state process.

Theorem 1 (Structure of optimal control laws) Let {Zt}∞t=0, Zt ∈ Zt, be an information-state process.
Then,

1. The information state absorbs the effect of available information on expected future rewards, i.e., for
any realization it of the information state It, any choice ut of Ut and any choice of future strategy
g(t) = (gt+1, gt+2, . . . ), we have that

Eg(t)

[ ∞∑
τ=t

βτRτ

∣∣∣ It = it, Ut = ut

]
= Eg(t)

[ ∞∑
τ=t

βτRτ

∣∣∣ Zt = ft(it), Ut = ut

]
. (9)

2. Therefore, Zt is a sufficient statitistic for performance evaluation and there is no loss of optimality in
restricting attention to control laws of the form gt : Zt 7→ Ut.

Theorem 2 (Dynamic programming decomposition) Assume that the probability distributions in the right-
hand side of (1), (2), (7) and (8) are time homogeneous. Let {Zt}∞t=0, be an information-state process such
that the space of realization of Zt is time-invariant, i.e., Zt ∈ Z.
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1. For any choice of future strategy g(t) = (gt+1, gt+2, . . . ), where gτ , τ > t, is of the form gτ : Zτ 7→ Uτ
and for any realization zt of Zt and any choice ut of Ut, we have that

Eg(t)

[
Eg(t+1)

[ ∞∑
τ=t+1

βτRτ

∣∣∣ Zt+1, Ut+1 = gt+1(Zt+1)
]∣∣∣∣Zt = zt, Ut = ut

]

= Eg(t)

[ ∞∑
τ=t+1

βτRτ

∣∣∣Zt = zt, Ut = ut

]
(10)

2. There exists a time-invariant optimal strategy g∗ = (g∗, g∗, . . . ) that is given by

g∗(z) = arg sup
u∈U

Q(z, u), ∀z ∈ Z (11a)

where Q is the fixed point solution of the following dynamic program1

Q(z, u) = E[Rt + βV (Zt+1) | Zt = z, Ut = u], ∀z ∈ Z, u ∈ U ; (11b)
V (z) = sup

u∈U
Q(z, u), ∀z ∈ Z. (11c)

The dynamic program can be solved using different methods such as value-iteration, policy-iteration, or
linear-programming. See [24] for details.

The information-state based solution approach presented above is equivalent to the standard description
of centralized stochastic control. In particular, the current state Xt and the belief state P(Xt = · | It) are,
respectively, the information states in MDP and POMDP.

An important property of the information state is that the conditional future reward, which is given
by (9), does not depend on the past and current control strategy (g0, g1, . . . , gt). This strategy independence
of future cost is critical to obtain a recurrence relation for the conditional future cost (10) that does not
depend on the current control law gt. Based on this recurrence, we can convert the functional optimization
problem of finding the best control law gt into a set of parametric optimization problem of finding the best
control action Ut for each realization of the information state Zt. This resolves the first conceptual difficulty
described in Section 2.6.

In addition, when the information-state process as well as the probability distributions in the right hand
side of (7) and (8) are time-homogeneous, time-invariant strategies perform as well as time-varying strate-
gies. Restricting attention to time-invariant strategies resolves the second conceptual difficulty described in
Section 2.6.

3.1 An example

To illustrate the concepts described above, consider an example of a device transmitting over a communication
channel. This may be considered as a special case of the example of Section 2.5 in which one of the devices
never transmits.

Packet arrival at the device. The packet arrival model is the same as that of Section 2.5. Since there is only
one device, we omit the superscripts in Wt, Nt, and p.

Channel model. The channel model is exactly same as that of Section 2.5.
System dynamics. At time t, the device transmits Ut ∈ {0, 1} packets, Ut ≤ Nt. If the device transmits

when the channel is idle, the transmission is successful and the transmitted packet is removed from the
buffer. Otherwise, the transmission is unsuccessful. Thus, the state of the buffer evolves as

Nt+1 = min{Nt − Ut(1− St) +Wt, 1}

and the total reward is given by
Rt = Ut[−c+ r(1− St)].

1In general, a dynamic program may not have an unique solution, or any solution at all. In this paper, we ignore the issue
of existence of such a solution and refer the reader to [11] for details.
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Observation model. The controller perfectly observes the number Nt of packets in the buffer. In addition, it
observes a channel-state only if it transmits. LetHt denote this additional observation. ThenHt = St−1
if Ut−1 = 1, otherwise Ht = E (which denotes no observation).

Information structure. The information It available at the device is given by It = {N1:t, U1:t−1, H1:t}. The
device chooses Ut using a control law gt : It 7→ Ut. The objective is to pick a control strategy g =

(g0, g1, . . . ) to maximize the expected discounted reward.

The model described above is a centralized stochastic control system with state Xt = (Nt, St), observation
Yt = (Nt, Ht), reward Rt, and control Ut; one may verify that these processes satisfy (1) and (2) (with n = 1).

Let ξt ∈ [0, 1] denote the posterior probability that the channel is busy, i.e.,

ξt := P(St = 1 | H1:t).

One may verify that Zt = (Nt, ξt) is an information state that satisfies (7) and (8). So, there is no loss of
optimality in using control laws of the form gt : (Nt, ξt) 7→ Ut. The information state takes value in the
uncountable space {0, 1}× [0, 1]. Since ξt is a posterior distribution, we can use the computational techniques
of POMDPs [28,40] to numerically solve the corresponding dynamic program.

However, a simpler dynamic programming decomposition is possible by characterizing the reachable set
of ξt, which is given by

Q := {q0,m | m ∈ Z>0} ∪ {q1,m | m ∈ Z>0} (12a)

where
qs,m := P(Sm = 1 | S0 = s), ∀s ∈ {0, 1}, m ∈ Z>0. (12b)

Therefore, {(Nt, ξt)}∞t=0, (Nt, ξt) ∈ {0, 1}×Q, is an alternative information-state process. In this alternative
characterization, the information state is denumerable and we may use finite-state approximations to solve
the corresponding dynamic program [8–10,27,33].

The dynamic program for this alternative characterization is given below. Let p = 1−p and qs,m = 1−qs,m.
Then for s ∈ {0, 1} and m ∈ Z>0, we have that2

V (0, qs,m) = β
[
pV (0, qs,m+1) + pV (1, qs,m+1)

]
(13a)

V (1, qs,m) = max
{
βV (1, qs,m+1), qs,mr − c+ βW (qs,m)

}
(13b)

where
W (qs,m) = p qs,mV (0, q0,1) + p qs,mV (1, q0,1) + qs,mV (1, q1,1).

The first alternative in the right hand side of (13b) corresponds to choosing u = 0 while the second corresponds
to choosing u = 1. The resulting optimal strategy for β = 0.9, α0 = α1 = 0.75, r = 1, p = 0.3, and c = 0.4 is
given by

g∗(1, qs,m) =

{
0, if s = 1 and m ≤ 2

1, otherwise.

As is illustrated by the above example, a general solution methodology for centralized stochastic control
is as follows:

1. Identify an information-state process for the given system.
2. Obtain a dynamic program corresponding to the information-state process.
3. Either obtain an exact analytic solution of the dynamic program (which is only possible for simple

stylized models), or obtain an approximate numerical solution of the dynamic program (as was done in
the example above), or prove qualitative properties of the optimal solution (e.g., in the above example,
for appropriate values of c, r, and P, the set T (s, n) = {m ∈ Z>0 | g∗(n, qs,m) = 1} is convex).

In the rest of this paper, we explore whether a similar solution approach is possible for decentralized stochastic
control problems.

2Note that {qs,m | s ∈ {0, 1} and m ∈ Z>0} is equivalent to the reachable set Q of ξt.
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4 Conceptual difficulties in dynamic programming for decentralized
stochastic control

Recall the two conceptual difficulties that arise in decentralized stochastic control and were described in
Section 2.6. Similar difficulties arise in centralized stochastic control, where they are resolved by identifying an
appropriate information-state process. It is natural to ask if a similar simplification is possible in decentralized
stochastic control. In particular:

1. Is it possible to identify an information state Zit , Zit ∈ Zit , such that there is no loss of optimality in
restricting attention to controllers of the form git : Zit 7→ U it?

2. If the probability distributions in the right hand side of (1) and (2) are time-homogeneous, is it possible
to identify a time-homogeneous information-state process and a corresponding dynamic programming
that determines a time-invariant optimal control strategies for all controllers?

The second question is significantly more important, and considerably harder, than the first. There are two
approaches to find a dynamic programming decomposition. The first approach is to find a set of coupled
dynamic programs, where each dynamic program is associated with a controller and determines the “optimal”
control strategy at that controller. The second approach is to find a dynamic program that simultaneously
determines the optimal control strategy at all controllers.

It is not obvious how to identify such dynamic programs. Let’s conduct a thought experiment in which
we assume that such dynamic programs have been identified and let’s try to identify the implications. The
description below is qualitative; the mathematical justification is presented later in the paper.

Consider the first approach. Suppose we are able to find a set of coupled dynamic programs, where the
dynamic program for controller i, which we refer to as Di, determines the “optimal” strategy gi for controller i.
We use the term optimal in quotes because we cannot isolate an optimization problem for controller i until
we specify the control strategy g−i for all other controllers. Therefore, dynamic program Di determines the
best response strategy gi for a particular choice of control strategies g−i for other controllers. With a slight
abuse of notation, we can write this as

gi = Di(g−i).

Any fixed-point g∗ = (g∗,1, . . . ,g∗,n) of these coupled dynamic programs has the property that every con-
troller i, i ∈ {1, . . . , n}, is playing its best response strategy to the strategies of other controllers. Such a
strategy is called a person-by-person optimal strategy (which is related to the notion of local optimum in
optimization theory and the notion of Nash equilibrium in game theory). In general, a person-by-person
optimal strategy need not be globally optimal; in fact, a person-by-person strategy may perform arbitrarily
bad as compared to the globally optimal strategy. So, unless we impose further restrictions on the model, a
set of coupled dynamic programs cannot determine a globally optimal strategy.

Now, consider the second approach. Suppose we are able to find a dynamic program similar to (11a)–
(11c) that determines the optimal control strategies for all controllers. All controllers must be able to use
this dynamic program to find their control strategy. Therefore, the information-state process {Zt}∞t=0 of such
a dynamic program must have the following property: Zt is a function of the information Iit available to
every controller i, i ∈ {1, . . . , n}. In other words, the information state must be measurable with respect to
the common knowledge (in the sense of Aumann [3]) between the controllers.

If we follow the methodology of centralized stochastic control and restrict attention to control laws of
the form git : Zt 7→ U it , then each controller would be ignoring its local information (i.e., the information
not commonly known to all controllers). Hence, if the dynamic program similar to (11a)–(11c) determines a
globally optimal strategy, then the step corresponding to (11c) cannot be a parametric optimization problem
that finds an optimal U it for each Zt.

Now let’s try to characterize the nature of the optimization problem corresponding to (11c). Let Lit
denote the local information at each controller so that Zt and Lit are sufficient to determine Iit . Then, for a
particular realization z of the information-state, the step corresponding to (11c) of the dynamic program must
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determine functions (γ1, . . . , γn) such that: (i) computing (γ1, . . . , γn) for each realization of the information
state is equivalent to choosing (g1, . . . , gn). (ii) γi gives instructions to controller i on how to use its local
information Lit to determine the control action U it , i.e., γi maps Lit to U it . Thus, the step corresponding
to (11c) is a functional optimization problems.

The above discussion shows that dynamic programming for decentralized stochastic control will be differ-
ent from that for centralized stochastic control. Either we must be content with a person-by-person optimal
strategy; or, if we pursue global optimality, then we must be willing to solve functional optimization problems
in the step corresponding to (11c) in an appropriate dynamic program.

In the literature, the first approach is called the person-by-person approach and the second approach is
called the common-information approach. We describe both these approaches in the next section.

5 The person-by-person approach

The person-by-person approach is motivated by the computational approaches for finding Nash equilibrium
in game theory. It was proposed by Marschak and Radner [17, 25] in the context of static systems with
multiple controllers and has been subsequently used in dynamic systems as well. This approach is used to
identify structural results as well as identify coupled dynamic programs to find person-by-person optimal (or
equilibrium) strategies.

5.1 Structure of optimal control strategies

To find the structural results, proceed as follows. Pick a controller that has perfect recall, say i; arbitrarily
fix the control strategies g−i of all controllers except controller i and consider the sub-problem of finding the
best response strategy gi at controller i. Since controller i has perfect recall, this sub-problem is centralized.
Suppose that we identify an information-state process {Ĩit}∞t=0 for this sub-problem. Then, there is no loss
of (best-response) optimality in restricting attention to control laws of the form g̃it : Ĩit → U it at controller i.

The choice of control strategies g−i was completely arbitrary. Hence, if the structure of g̃it does not
depend on the choice of (the arbitrarily chosen) control strategies g−i of other controllers, then there is no
loss of (global) optimality in restricting attention to control laws of the form g̃it at controller i.

Repeat this procedure at all controllers that have perfect recall. Let {Ĩit}∞t=0 be the information-state
processes identified at controller i, i ∈ {1, . . . , n}. Then there is no loss of global optimality in restricting
attention to the information structure (Ĩit , i ∈ {1, . . . , n}, t = 0, 1, . . . ).

5.2 An example

To illustrate this approach, consider the example of the decentralized control system of Section 2.5. Arbitrarily
fix the control strategy gj of controller j, j ∈ {1, 2}. The next step is to identify an information-state process
for the centralized sub-problem of finding the best response strategy gi of controller i, i = 3− j.

Assumption (A) (which states that the packet-arrival processes at the two devices are independent) implies
that

P(N1
1:t, N

2
1:t | H1:t, U

1
1:t−1, U

2
1:t−1) = P(N1

1:t | H1:t, U
1
1:t−1, U

2
1:t−1)P(N2

1:t | H1:t, U
1
1:t−1, U

2
1:t−1) (14)

Using the above conditional independence, we can show that for any choice of control strategy gj , Ĩit =

{N i
t , H1:t, U

1
1:t−1, U

2
1:t−1} is an information state for controller i. By Theorem 1, we get that there is no loss

of optimality (for best response strategy) in restricting attention to control laws of the form g̃it : Ĩit 7→ U it .
Since the structure of the optimal best response strategy does not depend on the choice of gj , there is no
loss of global optimality in restricting attention to control laws of the form g̃it. Equivalently, there is no loss
of optimality in assuming that the system has a simplified information structure (Ĩit , i ∈ {1, 2}, t = 0, 1, . . . ).
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5.3 Coupled dynamic program for person-by-person optimal solution

As discussed in Section 4, we can in principle identify coupled dynamic programs that determine a person-by-
person optimal solution. Such coupled dynamic programs have been used to find person-by-person optimal
strategies in sequential detection problems [30, 31]. In this section, we highlight two salient features of this
approach.

Suppose as a first step, we use the person-by-person approach to find the structure of optimal controllers
g̃it : Ĩit 7→ U it . Pick a controller, say i. Arbitrarily fix the control strategies g̃−i of all controllers other
than i and consider the sub-problem of finding the best response strategy g̃i. In general, the information-
state process {Ĩit}∞t=0 may not be time-homogeneous (as is the case in the above example where Ĩit =

{N i
t , H1:t, U

1
1:t−1, U

2
1:t−1}. A fortiori, we cannot show that restricting attention to time-invariant strategies is

without loss of optimality.

Suppose that the information-state process {Ĩit}∞t=0 of every controller i, i ∈ {1, . . . , n}, is time homoge-
neous. Even then, when we arbitrarily fix the control strategies g̃−i of all other controllers, the dynamical
model seen by controller i is not time homogeneous. For the dynamic model from the point of view of
controller i to be time-homogeneous, we must a priori restrict attention to time-invariant strategies at each
controller.

Thus, a time-invariant person-by-person optimal strategy obtained by the coupled dynamic programs
described in Section 4 need not be globally optimal for two reasons. First, there might be other time-
invariant person-by-person strategies that achieve a higher expected discounted reward. Second, there might
be other time-varying strategies that achieve higher expected discounted reward.

6 The common-information approach

The common-information approach was proposed by Nayyar, Mahajan, and Teneketzis [15, 18–20] and pro-
vides a dynamic programming decomposition (that determines optimal control strategies for all controllers)
for a subclass of decentralized control systems. Variation of this approach had been used for specific infor-
mation structures including delayed state sharing [1], partially nested systems with common past [7], teams
with sequential partitions [37], periodic sharing information structure [22], and belief sharing information
structure [38].

This approach formalizes the intuition presented in Section 4: to obtain a dynamic program that deter-
mines optimal control strategies for all controllers, the information-state process must be measurable at all
controllers and, at each step of the dynamic program, we must solve a functional optimization problem that
determines instructions to map local information to control action for each realization of the information
state.

To formally describe this intuition, split the information available at each controller into two parts: the
common information

Ct =
⋂
τ≥t

n⋂
i=1

Iiτ

and the local information
Lit = Iit \ Ct, ∀i ∈ {1, . . . , n}.

By construction, the common and local information determine the total information, i.e., Iit = Ct ∪ Lit
and the common information is nested, i.e., Ct ⊆ Ct+1.

The common information approach applies to decentralized control systems that have a partial history
sharing information structure [19,20].

Definition 2 An information structure is called partial history sharing when the following conditions are
satisfied:
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1. For any set of realizations A of Lit+1 and any realization ct of Ct, `it of Lit, uit of U it and yit+1 of Y it+1,
we have

P(Lit+1 ∈ A | Ct = ct, L
i
t = `it, U

i
t = uit, Y

i
t+1 = yit+1) = P(Lit+1 ∈ A | Lit = `it, U

i
t = uit, Y

i
t+1 = yit+1)

2. The size of the local information is uniformly bounded3, i.e., there exists a k such that for all t and all
i ∈ {1, . . . , n}, |Lit| ≤ k, where Lit denotes the space of realizations of Lit.

An example of partial history sharing is the celebrated k-step delayed sharing [35] information structure.
Let J it = {Y i1:t, U i1:t−1} denote the self information of controller i. In k-step delay sharing, each controller
has access to the k-step delayed self information of all other controllers, i.e.,

Iit = J it ∪
( n⋃
j=1
j 6=i

Jjt−k

)
, ∀i ∈ {1, . . . , n}.

Another example is k-step periodic sharing, where all controllers periodically share their self information
after every k steps, i.e.,

Iit = J it ∪
( n⋃
j=1
j 6=i

Jjbt/kck

)
, ∀i ∈ {1, . . . , n}.

The example described in Section 2.5 does not have partial history sharing information structure. However,
if we follow the person-by-person approach of Section 5.2 and restrict attention to the information structure
(Ĩit , i ∈ {1, 2}, t = 0, 1, . . . ) where Ĩit = {N i

t , H1:t, U
1
1:t−1, U

2
1:t−1}, then the model has partial history sharing

information structure.

To identify a dynamic program that determines optimal control strategies for all controllers, the common-
information approach exploits the fact that planning is centralized, i.e., the control strategies for all controllers
are chosen before the system starts running and, therefore, optimal strategies can be searched in a centralized
manner.

The construction of an appropriate dynamic program relies on partial evaluation of a function defined
below.

Definition 3 For any function f : (x, y) 7→ z and a value x0 of x, the partial evaluation of f and x = x0 is
a function g : y 7→ z such that for all values of y,

g(y) = f(x0, y).

For example, if f(x, y) = x2 + xy + y2, then the partial evaluation of f at x = 2 is g(y) = y2 + 2y + 4.

The common-information approach proceeds as follows [19,20]:

1. Construct an equivalent centralized coordinated system.
The first step of the common-information approach is to construct an equivalent centralized stochastic
control system which we call the coordinated system. The controller of this system, called the co-
ordinator, observes the common information Ct and chooses the partially evaluated control laws git,
i ∈ {1, . . . , n}, at Ct. Denote these partial evaluations by Γit and call them prescriptions. These pre-
scriptions tell the controllers how to map their local information information into control actions; in
particular U it = Γit(L

i
t). The decision rule ψt : Ct 7→ (Γ1

t , . . . ,Γ
n
t ) that chooses the prescriptions is called

a coordination law and the choice of ψ = (ψ1, ψ2, . . . ) is called a coordination strategy.
Note that the prescription Γit is a partial evaluation of the control law git at the common information
Ct. Hence, for any coordination strategy ψ = (ψ1, ψ2, . . . ), we can construct an equivalent control
strategy gi,∗ = (gi,∗1 , gi,∗2 , . . . ), i ∈ {1, . . . , n} by choosing

gi,∗t (ct, `
i) = ψi,∗t (ct)(`

i),

3This condition is needed to ensure that the information-state is time-homogeneous and, as such, may be ignored for finite
horizon models [20].



Les Cahiers du GERAD G–2014–87 11

where ψi,∗t denotes the i-th component of ψ∗t . The coordination strategy ψ is equivalent to the control
strategy g∗ in the following sense. For any realization of the primitive random variables of the system,
the reward process in the original system under g∗ has the same realization as the reward process
in coordinated system under ψ. Therefore, the problem of finding the optimal decentralized control
strategy in the original system is equivalent to that of finding the optimal coordination strategy in the
coordinated system.

The coordinated system has only one controller, the coordinator, which has perfect recall; the
controllers of the original system are passive agents that simply use the prescriptions given by the
coordinator. Hence, the coordinated system is a centralized stochastic control system with the state
process {(Xt, L

1
t , . . . , L

n
t )}∞t=0, the observation process {Ct}∞t=0, the reward process {Rt}∞t=0, and the

control process {(Γ1
t , . . . ,Γ

n
t )}∞t=0.

2. Identify an information state of the coordinated system
The coordinated system is a centralized system in which the control process is a sequence of func-
tions. Let {Zt}∞t=0, Zt ∈ Zt, be any information-state process for the coordinated system.4 Then, by
Theorem 1, there is no loss of optimality in restricting attention to coordination laws of the form

ψt : Zt 7→ (Γ1
t , . . . ,Γ

n
t ).

Suppose the probability distributions on the right hand side of (1) and (2) are time-homogeneous, the
evolution of Zt is time-homogeneous, and the state space Zt of the realizations of Zt is time-invariant,
i.e., Zt = Z. Then, by Theorem 2, there exists a time-invariant coordination strategy ψ∗ = (ψ∗, ψ∗, . . . )

where ψ∗ is given by
ψ∗(z) = arg sup

(γ1,...,γn)

Q(z, (γ1, . . . , γn)), ∀z ∈ Z (15a)

where Q is the unique fixed point of the following set of equations: ∀z ∈ Z and ∀γ = (γ1, . . . , γn)

Q(z,γ) = E[Rt + βV (Zt+1) | Zt = z,Γ1
t = γ1, . . . ,Γnt = γn], (15b)

V (z) = sup
γ
Q(z,γ). (15c)

As explained in the previous step, the optimal time-invariant control strategies gi,∗ = (gi,∗, gi,∗, . . . ),
i ∈ {1, . . . , n}, for the original decentralized system are given by

gi,∗(z, `i) = ψi,∗(z)(`i)

where ψi,∗ denotes the i-th component of ψ∗.
Note that step (15c) of the above dynamic program is a functional optimization problem. In contrast,

step (11c) of the dynamic program for centralized stochastic control was a parametric optimization
problem.

Remark 1 The coordinated system and the coordinator described above are fictitious and used only as a
tool to explain the approach. The computations carried out at the coordinator are based on the information
known to all controllers. Hence, each controller can carry out the computations attributed to the coordinator.
As a consequence, it is possible to describe the above approach without considering a coordinator, but in our
opinion thinking in terms of a fictitious coordinator makes it easier to understand the approach.

6.1 An example

To illustrate this approach, consider the decentralized control example of Section 2.5. Start with the simplified
information structure Ĩit = {N i

t , H1:t, U
1
1:t−1, U

2
1:t−1} obtained using the person-by-person approach. The

common information is given by

Ct =
⋂
τ≥t

(Ĩ1τ ∩ Ĩ2τ ) = {H1:t, U
1
1:t−1, U

2
1:t−1}

4For example, the process {πt}∞t=0, where πt is the conditional probability measure on (Xt, L1
t , . . . , L

n
t ) conditioned on Ct,

is always an information-state process.
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and the local information is given by

Lit = Ĩit \ Ct = {N i
t}, ∀i ∈ {1, 2}.

Thus, in the coordinated system, the coordinator observes Ct and uses the coordination law ψt : Ct 7→ (γ1t , γ
2
t ),

where γit maps the local information N i
t to U it . Note that γit is completely specified by Di

t = γit(1) because the
constraint U it ≤ N i

t implies that γit(0) = 0. Therefore, we may assume that the coordinator uses a coordination
law ψt : Ct 7→ (D1

t , D
2
t ), Di

t ∈ {0, 1}, i ∈ {1, 2} and each device then chooses a control action according to
U it = N i

tD
i
t. The system dynamics and the reward process are same as in the original decentralized system.

Since the coordinator has perfect recall, the problem of finding the best coordination strategy is a central-
ized stochastic control problem. To simplify this centralized stochastic control problem, we need to identify
an information state as described in Definition 1.

Let ζit ∈ [0, 1] denote the posterior probability that device i, i ∈ {1, 2} has a packet in its buffer given the
channel feedback, i.e.,

ζit = P(N i
t = 1 | H1:t, U

1
1:t−1, U

2
1:t−1), ∀i ∈ {1, 2}.

Moreover, as in the centralized case, let ξt ∈ [0, 1] denote the posterior probability that the channel is busy
given the channel feedback, i.e.,

ξt = P(St = 1 | H1:t, U
1
1:t−1, U

2
1:t−1) = P(St = 1 | H1:t).

One may verify that (ζ1t , ζ
2
t , ξt) is an information state that satisfies (7) and (8). So, there is no loss of

optimality in using coordination laws of the form γ : (ζ1t , ζ
2
t , ξt) 7→ (D1

t , D
2
t ). This information state takes

values in the uncountable space [0, 1]3. Since each component ζ1t , ζ2t , and ξt of the information state is a
posterior distribution, we can use the computational techniques of POMDPs [28,40] to numerically solve the
corresponding dynamic program.

However, a simpler dynamic programming decomposition is possible by characterizing the reachable set
of the information state. The reachable set of ζit is given by

Ri := {zik | k ∈ Z>0} ∪ {1} (16a)

where
zik := P(N i

k = 1 | N i
0 = 0, Di

0:k−1 = (0, . . . , 0)), ∀s ∈ {0, 1}, k ∈ Z>0 (16b)

and the reachable set of ξt is given by Q defined in (12). For ease of notation, define zi∞ = 1.

Therefore, {(ζ1t , ζ2t , ξt)}∞t=0, (ζ1t , ζ
2
t , ξt) ∈ R1×R2×Q, is an alternative information-state process. In this

alternative characterization, the information state is denumerable and we may use finite-state approximations
to solve the corresponding dynamic program [8–10,27,33].

The dynamic program for this alternative characterization is given below. Let qs,m = 1 − qs,m and
zik = 1− zik. Then for s ∈ {0, 1} and k, ` ∈ Z>0 ∪ {∞} and m ∈ Z>0, we have that

V (z1k, z
2
` , qs,m) = max

{
Q00(z1k, z

2
` , qs,m), Q10(z1k, z

2
` , qs,m), Q01(z1k, z

2
` , qs,m), Q11(z1k, z

2
` , qs,m)

}
(17a)

where Qd1d2(z1k, z
2
` , qs,m) corresponds to choosing the prescription (d1, d2) and is given by

Q00(z1k, z
2
` , qs,m) = βV (z1k+1, z

2
`+1, qs,m+1); (17b)

Q10(z1k, z
2
` , qs,m) = z1k qs,m r − z1k c+ β

[
z1kV (z11 , z

2
`+1, qs,m+1)

+ z1k qs,mV (z11 , z
2
`+1, q0,1) + z1k qs,mV (z1∞, z

2
`+1, q1,1)

]
; (17c)

Q01(z1k, z
2
` , qs,m) = z2` qs,m r − z2` c+ β

[
z2`V (z1k+1, z

2
1 , qs,m+1)

+ z2` qs,mV (z1k+1, z
2
1 , q0,1) + z2` qs,mV (z1k+1, z

2
∞, q1,1)

]
; (17d)
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Q11(z1k, z
2
` , qs,m) = [z1k z

2
` + z1k z

2
` ] qs,m r − [z1k + z2` ] c+ β

[
z1k z

2
`V (z11 , z

2
1 , qs,m+1)

+ [z1k z
2
` + z1k z

2
` ] qs,mV (z11 , z

2
1 , q0,1) + z1kz

2
` qs,mV (z1∞, z

2
∞, q0,1)

+ z1kz̄
2
` qs,mV (z1∞, z

2
1 , q1,1) + z̄1kz

2
` qs,mV (z11 , z

2
∞, q1,1)

+ z1kz
2
kqs,mV (z1∞, z

2
∞, q1,1)

]
. (17e)

The optimal strategies obtained by solving (17) for β = 0.9, α0 = α1 = 0.75, r = 1, p1 = p2 = 0.3, and
c = 0.4 is given by

g∗(z1k, z
2
` , qs,m) =

{
(0, 0), if s = 1 and m ≤ 2

d(z1k, z
2
` ), otherwise,

where

d(z1k, z
2
` ) =


(1, 0), if k > `

(0, 1), if k < `

(1, 0) or (0, 1), if k = `.

Remark 2 As we argued in Section 4, if a single dynamic program determines the optimal control strategies
at all controllers, then the step (15c) must be a functional optimization problem. Consequently, the dynamic
program for decentralized stochastic control is significantly more difficult to solve than dynamic programs
for centralized stochastic control. When the observation and control processes are finite valued (as in the
above example), the space of functions from Lit to U it are finite and step (15c) can be solved by exhaustively
searching over all alternatives.

Remark 3 As in centralized stochastic control, the information-state in decentralized control is sensitive to the
modeling assumptions. For example, in the above example, if we remove assumption (A) (which states that
the packet-arrival processes at the two devices are independent), then the conditional independence in (14) is
not valid; therefore, we cannot use the person-by-person approach to show that {N i

t , U
1
1:t−1, U

2
1:t−1, H1:t}∞t=0

is an information state for controller i. In the absence of this result, the information structure is not partial
history sharing. So, we cannot identify a dynamic program for the infinite horizon problem.

7 Conclusion

Decentralized stochastic control gives rise to new conceptual challenges as compared to centralized stochastic
control. There are two solution methodologies to overcome these challenges: (i) the person-by-person ap-
proach and (ii) the common-information approach. The person-by-person approach provides the structure
of globally optimal control strategies and coupled dynamic programs that determine person-by-person opti-
mal control strategies. The common-information approach provides the structure of globally optimal control
strategies as well as a dynamic program that determines globally optimal control strategies. A functional
optimization problem needs to be solved to solve the dynamic program.

In practice, both the person-by-person approach and the common information approach need to be used
in tandem to solve a decentralized stochastic control problem. For example, in the example of Section 2.5
we first used the person-by-person approach to simplify the information structure of the system and then
used the common-information approach to find a dynamic programming decomposition. Neither approach
could give a complete solution on its own. A similar tandem approach has been used for simplifying specific
information structures [13], real-time communication [32], networked control systems [16].

Therefore, a general solution methodology for decentralized stochastic control is as follows.

1. Use the person-by-person approach to simplify the information structure of the system.
2. Use the common-information approach on the simplified information structure to identify an information-

state process for the system.
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3. Obtain a dynamic program corresponding to the information-state process.
4. Either obtain an exact analytic solution of the dynamic program (as in the centralized case, this is

possible only for very simple models), or obtain an approximate numerical solution of the dynamic
program (as was done in the example above), or prove qualitative properties of optimal solution.

This approach is similar to the general solution approach of centralized stochastic control, although the last
step is significantly more difficult.

The above methodology applies only to systems with partial-history sharing and to systems that reduce to
partial-history sharing by a person-by-person approach. Identifying solution techniques for other subclasses
of decentralized stochastic control remains an active area of research.
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