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Abstract: Including employee preferences in a shift-scheduling scheme raises the question of how to aggregate
employee satisfactions in a sensible manner. To do so, we first need to model the employees’ preferences,
which can be done using so-called utility functions and a multi-attribute approach like MACBETH. Even
then, though, we still need to make sure that it is sensible to compare or to add two different utility functions
that concern different attributes. To do so, an appropriate normalization of utility functions is required. In
this paper, we first discuss a naive extreme value normalization (EVN), which has utility values ranging all
along two predetermined values, e.g. between 0 and 5. Then, we propose an alternative normalization, called
AMACSN, which relies on a description of the “typical outcomes” produced by a shift-scheduling scheme.
We then give both the conceptual grounds and the computational results to argue that AMACSN is more
relevant and more meaningful than EVN to address the comparison or addition of different utility functions.
As a bonus, we observe that AMACSN induces greater fairness.

Key Words: Normalization, preferences, utility, multi-attribute, scheduling.
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1 Introduction

Since Dantzig (1954), shift scheduling has become a widely studied problem of operations research. It consists

of creating and allocating shifts to employees to best cover a demand for employees at all times, and it can be

stated as a set-covering problem. While set-covering problems have been shown to be NP-complete by Karp

(1972), efficient exact or heuristic approaches based on column generation (Appelgren (1969); Desrochers

and Soumis (1989); Barnhart et al. (1998); Desaulniers et al. (2005)) have yielded very good solutions. The

efficiency of these approaches lies in the smallness of integrality gaps.

As computer power has increased, shift-scheduling models have become more realistic by including more

constraints. For instance, at first, breaks in shifts were not taken into account (see Moondra (1976)); this was

then rectified by Bechtold and Jacobs (1990) with the inclusion of lunch breaks. Later, Aykin (1996) proposed

a model with several possible breaks. Rekik et al. (2010) generalized the model to include fractionable breaks.

We pursue this effort to make shift-scheduling models more realistic, by including employee preferences.

One difficulty posed by such a goal is that shifts must be personalized. Personalized scheduling is not

new though. Indeed, many models of rostering require knowledge of employees’ planned activities like holi-

days, training periods or medical appointments. This, in turn, requires shift scheduling to treat employees

asymmetrically, as was done for air crew scheduling (Gontier (1985)) or nurse scheduling (Bard and Purnomo

(2005)). Using heuristic column generation and today’s computer power, good solutions can still be found in

a reasonable amount of time.

While this paper does provide a new approach to optimize the satisfaction of employees’ preferences, the

main contribution of this paper lies rather in the way we include these preferences. For one thing, it is notable

that the mere step of mathematically modeling one’s preferences is a difficult task. Indeed, it has been the

core of active fields of research including conjoint analysis (Green and Srinivasan (1978); Orme (2005)) and

multicriteria analysis (Siskos and Spyridakos (1999); Zopounidis and Doumpos (2002)). One approach from

the latter category that we have found particularly relevant for our purposes is known as the MACBETH

method, introduced by Bana e Costa and Vansnick (1994). In this setting, an employee describes a linear

multi-attribute utility function by giving qualitative answers to comparison questions only. An example of

such question is “How much do you prefer starting a work shift at 8:00 a.m. compared to at 10:00 a.m.?”

Thus, MACBETH models any employee’s preferences as a weighted sum of so-called partial utility func-

tions. Each partial utility function corresponds to an attribute (e.g. the time of day worked, the total number

of hours worked in the week or the day off in the week). More precisely, for any employee i ∈ N = {1, . . . , n}
and any attribute k ∈ K, the MACBETH method yields a partial utility function uik, which maps levels lik
of this attribute (e.g. early morning, 40 hours or Sunday) to a real number. This real number uik(lik) takes

on greater values for more preferred levels lik. Also, there is a weight wik associated with attribute k, so that

the linear multi-attribute utility function of employee i can be written

ui =
∑
k∈K

wikuik(lik). (1)

The MACBETH software allows employee i to determine the partial utility functions uik(·) and the weights

wik that best match his preferences. We will describe this setting more formally in Section 2, as well as a

shift-scheduling program we use to optimize employees’ utilities.

It is important to notice, though, that the MACBETH method does not yield any normalization of

the employees’ linear multi-attribute utility functions. In other words, while it offers a sense of each utility

function ui individually and up to a positive affine transformation, it does not offer the possibility to compare

the utility functions ui and uj of two different employees i and j. However, since we will be seeking to

maximize the sum of all utilities, it is essential for these utility functions to be on the same scale.

A naive approach to doing this is what we call the extreme value normalization (EVN). In this setting,

we make sure that the minimal value of a partial utility function is 0, and that its maximum value is 5.

The choice of the value 5 is arbitrary, but results would be identical for any other choice. Importantly,

partial utilities are normalized with regard to their extreme values. This normalization is used, for instance,
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to compute the Human Development Index (HDI). Then, we require the sum of weights to add up to 100.

While this naive normalization is widely used and already yields relevant shift allocations, we will show

its flaws, both conceptually, through the so-called busy Christmas paradox and numerically, with our more

advanced normalization called AMACSN.

AMACSN consists of two steps. First, we need to find a meaningful normalization of the partial utility

functions uik to make all their values comparable with one another. To do so, we introduce a new normaliza-

tion we call the correlated social normalization (CSN), which represents a major contribution of this paper.

In essence, for each employee i ∈ N and each attribute k ∈ K, this normalization consists of comparing the

partial utility uik(lik) of the employee for the level of his schedule to his partial utilities uik(ljk) for the other

employees’ levels ljk, especially if employees i and j have the same preferences.

Next, note that the normalization of each partial utility function uik implies a rescaling of the corre-

sponding weight wik to keep the multi-attribute utility function consistent. Indeed, if the partial utility uik
is stretched by the normalization by a factor of 2, then the corresponding weight wik should be divided by 2.

However, we still may need to normalize the whole vector of weights (wik)k∈K , so that two different employ-

ees’ multi-attribute utilities are comparable. We formalize this aspect by introducing a multiplier αi of the

vector of weights for each employee i. Determining the multipliers αi is the second step of our normalization

procedure. In Section 4, we will present a normalization of these multipliers based on the so-called standard

utility functions. At last, we obtain AMACSN.

This paper is divided into 6 sections. In Section 2, we present MACBETH, the description of preferences

as linear multi-attribute utility functions and the shift-scheduling formulation as an integer program. Next,

Section 3 introduces EVN, and then AMACSN, our main contribution. Section 4 then presents results

of the shift-scheduling program, using EVN and AMACSN. These results confirm the greater relevancy of

AMACSN. Finally, conclusions are drawn in Section 5.

2 Preferences and scheduling program

In this paper, we consider a shift-scheduling and job-assignment problem over one week. The main goal of

this paper is to design an algorithm that also personalizes employees’ shifts according to their preferences. To

proceed to personalized shift scheduling with preferences, we first need to define a protocol that enables the

employees to describe their preferences. Then, we need to include these preferences in the shift-scheduling

optimization program. This requires us to provide a quantification of the employees’ preferences.

In Subsection 2.1, we briefly discuss the modeling of the preferences according to linear multi-attribute

utility functions that shall be used in the shift scheduling program. By using MACBETH, each employee

determines his corresponding linear multi-attribute utility function, hence defining weights wik and partial

utilities uik.

Then, in Subsections 2.2 and 2.3, we present the shift-scheduling optimization program, which is an

integer linear program. We first present the program without preferences, which will enable us to derive the

minimal shift-scheduling cost. Then, we present the program with preferences, that maximizes the sum of

utilities, while guaranteeing a bound on costs defined by the minimal shift-scheduling cost. We also briefly

discuss algorithms used to solve heuristically these scheduling programs.

2.1 Linear multi-attribute utility functions

Defining a procedure to help people quantitatively describe their preferences is a difficult problem that

represents an active field of research. This is particularly true when faced with a large number of complex

possible alternatives, as is the case for preferences about work schedules. A common simplification consists

of characterizing attributes (also known as criteria), which preferences really depend on. In this paper, we

consider four attributes, namely Hours Per Week (HPW), Job Activity (Job), Shift-Type (ShT) and Day-On

(Day). We denote K = {HPW,Job,Day, ShT} the set of attributes.
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For a given schedule s, each attribute k takes a value called level lk(s). Depending on attributes, levels

can have different forms. They can be vectors, scalars or subsets. To illustrate, the Day-On attribute is the

subset of the days in the week that are working days. So, for instance, if a schedule s gives Wednesday and

Sunday off, the Day-On attribute has level lDay(s) = {Monday, Tuesday, Thursday, Friday, Saturday}. For

the purpose of analyzing employees’ preferences, a shift s can be regarded as a vector

(lk(s))k∈K = (lHPW (s), lJob(s), lDay(s), lShT (s)). (2)

For the sake of exposition and for confidentiality reasons, we do not explicit all levels.

To proceed, we assume that an employee’s preferences about schedules can be fully described by a linear

multi-attribute utility function. This means that we assume that the employee i’s utility function ui : si 7→
ui(si) ∈ R can be decomposed into a weighted sum of partial utility functions uik : lik 7→ uik(lik) ∈ R,

for attributes k ∈ K. Denoting wik the weight of attribute k in employee i’s utility function, then, for any

schedule si given to employee i, we have

ui(si) =
∑
k∈K

wikuik(lk(si)). (3)

The description of partial utility functions uik(·) depends on the structure of the levels of attribute k ∈ K.

Once again, for confidentiality reasons, we will not give more details regarding this modeling. Note, though,

that the details about the partial utility functions that are skipped are not useful for the sequel of this paper.

Importantly, this decomposition is not unique. Indeed, following Von Neumann and Morgenstern (1944),

if we only regard an employee’s viewpoint, then only the ordering of shifts matters. Therefore, utility

functions should actually be defined up to a positive affine transformation. This means that ui : Ω→ R and

αui + δ represent the same utility functions for any α > 0, since such a transformation leaves the ordering of

preferences unchanged.1 In other words, for a given utility function, there are two degrees of freedom that

need to be fixed by normalization.

Similarly, for each partial utility function uik(·), we have two degrees of freedom, as we can replace uik(·)
by βikuik(·) + γik for any βik > 0. Note that if we do multiply a partial utility function uik(·) by a multiplier

βik > 0, then we need to divide wik by βik simultaneously to maintain the consistency of the multi-attribute

utility function ui(·). Otherwise, our modified multi-attribute utility function might describe a different

ordering of shift allocations, and hence describe different preferences. To stick with simple notations though,

we will not explicit these normalizable parameters of linear multi-attribute utility functions.

Before getting to the normalization considerations, we first need to determine a procedure that can help

employees arrive at a decomposition of their preferences. There are two main areas of research that aim at

such a procedure. The first is conjoint analysis (see Green and Srinivasan (1978); Louviere (1988); Green

et al. (2001); Netzer et al. (2008)), which consists of analyzing trade-off situations one may be faced with.

For instance, one may be asked to rank a small set of alternatives. From these observations, a regression

model characterizes the trends to induce a global ordering of all the alternatives.

However, more straightforward approaches have come from multicriteria analysis. Some of the most

popular methods from this field are ELECTRE (Benayoun et al. (1966); Maystre et al. (1994); Greco et al.

(2011)), PROMETHEE (Brans et al. (1986); Brans and Mareschal (2002)) and MACBETH. This last one is

used in this paper. There are two main steps involved in using MACBETH to describe linear multi-attribute

utility functions. First, employee i’s partial utility functions uik(·) is defined, and then his weights wik are

determined.

Roughly, an employee’s partial utility function is constructed by having the employee comparing reference

levels. This is done by filling in a half matrix in MACBETH. Then, depending on the considered attribute,

MACBETH infers a whole partial utility function uik(·).
1More precisely, for any two shifts s1 and s2, ui(s1) ≥ ui(s2) if and only if αui(s1) + δ ≥ αui(s2) + δ. Plus, the same

property must hold for probability distributions over shifts.
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Remark 1 The partial utility functions of MACBETH are only normalized such that the maximum utility of

an attribute always equals 100. However, there is no normalization of the minimum utility. It can equal 0 or

be as small as -600. This is not good for our optimization, as partial utility functions will not all be at the

same scale.

Now, for each attribute k ∈ K, MACBETH determines a default level ldefaultk and a most preferred level

lpreferredk . Then, for any two attributes k1, k2 ∈ K, employees are asked to compare levels (ldefaultk1
, lpreferredk2

)

and (lpreferredk1
, ldefaultk2

). By achieving all pairwise comparisons between any two attributes, employees fill in

a half matrix in MACBETH, which is then automatically used to compute all weights wik ≥ 0 (with at least

one non-zero).

2.2 Shift scheduling without preferences

The shift-scheduling problem we face has a one-week horizon. This week is divided into a set T = {1, . . . , |T |}
of periods. At each period t ∈ T and for each job activity a ∈ A, we suppose that there is a known demand

dat. Each undercovering (respectively, overcovering) of demand has a cost ca (respectively, c̄a) per period

t ∈ T of time. We denote by Uat and Oat the number of undercoverings and overcoverings of demand for

job activity a at period t. For each employee i ∈ N , we denote by Ωi the set of his admissible one-week

schedules. We define δats the binary parameter that equals 1 if and only if schedule s ∈ Ωi requires employee

i to work job activity a ∈ A at period t. Finally, we denote by xis the binary variable that equals 1 when

employee i ∈ N works schedule s ∈ Ωi.

The following Shift Scheduling (SS) integer linear program determines the minimal shift-scheduling cost:

C0 = Minimize
x,U,O,C

C (4)

subject to:
∑
s∈Ωi

xis = 1, ∀i ∈ N, (5)

Uat +
∑
i∈N
s∈Ωi

δatsxis = dat +Oat, ∀a ∈ A,∀t ∈ T, (6)

C = caUat +
∑
a∈A
t∈T

c̄aOat (7)

Uat ≥ 0, Oat ≥ 0, ∀a ∈ A,∀t ∈ T. (8)

xis ∈ {0, 1}, ∀i ∈ N, ∀s ∈ Ωi. (9)

Equations (5) assert that each employee must be given one and only one shift. Equations (6) compute the

number of undercoverings and overcoverings in each period and for each job. Equations (7) derive costs from

undercoverings and overcoverings. Relations (8) ensure that the numbers of undercoverings and overcoverings

are computed as non-negative values. Finally, relations (9) are the integrality requirement on the schedule

variables.

We shall use this minimal cost C0 to design our shift-scheduling program with preferences.

2.3 Shift scheduling with preferences

In order to balance shift-scheduling cost with fairness in a reasonable way, we require the personalized shift

scheduling to cost no more than (1 + α)C0 for α > 0. In our case, we will choose α = 2%.

Moreover, we assume that each employee has determined and revealed his linear multi-attribute utility

function for shifts. This means that we are given as inputs the partial utility functions uik : lk 7→ uik(lk) ∈ R
for any employee i ∈ N and attribute k ∈ K, as well as weights wik ∈ R+. As discussed earlier, these should

be normalized before running the shift-scheduling program. Different normalizations will be discussed in

Section 3.
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Now, in an attempt to maximize the employees’ satisfactions, we define the Shift Scheduling with Prefer-

ences (SSP) optimization program:

Maximize
x,U,O,C

∑
i∈N

∑
s∈Ωi

∑
k∈K

wikuik(lk(s))xis (10)

subject to: C ≤ (1 + α)C0, (11)

Constraints (5)–(9).

It is noteworthy that SSP does not include any fairness objective. We have found that solving SSP is

already quite time-consuming. Yet, a fairness term in the objective function, which, for instance, would

minimize some sort of standard deviation, can be expected to yield a much greater integrality gap. For this

reason, we expect the addition of such a term to greatly increase the computation time. For this reason, we

limit ourselves to simply maximizing the sum of the employees’ satisfactions. However, as we shall see, a

right normalization of utility functions will naturally guarantee a satisfying amount of fairness.

To solve the SSP program, we propose a heuristic based on column generation (see Appelgren (1969);

Desrochers and Soumis (1989); Barnhart et al. (1998); Desaulniers et al. (2005)). We first solve the linear

relaxation of the SS program for a set Ωi that initially contains only a few of the admissible shifts for

employees i ∈ N . Then, given dual variables of the SS program, and using a subproblem, we generate other

relevant columns s ∈ Ωi. This subproblem is solved using a professional software, which we will not dwell

on for confidentiality reasons. This is also the reason we do not provide more information about sets Ωi

of schedules. But it is noteworthy that this professional software is used in over 10,000 companies, and

each company uses it for different independent groups of employees, e.g. for different stores, factories and

departments.

Importantly, columns generated by the subproblem enlarge the set of generated shifts. Once this set is

large enough, we use the solver Xpress-MP to solve the SS program with the integrality constraints, hence

deriving the minimal shift scheduling cost C0. Finally, we solve the SSP program with the same set of

columns generated in SS, still using the solver Xpress-MP.

One might fear that this set of columns is too restricted. However, as we said, the SSP program is already

very time-consuming as is. Moreover, we could argue that our sets Ωi generated by SS are already large

enough to find the shifts the employees ask for. More specifically, in our instances, the SS program generates

about 100, 000 columns. Yet, for each attribute, a rough estimate shows that at least one out of 10 levels is

precisely what an employee has asked for. Hence, since there are 4 attributes, there are at least one in 104

shifts that completely satisfy an employee. Therefore, it is very likely that, for any given employee, many of

the shifts we generated match that employee’s preferences.

Note that, because the solution value found for the SS program is only used as a parameter in Con-

straint (11), it is not that important to get an accurate value for C0. On the other hand, the SS program

is so much easier to solve than the SSP program that it is not where most of the computation time is lost.

Thus, requiring greater accuracy in the computation of C0 will not deeply affect the computation time overall.

Once again, the SS program is mainly essential to generate relevant columns.

3 Multi-attribute normalizations

In this section, we introduce two normalizations of linear multi-attribute utility functions. We first quickly

present the naive EVN. Then, we will define AMACSN, which is the main contribution of this paper.

3.1 Extreme value normalization

As announced in the introduction, we define a naive normalization for linear multi-attribute utility functions.

The EVN shares similarities with many common measure indices, like, for instance, HDI.



6 G–2014–75 Les Cahiers du GERAD

Definition 1 A linear multi-attribute utility function is EVN if the extreme partial utilities equal 0 and 5

and such that the sum of weights equal 100. We denote by uEVN
ik and wEVN

ik the EVN partial utilities and

weights.

Let us verify that this normalization is well-defined. To do so, we must assume that partial utilities are

non-degenerate. This means that a partial utility uik has two different values for some two levels l1ik and l2ik.

Proposition 1 If partial utilities are bounded and non-degenerate, then the EVN exists and is unique.

Proof. Let umin
ik and umax

ik be defined by

umin
ik = min

lik
uik(lik) and umax

ik = max
lik

uik(lik). (12)

By assumption, we have −∞ < umin
ik < umax

ik < ∞. Given that only positive affine transformations are

allowed, the EVN partial utility is then necessarily

uEVN
ik = 5× uik − umin

ik

umax
ik − umin

ik

. (13)

For the ordering of shifts induced by u to remain the same, we need to rescale weights, by

ŵik = wik(umax
ik − umin

ik ). (14)

It is then straightforward to see that
∑
wikuik and

∑
ŵiku

EVN
ik represent the same utility functions. Finally,

we have to set wEVN
ik = 100× ŵik/

∑
k′∈K ŵik′ , in order to guarantee that the sum of the weights amounts

to 100. This proves existence and uniqueness.

While we do not state this fact formally, it is also straightforward to see that no matter which normalization

of the linear multi-attribute utility function we start with, applying EVN always yields the same EVN linear

multi-attribute utility function.

Also, we will call EVN-SSP the SSP program whose objective function is written with EVN linear multi-

attribute utility functions.

3.2 Affinely multi-attribute correlated social normalization

In this subsection, we propose a more meaningful alternative to EVN, which extends ideas by Hoang et al.

(2014) to the setting of linear multi-attribute utility functions. But before getting to this alternative, let us

criticize EVN conceptually through an example.

3.2.1 The busy Christmas paradox

Consider only one attribute, namely, Day-On. Assume that Tuesday is Christmas, and that nearly everyone

wants it off. Now, consider employees 1 and 2 who both really care about the day of the week they get off.

However, while employee 1 really wants to have Christmas off, employee 2 does not celebrate Christmas, and

actually wants Friday off.

Let us compare the two employees’ partial utilities for the day-on attribute. Employee 2 basically knows

he will be given Friday off, as he’s almost surely the only one who asked for it. Thus, he will certainly have

the maximal utility of 5 out of 5. Similarly, if employee 1 does get Christmas off, he would have the maximal

utility of 5 out of 5 too. However, because it is much less likely for him to obtain what he wants, employee 1

will definitely feel much happier about having Christmas off than employee 2 does about having Friday off.

There is another way of seeing this. By giving employee 2 Friday off, the cost for the other employees and
the company is basically zero, if not negative. However, giving Christmas off to employee 1 means sacrificing

an opportunity that many other employees would gladly take. In other words, it induces a non-negligible
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cost to other employees. For this reason, employee 1 has to feel happier about his day off than employee 2

does about his.

Conversely, if employee 2 were not given Friday off, he would be so surprised that he would actually

feel greatly disappointed. Meanwhile, if employee 1 were not given Christmas off, then he would know he

probably is one of many other employees who did not get Christmas off. Therefore, employee 1 would not

feel as badly about not having Christmas off as employee 2 would about not having Friday off.

What this discussion shows is that the EVN we have been using to normalize partial utilities is not

appropriate to compare the different partial utilities of different employees. Rather, a normalization of utility

functions should be defined depending on some context that the shift allocation defines. This leads us to one

of the main contributions of this paper, which extends the SN introduced by Hoang et al. (2014).

3.2.2 Correlated social normalization

Like SN, correlated social normalization (CSN) consists of normalizing an employee’s utility with regard to

utilities he would have, were he given other employees’ shifts. To do so, it is necessary to consider some

typical output of SSP. This output will form a benchmark that employees can compare their schedules to.

Thus, throughout this subsection, we need to consider a given solution ŝ that assigns a schedule ŝi to each

employee i. Also, for simplicity, we denote l̂ik = lk(ŝi).

We shall detail SN in Section 4. Roughly, SN has every employee comparing his schedule to others’. In

addition to this, CSN takes into account the fact that employees tend to especially compare themselves with

other employees who have similar utility functions. For instance, if you have asked for Christmas off, then it

is much more relevant to compare your shift with the shifts of other employees who also asked for Christmas

off than with the shifts of those who asked for Friday off.

To formally define CSN, let the utility matrix Ûk be defined by Ûk
ij = uik(l̂jk). This matrix contains all

the information about how each employee feels about the levels of attribute k in his and the others’ allocated

schedules. Now, the similarity between two partial utility functions uik and ujk can be characterized by the

correlation rijk between employees i and j’s partial utilities uik(l̂mk) and ujk(l̂mk) for different levels l̂mk of

all third employees m ∈ N . Formally, this correlation is given by

rijk =
Cov(Ûk

i , Û
k
j )√

V ar(Ûk
i )V ar(Ûk

j )
=

∑
m∈N

(uik(l̂mk)− µik)(ujk(l̂mk)− µjk)

nσikσjk
, (15)

where µik and σik (respectively, µjk and σjk) are the averages and standard deviations of uik(l̂mk) (respec-

tively, ujk(l̂mk)) for m ∈ N , i.e.,

µik =
1

n

∑
m∈N

uik(l̂mk) and σ2
ik =

1

n

∑
m∈N

(
uik(l̂mk)− µik

)2
. (16)

Now, the greater rijk is, the more relevant that is. For this reason, and to have non-negative numbers

only, we define the transformed correlation Rijk = 1 + rijk ∈ [0, 2]. The relevant benchmark to normalize

an employee’s partial utility is then given by the values uik(l̂jk) for j ∈ N with weights Rijk. These values

define the CSN averages µCSN
ik and standard deviations σCSN

ik by

µCSN
ik =

∑
j∈N

Rijkuik(l̂jk)∑
j∈N

Rijk
and

(
σCSN
ik

)2
=

∑
j∈N

Rijk

(
uik(l̂jk)− µik

)2
∑
j∈N

Rijk
. (17)

Finally, we obtain the CSN partial utility

uCSN
ik (·) =

uik(·)− µCSN
ik

σCSN
ik

. (18)
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If we do that, though, because we need to keep track of the fact that the global multi-attribute utility function

should yield the same orderings of allocations after normalization, we need to compensate for the rescaling

of partial utilities uik. Since they have been divided by σCSN
ik , it suffices to multiply the weights wik by

σCSN
ik , yielding wCSN

ik = σCSN
ik wik. These transformations lead us to rewrite the linear multi-attribute utility

function of employee i as

ui =
∑
k∈K

wCSN
ik uCSN

ik . (19)

In the introduction, we pointed out that this utility function is defined up to a positive affine transformation.

However, with no additive constant, our normalization of partial utilities guarantees that, for an employee

whose levels are all averages, the linear multi-attribute utility function is 0. Therefore, it makes sense to set

the additive constant to 0. Conversely though, let us highlight the degree of freedom corresponding to the

positive multiplier αi, by writing the linear multi-attribute utility function as:

ui = αi

∑
k∈K

wCSN
ik uCSN

ik . (20)

To determine appropriate multipliers αi, we turn to the concept of standard utility functions.

3.2.3 Standard utility functions

To determine a normalization of multipliers αi, we propose to describe how employees’ weights affect their

partial utilities. Intuitively, the greater an employee’s weight for an attribute, the greater his partial utility

for that attribute should be. We formalize this intuition with the concept of the standard utility function. A

standard utility function ψk for attribute k ∈ K is an increasing function that maps an employee i’s weight

αiw
CSN
ik to the partial utility ψk(αiw

CSN
ik ) he should expect to have for attribute k. In other words, we

should have ψk(αiw
CSN
ik ) ≈ uCSN

ik (l̂ik) for any employee i ∈ N and attribute k ∈ K.

Note that, importantly, the standard utility functions ψk do not depend on employees. Rather, standard

utility functions are rough descriptions of the properties of the shift-allocation schemes, which employees

will be sensible to. As we shall see later, such rough descriptions will give us a natural way to determine

the multipliers αi, hence making multi-attribute utility functions comparable. But first, we discuss how to

compute good standard utility functions.

For tractability reasons, we propose to only consider positive affine standard utility functions. More

explicitly, we only consider standard utility functions for an attribute k that are functions ψk(αiwik) =

γk + βkαiwik with βk ≥ 0. Thus, a standard utility function ψk for attribute k ∈ K is fully determined by

a pair (βk, γk) ∈ R∗+ ×R. Aggregating all standard utility functions for all attributes then yields an element

ψ, which is represented by vector (βk, γk)k∈K ∈ (R∗+ × R)K .

Now, standard utility functions need to describe how weights affect partial utilities. Then, the affine

standard utility function ψk that best describes these inputs is then the linear regression of the form

∀i ∈ N, uCSN
ik (l̂ik) = ψk(αiw

CSN
ik ) + εi = γk + βkαiw

CSN
ik + εi, (21)

such that the sum of squares
∑
ε2i is minimized. This boils down to equalities

βk =
Cov(αiw

CSN
ik , uCSN

ik (l̂ik))i∈N
V ar(αiwCSN

ik )i∈N
and γk =

1

n

∑
i∈N

(
uCSN
ik (l̂ik)− βkαiw

CSN
ik

)
. (22)

These equations define the best-fit standard utility function ψk to multipliers α. In other words, our linear

regression yields a function Regressk, where Regressk(α) is the best-fit standard utility function ψk to mul-

tipliers α. By combining Regressk functions for all attributes k, we obtain the regression function Regress,
which maps multipliers to the best-fit affine standard utility function ψ.
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3.2.4 Multiplier normalization

Now, recall that standard utility functions ψ = (ψk)k∈K for all attributes yield a good description of the

relation between weights and partial utilities, that is, uCSN
ik (l̂ik) ≈ ψk(αiw

CSN
ik ). Moreover, recall that

since we have defined l̂ik = lk(ŝi), we have ui(ŝi) =
∑

k∈K αiw
CSN
ik uCSN

ik (l̂ik). Then, employee i’s linear

multi-attribute utility function for his shift si can be approximated by

ui(si) ≈
∑
k∈K

αiw
CSN
ik ψk(αiw

CSN
ik ). (23)

The last quantity represents a rough estimate of what employee i’s multi-attribute utility is, given his weights

and the rough description of the shift allocation mechanism. Yet, for multi-attribute utilities to be comparable

between any two employees, this estimate should be the same for all employees, say U = 100. This gives us

a natural way to normalize multipliers αi, by requiring that they satisfy the following equation:∑
k∈K

αiw
CSN
ik ψk(αiw

CSN
ik ) = U. (24)

Now, it is important to note that the normalization of multipliers α we propose here require knowledge of the

standard utility functions ψ. This means that we have a function Multipliers : ψ 7→ α = Multipliers(ψ). Let

us point out that assuming that standard utilities are affine enables an algebraic computation of Multipliers.

Proposition 2 Let a standard utility function ψ, with β > 0. Then, we have the following equality:

∀i ∈ N, Multipliersi(ψ) =

−
∑
k∈K

wCSN
ik γk +

√( ∑
k∈K

wCSN
ik γk

)2
+ 4U

∑
k∈K

(wCSN
ik )2βk

2
∑
k∈K

(wCSN
ik )2βk

(25)

Proof. We have the following computation:∑
k∈K

αiw
CSN
ik ψk(αwCSN

ik ) =
∑
k∈K

αiw
CSN
ik (γk + αiw

CSN
ik βk) = α2

i

∑
k∈K

(wCSN
ik )2βk + αi

∑
k∈K

wCSN
ik γk. (26)

Now, if αi = Multipliersi(ψ), then the left term above must equal U , hence,

α2
i

∑
k∈K

(wCSN
ik )2βk + αi

∑
k∈K

wCSN
ik γk = U, (27)

which is a second-degree equation in αi, with a single positive solution. This solution is given by the formula

of the proposition.

3.2.5 Consistency

For our description of the shift-allocation mechanism by standard utility functions to be consistent, we need

to find multipliers α∗ and standard utility functions ψ∗ that correspond to one another. This leads us to the

following definition.

Definition 2 A multiplier α∗ and a standard utility function ψ are consistent if they satisfy

Regress(α∗) = ψ∗ and Multipliers(ψ∗) = α∗. (28)

We propose to solve these equations by iterations. Namely, at stage t ∈ N, we assume we are given αt and

ψt. We then compute ψt+1 = Regress(αt) and αt+1 = Multipliers(ψt). Equivalently, this boils down to search-

ing for a fixed point ψ∗ = Regress(Multipliers(ψ∗)) by computing the sequence ψt+1 = Regress(Multipliers(ψt)).

To test the convergence of this sequence, we have computed the slopes βt
k of ψt

k at each iteration t, and

for all attributes k ∈ K. Results are displayed in Figure 1. We clearly see a fast convergence after merely 10

iterations. This pattern appears in other computations we have made.

We can finally combine everything we have discussed to determine the normalization we have been search-

ing for.



10 G–2014–75 Les Cahiers du GERAD

DayOn

ShiftType

JobType

HoursPerWeek

Sl
op

e 
of

 S
ta

nd
ar

d 
U

til
ity

 F
un

ct
io

n

0

0,02

0,04

0,06

0,08

0,1

Iterations
0 5 10 15 20

Figure 1: Convergence of slopes as we iterate operators Regress and Multipliers.

Definition 3 Multi-attribute utility functions u∗i for i ∈ N are affinely multi-attribute correlated and socially

normalized (AMACSN) if there exist consistent multipliers α∗ such that

∀i ∈ N, u∗i (si) =
∑
k∈K

α∗iw
CSN
ik uCSN

ik (lk(si)). (29)

Similarly to EVN, we will call AMACSN-SSP the SSP program whose linear multi-attribute utility func-

tions are normalized by AMACSN.

3.2.6 Typical outcome

Recall that AMACSN depends on the “typical outcome” ŝ we consider. To compute AMACSN, we thus need

a solution of SSP. Ideally, this solution should be a solution of AMACSN-SSP. Evidently, we cannot do so,

since AMACSN-SSP requires AMACSN to be computed in the first place. A good approach to determine

AMACSN would consist of computing some first AMACSN1 based on a solution to, say, EVN-SSP. Then, we

would use the solution of AMACSN1-SSP to compute the more appropriate AMACSN2, and so on. We would

have a sequel of normalizations AMACSNt, for all t ≥ 1. Hopefully, the sequence would yield some limit

AMACSN∞. We could then expect to have AMACSN∞ being consistent with solutions of AMACSN∞-SSP.

However, for simplicity and because of computational times, we will merely consider the results of two

instances of the EVN-SSP program to define “typical outcomes” ŝ to compute AMACSN. The solutions

of EVN-SSP that we use to define this typical outcome will be analyzed in details in the next section.

Interestingly, the fact that we have actually not used the most appropriate “typical outcome” will underline

the robustness of AMACSN.

More explicitly, we will use the results of the solutions of EVN-SSP to compute the transformed correla-

tions Rijk, the averages µCSN
ik , standard deviations σCSN

ik , as well as consistent multipliers α∗ and consistent

standard utility functions ψ∗. These values determine the CSN of partial utility functions and the weight

normalization for linear multi-attribute utility functions. The consistent standard utility functions are de-

picted in Figure 2, which also depicts the relation between AMACSN weights and CSN partial utilities for

the different attributes.
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Figure 2: Consistent standard utility functions computed with the cumulative allocations given by EVN-SSP
in two instances, which will be analyzed in the next section. These standard utility functions are the ones
we use to compute the AMACSN utility functions.

4 Results

The SS program is solved with a tolerance on the optimality gap of 3%. We allowed an optimality gap of 5%

for the computation of the SSP program. It is not necessary to be much more accurate, as the uncertainty

on employees’ preferences can be regarded as being at least 5%, because of assumptions like the linearity of

multi-attribute utility functions, or because inaccuracy emerged in the reporting of preferences. In addition,

we need to keep in mind that employees may have had incentives to lie about their preferences, and thus

there are additional uncertainties due to untruthful preference revelations. The column-generation heuristic

was launched on instances with 29 employees and 6 job activities, over a 1-week horizon with periods of 15

minutes (hence |T | = 4 × 24 × 7 = 672). The instances we consider are real-life instances, except for the

preferences that were generated by hand.

We want to compare solutions of EVN-SSP to solutions of AMACSN-SSP. However, it is not clear that

it is on the EVN scale that the quality of results should be judged. Naturally, it would not be convincing

either if we judged results on the AMACSN scale. To be more fair in the comparison, we will use the SN

scale defined by Hoang et al. (2014).

4.1 Social normalization

A more relevant way to judge the quality of the optimization is to study how employees compare one another’s

shift. Intuitively, if the optimizer has done a good job, each employee should get a better shift than any of

the others’ shifts. A natural way to model this idea is by involving the SN introduced by Hoang et al. (2014).

The idea lies in considering other employees’ shifts as a benchmark for an employee to judge the quality of

his shift. Let us consider a solution ŝ obtained by some SSP. For employee i, we define the average utility µi

for others’ shifts and the standard deviation σi by

µi =
1

n− 1

∑
i′ 6=i

ui(ŝi′)), (30)

σ2
i =

1

n− 1

∑
i′ 6=i

(ui(ŝi′)− µi)
2. (31)
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We stress the fact that this SN of an employee i’s utility function is made with respect to i’s utility function

and to other employees’ shifts. In particular, it does not depend on other employees’ utility functions.

The SN utility function of employee i is the positive affine transformation with an average utility for

others’ shifts of 0 and a standard deviation of 1. More formally, given a non-normalized utility function ui,

with corresponding average µi and standard deviation σi, the SN utility function uSN
i is given by

uSN
i (·) =

ui(·)− µi

σi
. (32)

In particular, an employee’s SN utility for his shift equals uSN
i (ŝi) = (ui(ŝi)−µi)/σi. This SN utility counts

how many standard deviations above average an employee’s utility is. In particular, we expect it to be

positive for all employees, which means that every employee’s utility is above average.

Similarly, we may also use the CSN scale to judge the qualities of two solutions by EVN-SSP and

AMACSN-SSP, where CSN is applied to the linear multi-attribute utility function — not to the partial

utility functions as is done in AMACSN.

4.2 EVN-SSP

To test the performance of the optimization algorithms alone, let us quickly analyze results of EVN-SSP

judged by EVN scales. Figure 3 plots the EVN utilities for the schedules of the 29 employees computed

by EVN-SSP for two instances. As often in this paper, we merely present results for these two instances,

although we have verified that their features are also revealed in the 10 instances we ran. Interestingly, all

utilities range between 250 and 500. This latter bound equals the theoretical maximum utility of an employee.
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Figure 3: EVN utility values from the solutions of EVN-SSP.

Another way to unveil the quality of the optimization is to look at how the weights wik of employees i for

attributes k affect the corresponding partial utilities uik. Intuitively, the greater the weight wik, the more

the optimizer should gain by yielding large values of uik. Thus, uik should look like an increasing function

of wik. This is what is displayed in Figure 4.

Let us now analyze EVN-SSP through the lens of SN and CSN. Figure 5 displays the SN utilities of all

employees for the two instances. Overall, these results show that our algorithm has succeeded in optimizing

its objective value in a fairly convincing way. No employee is under 0, which means that no one will feel

disadvantage with respect to the average schedule of others.
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Figure 4: EVN partial utility values as functions of weights.
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Figure 5: Employees’ SN utilities for shifts given by EVN-SSP.

To have an idea of whether the EVN we have been using makes sense, we may compare it directly with SN

and CSN. This is what is depicted in Figure 6, where the x-axis stands for the employees’ utilities obtained

by EVN, while the y-axis represents their SN utilities. What we see is that, although there is a positive

correlation between EVN and, respectively, SN and CSN, the correlation is not entirely convincing. In fact,

the correlation of EVN and SN is only 0.67, while that of EVN and CSN is 0.68. This indicates that our

normalization by extreme values has some weaknesses.

Before analyzing solutions of AMACSN-SSP, let us end this section by studying the solutions of EVN-

SSP through the lens of AMACSN. Computations of the consistent multipliers and standard utility functions

yield Figure 7, where CSN partial utilities uCSN
ik are depicted as functions of normalized weights αiw

CSN
ik .
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Figure 6: Relation between SN, CSN and EVN.
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Figure 7: CSN partial utilities as a function of weights. Lines represent linear regressions that make up the
best-fit affine standard utility functions.

Interestingly, our normalization enhances the fact that on a normalized scale, the inputs actually correspond

to employees claiming they give little importance to the Day-On attribute compared to the Job-Type one.

Also, there is clearly a lot of noise in the way that normalized weights affect CSN partial utilities.

4.3 AMACSN-SSP

Our results for AMACSN-SSP are reported in Figures 8 and 9, which describe properties of the outcomes

obtained.
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Figure 8: Partial utilities with AMACSN
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Figure 9: Utilities with AMACSN

Figure 8 displays the relation between AMACSN weights and CSN partial utilities. Interestingly, with

the notable exception of the Day-On attribute of the second instance, the standard utilities all have fairly

the same slope. This is evidence of a better balance between the normalizations of the different attributes.

Figure 9 displays the AMACSN utilities of the solution of AMACSN-SSP. Arguably, the figure is fairly similar

to Figure 1, even though the scale of the y-axis is different.

The normalization of utility functions, which are inputs of the shift-scheduling program, cannot foresee

the outcomes of the shift-scheduling program. It is thus questionable whether this AMACSN fits the actual

outcome it aims to describe. To see if this is the case, we may compare AMACSN to SN and CSN defined

for the outcomes of the shift scheduling. This yields Figure 10.
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Figure 10: AMACSN compared to CSN and SN

The correlation between AMACSN and SN is 0.86, and that between AMACSN and CSN is 0.84. This

is significantly better than the correlations between EVN and the social normalizations SN and CSN. These

facts are evidence of the relevancy of AMACSN.

We can also notice that linear regressions nearly pass through the origin, which means that the utility of

0 has nearly the same meaning for all three normalizations. Interestingly, these graphs show that AMACSN

has globally the same meaning as other normalizations overall, while it yields a deeper description of utilities

by enabling comparisons of partial utilities.

4.4 EVN-SSP versus AMACSN-SSP

To actually judge the quality of AMACSN-SSP, we can compute SN and CSN utilities for this setting and

compare the results to those of Figure 5. This is what we have done in Figure 11.

On this figure, we have added pale red and dark blue horizontal lines. They represent the average SN

utilities for the solutions of, respectively, AMACSN-SSP and EVN-SSP. The figures display a significant

improvement of the SN utilities with AMACSN. The figure also depicts the standard deviations of the SN

utilities in the two different settings.

To make our analysis clearer, we have compared the averages and standard deviations of SN and CSN

utilities for the two settings. Table 1 displays the results for SN utilities, while Table 2 corresponds to CSN

utilities. The tables show a clear improvement by using AMACSN compared to EVN.

Regarding the average SN and CSN utilies, these improvements, depending on instances and SN/CSN,

range from 12% to 22%. Note that this is much more than the optimality gap. This plainly justifies our

focus on normalizations rather than on optimization algorithms.

Moreover, it is interesting to note that we also have a significant decrease of the standard deviations. This

shows that, as a bonus, our normalization also guaranteed a significant increase in fairness. In particular,

this hints at the fact that there is little need for concern for fairness in personalized shift scheduling, at least,

when hardly any constraint differs between any two employees apart from their preferences. As long as we

maximize the sum of employees’ (well-normalized) utilities, both social efficiency and (a good amount of)

fairness follow.
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Figure 11: SN utilities of the AMACSN-SSP (pale red) compared to SN utilities of EVN-SSP (dark blue).

Table 1: Averages and standard deviations of SN utilities for AMACSN shift scheduling and EVN shift
scheduling.

AMACSN EVN

Instance 1
Average of SN utilities 2.104 1.877

Standard deviation of SN utilities 0.461 0.645

Instance 2
Average of SN utilities 2.235 1.871

Standard deviation of SN utilities 0.541 0.860

Table 2: Averages and standard deviations of CSN utilities for AMACSN shift scheduling and EVN shift
scheduling.

AMACSN EVN

Instance 1
Average of CSN utilities 1.788 1.582

Standard deviation of CSN utilities 0.412 0.618

Instance 2
Average of CSN utilities 1.933 1.579

Standard deviation of CSN utilities 0.471 0.794

5 Conclusion

In this paper, we have provided a model to perform optimized shift scheduling with employees’ preferences.

By including a linear multi-attribute setting and involving the state-of-the-art MACBETH method, we have

proposed a relevant procedure to include employees’ preferences. More importantly, we have characterized a

new normalization of employees’ linear multi-attribute utility functions, which, crucially, yields a meaningful

way to compare any two utility functions, any two partial utility functions and any two weights. Amazingly,

using this normalization has induced a significant improvement in the outcomes of the shift-scheduling pro-

gram. Not only have we ensured a more socially efficient outcome, we have also shown that our approach

guarantees even more fairness between employees.
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