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Abstract: This paper presents a metaheuristic solution to the optimization of open pit long-term production
scheduling with a stockpile and geological uncertainty. The optimization formulation is a two stage stochastic
integer programming (SIP) model, which determines the optimal mining sequence that maximizes the total
discounted cash flow, while penalizing for high deviations from production targets. A parallel implementation
of Tabu Search is proposed to accelerate the solution of the SIP formulation and take full advantage of multi-
core computer processing. Different variants of the proposed algorithm are applied at a case study to assess
the performance of the parallel approach. The proposed algorithm and variants are benchmarked using
linear relaxation of the complete problem to determine robustness and provide a better overview of the
related performance. The results show a net improvement over the sequential solution and the new proposal
seems to be promising when working with a large scale data set.

Key Words: Open pit mine optimization, production scheduling, uncertain supply, Lagrangian relaxation,
sub-gradient method, branch and cut algorithm.
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1 Introduction

The open pit mine production scheduling problem (OPMPSP) consists of finding the optimal extraction

sequence such that the net present value (NPV) is maximized, while respecting the processing and capacity

constraints. Over the past several decades, many authors have proposed formulations to solve the OPMPSP

in a more exact manner such as in Gershon (1983), Dagdelen and Johnson (1986), Tolwenski and Underwood

(1996), Ramazan (2007), Cacetta and Hill (2003). More recently, Meagher (2011) and Bley et al. (2010)

has been working on partially ordered knapsack and preprocessing in order to propose a more efficient exact

algorithm. Another point of interest is when considering a stockpile with OPMPSP, leading to a natural

non-convex non-linear formulation. Since this problem is computationally hard, Bley et al. (2012) proposed

an algorithm where they first use a tight linear formulation of the problem and, then, apply a branch and

cut algorithm to restrict the maximum violation of the quadratic constraints. Finally, they use a heuristic

to transform this integer feasible solution of the relaxed formulation to create a solution that satisfies both

the integrality and the quadratic constraints. In the above solutions, all values for a block are treated as if

known, without any geological uncertainty, and their approach only looks at maximizing the NPV. However,

studies have shown that this assumption can be a major factor in failing mining projects (Vallee, 2000) and it

can also be one of the leading factors for not meeting production targets (Baker and Giacomo, 1998). Since

then, stochastic optimization frameworks have been developed to assess mineral uncertainty. Ravenscroft

(1992) and Dowd (1997) proposed a way of using sequentially simulated stochastic scenarios to assess the

risk of a schedule, and Dimitrakopoulos and Ramazan (2004) proposed a risk oriented scheduling approach

based on mixed integer programming (MIP).

To overcome considering the values representing mining blocks known and constant, stochastic integer

programming (SIP) for OPMPSP is developed. OPMPSP can be formulated as a two stage stochastic

integer programming model (Birge and Louveaux, 1997) where the first stage consists of providing the block

extraction sequence and the second stage is used to control the deviation from production targets according

to each scenario (which accounts for the uncertainty of the grade, metal, ore quality and/or ore tonnages).

Ramazan and Dimitrakopoulos (2005) first present a SIP formulation for OPMPSP that maximizes the

overall NPV and introduced what is called a geological risk management term in the objective function to

minimize the deviations from production target. Later on, Ramazan and Dimitrakopoulos (2012) proposed

a new formulation based on a two stage SIP formulation that includes a stochastically managed stockpile. In

their paper, the authors consider the scheduling decisions to be the first stage variables and the second stage

variables are the penalties for not meeting production targets. The stockpile is considered to be stochastic

since the decisions of sending the material to this destination is made at the first stage, regardless of the

scenario. The authors apply their approach to a deposit of about 20,000 mining blocks, but need to separate

the input into two parts to be able to solve it in a reasonable amount of time. Menabde et al. (2007) proposed

the explicit formulation of a cut-off policy into the OPMPSP, where it is modeled by binary variables for

each period. They define for each cut-off bin the value of a block for a given scenario and optimized with

the constraints that only one cut-off per period must be chosen. They showed that this formulation increases

the NPV compared to a conventional schedule, but did not mention the dimension of the input they were

working with. Conversely, Boland, Dimitrescu and Froyland (2008) proposed a different approach based on

a multistage stochastic programming approach where they use non-anticipativity constraints to model the

decision of mining and processing at each period and for each scenario. They use the α-differentiator to

reflect the difference between scenarios and allow different decisions for scenarios that have been different

enough during the previous year. This formulation allows for flexibility at the operations level; however, no

final solution can be provided, only possible outcomes, rendering the approach impractical. Unfortunately

no quick methods are known for solving the exact formulation of real-life instance size deposits, which may

not find a solution in a practical amount of time. To overcome the computation issues, several authors have

proposed metaheuristics to solve large scale problems since these methods have proven to generally lead to a

near optimal solution in a more practical amount of time.

Leite and Dimitrakopoulos (2007) and Albor and Dimitrakopoulos (2009) test the simulated annealing

method of Godoy and Dimitrakopoulos (2004) that uses quantified geological uncertainty of an orebody

to generate a long-term mining schedule. Recently, Lamghari and Dimitrakopoulos (2013) addressed the
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OPMPSP with geological uncertainty by using a Variable Neighborhood Descent approach. These authors

also present a Tabu Search method for the OPMPSP with geological uncertainty (Lamghari and Dimi-

trakopoulos, 2012), using as the neighborhood of a solution any feasible solution that differs from one block

scheduling at another period. In their implementation, the authors proposed a diversification strategy based

on a long term memory given the number of times blocks are schedule to a particular period. When applied

to multiple instances, the results provide a good quality solution obtained in a practical amount of time.

Because of the easy access to multiple cores for computation, parallel algorithms have received substantial

interest in obtaining efficiency. Metaheuristics are usually easy to parallelize because of their structure, which

makes this approach a promising way to obtain a near optimal solution in a practical amount of time. Ran-

dall and Abransom (1999) review parallelisation strategies for Tabu Search (TS) for combinatorial problems:

more generally Cung et al. (2002) present a review of parallel strategies for multiple metaheuristics. Alba

(2005) gives a whole survey and description of metaheuristic and parallel metaheuristic development until

2005.

In this paper, a parallel Tabu Search procedure is presented based on the algorithm of Lamghari and

Dimitrakopoulos (2012) to solve a modified version of the two stage stochastic approach of Ramazan and

Dimitrakopoulos (2012) where the stockpile is formulated as a second stage decision. The processing and

stockpiling decisions are scenario dependant since they reflect the fact that at the time of mining, the material

type and processing destination is known. Three destinations are considered for a block: the mill, where

high grade ore is processed; the leach pad, where low grade material is processed and; a waste dump, where

the blocks which contain no valuable material are sent. A mathematical formulation of the problem is first

stated, and then a review of the sequential Tabu Search of Lamghari and Dimitrakopoulos (2012) is given.

Next, three implementations are given based on different approaches from Randall and Abransom (1999).

The first one is Parrallel Independant TS (PITS), the second Parallel Interacting TS (PInTS) and the third

is Parallel Neighbor TS (PNTS). A case study showing numerical results for a medium-large size deposit is

given after and finally analysis, conclusions and further research are discussed.

2 SIP formulation for stochastic mine scheduling

In this section, the mathematical notation and formulation of the OPMPSP are stated and assumptions

stated.

2.1 Model

First, the grade of a block determines where it should be processed under a specific scenario. Fixed marginal

cut-offs are used in this approach to classify blocks into a category under a specific scenario, but in future

research this assumption will be removed. The process where the block is sent corresponds to the bin where

that block’s grade falls into. In this paper, the different cut-offs are as follows.

Gi: is the fixed cut-off grade that a block must have to be processed by the leach pad;

Gl =
LeachPadProcessingCost

LeachPadRecovery (MetalPrice− SellingCost)

Gm: is the fixed cut-off that a block must have to be processed by the mill.

Gm =
MillProcessingCost

MillRecovery (MetalPrice− SellingCost)
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2.1.1 Notation

The following notation is used:

• N is the number of blocks considered in the mine.

• i represents a block index, i ∈ {1 . . . N}.

• Pi is the set of predecessors of block i.

• wi is the weight of block i.

• T is the life time of the mine.

• t is a period index, t ∈ {1 . . . T}.

• W t is the maximum weight that can be extracted at period t.

• S is the number of scenarios used for grade uncertainty.

• s is a scenario index, s ∈ {1 . . . S}.

• gis is the grade of block i under scenario s.

• d is the financial discount rate.

• r is the geological discount rate.

• Cmsu is the undiscounted cost per unit of surplus material for the mill.

• Ctmsu = Cmsu

(1+r)t
is the discounted cost per unit of surplus material for the mill.

• Cmsh is the undiscounted cost per unit of shortage material for the mill.

• Ctmsh = Cmsh

(1+r)t
is the discounted cost per unit of shortage material for the mill.

• Clsu is the undiscounted cost per unit of surplus material for the leach pad.

• Ctlsu = Clsu

(1+r)t
is the discounted cost per unit of surplus material for the leach pad.

• δt = δ
(1+r)t is the cost per tonne for sending material to the mill stockpile at period t.

• ηt = η
(1+r)t is the unit cost per tonne for taking material to the mill stockpile at period t.

• lis is a binary variable indicating if block i can be send to the leach pad under scenario s:

lis =

{
1 if gis ∈ (Gl, GM ]

0 otherwise.

• mis is a binary variable indicating if block i can be send to the mill under scenario s.

mis =

{
1 if gis > Gm

0 otherwise.

• αtis is a discounted profit generated if block i is mined during period t and if scenario s occurs. This

economic value is given by:

αtis =


wi·[gis·MillRecovery·(MetalPrice−SellingCost)−MillProcessingCost−MiningCost]

(1+d)t
if mis = 1

wi·[gis·LeachRecovery·(MetalPrice−SellingCost)−LeachProcessingCost−MiningCost]

(1+d)t
if lis = 1

−MiningCost
(1+d)t

otherwise

• The expected profit made if block i is extracted in period t is given by :

E {NPV }ti =

S∑
s=1

αtis
S
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• bs is the approximation of the grade of the material in the mill stockpile under scenarios. The approx-

imation is done using the formula:

bs =

∑
i∈Bs

gis · wi∑
i∈Bs

wi
where Bs = { i : mis = 1}

• µts is the unit discounted profit for material in the mill stockpile at period t under scenario s.

µts =
bs ·MillRecovery · (MetalPrice− SellingCost)−MillProcessingCost

(1 + d)
t

• Lt◦ is the maximum weight of material that can be processed by the leach pad during period t.

• M t◦ is the maximum weight of material that can be processed by the mill during period t.

The following are used to formulate the problem:

A binary variable is associated with each block i for each period t:

• xti =

{
1 if block i is mined during period t

0 otherwise.

The following positive linear variables are associated with the amount of material for each process:

• dtmsh represents the shortage of the high grade material for the mill for period t under scenario s.

• dtmsu represents the surplus of high grade material for the mill for period t under scenario s.

• dtlsu represents the surplus of low grade material mined during period t under scenario s.

• kts represents the amount of material sent to the stockpile at period t under scenario s.

• uts represents the amount of material in the mill stockpile at the end of period t under scenario s.

• vts represents the amount of material taken from the mill stockpile during period t under scenario s.

2.1.2 Objective function

T∑
t=1


N∑
i=1

E {NPV }ti x
t
i︸ ︷︷ ︸

Part 1

−
S∑
s=1

(
µts + δt

)
ktms/S︸ ︷︷ ︸

Part 2

+

S∑
s=1

(
µts − ηt

)
vts/S︸ ︷︷ ︸

Part 3

−
(
Ctmshd

t
msh + Ctmsud

t
msu + Ctlsud

t
lsu

)︸ ︷︷ ︸
Part 4

 (1)

The objective function is separated in four parts: part 1 represents the profit made by extracting and

processing the ore blocks; the second part refers to the cost of stockpiling material; part 3 defines the

profit made by processing material from the stockpile and finally; part 4 represents the geological risk

management, as presented in Ramazan and Dimitrakopoulos (2005), and is added to minimize the deviations

from production targets.
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2.1.3 Constraints formulation

The following constraints are considered in the present model:

T∑
t=1

xti ≤ 1 ∀i (2)

xti −
t∑

τ=1

xτj ≤ 0 ∀i, j ∈ Pi, t (3)

N∑
i=1

wix
t
i ≤W t ∀t (4)

N∑
i=1

liswix
t
i − dtlsu ≤ Lt ∀t, s (5)

N∑
i=1

miswix
t
i + vts − kts − dtmsu + dmsh = M t ∀t, s (6)

uts = ut−1s − vts + kts uts ≤ St ∀t, s (7)

xti ∈ {0, 1} ∀i, t (8)

kts, u
t
s, v

t
s ≥ 0 ∀s, t (9)

dtmsu, d
t
msh, d

t
lsu ≥ 0 ∀t (10)

Constraint 2 is the reserve constraint which ensures a block will only be mined at most once. Constraint 3

is the slope constraint, ensuring that each block will be mined after its predecessors. Constraint 4 represents

the mining constraint, preventing the equipment capacity from being exceeded. All of these constraints are

scenario independent, and are referred to as non-stochastic constraints.

Constraints 5 and 6 are related to the plant capacity. For each scenario, the total weight of ore extracted

must be less or equal to the capacity of the plant; all other ore blocks extracted are sent to the stockpile.

Constraint 7 is the stockpiling constraint, indicating that the amount at the beginning of a period is the

previous stockpile content added or subtracted to the amount taken or sent to the stockpile. It also ensures

that the total amount of material sent to the stockpile is not more than a specified upper bound.

3 Implementation of sequential Tabu Search

The proposed model is solved using the Tabu Search procedure described in Lamghari and Dimitrakopoulos

(2011), an overview of the algorithm is given here.

3.1 Modified model

In order to allow more extensive search of the solution space, a modification of the objective function is used,

subject to the constraints from Eqs. 2 to 9, and is as follows.

T∑
t=1


N∑
i=1

E (NPV )
t
i x

t
i︸ ︷︷ ︸

Part 1

−
S∑
s=1

(
µts + δt

)
dtms/S︸ ︷︷ ︸

Part 2

+

S∑
s=1

(
µts − ηt

)
vts/S︸ ︷︷ ︸

Part 3

−
(
Ctmshd

t
msh + Ctmsud

t
msu + Ctlsud

t
lsu

)︸ ︷︷ ︸
Part 4

+P+ max

{(
N∑
i=1

wix
t
i −W t

)
, 0

}2

︸ ︷︷ ︸
Part 5

 (11)
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In this objective function, a penalty term has been introduced to create a bridge from a feasible solution to

another. This is done by using infeasible solutions that can be promising. The adjustments help to return to

the feasible space as the penalty coefficient grows. The penalty coefficient P+ is adjusted using the following

criteria:

Starting with P+ = 1 and given a parameter h, for every h iteration check whether all previous solutions

have been feasible (for the mining capacity); if yes, then update P+ = P+/2, else P+ = 2P+.

3.2 Tabu Search procedure

Given a specific schedule that satisfies the modified model, the neighborhood of the schedule is defined as all

the schedules that satisfy the constraints 2 and 3, but have only one block that belongs to a different period.

The block/period combinations that are different are called moves. At each iteration, the move with the best

improvement of the objective function and which satisfies one of the two criteria given below is selected.

1. The schedule leads to the global maximum objective function found so far.

2. The schedule that leads to the best improvement compared to the current schedule and the move is not

considered Tabu.

When applying a move, the reverse of the selected move is considered Tabu, meaning that the combination

for the block and period of the move cannot be applied again for a certain amount of iterations, chosen

randomly from a given range. This procedure stops after a certain number of iterations without improvement

or when all moves are Tabu. Then, diversification is applied.

3.3 Diversification strategy

The diversification strategy used can be summarized as follows.

To generate a new initial solution for the Tabu Search procedure, a diversification procedure is applied

based on its long term history. First, a block is chosen randomly and the period of extraction is chosen

randomly based on the inverse of the number of times the block has been scheduled to this period. These

shifts can lead to a non-feasible schedule in term of constraint 3, and thus a heuristic is used to repair the

schedule. Considering the set of all blocks that do not respect slope constraint 3, choose a block at random

from this set. To generate a period of extraction from those that do not violates slope constraint 3. The

period is chosen based on the long term frequency in order to extensively search the space. Once the block

is scheduled remove it from the set and repeat until the set of blocks to repair is empty. Restart the Tabu

Search.

4 Implementation of parallel Tabu Search

With the evolution of computing, multi-core programming has become a predominant way of making algo-

rithms faster. In this section, three ways of parallel implementation are proposed to be implemented, and

flowcharts as well as the pseudo code are given. All algorithms are implemented based on the approaches

found in Randall and Abramson (1998) where they define a general approach to parallelizing the Tabu Search

procedure. A similar approach can be found in Crainic et al. (1997) where they define taxonomy for different

types of parallel Tabu Search.

In the present study, the first and second implementation, Parallel Independent Tabu Search (PITS) and

Parallel Interacting Tabu Search (PInTS) are used to undertake a more extensive search of the solution space.

The third implementation is called Parallel Neighbor Tabu Search and aims to do a more intensive search

than the original Tabu Search procedure.

4.1 Parallel independent Tabu Search

In this implementation, the Master-Slave paradigm described in Hansen (1993) is used to design the parallel

algorithm. The master thread gives to each of the threads a complete Tabu Search Proceduce iteration to
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compute. When the process terminates, the master seeks for the best solution over all the threads and finds

the globally optimal solution. PITS is the straightforward way of parallelising the Tabu Search algorithm

already explained. Its possible efficiency is based on the fact that when more Tabu Searches are launched

from different initial solutions in the feasible space, there is a higher probability of getting a better solution

for the same amount of time spent. However, this algorithm does not help the Tabu Search to get out of a

local optimal, but only provides a more extensive search. The use of multi-core programming is simple: many

different threads are launched where each one owns a distinct starting point. Let TL and F and ⊕ (i, t′) be the

Tabu list structure, frequency structures and move operator as described in Lamghari and Dimitrakopoulos

(2012). Let THS be the threads available for the algorithm. The following shows the pseudo code for the

implemented algorithm:

PITS Tabu {

1- For each threads in THS {

a. Generate an initial schedule x0 and set xbest = x0

b. Apply Tabu Search procedure on x0

i. Choose the best available and feasible schedule x0 ⊕ (i, t′)

ii. Apply x0 ⊕ (i, t′) and forbid x⊕ (i, t), update F and TL

iii. If x0 ⊕ (i, t′) > xbest set x0 ⊕ (i, t′) = xbest

iv. If stopping criteria is met stop and go to c.

c. Apply diversification on xbestto generate another schedule x0, if there’s time left go to b, else go

to 2.

}
2- Select the best schedule xbest over all threads in THS.

}

Each thread evolves independently of the others. When every thread has finished, a reduction function

is used to get the global minima. The method is summarized in Figure 1:
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2- Select the best schedule bestx  over all threads in THS . 

} 
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reduction function is used to get the global minima. The method is summarized in Figure 

1 : 

 

 

 

 

In the proposed implementation, no thread needs to wait for another and thus there is no 

race by any thread for any data. Provided there is enough RAM, the expected gain in 

speed is proportional to the number of threads. Thus with the gain of time through this 

Figure 1: Threading Schema of PITS 
Figure 1: Threading schema of PITS

In the proposed implementation, no thread needs to wait for another and thus there is no race by any

thread for any data. Provided there is enough RAM, the expected gain in speed is proportional to the number

of threads. Thus with the gain of time through this implementation, one can run more Tabu Searches to

cover the search space in a more complete way and expect to have a better final solution. It can also allow

more time for a single run in a multi-core approach and get closer to the optimal solution in less time than

running the sequential one.

4.2 Parallel interacting Tabu Search

Parallel Interacting Tabu Search (PInTS) is based on the same template design as PITS, but uses the

knowledge of more than a single thread to diversify and generate a new solution. Using the same exact

notation as in Section 4.1, let xbest pool be the best solution over all threads, Fbest pool be the merging
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structure associate to the global best solution so far and κ as a weight associated with the frequency of the

history. PInTS adds a synchronization step between steps b and c. The following lines represent the pseudo

code of the PInTS algorithm used:

PInTS Tabu {

1- For each threads in THS {

a. Generate an initial schedule x0 and set xbest = x0

b. Apply Tabu Search procedure on x0

i. Choose the best available and feasible neighbor schedule x0 ⊕ (i, t′)

ii. Apply x0 ⊕ (i, t′) and forbid x0 ⊕ (i, t), update F and TL

iii. If x0 ⊕ (i, t′) > xbest set x0 ⊕ (i, t′) = xbest

iv. If xbest > xbest pool, xbest pool = xbest, Fbest pool = F

v. If stopping criteria is met stop and go to c.

c. Apply diversification on xbest pool using the following steps

vi. F = F + κFbest pool

vii. Apply diversification on xbest pool using F to generate another x0

If there is time left, go to step b, else go to 2.

}
2- Select the best schedule xbest over all threads in THS.

}

By adding these communication steps, PInTS diversifies the search more effectively since it uses informa-

tion about the history of all the threads compared to the PITS where only the information about the current

thread is available. The vertical lines in Figure 2 represent a barrier of synchronisation; each thread must

synchronize its value in order to have the most recent one.
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2 Select the best solution 
bestx  over all threads inTHS . 

} 

 

By adding these communication steps, PInTS diversifies the search more effectively 

since it uses information about the history of all the threads compared to the PITS where 

only the information about the current thread is available. The vertical lines in the 

following figure represent a barrier of synchronisation; each thread must synchronize its 

value in order to have the most recent one. 
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The Parallel Neighborhood Sampling Tabu Search (PNSTS) is another enhancement that 

has been made to make Tabu Search more robust for the problem addressed herein. The 

idea cones from the fact that the presented approach is “deterministic” in the sense that it 

only takes the move that increases the local optimum the most or that decreases it the 

least. Let THS  be all the threads available, assuming that each thread has its own local 

structure initialized with the same values, THS  the number of threads, k  a random 

number generated between 
1 2

,
2 THS THS

 
 
 

,   the number of iterations for the 

parallelized step, _best poolx  the best solution over all threads, _i endx  the current solution at 

the end of the parallel step of thread i , the proposed algorithm adds a step executed in 

parallel to step 2 of the algorithm, as follows: 

 

PNSTS_Tabu { 

1. Generate an initial schedule 0x  and set 0bestx x   

Figure 2: Threading schema of PInTS Figure 2: Threading schema of PInTS

4.3 Parallel neighborhood sampling Tabu Search

The Parallel Neighborhood Sampling Tabu Search (PNSTS) is another enhancement that has been made

to make Tabu Search more robust for the problem addressed herein. The idea cones from the fact that

the presented approach is “deterministic” in the sense that it only takes the move that increases the local

optimum the most or that decreases it the least. Let THS be all the threads available, assuming that each

thread has its own local structure initialized with the same values, |THS| the number of threads, θk a random

number generated between
[

1
2|THS| ,

2
|THS|

]
, ν the number of iterations for the parallelized step, xbest pool

the best solution over all threads, xi end the current solution at the end of the parallel step of thread i, the

proposed algorithm adds a step executed in parallel to step 2 of the algorithm, as follows:
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PNSTS Tabu {

1- Generate an initial schedule x0 and set xbest = x0

2- Apply Tabu Search procedure on x0

a. For each thread in THS and during ν iterations:

i. If this is the first thread keep the entire neighbor, else forbid the best neighbor and sample θk
time the neighborhood of x0

ii. Choose the best available and feasible neighbor x0 ⊕ (i, t′)

iii. Apply x0 ⊕ (i, t′) and forbid x⊕ (i, t), update F and TL

iv. If x0 ⊕ (i, t′) > xbest set x0 ⊕ (i, t′) = xbest

v. If xbest > xbest pool, xbest pool = xbest

b. x0 = max
i∈THS

{xi end}

c. If stopping criteria is met stop and go to 3, else go to a.

3- Apply diversification on xbest to generate another schedule x0, if there’s time left go to b, else go to 2.

}

In order to search the local space more intensively during the Tabu Search when compared to the other

implementations, k threads are assigned a restricted part of the neighborhood where they will focus their

search starting from the same solution. After k number of iterations, the threads that have the best current

solution broadcasts the necessary information about the search structures to the others so that all threads

restart their search from the same place and with the same exact state. Then, a re-sampling of the new

neighborhood is done. Figure 3 represents the interaction between the threads evolution during the Tabu

Search.
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At the computational level, the master threads split into k children that run in parallel, each one searching

for its own local space with its own local structure. When the specified number of iterations is reached, the

master threads look over all the children threads to identify the best results and reinitialize each child using

the most promising point. The diversification is then done based on the best solution found so far and the

long term structure of the threads that found it.

5 Case study

First, an analysis of the parallel efficiency of the proposed algorithms is given by comparing the quality of the

solution in terms of the number of threads and the number of runs versus the number of threads for a fixed

computational effort(time). Next, a benchmark of the quality of the solution is obtained based on the linear

relaxation value (LR). Finally an analysis of the quality of the solution with regards to mine planning is given

to assess the model performance. To evaluate the efficiency of the parallelization and provide a benchmark

in term of optimality, two different instances are used. The parameters are given in Table 1.
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Table 1: Parameters used in this case study

Instance Initial Sol. Blocks Periods Scenarios Time (s) (1run) LR value

P1-H Heuristic 4073 3 20 60 100.92
P1-C Exact
P2-H Heuristic 20626 5 20 1034 170.18
P2-C Exact

In order to test the robustness of the method, two different starting points are generated as in Lamghari

and Dimitrakopoulos (2012): one that uses an exact method to get a solution close to what is optimal, and

another random heuristic that generates only a feasible solution regardless of the value. The problem that

is solved by using the first approach as a starting point are followed by a –C and the other by a –H in the

following sections. The reader is referred to the above paper to know more about the initial solution methods.

5.1 Parallel efficiency of the different algorithms

To test the parallel efficiency of the approach presented in Section 4, an analysis of Tabu Searches is made

by comparing the number of instances of Tabu Search being launched given a specific time in the function of

the number of threads used for the three methods. Results can be seen in Figure 4. As seen, the curve of the

number of threads versus the number of runs for each of the algorithms is as good as the theoretical bound,

meaning that the implemented methods take full advantage of the multiple cores available. The results also

demonstrate that in the present case, covering more space usually gives a better final solution for the PITS

and the PInTS and that in this case, PInTS leads to a better solution than the PITS algorithm. It also shows

that as the number of threads increase, the three algorithms give almost the same results in terms of objective

function but PInTS still leads to a better solution. For PNSTS, as the number of threads increase it appears

to perform slightly better but appears to have a critical point where increasing the number of threads does

not make a difference, in this example after three threads. Thus, for the small instance, one can see that the

multi-threading seems to help in finding a better solution in the same amount of time and thus provides an

improvement over the single threading version of the algorithms. It is worth noticing that even though all

three methods are theoretically the same when using a single thread, the way they are implemented affects

the final solution and so they are different in practice.
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Figure 4: Parallel efficiency for deposit instance P1

To test the effects of multithreading of PITS and PNSTS against their respective sequential version, an

experiment is performed by fixing the number of threads and the total running time to 60 s. Figure 5 gives

the relative improvement made on the final solution by using the parallel version instead of the sequential

one. Note that in the case of PNSTS, the number of samples is fixed and therefore it has to follow the same

number of paths as the parallel one. In this benchmark, we used the small instance since the results for the

bigger one are not available at this time.
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Figure 5: Parallel versus sequential approach

Figure 5 shows the relative difference between using up to 8 threads for PITS and PNSTS algorithms, as

compared to using only a single one. The relative difference is calculated by:

Relative Diff. =
(Obj. Func 8 threads – Obj. Func. single thread)

Obj. Func single thread

This measure reflects the improvement made by using multithreading in terms of the quality of the solution.

As seen, the difference in terms of quality of the final solution is larger in the case of PNSTS than in the

case of PITS. For small instances, using the parallel version of PITS makes almost no difference, less than

1%. Although as the size increases, the parallel PITS seems to be able to provide a better solution in almost

every case compared to the sequential one, here more than 1%. However, for PNSTS, the relative difference

made by using multithreading seems to be more predominant but does not seem to rely on the initial solution

quality. Thus, the parallelization provides improvement for the two algorithms, but seems to lead to higher

improvement when using PNSTS. Note that the PInTS algorithm is not shown in this graph, since the single

version corresponds to the PITS algorithm and thus it is not comparable.

5.2 Benchmarking

In order to benchmark the quality of the solutions generated by the proposed algorithms, the two instances

are tested using a comparable amount of time that is proportional to the number of blocks multiplied by the

number of periods. The time used was computed as:

Time = 0.01NT

where N is the number of blocks and T is the number of periods. To compare the quality of the solution,

the gap with respect to the linear relaxation (gap) is used. A table showing the gap is given for all the

cases and to test the robustness in terms of the starting solution of each algorithm. The relative difference

from the starting point is given to allow the evaluation of the improvement over different types of solution.

Figure 6 shows the gap for each method and for each of the two different starting points. As seen in the

following table, PNSTS usually gives the worst solutions for the proposed problem since it always result in

a higher gap than the two other methods. Overall, looking more intensively around the current solution

for other local optima doesn’t appear to result in a good parallel Tabu Search approach for this problem.

The PITS method seems to be efficient in almost all cases since it leads to a better solution for small and

small-medium instances. Covering more space can therefore be a good idea to improve the overall solution

quality. However, the table also shows that the PInTS method performs well on all the instances and as the
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size of the instance grows, it can even perform better than the simple PITS when starting with a random

feasible solution. Another observation is that for the small instance starting with any of the two types of

solutions it results in almost the same quality, but for the small-medium instance when starting from a far

from optimal solution it seems to provide better final solution. This may mean that the proposed algorithms

for the medium-small instance fail to get out of a nearly optimal solution when starting with a better sub

optimal solution than one generated randomly. This might be a result of the different history learned during

the search. However, this analysis is made only for one specific instance and such conclusions might not hold

for further work.

Figure 6 also shows that the proposed methods are suitable for the OPMPSP that contains a stockpile

and leach pad, as they provide good results in a practical amount of time (usually less than 2% closer to

the optimal solution). The methods are also robust for small instances since starting from either a random

solution or from a nearly optimal solution leads to a small gap. As the instance grows in size, each method

seems to need more time to be able to compute a solution closer to the optimal one. Figure 7 shows the

improvement from the initial solution to the solution found. As seen, in all cases they can improve the initial

solution, even when it was already close to optimality.

Figures 6 and 7 combined tell us that the exact method solution is further from optimal as the instance

size grows, and the methods are not able to improve by using a random solution. It is expected that the

improvement will be less when starting from a better solution since the total improvement depends on the
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Figure 6: Final gap for each method and initial solution
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Figure 7: Improvement of the initial solution
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starting point, but we still show that by starting from either solution we can improve the solution by more

than 3.5% in all cases.

5.3 Application at a gold deposit

In this section, an application at a gold deposit with a medium-large scale dataset is presented. First, an

overview of the parameters is given, and then a risk profile of the solution generated by the algorithm is

made.

The previous benchmark was made on a small and medium-small instance of the deposit since the linear

relaxation value was obtained within a reasonable amount of time. However for the medium-large scale deposit

presented next, the linear relaxation solution was not able to be obtained within a reasonable amount of time

and thus only a risk profile of the solution generated is shown. This case study demonstrates that the current

algorithm can be applied on a medium-large scale deposit and that a solution with a good risk profile can be

generated within a reasonable amount of time. To generate the solution, the second approach, (PInTS) was

used with a randomly generated initial solution since it seemed to provide better performance for this bigger

dataset.

Table 2 shows the parameters used to schedule the medium-large scale deposit. It shows that to generate

the schedule, 14 orebody simulations were used with about 73,000 blocks and a life of mine of maximum 16

years, meaning that a solution with about 16,000,000 variables was generated within 9 hours 45 minutes.

The risk profile used consists of the metal content and the ore tonnage processed by the mill, the total rock

tonnage extracted from the tonnage of waste, the cumulative NPV and also the cost incurred by deviating

from targets. The latter is added in order to evaluate the impact of adding the geological risk management

term on the cumulative NPV.

Table 2: Parameters for large scale dataset

Parameters:

Number of blocks 73130
Horizon Year 16
Number of scenarios 14
Metal Price $/g 17.23
Mining Capacity Mtpa 85
Mill Target Capacity Mtpa 15
Leaching Capacity Mtpa 5
Mill Surplus Penalty $/t 8.00
Mill Shortage Penalty $/t 10.00
Leachpad Surplus Penalty $/t 7.00
Financial Discount Factor % 8
Geological Discount Factor % 20
Number of Tabu Searches 7
Number of Threads 7
Total time 9 h 45 min

As seen in Figure 8, the ore tonnage input to the mill is very close to the target for the earlier years,

but as the time passes deviations begin to increase. This happens because the geological risk discount factor

allows for penalizing earlier periods more than later ones. The risk of not meeting production targets is then

very low at the beginning of the project and tends to increase at the end. This is normal because more

information will be available later and the risk will be reduced at that time. As seen in Figure 9, the metal

content sent to the mill process is higher in earlier periods than in later periods, meaning that the profit made

by processing the ore will be higher. This is how the model reacts to the application of a discount factor

being applied. Additionally, it shows that the risk on the metal content sent to the mill is smaller at the

beginning than later on as it begins to be higher in year 12. Combined with the previous graph, this means

that the risk is pushed to the later periods for this process. Figure 10 shows the content in the stockpile at

each year. As seen, the risk according to the content of the stockpile is low at the beginning and increases

with time. The amount of material sent to the stockpile is very volatile at the beginning of the mine life and

increases to become more and more volatile as the time passes.
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Figure 8: Stockpile content 
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The SIP formulation incorporates the stockpile only as a buffer for the mill and then the optimizer tries

to fill the mill so that every scenario meets the target by scheduling blocks with high variability in the grade

early on. It leads to the fact that in a certain scenario blocks are sent to the leaching pad and in others they

are sent to the mill. If in one scenario, a certain local area is composed mostly of low grade material and the

optimizer does not have any better choice, then, it will extract this part since it helps a couple scenarios to

meet the target but more blocks have to be mined in order to meet the target in the other scenarios. This

can happen when the bottleneck is the capacity of the mill. Figure 11 shows the rock tonnage extracted and

it can be observed that the mining capacity in this case is not the bottleneck for the first periods. As seen in

Figure 12, the tonnage of the leach pad does not exceed the fixed target and is reacting as one would expect.

However, one may note that even if it is profitable to extract low grade material, the optimizer does not use

the full capacity of the process but only the marginal grade that can be extracted.
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Figure 12: Leach pad tonnage

As discussed, the amount of rock extracted at the beginning is less than in the later periods, meaning

that the target is met while extracting fewer blocks. This helps increase the NPV and all the targets are

met by extracting high grade blocks. Also from a practical point of view, the tonnage increases as the year

increases, but has no decrease or increase leading to a feasible schedule. Figure 13 shows the waste tonnage.

There is almost no risk in the waste tonnage, and it increases as the years pass since the discounted factor

costs are less in the later periods. The same remark can be made with respect to the rock tonnages, even

though it is increasing in the amount of waste tonnage, it is still physically feasible.
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Finally, the total NPV for the project is plotted in Figure 14. It shows that the risk at the beginning of

the project is lower than at the end, as it should be. To display the effect of geological risk management, a

plot of the value of the deviation by period is given, allowing the magnitude of the penalty applied compared

to the NPV to be seen.

Figure 15 shows the effect of the geological risk management on the objective function over the life of

mine. It shows that the first periods are severely penalized but as the time passes, the geological discount

factor brings the penalty for one ton of material to almost nothing, allowing the model to deviate without

incurring a drastic penalty.

6 Conclusions

In this paper, a set of parallel metaheuristics have been developed based on the previous work of Lamghari

and Dimitrakopoulos(2012). The proposed metaheuristic incorporates the SIP formulation of Ramazan and

Dimitrakopoulos (2013) with the addition of a leach pad. Three algorithms were implemented. The PITS

algorithm is a very easy and straightforward way to assess the OPMPSP with multi-destination and a

stockpile. As the size instance grows the method is still robust, starting with a random feasible schedule.

The second algorithm, PInTS, uses more information than only the information of the current threads,

allowing a better coverage of the solution space and better results than the other implemented methods.

It solves the OPMPSP problem and can provide a feasible schedule in the terms of optimality and mine

planning. The third method, PNSTS, appears to work on small instances but unfortunately provide worst
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results than the others in all cases. All of these methods are able to improve the initial solution and as the

instance size grows, all methods starting with a random schedule perform better than starting with a close

one. The performance gained in time by using parallelism is mostly proportional to the number of threads

used for the two instances.

The case study shows that those methods are able to handle a medium-large scale deposit for the SIP

proposed. This case study shows that the formulation is able to account for the minimization of the deviations

from production targets and provides a schedule where risks are pushed in later periods. It also points out

that the stockpile considered now is only there to act as a buffer for the uncertainty at the early period where

deviations are important. The analysis in the presented papers has been developed based on a small and

medium instance for both parallel efficiency and optimality.

Further improvement of the proposed method can include multi-element deposit, stochastically managed

stockpiles or characterisation of the time and space complexity of the algorithms.
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