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auteurs.

La publication de ces rapports de recherche est rendue possible
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industriel, Polytechnique Montréal, Montréal (Québec)
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Abstract: In this paper, we propose a model for an energy broker who acts as a third party between the grid
and its clients, through the maintenance of a two-sided portfolio of bilateral contracts. These contracts are
positioned for roles involving a finite number of pointwise interventions within specified availability periods,
and are well suited for clients such as distributed generators or ancillary services, on the grid side. The
setting is otherwise quite general and may for instance involve bilateral contracts on wholesale markets. While
bilateral contracting hedges the parties involved against the volatility of energy prices, the management of the
broker portfolio raises a number of modelling and computational issues, which stem from the aggregation of
disparate resources. To address these challenges, we devise an innovative algorithmic framework that involves
robust optimization with respect to short term decisions, factoring in long term information obtained from a
secondary model that embeds the full extent of all contracts’ durations.

Key Words: distributed energy resource, co-generation, bilateral contract, energy market, dynamic resource
allocation.
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1 Introduction

Due to opportunities related to restructured energy networks, recent years have witnessed the arrival of new

players to the field: aggregators [1], microgrids [2], virtual power plants [3] and various coalitions [4–8]. The

aim of the present work is to analyze the operations of an energy broker, who acts as a third party between

the grid and distributed energy resources, and provides offers to the grid via aggregation. We are in particular

concerned with combined heat and energy units [9–11]), fuel cells [12], resources aggregated in virtual power

plant or micro grids, and which may involve renewable resources [13,14] or responsive loads [15,16].

The broker is endowed with a two-sided portfolio of internal and external bilateral contracts with its

clients and the grid, respectively. Internal bilateral contracting serves as a flexible tool to adjust any on

client participation to the broker’s additional activities on the grid, so that they be tailored to the client’s

financial goals and specific processes. External operations may be positioned on a multiplicity of levels, such

as ancillary services [17,18], wholesale market [3, 14] or load curtailment [19].

The bilateral contracts are designed for the pointwise involvement of the broker clients in the delivery of

resources to the grid. At the beginning of each week, the broker broadcasts a schedule that assigns resources

to grid contracts on weekly times slots, where mobilized resources remain available for grid requests. Each

contract is endowed with a fixed cost for the total amount of power to be delivered, on multiple occasions

and in response to grid requests, and with variable mobilization costs, which are paid on a weekly basis.

The current study focus on medium term strategic planning. The broker portfolio is fixed, and we assume

that all fixed costs have been paid in advance. It then remains for the broker to allocate his resources so to

complete all grid contracts without reaching outside the contracted resources, while minimizing mobilization

costs. The optimization tools we devise in the sequel provide efficient mobilization policies and yields incentive

for contract construction.

Notwithstanding the fact that the settlement of bilateral contracts can be tightly coupled to the production

of bid on an energy market, we do not consider bid production, since the topic has been well documented in

a number of recent studies [20–25]. Of course, pool operations should intervene at some level of the broker’s

operations, but the challenge raised by the management of the two-sided portfolio needs to be addressed

separately, prior to considering pool activities.

The aim of this paper is to propose a model for an energy broker, and to devise algorithmic schemes

for its solution. The broker operations are set within a stochastic and dynamic environment, over a time

horizon that spans several months, for typical bilateral contracts. Moreover, discrete decisions are involved,

and a multi stage stochastic mixed integer formulation yields an optimization problem that state of the art

computational methods could only tackle for a toy portfolio [26, 27]. Alternatively, addressing the curse of

dimensionality directly though statistical learning schemes [28,29] is problematic on account of the involved

combinatorics. In this respect, our contribution is twofold. First, we position an energy broker attached

to the smart grid which manages a two-sided portfolio of forward contracts, respectively with its clients

and the pool. Two achieve this, we devised a two-frame model that involves a robust mixed integer short

term formulation, covering the broker against any weekly demand scenarios, and a long term formulation that

captures the full extent of all contracts, based on the notion of availability configurations. On the algorithmic

side, this naturally leads to an optimization framework where a long term model passes information to a short

term model.

This paper is organized as follows. The problem’s formulation is presented in Section 2, the algorithmic

framework is developed in Section 3, and a numerical experiment is documented in Section 4. The conclusion

is then followed by the list of notation. Proofs of the various theoretical results is deferred to the appendix.

2 Formulation

Let us consider the activities of an energy broker managing a two-sided portfolio of bilateral contracts with

distributed generators and the grid. A grid contract is set for an amount of power to be delivered to the grid,
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upon request by the grid, within broker specific time frames. Let D be the set of grid contracts, referred to

as demands. Similarly, a generator contract is set for an amount of power to be produced by the generator,

upon request by the broker, within generator specific time frames. Let R be the set of generator contracts,

referred to as resources in the sequel. Each contract is associated with a fixed number of requests (tokens)

rresi and rresj , where (i, j) ∈ R ×D. Generator contracts also allow for a predefined number of maintenance

periods (mi)i∈R, during which the generator is not required to respond to requests.

Note that the heterogenous nature of the broker aggregated resources, whose underlying processes can

involve hard operational constraints (ramping delay, successive requests delay) restricts the compatibility

of resources and demands. The subset of resources eligible to participate in responding to a request from

demand j is expressed Rj ⊂ R. Similarly, the subset of demands for which Resource i is compatible is

expressed Di ⊂ D.

In the formulation, the time horizon is partitioned into a finite set of weeks T . In turn, each week t ∈ T is

partitioned into a finite set of time slots S(t) of possibly uneven durations. Let Rts ⊂ R and Dts ⊂ D denote

the subsets of contracts available and eligible for receiving or sending requests, respectively, during time slot

s ∈ S(t). A contract with no remaining tokens is unavailable for the rest of the time horizon. Contract

eligibility is encapsulated in notation DRts ⊂ Rts×Dts, representing the sets of compatible resource-demand

couples that are available on time slot s. We denote by Rtsj (resp. Dts
i ) the set of available resources (resp.

demands) compatible with demand j (resp. resource i) on time slot s. The notations rdemtj and rresti refer to

the number of request tokens for demand j and resource i (respectively) at the beginning of week t.

Energy delivery must be monitored. At the beginning of each week, before any demand request has been

received, the broker broadcasts to all parties involved a mobilization schedule that assigns available and

compatible resources to available demands, for each weekly time slot. Mobilized resources can then be used

to respond to requests at the current week. We assume the mobilization schedule is fixed for the entire week.

Let (xtsij)(i,j)∈DRts,s∈S(t) be the mobilization policy for week t, where xtsij is set to 1 if resources i is assigned

to demand j on time slot s ∈ S(t). In the short term, the mobilization policy must ensure that sufficient

power is gathered for each demand, that is, xts ∈ Xpow(Rts, Dts) where

Xpow(R,D) =

x :

∑
j : (i,j)∈DR

xij ≤ 1 i ∈ R∑
i : (i,j)∈DR

poweri xij ≈ powerj j ∈ D

 . (1)

These constraints are separable by time slot. The first constraint ensures that each resource is assigned to at

most one demand on any given time slot. In the second constraint, parameter powerj ∈ R×R is the interval

of valid power levels (for demand j). The symbol ≈ specifies that demand should be approximately satisfied,

i.e., up to a prespecified tolerance.

Resource contracts include weekly availability throughout the contract validity period, as well as mobi-

lization costs. Let cmob
i be the marginal cost of mobilizing resource i, independently of the fact that a request

is actually received. This cost may vary among resources having similar parameters but distinct numbers of

maintenance weeks. We do also assume that all contracts involve some fixed cost paid (resp. received) in

advance, for the total amount of power to be delivered (resp. received). But since these costs are constant,

we are only concerned by the variable costs incurred by the broker in the covering of the time horizon:

cost(x) =
∑
t∈T

∑
s∈S(t)

∑
(i,j)∈DRts

λtscmob
i xtsij , (2)

where λts is the duration of the time slot s ∈ S(t).

Stochasticity impacts the broker’s operations at two levels: demand requests and resource maintenance.

We assume that maintenances are announced with at least a week’s notice, allowing us to account for them

directly when specifying the sets Rts and DRts, which are themselves random. Let y be a demand scenario,

such that ytsj is set to 1 if a request from demand j is received on time slot s of week t. We assume that

the width of time slots is sufficiently small, so that the probability of more than one request within a single
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time slot is negligible. Independent of any particular assumption on the demands distribution, we must have

y ∈ Y , where

Y ⊂

ytsj ∈ {0, 1}, t ∈ T, s ∈ S(t), j ∈ Dts :
∑
t∈T

∑
s∈S(t)

ytsj ≤ rdemj

 ,

and a sequence of mobilizations (xt)t∈T that covers a scenario y ∈ Y is such that∑
t∈T

∑
s∈S(t)

∑
(i,j)∈DRts

xtsijy
ts
j ≤ rresi , i ∈ R.

The mobilization xt chosen at the beginning of week t is a function of all past information (yt
′
)t′<t and

(Rt
′
)t′≤t, and we assume that it covers the broker against any demand scenario at week t:

xt
(

(yt
′
)t′<t, (R

t′)t′≤t

)
∈ Xt

week

(
(yt

′
)t′<t, (R

t′)t′≤t

)
where

Xt
week

(
(yt

′
)t′<t, (R

t′)t′≤t

)
= {xts ∈ Xpow(Rts, Dts) , s ∈ S(t′) : (3)∑
t′≤t

∑
s∈S(t′)

∑
(i,j)∈DRt′s

xt
′s
ij y

t′s
j ≤ rresi , y ∈ Y, i ∈ R}.

In the sequel, parameters (yt
′
)t′<t and (Rt

′
)t′≤t will be dropped whenever the context is clear, and we simply

write: xt ∈ Xt
week.

At a high level, the broker problem is expressed as the multi stage mixed integer stochastic program:

Program 1

min
x

E [cost(x)]

s.t. xt ∈ Xt
week t ∈ T.

Implicit in the above formulation is the assumption that the broker resources are a priori sufficient to cover

any demand scenario. The issue is how to achieve this at minimal cost, and using a minimal amount or

resources. Throughout this process, we also assume that the broker is honest, in the sense that he will not

mobilize resources that have insufficient request tokens to go through the week, along the chosen mobilization

schedule. Accordingly, unsatisfied requests, and more generally uncovered time slots, never occur. Obviously,

in practice, failure to cover a time slot will yield severe penalties to the broker. Next, considering the risk

averse environment within which the broker operates, together with the fact that failures not only impact

the broker’s welfare in the short term, but perhaps more importantly impact negatively his ability to secure

future contracts with the grid. Uncovered time slots are to be avoided at all cost, and are simply not modeled

here.

As an illustration, consider the small Portfolio 1 described in Table 1, where time slots are set to days

for simplicity. Any one of the two resources R1 and R2 can alone cover requests from the only demand D1.

Table 1: Portfolio 1: Contracts parameters.

Dem/Res req pow cost t1 tN Mon Tue Wed Thu Fri Sat Sun

D1 12 1 n/a 1 15 x x x x x x

R1 10 1 2 1 15 x x x x x x
R2 5 1 5 1 15 x x
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Resource 1 is only available 2 days a week, while Resource 2 is available 6 days a week. Observe that while

the combined resources allow for a total of 15 requests, only 10 requests can be satisfied between Thursday

and Saturday. Table 2 provides the data of a demand scenario history and two associated sequences of

mobilization policies leading to either the failure to cover all time slots (top), or a coverage of the entire time

horizon (bottom). Entries in each column correspond to a (weekly) mobilization policy (set at the beginning

of the week) where either resource R1 or R2 is assigned to cover demand D1. Circles correspond to requests,

and uncovered time slots are labeled with symbol ’*’. Mobilization costs are displayed at the bottom.

Table 2: Portfolio 1: Two simulation runs.

s\t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Mon 1 1 1 1© 1 1 1 1 2 2 2 2 2 2 2
Tue 1 1 1 1 1 1© 2 2 2 2© 2 2 2 2 2
Wed 1 1 1© 1 1 1 1 1© 1© 1 1 * * * *
Thu 1 1 1 1 1© 1 1 1 1 1 1© * *© * *
Fri 1 1 1 1 1 1 1 1 1 1 1© * * * *
Sat 1 1 1 1 1 1© 1 1 1 1 1© * * * *
Sun

Cost 12 12 12 12 12 12 15 15 18 18 18 ∞ ∞ ∞ ∞

s\t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Mon 2 2 2 2© 2 2 2 2 2 2 2 2 2 2 2
Tue 2 2 2 2 2 2© 2 2 2 2© 2 2 2 2 2
Wed 1 1 1© 1 1 1 1 1© 1© 1 1 1 1 1 1
Thu 1 1 1 1 1© 1 1 1 1 1 1© 1 1© 1 1
Fri 1 1 1 1 1 1 1 1 1 1 1© 1 1 1 1
Sat 1 1 1 1 1 1© 1 1 1 1 1© 1 1 1 1
Sun

Cost 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18

Straightforward combinatorics yields that at least 4 percent of all possible request scenario cannot be

covered: (
60
11

)(
30
1

)
+
(
60
12

)(
90
12

) ≈ 0.04. (4)

However, this optimistic estimate does not account for the weekly robustness of Program 1. Inspection of

Portfolio 1 suggests to favor the use of R2 over R1 on Monday and Tuesday, as R1 must also cover the rest

of the week. To simplify the exposition, let us refer to Monday and Tuesday as day type 1 and Wednesday

to Saturday as day type 2. Consider the following policy: resource R2 is mobilized on days of type 1 until it

has a single request token left, and then it is mobilized each week on a single day of type 1, while resource

R1 covers the rest of the week. If, on a given week, 7 requests have been received on days of type 2, and less

then 2 requests on days of type 1, then R2 has 3 tokens left to cover 4 time slots (Wednesday to Saturday),

on which demand D1 can still make more than 3 requests. It follows that the broker can no longer guaranty

the feasibility of the portfolio. It is readily seen that this is the only failure under this mobilization policy,

and the resulting probability of failure, given equiprobable demand scenarios, is

p′ + p′′ ≈ 0.20, (5)

where

p′ = P{6 requests on day type 2 and 0 request on day type 1} ≈ (2/3)7

p′′ = P{6 requests on day type 2 and 1 request on day type 1}
≈ 7(2/3)7(1/3).
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3 Numerical resolution

Multistage mixed integer stochastic programs are challenging. Due to the scale of the instances we wish to

tackle (typical forward contracts span periods between 3 months to a year), exact resolution scheme such

as [26,27] must be ruled out, while scenario based heuristics proposed in [30,31] involve but a small number of

scenarios, which in our case are difficult to sample. Moreover, taking into account the huge number of states,

the set of scenarios required to properly implement non-anticipativity would by far exceed our computational

capabilities. It is otherwise difficult to see how approximate dynamic programming schemes such as [28, 29]

can properly account for the problem combinatorial features.

The resolution scheme we propose involves a two time scale model in which a simpler long term model

passes long term information to a short term model, where a single week of operations is considered. The

two formulations are solved in sequence, over a rolling time horizon. The short term formulation covers the

broker against any possible weekly demand scenario. The long term formulation is deterministic and covers

the broker against expected amounts of requests arriving on so called time slot types, independently of the

order of their arrival. The long term solution is labelled as semi online, and is expressed in terms of the

number of times a resource can safely used to respond to a given demand, on a given time slot type, without

putting the feasibility of the portfolio at risk.

3.1 Robust short term feasibility

Mobilization schedules must account for every possible weekly demand scenario. This condition is implied by

our positioning of an honest broker, who will leave no time slot uncovered. For example, a resource assigned

to a single demand over a full week should either (i) be assigned to no more time slots than it has request

tokens, or (ii) be assigned to a demand that has at most as many request tokens as the resource does. The

following result provides necessary and sufficient conditions for the covering of any weekly demand scenario

in the general case, where one resource can cover multiple demands on different time slots.

Theorem 1 A mobilization policy xt ∈ Xt
week if and only if xts ∈ Xpow(Rts, Dts) for each s ∈ S(t) and

rresti ≥
∑
j∈Di

min

{ ∑
s:(i,j)∈DRts

xtsij , r
dem
tj

}
, i ∈ R. (6)

Proof. See Appendix.

The above result allows the characterization of weekly feasibility through a system of linear inequalities.

Theorem 2 A mobilization policy xt ∈ Xt
week if and only if xts ∈ Xpow(Rts, Dts) for each s ∈ S(t) and there

exist binary vectors (zij) and (x̃sij) such that

rresi ≥
∑
j∈Di

rdemtj zij +
∑

s:(ij)∈DRts

xtsij − x̃tsij

 i ∈ R (7)

∑
s:(i,j)∈DRts

xtsij − rdemtj − µ ≤Mzij (i, j) ∈ DR (8)

∑
s:(i,j)∈DRts

xtsij − rdemtj ≥ −M(1− zij) (i, j) ∈ DR (9)

x̃tsij ≤ xtsij (i, j) ∈ DRts s ∈ S(t) (10)

x̃tsij ≤ zij (i, j) ∈ DRts s ∈ S(t) (11)

x̃tsij ≥ xtsij + zij − 1 (i, j) ∈ DRts s ∈ S(t) (12)

from any 0 < µ < 1.
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Proof. See Appendix.

Note that, in practice, it is unnecessary to ensure robust feasibility when the remaining number of resources

exceeds the number of weekly time slots.

3.2 Rolling Time Horizon heuristic

Let qtsij be the cost associated with the mobilization of resource i for demand j on time slot type s ∈ S(t),

and consider the single stage optimization problem:

Program 2

min
xt

∑
s∈S(t)

∑
(i,j)∈DR(t,s)

qtsij x
ts
ij

s.t xt ∈ Xt
week.

This short term model is solved from one week to the next, over a rolling time horizon, on the basis of

simulated demand requests and resource maintenances.

Before introducing the long term model, let us consider the following simple scheme. The Contract Level

(CL) information is defined as

qtsij = rdemtj − rresti t ∈ T, s ∈ S(t), (i, j) ∈ DRts, (13)

and favors the use of resources having an amount of request tokens that exceeds the demand for which they

are mobilized, the rational being that an uncovered time slot can only arise if at least one resource runs out

of tokens before a demand.

The CL information is evaluated at week t = 1 for Portfolio 1 (Tables 1–2) in Table 3, and was actually

used in the simulation at the top of Table 2. Over a total of 100 simulations based on uniform demand

distribution, sequentially solving Program 2 using the CL information evaluated at the beginning of each

week allowed to fully cover 19 of the scenarios, out of the 80 expected to be feasible (see (4)).

Table 3: Portfolio 1: CL information at week t = 1.

Resource Mon-Tue Wed-Sat

R1 2 2
R2 7 n/a

3.3 Aggregated demand scenario based on availability configurations

Our next approach to obtaining long term information requires to first cast the broker problem into a

static framework defined in terms of the total number of requests received on time slot types, characterized

by available demand-resource configuration pairs (D̂k, R̂k) ⊂ D × R. Similar to the CL scheme, resource

maintenances are ignored, but now mobilization costs are factored in.

Let (πk)k∈K be a partition of the time horizon, where class πk (time slots of type k), are characterized

by the set of online and compatible demand-resource pairs (D̂k, R̂k) ⊂ D × R. A uniform distribution of

demand yields the expected number of requests ykj from contract j on time slots of type k:

ykj =

{
rdemj |πk|/nresj if j ∈ D̂k

0 otherwise.
(14)
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Let k(t, s) ∈ K be the type of time slot s ∈ S(t), and define Yuni ⊂ Y as the set of compatible demand

scenarios, i.e., y ∈ Yuni if and only if y ∈ Y and

bykjc ≤
∑
t∈T

∑
s∈S(t)

1(k(s, t) = πk)ytsj ≤ dykje.

Note that the uniformity assumption is readily generalized to forecast data, and is otherwise consistent with

a Bayesian approach given that no predictive information is available.

The key to the long term model formulation is the expression of the aggregate forecast in terms of the

maximum number of requests issued simultaneously from demand subsets. The left-hand side of Figure 1
displays a request scenario’s history. It corresponds to requests from demands j1, j2 and j3 occurring on

time slots of a given type, say Monday mornings, for weeks t = 1, . . . , 15. The corresponding histogram is

shown in the middle. The data on the right-hand side corresponds to the maximum number of simultaneous

requests from demand subsets {j1, j2, j3}, {j2, j3} and {j2}.

j1 x x x
j2 x x x x x x
j3 x x x x x

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x
x x
x x

x x x
x x x
x x x
j1 j2 j3

x 1
x x 2

x x x 3
j1 j2 j3 ŷ

Figure 1: Request history (left hand side) with the associated histogram (center). On the right-hand side is
given the maximum number of requests ŷ associated to each subset of demands {j1, j2, j3}.

The following procedure is instrumental in computing quantities relevant to the analysis. Consider the

sequence of nested sets

D̂knk ⊂ . . . ⊂ D̂k1 ⊂ Dk (15)

and the vector ŷk ∈ Rnk , recursively constructed as follows: first, set

D̂k1 = {j ∈ D̂k : ykj > 0} (16)

and let ŷk1 be the smallest quantity such that

D̂k2 = {j ∈ D̂k1 : ykj − ŷk1 > 0} 6= D̂k,1, (17)

then update ykj ← ykj− ŷk1 for each j ∈ D̂k1 and repeat the operation until no positive components remains

in vector yk, for each k ∈ K.

Theorem 3 Let D̂k` and ŷk` obtained from procedure (14–17). Then ŷk` is an upper bound on the number

of requests received simultaneously from the demands D̂k`, on any one time slot of type k, in any compatible

scenario y ∈ Yuni.

Proof. See Appendix.

3.4 Min-Cost Flow Model

Assuming that the set of mobilizations Xpow(D̂k`, Rk) are provided explicitly for each time slot type, let us

consider the problem of responding to requests, independently of the order of their arrival, within the static

framework described in the previous section. We now show that, if fractional request are allowed, the broker’s

problem reduces to a min-cost flow problem.
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To this aim, let Mk` be an ordering of Xpow(D̂k`, Rk) and let δk` be the corresponding mobilization-

resource incidence matrix:

δk`mi =


1 if the m-th mobilization of Xpow(D̂k`, Rk) uses resource i for

one of the demands in D̂k`,

0 otherwise.

Let Ck`m be the cost associated with mobilization m ∈Mk` such that

Ck`m =
∑

i,j∈DRk`

δk`mi1
{
j ∈ D̂k`

}
ci, (18)

and let variable wk`m > 0 denote the number of time slots on which joint requests from demands D̂k` are

satisfied by mobilization m. In other words, variable wk`m represents the number of tokens from the resources

that are used in mobilization m for responding to joint requests from demands D̂k` on time slots of type k.

Let

wki =
∑
`≤nk

∑
m∈Mk`

δk`miwk`m,

be the total amount of tokens from resource i used to respond to requests on time slots of type k, and let ŷt·
be the aggregate forecast constructed following procedure (15–17), at the beginning of week t. Now, consider

the set of flow constraints W (ŷ, rres) defined by the inequalities∑
m∈Mk,`

wk`m ≥ ŷk` k ∈ K ` ∈ Lk (19)

∑
k∈K

wki ≥ rresi i ∈ R, (20)

wk`m ≥ 0 k ∈ K ` ∈ Lk,

together with the mathematical program:

Program 3

min
w∈W (ŷt,rrest )

∑
k∈K

∑
`∈Lk

∑
m∈Mk`

Ck`mwk`m, (21)

whose optimal solution ensures that a maximum number of demand requests are satisfied at minimum

cost. Constraint (19) models demand satisfaction and ensure that, given sufficient resources are present, all

demands are satisfied, and then all components of Constraint (20) are tight. Otherwise, the slack variable

associated with the resource constraints (20) provide information on missing resources. More formally:

Theorem 4 Given that resources are sufficient to satisfy all demands, that is, there exists a w ∈ W (ŷt, r
res
t· )

such that ∑
m∈Mk`

w∗k`m = ŷtk`, k ∈ K, ` ∈ Lk (22)

∑
k∈K

∑
`∈Lk

∑
m∈Mk`

δk`miw
∗
k`m ≤ rresti , ∀i, (23)

then all components of Constraint (20) are tight in Program 3.

Proof. See Appendix.
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3.5 Long term information

With respect to an optimal solution of Program 3, two situations may arise. First, there exists an index i ∈ R
such that (20) is not tight, i.e., resource i is lacking request tokens, and then at least one of the component

of (19) is tight, say component (k, `), where additional resources are required to satisfy demands D̂k`. The

opposite situation entails that all demands are covered. This is consistent with our general positioning of the

broker problem, where resources are assumed to be sufficient. In this context, the mobilization policy chosen

at the current week should be such that the long term model remains feasible in the subsequent weeks.

To satisfy the above requirement, we factor in bounds on the use of each resource (provided by the

long term solution) and restrain the current week’s mobilization accordingly. The stochastic nature of the

aggregated forecast w (on the basis of which the long term model is build) suggests not to implement this

as hard constraints. In the proposed scheme, the coefficients of the short term objective are corrected in

the following manner. Consider the restriction x̂(w) of the long term solution w to the time slots at current

week t, that is, the expected amount of resource i used to satisfy requests from demand j on time slot

s ∈ S(t), for each (i, j) ∈ DRts:

x̂tsij(w) = pt,k(ts)
∑

`∈Lk(t,s):j∈D̂k`

∑
m∈Mk(t,s)`

δ
k(t,s)`
mi wk(t,s)`m,

where ptk, is the conditional probability that a request on a time slot of type k arrive at current week t under

the uniform demand assumption, is expressed as

ptk = |{s ∈ S(t) : k(ts) = k}|/|πk|.

Since incorporating the constraints

pt,k(ts) x
ts
ij ≤ x̂tsij(w) (ij) ∈ DRts, s ∈ S(t)

may make the short term model infeasible, we look for a feasible mobilization policy x∗ such that

pt,· x
∗ ∈ arg min

xt∈Xweek
t

‖x̂t(w), xt‖.

Equivalently, the square of the norm can be minimized:

‖x̂t(w), xt‖2 =
∑
s∈S(t)

∑
(i,j)∈DR(t,s)

(x̂tsij(w)− xtsij)2

=
∑
s∈S(t)

∑
(i,j)∈DR(t,s)

(x̂tsij(w))2 − 2x̂tsij(w)xtsij + (xtsij)
2

=
∑
s∈S(t)

∑
(i,j)∈DR(t,s)

[1− 2x̂tsij(w)]xtsij + constant (24)

where we used (xtsij)
2 = xtsij , as xtsij ∈ {0, 1}. We now have:

pt,· x
∗ ∈ arg min

xt∈Xweek
t

∑
s∈S(t)

∑
(i,j)∈DR(t,s)

[1− 2x̂tsij(w)] xtsij .

We then set the long term information in the short term model (Program 2) to

qtsij = (pt,k(ts))
−1(1− 2x̂tsij(w)), (25)

which is referred to as the projected flow (PF) information in the sequel.

Consider again Portfolio 1 (Tables 1 and 2), which involves two time slot types (referred to as day types

above): Mondays and Tuesdays for k = 1, and the remaining week days for k = 2, and thus K = {1, 2}. As

a single resource suffices to cover a request, mobilizations can be expressed directly in terms of the mobilized
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resource: We have M1 = {R1} and M2 = {R1, R2}, and we also have wki = wk1i, that is, the amount of

resource i assigned to day type k matches the flow of the corresponding mobilization on the unique slice 1.

Variable wk`m represents the amount of resource i mobilized on time slot of type k to cover the demands

D̂k`, where k ∈ {1, 2}, ` = 1 and m ∈ 1, 2. Mobilization 1 (resp. mobilization 2) corresponds to the use of

resource R1 (resp. resource R2) and D̂11 = D̂12 = {1}, that is, a single demand is involved. Recalling that

c1 = 2 and c2 = 5, Program 3 takes the form:

min
w≥0

2(w111 + w211) + 5w112

s.t. w111 + w112 ≥ y11 = 4

w211 ≥ y21 = 8

w11 + w21 ≥ rres1 = 10

w12 ≥ rres2 = 5.

Its optimal solution is illustrated on the right-hand side of Figure 2. For example, at week t = 1 and for time

slot s = 1, resource i = 1 (D1) and demand i = 2 (R2), we have p11 = 1/15 and x̂1121 = 1/3, and the corrected

cost

q1121 = (1/15)−1[1− 2(1/3)] = 5.

The PF information at week t = 1 is summarized in Table 4. The left-hand side of Figure 2 provides a

graphical comparison between the CL and PF information.

✻

✲❘■
✿
✯

1
✛

5

7

1 2
❝ R1

R2
✻

✲

y11

y21

1 2

w12

w21

2

4

6

8

10

Requests

Time Slot TypePF

CL
C

Figure 2: Portfolio 1: on the left-hand side - CL and PF information comparison at week 1
for time slots of type 1 (Monday and Tuesday); on the right-hand side - Solution of the
long term model.

Resource Mon-Tue Wed-Sat
R1 0 −5
R2 5 n/a

Table 4: Portfolio 1: PF information at week t = 1.

that all time slots are now covered. CL and FP information are compared
on Portfolio 1 in Table 5, where 100 simulations have been performed. The
PF information provides a coverage of 83 percent of all scenarios, compared
to 19 percent for the CL information.

While the FB information performs better, both schemes “agree” that
Portfolio 1 cannot be covered with probability 1, which confirms our previous
observations.

information type mobilization cost proportion of covered scenarios
CL 176.88 19%
FP 223.50 83%

Table 5: Portfolio 1: CL vs TP information.

17

Figure 2: Portfolio 1: On the left-hand side – CL and PF information comparison at week 1 for time slots of
type 1 (Monday and Tuesday); On the right-hand side – Solution of the long term model.

Table 4: Portfolio 1: PF information at week t = 1.

Resource Mon-Tue Wed-Sat

R1 0 −5
R2 5 n/a

A simulation run using FB information on Portfolio 1 is presented at the bottom of Table 2, and compared

with one based on CL information. Note that all time slots are now covered. CL and FP information are

compared on Portfolio 1 in Table 5, where 100 simulations have been performed. The PF information provides

a coverage of 83 percent of all scenarios, compared to 19 percent for the CL information.

While the FB information performs better, both schemes “agree” that Portfolio 1 cannot be covered with

probability 1, which confirms our previous observations.
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Table 5: Portfolio 1: CL vs TP information.

information type mobilization cost proportion of covered scenarios

CL 176.88 19%
FP 223.50 83%

4 Example

We now compare CL and FP on the larger Portfolio 2 described in Table 6. For each time slot type, the

first and the last week within which the type is represented (Lines 1-2), the total power available from the

demands and the resources (lines 3-4), upper bounds on the power that can be requested and rolled out

(Lines 5-6), the number of mobilization candidates (Line 7) and the available demands (Lines 8-10) and

resources (Lines 11-20), from Monday to Sunday. Associated data is available in Figures 3, 4 and Table 7.

The results of 50 simulations are summarized in Table 8 and Table 9, respectively. The statistics are

gathered for each time slot type: average mobilization costs, average number of uncovered time slots (failures)

Table 6: Portfolio 2: Contract parameters.

dem/ res pow req main t0 tN Mon Tue Wed Thu Fri Sat Sun

R1 2 10 1 1 16 x x x
R2 2 10 1 1 24 x x x
R3 2 20 0 1 24 x x x
R4 1 10 4 1 16 x x x
R5 1 10 4 1 16 x x
R6 1 10 4 1 16 x x x
R7 1 10 1 1 24 x x x x x
R8 1 10 1 1 16 x x x x
R9 1 20 0 1 24 x x x x x x
R10 1 10 1 1 24 x x

D1 1 15 n/a 1 16 x x x x x
D2 2 20 n/a 1 24 x x x x
D3 3 25 n/a 1 16 x x x

1 2 3 4 5 6 7 8 9 10

2

4

6

8

10

time slot type

power

Resources

Demands

20

Figure 3: Portfolio 2: Demand vs resource power (power constraints).

Considering the distribution of uncovered time slots along their different
types, both algorithms (information type) broadly agree that resources are
lacking on time slots of type 1 and time slot type 7 (week 1 to week 16)
and time slot type 10 (week 17 to week 24). The CL information otherwise
manages a lower average mobilization cost of 887.62, compared to 1037.64
when using the FP information. But the extra mobilization cost allows the
FP scheme to fully cover 76 percent of scenarios, compared to none for the
CL scheme, and this is achieved using only 2 percent of additional resources.

time slot type 1 2 3 4 5 6 7 8 9 10 total
cost 84.80 34.28 188.46 65.80 30.58 224.44 192.84 25.44 30.18 10.80 887.62
nb. failures 0.60 0.06 0.14 0 0.28 0.20 0.58 0 0.40 4.52 6.78
prop. covering 0.62 0.94 0.88 1 0.90 0.80 0.64 1 0.82 0.02 0

resource 1 2 3 4 5 6 7 8 9 10 lost
unused tokens 0.12 0 2.42 5.52 3.82 1.60 0.16 1.12 11.38 5.72 0.21

Table 8: Portfolio 2 - CLI: Simulation summary (averages over 50 runs)

19

Figure 3: Portfolio 2: Demand vs resource power (power constraints).
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Figure 4: Portfolio 2: Demand vs resource request tokens (request constraints).

time slot type 1 2 3 4 5 6 7 8 9 10 total
cost 105.42 31.82 213.18 88.78 32.60 277.22 204.92 41.64 25.46 16.60 1037.64
nb. failures 0.06 0 0 0 0 0 0.04 0 0 0.22 0.32
prop. covering 0.94 1 1 1 1 1 0.96 1 1 0.84 0.76

resources 1 2 3 4 5 6 7 8 9 10 lost
unused tokens 1.32 1.72 7.98 1.28 1.34 0.94 0.46 0.84 1.48 1.72 0.19

Table 9: Portfolio 2 - PF: Simulation summary (averages over 50 runs)

5. Conclusion

In the present work, we have introduced a model for an energy broker
attached to the smart grid which operates in a novel way, using bilateral
contracts with both his clients and the grid. While the management of
this novel contractual framework yields a hard combinatorial problem, we
could propose for its solution original and efficient optimizing tools aimed
at maximizing the broker’s profitability. Our deterministic two time frame
semi-online mathematical model actually covers the broker against a family

20

Figure 4: Portfolio 2: Demand vs resource request tokens (request constraints).

Table 7: Portfolio 2: Day type information – number of candidate mobilizations.

time slot type 1 2 3 4 5 6 7 8 9 10

nb. mobilizations 5 6 960 4 2 960 40 2 3 2

and the proportion of simulations where all demands are fully covered. At the bottom, we provide the average

number of unused resource tokens, for each resource, as well as the total proportion of lost power.

Considering the distribution of uncovered time slots along their different types, both algorithms (infor-

mation type) broadly agree that resources are lacking on time slots of type 1 and time slot type 7 (week 1 to

week 16) and time slot type 10 (week 17 to week 24). The CL information otherwise manages a lower average

mobilization cost of 887.62, compared to 1037.64 when using the FP information. But the extra mobilization

cost allows the FP scheme to fully cover 76 percent of scenarios, compared to none for the CL scheme, and

this is achieved using only 2 percent of additional resources.

Table 8: Portfolio 2 – CLI: Simulation summary (averages over 50 runs).

time slot type 1 2 3 4 5 6 7 8 9 10 total

cost 84.80 34.28 188.46 65.80 30.58 224.44 192.84 25.44 30.18 10.80 887.62
nb. failures 0.60 0.06 0.14 0 0.28 0.20 0.58 0 0.40 4.52 6.78
prop. covering 0.62 0.94 0.88 1 0.90 0.80 0.64 1 0.82 0.02 0

resource 1 2 3 4 5 6 7 8 9 10 lost
unused tokens 0.12 0 2.42 5.52 3.82 1.60 0.16 1.12 11.38 5.72 0.21
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Table 9: Portfolio 2 – PF: Simulation summary (averages over 50 runs).

time slot type 1 2 3 4 5 6 7 8 9 10 total

cost 105.42 31.82 213.18 88.78 32.60 277.22 204.92 41.64 25.46 16.60 1037.64
nb. failures 0.06 0 0 0 0 0 0.04 0 0 0.22 0.32
prop. covering 0.94 1 1 1 1 1 0.96 1 1 0.84 0.76

resources 1 2 3 4 5 6 7 8 9 10 lost
unused tokens 1.32 1.72 7.98 1.28 1.34 0.94 0.46 0.84 1.48 1.72 0.19

5 Conclusion

In the present work, we have introduced a model for an energy broker attached to the smart grid which

operates in a novel way, using bilateral contracts with both his clients and the grid. While the management

of this novel contractual framework yields a hard combinatorial problem, we could propose for its solution

original and efficient optimizing tools aimed at maximizing the broker’s profitability. Our deterministic two

time frame semi-online mathematical model actually covers the broker against a family of demand scenarios in

the long run, while insuring feasibility. The next challenge consists in addressing a probabilistic generalization

of the model, which will be done in a companion paper.

Notation

In the following, a contract is said to be valid at week t if week t is within the contract validity period and if

it as a positive number of request tokens left at the end of week t− 1. Additionally, a resource contract that

has announced a maintenance for week t is not valid at week t.

CL Contract Level information.

PF Projected Flow information.

T Set of weeks.

S(t) Set of time slots in week t.

λts Duration of time slot s ∈ S(t).

K Set of time slots types.

k(t, s) Type of time slot s ∈ S(t).

D Set of demands (grid contracts).

R Set of resources (generator contracts).

Dts Set of valid demand contracts on time slot s ∈ S(t).

Rts Set of valid resource contracts on time slot s ∈ S(t).

DRts Set of valid and compatible demand/resource contract pairs on time slot s ∈ S(t).

Rtsj Set of valid resources on time slot s ∈ S(t) that are compatible with demand i.

Dts
j Set of valid demands on time slot s ∈ S(t) that are compatible with resource i.

D̂k Set of demand contracts on time slots of type k.

D̂k` Subset of valid demand contracts in D̂k forming the `-th horizontal slice of the corre-
sponding demand histogram.

nk Number of slices in demands D̂k histogram.

Lk Slide indices on time slot type k: Lk = [1, . . . , nk].

Xpow(R,D) Static feasibility set associated to the resources R and the demands D.

Xt
week Robust feasible at week t.

Y Set of feasible demand request scenarios.
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Yuni Subset of feasible demand request scenarios compatible with the uniform forecast.

wk`m Positive decision variable modeling to the quantity of mobilization m that is used on time
slots of type k along the `-th slice (to respond to simultaneous requests from demands
D̂k`).

xstij Binary decision variable set to 1 if resource i is assigned to demand j on time slot s ∈ S(t).

ystj Binary parameters set to 1 if demand j makes a request on time slot s ∈ S(t).

ŷk` Upper bound on the expected number of simultaneous requests from demands D̂k` on
time slots of type k.

ykj Expected number of requests from demand j on time slots of type k.

rresti Number of request tokens in resource i at the beginning of week t.

rdemtj Number of requests tokens in demand j at the beginning of week t.

qtsij Corrected cost of resource i on demand j at time slot s ∈ S(t).

ci Cost for the mobilization of resource i for one unit of time.

Mk` Set of mobilizations for time slots of type k for demands in D̂k`.

Ck`m Total cost for the mobilization of the resources in mobilization m ∈Mk`.

δk` Mobilization incidence matrix associated with slice ` of time slot type k.

λts Duration of time slot s ∈ S(t).

power` Power delivered (resp. received) in resource (resp. demand) `.

6 Appendix

Proof of Theorem 1

(⇒) Let x ∈ Xt
week and suppose that ∃t ∈ T, i ∈ R :∑

j∈Di

min{
∑

s:(i,j)∈Dts

xtsij , r
dem
tj } > rresti .

We can choose y ∈ Y such that∑
j∈Di

∑
s(i,j)∈Dts

xtsijy
ts
j =

∑
j∈Di

min{
∑

s:(i,j)∈Dts

xtsij , r
dem
tj }

But then ∑
j∈Di

∑
s:(i,j)∈Dts

xtsijy
ts
j > rresti

and thus x /∈ Xt
week, contradicting the hypothesis.

(⇐) Let x ∈ Xt
week and suppose that there exists a resource i such that∑

s∈S(t)

∑
(i,j)∈DRts

xtsijy
ts
j > rresti .

According to (2) we have ∑
j∈D

∑
s∈S(t)

ytsj x
ts
ij ≤

∑
j∈D

min{
∑
s∈S(t)

xtsij , r
dem
tj }

≤ rresti ,

contradicting the hypothesis.
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Proof of Theorem 2

Constraints (8–9) require that

zij =

{
1 if

∑
s∈S(t) x

s
ij > rRi

0 if
∑
s∈S(t) x

s
ij ≤ rRi .

Constraints (10–12) require that

wsij = xsij zij ,

and thus Constraint (7) requires that

rresi ≥
∑
j∈Dt

rDj zij +
∑
s∈S(t)

xsij(1− zij)


=

∑
j∈Dt

min{rDj ,
∑
s∈S(t)

xsij}.

Proof of Theorem 3

The argument is geometric. Consider the histogram associated with the quantities ykj , j ∈ D̂k. Given an

appropriate ordering of D̂k, the histogram can be partitioned into a finite number of horizontal slices, the

`-th slice having height ŷk,`, and horizontally covering the columns associated with demands in D̂k,`. The

conclusion follows.

Proof of Theorem 4

By contradiction, let w′ satisfy Constraints (22–23) and w∗ be an optimal solution of Program 2 such that

there exists i ∈ R such that ∑
k∈K

∑
`≤nk

∑
m∈Mk`

δk`miw
∗k`
m > rresti .

Now consider the following equivalent expression of Program 2:

min
ψ,w

f̂(w) =
∑
i∈I

ciψi (26)

s.t.
∑

m∈Mk`

wk`m ≥ ŷk`t ∀k ` ≤ nk (27)

ψi ≥ rresti ∀i (28)

ψi =
∑
k∈K

∑
`≤nk

∑
m∈Mk`

δk`miw
k`
m ∀i (29)

wk`m ≥ 0 ∀k ` ∈ Lk ∀m.

Expressing w′ and w∗ in terms of the new variable yields

ψ′ =
∑
k∈K

∑
`≤nk

∑
m∈Mk`

δk,`miw
′k`
m

ψ∗ =
∑
k∈K

∑
`≤nk

∑
m∈Mk`

δk,`miw
∗k`
m

From the optimality of w∗ we deduce:
∑
i ciψ

∗
i ≤ ci

∑
i ψ
′
i, while the feasibility of w′ implies that ψ′i ≤ ψ∗i , ∀i.

The strict positivity of c implies that w′ is optimal, which in turn implies that
∑
i ciψ

∗
i = ci

∑
i ψ
′
i,. The

contradiction follows from the inequality ψ∗i > ψ′i.



16 G–2014–44 Les Cahiers du GERAD

References

[1] F. Rahimi, A. Ipakchi, Demand response as a market resource under the smart grid paradigm, IEEE Transactions
on Smart Grid 1 (1) (2010) 82–88.

[2] N. Hatziargyriou, H. Asano, R. Iravani, C. Marnay, Microgrids, Power and Energy Magazine, IEEE 5 (4) (2007)
78–94.

[3] S. You, C. Træholt, B. Poulsen, A market-based virtual power plant, in: Clean Electrical Power, 2009 Interna-
tional Conference on, IEEE, 2009, pp. 460–465.

[4] A. Mondal, S. Misra, Dynamic coalition formation in a smart grid: a game theoretic approach, in: Communica-
tions Workshops (ICC), 2013 IEEE International Conference on, pp. 1067–1071.

[5] P. Li, X. Guan, J. Wu, D. Wang, An integrated energy exchange scheduling and pricing strategy for multi-
microgrid system, in: TENCON 2013 IEEE Region 10 Conference (31194), pp. 1–5.

[6] H. Nunna, S. Doolla, Demand response in smart distribution system with multiple microgrids, IEEE Transactions
on Smart Grid 3 (4) (2012) 1641–1649.

[7] M. Rahimiyan, L. Baringo, A. J. Conejo, Energy management of a cluster of interconnected price-responsive
demands, Power Systems 29 (2014) 645–655.

[8] M. Negnevitsky, T. Nguyen, M. de Groot, Novel business models for demand response exchange, in: Power and
Energy Society General Meeting, 2010 IEEE, IEEE, pp. 1–7.

[9] M. G. Bosman, V. Bakker, A. Molderink, J. Hurink, G. J. Smit, Planning the production of a fleet of domestic
combined heat and power generators, European journal of operational research 216 (1) (2012) 140–151.

[10] D. Wu, R. Wang, Combined cooling, heating and power: a review, Progress in Energy and Combustion Science
32 (5) (2006) 459–495.

[11] G. Chicco, P. Mancarella, Distributed multi-generation: a comprehensive view, Renewable and Sustainable
Energy Reviews 13 (3) (2009) 535–551.

[12] R. Angelino, A. Bracale, G. Carpinelli, M. Mangoni, D. Proto, A fuel cell-based dispersed generation system
providing system ancillary services through power electronic interfaces, Renewable Energy 36 (9) (2011) 2312–
2323.

[13] B. Roossien, A. van den Noort, R. Kamphuis, F. Bliek, M. Eijgelaar, J. de Wit, Balancing wind power fluctuations
with a domestic virtual power plant in europe’s first smart grid, in: PowerTech, 2011 IEEE Trondheim, pp. 1–5.

[14] D. Pudjianto, C. Ramsay, G. Strbac, Virtual power plant and system integration of distributed energy resources,
Renewable Power Generation, IET 1 (1) (2007) 10–16.

[15] C. Cecati, C. Citro, P. Siano, Combined operations of renewable energy systems and responsive demand in a
smart grid, IEEE Transactions on Sustainable Energy 2 (4) (2011) 468–476.

[16] P. Koponen, J. Ikaheimo, A. Vicino, A. Agnetis, G. De Pascale, N. Ruiz Carames, J. Jimeno, E. Sanchez-Ubeda,
P. Garcia-Gonzalez, R. Cossent, Toolbox for aggregator of flexible demand, in: Energy Conference and Exhibition
(ENERGYCON), 2012 IEEE International, IEEE, 2012, pp. 623–628.

[17] Y. G. Rebours, D. S. Kirschen, M. Trotignon, S. Rossignol, A survey of frequency and voltage control ancillary
services–Part i: Technical features, IEEE Transactions on Power Systems 22 (1) (2007) 350–357.

[18] Y. G. Rebours, D. S. Kirschen, M. Trotignon, S. Rossignol, A survey of frequency and voltage control ancillary
services–Part ii: economic features, IEEE Transactions on Power Systems 22 (1) (2007) 358–366.

[19] M. Albadi, E. El-Saadany, Demand response in electricity markets: An overview, in: IEEE Power Engineering
Society General Meeting, Vol. 2007, pp. 1–5.

[20] J. Gordijn, H. Akkermans, Business models for distributed generation in a liberalized market environment,
Electric Power Systems Research 77 (9) (2007) 1178–1188.

[21] C. Corchero, F. Heredia, et al., A stochastic programming model for the thermal optimal day-ahead bid problem
with physical futures contracts, Computers & Operations Research 38 (11) (2011) 1501–1512.

[22] M. Zdrilic, H. Pandzic, I. Kuzle, The mixed-integer linear optimization model of virtual power plant operation,
in: Energy Market (EEM), 2011 8th International Conference on the European, IEEE, pp. 467–471.

[23] M. Peik-Herfeh, H. Seifi, M. Sheikh-El-Eslami, Decision making of a virtual power plant under uncertainties for
bidding in a day-ahead market using point estimate method, International Journal of Electrical Power & Energy
Systems 44 (1) (2013) 88–98.
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[29] L. Buşoniu, B. De Schutter, R. Babuška, Approximate dynamic programming and reinforcement learning, in:
Interactive collaborative information systems, Springer, 2010, pp. 3–44.

[30] A. Løkketangen, D. L. Woodruff, Progressive hedging and tabu search applied to mixed integer (0, 1) multistage
stochastic programming, Journal of Heuristics 2 (2) (1996) 111–128.

[31] C. C. Carøe, R. Schultz, Dual decomposition in stochastic integer programming, Operations Research Letters
24 (1) (1999) 37–45.


	Introduction 
	Formulation
	Numerical resolution
	Robust short term feasibility
	Rolling Time Horizon heuristic
	Aggregated demand scenario based on availability configurations 
	Min-Cost Flow Model
	Long term information

	Example
	Conclusion
	Appendix

