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Abstract: We investigate the optimal power allocation in an OFDM-SDMA system when some users
have minimum requirements for their downlink transmission rate. We first solve the unconstrained problem
for which we propose a fast zero-finding technique that is guaranteed to find an optimal solution, and an
approximate algorithm that has lower complexity but is not guaranteed to converge. For the more complex
rate-constrained problem, we propose two approximate algorithms. One is an iterative technique that finds
an optimal solution on the rate boundaries so that the solution is feasible, but not necessarily optimal. The
other is not iterative but cannot guarantee a feasible solution. We present numerical results showing that
the computation time for the iterative heuristic is about one order of magnitude faster than finding the
exact solution with a numerical solver, and the non-iterative technique is an additional order of magnitude
faster than the iterative heuristic. We also show that in most cases, the amount of infeasibility with the
non-iterative technique is small enough that it could probably be used in practice.

Acknowledgments: This research project was supported by NSERC under the Grant CRDPJ 335934-06.
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1 Introduction

Due to the increasing bandwidth requirements of wireless users, new sophisticated spectrum management
techniques are required. An approach to increase throughput that has recently attracted a lot of interest

is to exploit spatial, frequency and multi-user diversity by combining the orthogonal frequency division

multiplexing access (OFDMA) and spatial division multiple access (SDMA) techniques.

OFDMA provides multi-user frequency diversity by dividing the available bandwidth into independent

subchannels and then using a channel-aware scheduler to grant access to the users with the best conditions
for each subchannel. Meanwhile, the SDMA technique assigns the same frequency subchannel to a group

of users with compatible channel vectors, thus increasing the system’s spectral efficiency. The zero forcing

(ZF) precoding technique, where the beamforming vectors are simply computed using the pseudo-inverse

matrix [1], is a practical SDMA technique used to cancel inter-user interference and allows simultaneous

parallel transmission to the selected users. The ZF precoding technique is not optimal, but its implementation
in practical systems is much simpler than other precoding techniques and is quasi-optimal at higher signal

to noise ratio (SNR) or when users have quasi-orthogonal channel vectors [2].

The constrained resource allocation (RA) problem for a system using the ZF OFDMA-SDMA technique

is made up of two parts. First, the RA optimally selects which users are assigned to each subcarrier, and then

it chooses their transmit power allocation (PA) to maximize the sum rate subject to a total power budget
and minimum rate requirements for a subset of users.

For the case without minimum rate requirements, the first part of the RA problem — user selection —

can be solved using heuristic methods that scan the users’ spatial vectors and pick the best users for each

subchannel. The second part — power allocation (PA) — can be transformed into a one-dimensional root

finding problem when formulated in the dual domain for the case of one total power constraint and yields
the well-known water-filling power allocation scheme [3]. Heuristics are proposed in [4, 5, 6], to obtain the

optimal water level efficiently for the case of a single input single output (SISO) wireless link. For the case of

a multiple input single output (MISO) wireless link, such as for multi-antenna SDMA transmission, combined

heuristics for subchannel user selection and power allocation give results close to the optimum [7, 8].

When the base station (BS) supports both best effort (BE) and real-time (RT) traffic, the RA algorithm
should also guarantee a certain minimum rate for the RT users, while the BE users with good channel

conditions should be assigned resources to increase the sum rate. In this case, the user selection should pick

subchannels for RT users to insure that they get their minimum rates. Heuristic methods have been proposed

in [9, 10] for user selection. After an initial user selection, PA is performed and the user rates are computed.
If these rates are lower than the rate requirements for the RT users, a new user selection is done and PA is

performed again until a good enough solution is found. Efficient power allocation is thus a critical tool to

improve the performance of these heuristics [10].

For a given user selection, the resulting PA problem is convex due to the use of the pseudo-inverse

technique. It can be solved optimally using a number of standard optimization techniques [11]. However,
this can take some time when the number of subchannels is large, such as in LTE-Advanced systems [12]. In

addition, the PA problem with fixed subchannel assignment must be solved several times by the subchannel

assignment heuristics [9, 10] when looking for additional subchannels to satisfy the RT constraints. For these

reasons, we need efficient heuristics that solves the PA problem for fixed subchannel assignment much faster

than the standard algorithms and with an achieved rate close to the optimal solution. The objective of this
paper is therefore the design and evaluation of such a PA heuristic for ZF OFDMA-SDMA systems with RT

users with minimum rate requirements.

A simple allocation heuristic is to give equal power to all users. If this solution meets all the rate

constraints, the performance is close to the optimal for BE traffic [13]. If the rates are not large enough, an

adaptable PA scheme should decrease the power of the BE users and give it to the RT users to support their
minimum rates. This is partially solved in [14], by assigning constant power to the BE users and performing

water-filling PA on the RT users. In this paper, we go several steps beyond this and use multi-level water-

filling PA over all users and an efficient heuristic that operates in the dual domain.
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If there are no rate constraints, the convex PA problem can be solved exactly and efficiently with the

methods proposed in [5, 15, 6]. The fastest is that of [5] by one order of magnitude. Several heuristic

methods have also been proposed to solve the power minimization problem under rate constraints for SISO
systems [16, 17]. But, to the best of our knowledge, fast methods to solve the problem under minimum rate

constraints have not been reported for ZF OFDMA-SDMA systems.

One common method to solve convex problems is dual Lagrange decomposition [18]. We define dual

variables for the power and rate constraints. The dual variable for the power constraint indicates the water

level and the ones for the rate constraints the superimposed multi-levels [19]. For problems like ours, we can
get a closed-form expression of the dual function and the users’ powers. The dual function is continuous but

not differentiable and we could use the subgradient algorithm to get the optimal dual variables. The size of

the problem grows with the number of RT users, since each rate constraint is assigned a dual variable, which

can lead to large computation times. Instead of solving the dual problem to optimality, our method finds an

approximate solution that generates a feasible point to the problem which is much faster to compute.

The main contribution of this paper is a method to find the dual variables that satisfy the power and rate

constraints much faster than solving the dual problem optimally using iterative methods. As our numerical

results indicate, the resulting dual variables generate a feasible point that is close to the optimal solution

and the computation times are several orders of magnitude lower than for the optimal method.

The rest of the paper is organized as follows. In Section 2, we describe the system under consideration and
mathematically formulate the PA optimization problem. Then we present in Section 3 some algorithms for

the unconstrained maximum throughput power allocation. Next, we show in Section 4 how to compute fast

approximations when rate constraints are present. We then evaluate numerically, both in terms of accuracy

and CPU time, the proposed algorithm in Section 5. Finally, we present our conclusions in Section 6.

2 Problem formulation and optimal solution

We consider the resource allocation problem for the downlink transmission in a multi-carrier multi-user MISO

system with a single BS. There are K users, some of which have RT traffic with minimum rate requirements,

while the others have non real-time (nRT) traffic that can be served on a best-effort basis. The BS is equipped

with M transmit antennas and each user has one receive antenna. The system’s available bandwidth W is

divided into N subchannels whose coherence bandwidth is assumed larger than W/N , thus each subchannel
experiences flat fading. In the system under consideration the BS transmits data in the downlink direction

to different users on each subchannel by performing linear beamforming precoding. At each OFDM symbol,

the BS changes the beamforming vector for each user on each subchannel to maximize a weighted sum rate.

To simplify the RA problem, we assume that the beamforming vectors are chosen according to the ZF

criteria, which is known to be nearly optimal when the SNR is high [2]. We assume that we have already
chosen a set of users Sn out of the total number of users K for each subchannel n, such that gn

.
= |Sn| ≤ M .

Let us define the subcarrier channel matrix Hn = [hT
n,sn(1)

. . .hT
n,sn(gn)

]T where hn,k ∈ C1×M is the channel

row M -vector between the BS and user k on subchannel n, and

βn,k
.
=

{

[

(H†
n)

HH†
n

]

j,j
if k = sn(j), ∀j ∈ {1, . . . , gn}

0, otherwise.
(1)

Our objective is to find a fast method to assign the transmit power to users. First, let us define the

problem parameters

P̌ Total power available;

ck Scheduling weight of user k;

βn,k Effective channel gain of user k on subcarrier n;

ďk Minimum rate required by the real-time user k.
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The decision variable are defined as

pn,k Power assigned to user k on subchannel n.

We also define

rn,k The transmission rate achieved by user k on subchannel n for one OFDM symbol.

We assume that capacity achieving channel coding is employed on each subcarrier such that

rn,k = log2 (1 + pn,k) . (2)

The objective of the PA algorithm is to find the pn,k to maximize the weighted sum rate of the users

subject to the power and minimum rate constraints. The users scheduling weights ck and the minimum rate

constraints are determined by a higher layer scheduler. The optimization problem is formulated as follows

max
pn,k

N
∑

n=1

K
∑

k=1

ck log2(1 + pn,k) (3)

N
∑

n=1

K
∑

k=1

βn,k pn,k ≤ P̌ (4)

N
∑

n=1

log2(1 + pn,k) ≥ ďk k ∈ D (5)

pn,k = 0, ∀n, k /∈ Sn (6)

pn,k ≥ 0, ∀n, k ∈ Sn. (7)

Constraint (4) is the total power constraint and constraints (5) are the RT users’ minimum rate constraints.

Note that this problem is convex since it maximizes a concave function over the convex set defined by (4–7).
The solution also has the following property.

Lemma 1 The solution of problem (3–7) satisfies the power constraint (4) with equality.

Proof. This is a straightforward consequence of the fact that the rate function (2) is an increasing function

of pn,k. Suppose p(a) is a feasible point that satisfies (4) with strict inequality and satisfied (5). Then
there exists a ∆ ≥ 0 such that both the power constraint (4) and the rate constraints (5) are feasible for

p(b) = p(a) +∆. But in this case, the values of rn,k will also increase so that p(a) cannot be optimal.

In all that follows, we will thus assume that (4) is an equality.

We can solve (3–7) in a number of ways, for instance, with a general-purpose nonlinear programming
solver to get solution of the primal, or use a Lagrangian decomposition method and solve the dual by a

subgradient technique. However, this is much too long for use in real time applications and we thus need fast

approximations. The ones we propose in this paper are based on a fixed-point reformulation of the problem

in the dual space.

Because the problem is convex, we can solve it optimally by computing a solution to the first-order
optimality equations. Let first define the Lagrange multipliers θ ≥ 0 ∈ RK

+ for the power constraint (4) and

δk ≥ 0 ∈ RK
+ for the rate constraints (5). We then write the partial Lagrange function function

L2(p, θ, δ) =− θP̌ +

K
∑

k=1

δkďk +

N
∑

n=1

K
∑

k=1

−(ck + δk) (8)

log2(1 + pn,k) + θβn,kpn,k −
∑

n,k

µn,kpn,k
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where δ is the vector of variables δk. For convenience we have defined δk for k /∈ D for which we set ďk = 0.

We get the first-order optimality conditions

∂L

∂pn,k
= −

ck + δk
1 + pn,k

+ θβn,k = 0 (9)

which yield the optimal water-filling power allocation as a function of the multipliers θ and δ

pn,k =

[

ck + δk
θβn,k ln 2

− 1

]+

, ∀n, ∀k : βn,k 6= 0. (10)

From this, we get the optimal rate allocation

rn,k = log2

(

1 +

[

ck + δk
θβn,k ln 2

− 1

]+
)

, ∀n, ∀k : βn,k 6= 0. (11)

We also define the set of strictly positive allocations for user k

Bk(θ, δk) =
{

n|pn,k > 0
}

. (12)

From (10), we see that the size σk(θ, δk) of this set increases with δk and decreases with θ.

We have from (10) an expression for the solution in terms of the multipliers. The standard procedure is to

replace this into the constraints and solve for the multipliers. This generally yields a set of nonlinear equations
and in the case of inequality constraints, it has the added complexity of choosing the set of constraints that

are tight at the solution.

We now reformulate the problem in terms of a system of fixed-point equations. This will be used later to

get fast approximations and it also yields an algorithm for computing a feasible solution. We can do this by

replacing (10) in (4) and (5) and get

δk ≥






θ ln 2



2ďk

∏

n∈B(θ,δk)

βn,k





σ(θ,δk)
−1

− ck







+

(13)

θ =

∑K
k=1 σk(θ, δk)(ck + δk)

(

P̌ +
∑K

k=1

∑

n∈Bk(θ,δk)
βn,k

)

ln 2
. (14)

This is a set of fixed-point equations because of the presence of B(θ, δk) in the right-hand side. Any set of

variables θ, δ that solve these equations will yield an optimal solution via (10). Also note that if B is fixed,

each δ is a linear function of θ, and θ is a linear function of δ. This means that both θ and δ can be viewed
as piecewise linear functions of the other multipliers.

For now, we want to solve problem (3–7) efficiently. The first approach is to take advantage of the fact

that we expect that the number of real-time users will generally be small. This means that if we solve

the power allocation without the rate constraints (5), unless the real-time users happen to have particularly

bad channels, there is a good chance that the constraints will be met automatically, so that this solution is

optimal. We study this problem in Section 3.

If this solution does not meet the rate constraints, we incorporate them into the problem and solve it
approximately. We describe in Section 4 two heuristic methods for this latter problem. The first one is

iterative and yields a feasible solution where the rate constraints are tight. The second one is based on

adjusting the variables to make the solution feasible. It requires no iterations and often finds a feasible point

that satisfies the power constraint with equality and the rate constraints with inequality.

3 Power allocation without rate constraints

We want in this section to compute quickly the optimal solution of problem (3–4) and (7) without the rate

constraints (5). In this case, we have δk = 0 but because it will be used in Section 4 when computing a
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feasible solution, we present the algorithms with an arbitrary, but fixed, value of δ. We compare two methods

that yield an exact solution. The first one finds a root of the power constraint and is guaranteed to converge

in a fixed number of iterations. The second method does not have a guaranteed convergence but is faster
that the root-finding method.

3.1 Root of the optimality conditions

This method computes the optimal value of θ by finding a zero of the first-order optimality condition. We

replace (10) in (4) and solve for θ the nonlinear equation

g1(θ) =

K
∑

k=1

N
∑

n=1

βn,k

[

(ck + δk)

θβn,k ln 2
− 1

]+

= P̌ . (15)

The function g1(θ) is continuous but not differentiable at the corner points θn,k defined as

θn,k =
(ck + δk)

βn,k ln 2
. (16)

For a given value of θ, g1 is the sum of all hyperbolic segments pn,k(θ) such that θ ≤ θn,k. A typical function

is shown on Figure 1. We could solve it using a general-purpose zero-finding algorithm for non-differentiable

functions but we can take advantage of the particular structure of the problem to design a more efficient

algorithm. This is based on the method presented in [4] that takes advantage of the finite number of corner
points. First, we relabel the corner points in increasing values θi, i = 1, . . .NK. The sets Bk(θ, δk) can be

defined in a more compact way

Bk(θ, δk) = {n|θ ≤ θn,k} . (17)

Note that Bk(θ, δk) is constant inside any given interval [θi−1, θi].

First we quickly find the interval ∆ where the solution lies by doing a binary search on the set of θi.

At iteration m, denote the two indices that define the interval that contains the solution by
(

i
(m)
1 , i

(m)
3

)

so that ∆(m) = [θ
i
(m)
1

, θ
i
(m)
3

]. Obviously, i
(0)
1 = 1 and i

(0)
3 = NK. Let i

(m)
2 be the index of the middle

point ⌊
(

i
(m)
3 − i

(m)
1

)

/2⌋. If g1(θi(m)
2

) > P̂ , then i
(m+1)
1 = i

(m)
2 and i

(m+1)
3 = i

(m)
3 . If g1(θi(m)

2
) < P̂ , then

i
(m+1)
3 = i

(m)
2 and i

(m+1)
1 = i

(m)
1 . The number of function evaluations is bounded by log2(NK) since the size

3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0
θ

16

18

20

22

24

26

28

g 1
(θ
)

Solution of g1 (θ) =P

g1 (θ)

P̂

Corners

Figure 1: Solving the first-order equations
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of the interval is divided by 2 at each iteration and the algorithm converges in a finite number of iterations.

We also need to compute the θi and sort them.

Once we know that the solution lies in the interval [θi−1, θi], we can compute the value of the sets Bk(θ, δk)

and find the value of θ directly from (14).

3.2 Fixed-point algorithm

We can also find the solution of (14), which we write θ = g2(θ), by repeated substitution of the left-hand

side θ into g2. We first compute an initial value of θ by replacing the ck’s and βn,k’s by their average values

in (10) and setting the condition p = 0. Using the current value of θ, we then compute the Bk(θ, δk)s. A

new value of θ can then be found from the right-hand side of (14) and we iterate until the new value of θ is
the same as the previous one. The stopping rule is an equality since various values of θ produce only a finite

number of sets Bk so that the only values produced by the iterations are the θi. We can see the iteration

procedure on Figure 2 where we have shown the left-hand side in the form y = θ and the right-hand side

y = g2(θ). The solution is at the intersection of the two curves. We also show the points computed by the
substitution algorithm.

The main advantage of this method is that there is no need to compute the θi and to sort them in advance.

The problem with substitution methods is that it is difficult to guarantee convergence. But, in practice we

have found that the fixed-point method always converged for all realistic values of the parameters.

We compare the cpu time of the four solution techniques in Table 1. We have fixed N = 16, P̂ = 5,

ck = 1 and generated the βn,k from a simple but realistic channel model. These values were obtained on a
2.5 GHz Intel Core i5 computer. We have computed the solution 100 times in each case to have a reasonably

stable estimate. We can see that the fixed-point method is the fastest of all methods and the number

of iterations does not change much with the problem size. The option is then between a technique with

guaranteed convergence but somewhat slower than the other technique with no strict convergence guarantee.
A compromise could be to use the fixed-point method and switch to the binary search technique if it has not

converged within a small number of iterations, say 10.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
θ

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

g 2
(θ

)

Solution of the fixed point equation

g2 (θ)

Fixed point trajectory

Figure 2: Fixed point iterations
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Table 1: Computation load without rate constraints

M Minos Nonlinear Binary Fixed Point

Cpu msec Cpu msec No iterations Cpu msec No iterations Cpu msec No iterations

2 23.3 19.0 20 1.5 0 2.0 3

4 71.8 43.8 21 12.6 6 4.2 3

8 292. 92.5 22 31.4 9 7.6 3

4 Power allocation with rate constraints

The problem of allocating power with rate constraints is solved in two steps. First, we try to allocate power

without the rate constraints using one of the algorithms of Section 3 since this is very fast. For the case
where some of the RT users do not get their minimum rate, we propose in this section two algorithms that

try to find a solution that is feasible both for the rate and power constraints, even though it may not be

optimal. First we present an iterative algorithm that is guaranteed to produce a feasible solution with the

rate constraints at their lower bounds. We then propose a non-iterative procedure that is faster but which is

not guaranteed to find a feasible solution.

4.1 Feasible solution at bounds

To simplify the discussion, consider first a problem with a single rate constraint, say for user 1. The boundaries

of the two constraints (4–5) each define an implicit function δ1(θ). We can see an example of these boundaries

on Figure 3 for a small network with K = 2, N = 8, P = 2 and a single real-time user. The set of feasible

solution is the region above the rate constraint and below the power constraint.

A remarkable feature of this plot is that the boundary of the rate constraint seems to be linear. We

already know that the boundary is piecewise linear but we now prove the following lemma.

Lemma 2 The boundaries of the rate constraints are linear.

Proof. If θ ≈ 0, all the pn,k ≈ ∞ and (5) will be a strict inequality. From the complementarity condition, we

will then have δk = 0. This is consistent with the interpretation of θ as a penalty for the power constraint:

If θ is small, there is no penalty for exceeding the power constraint so that there is a lot of power available.

2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0
θ

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

δ 1

Feasible Domain

Power constraint
Rate constraint

Figure 3: Domain for a single rate constraint
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We can then choose large values of the pn,k to increase the total rate so that the rate constraint will be an

inequality.

As θ increases, there will be a point θk where each rate k constraint will become tight. This is given by

θk =
ck
∑

n∈Bk(θk,0)
βn,k

ďk log 2
. (18)

At that point, we must increase δk ≥ 0 to stay on the boundary. For all values of θ ≥ θk, we choose a value

of δk which is a linear function of θ with slope mk

δk = [mkθ − ck]
+

(19)

mk = ln 2



2ďk

∏

n∈B(θ,δk)

βn,k





σ(θ,δk)
−1

. (20)

With this choice of δk, we know that the rate constraint in an equality over the whole range θ ≥ θk and from

this, we see that

pn,k =

[

ck + δk
θ log 2βn,k

− 1

]+

=

[

ck +mkθ − ck
θ log 2βn,k

− 1

]+

=

[

mk

log 2βn,k

− 1

]+

which is independent of θ. In other words, once θ ≥ θk, the set Bk(θ, δk) does not change and the rate

constraint boundary is linear.

We see from Figure 3 that the point (θ(1), 0) where the power constraint boundary would meet the θ axis,
is outside the feasible domain. The problem is to quickly find a point both above the rate boundary and

below the power boundary and, if possible, a good point.

We make use of the linearity of the boundary to compute a feasible solution quickly by computing the

intersection of the rate and power boundaries. First, we compute the slopes mk of the rate boundaries

from (20) at the point (θ(1), 0). Given any value of θ, we can then compute all the δk’s from (19) and from

this, the value of the total power P (θ) and total rate R(θ) from (10). We can see an example of these curves
on Figure 4. We compute the solution by solving P (θ) = P̂ by some numerical root-finding algorithm which

is guaranteed to converge asymptotically. This is the best we can do if we impose the conditions that the

rate constraints are met with equality since moving to the right on these boundaries means that the power

constraint is not tight, which is a condition for an optimal solution.

4.2 Fast heuristic

As we will see later, the time needed to compute a solution on the boundary may turn out to be too large

for use in real time. Instead, we propose the following simple, non-iterative algorithm. The algorithm is
based on the observation that a standard way to satisfy some constraint k is to increase the corresponding

multiplier δk. From (10), we see that this will increase the p,nk which will make the constraints more feasible.

But this will also make the power constraint infeasible so that we need to increase θ as well. Let us define

θ(1) the multiplier from the solution without rate constraints

θ an upper bound on θ given by θ = Wθ(1) with W > 1.

Starting from θ = θ(1), the heuristic basically moves a fixed amount in the direction of increasing θ. At that

point, it computes the solution on the rate boundaries and then tries to improve θ one more time as follows:
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1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
θ

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

P

Total rate and power vs theta on rate boundary

Total Power

5

6

7

8

9

10

11

12

R
a
te

Total Rate

Figure 4: Rate and power curves vs θ on the rate boundaries

1. Compute the set of unsatisfied users T =
{

k | rk < ďk
}

.

2. Compute Bk(θ, 0)

3. For users k 6∈ T , set δ
(2)
k = 0. For the other users, compute δ

(2)
k from (13) with θ = θ and Bk =

Bk(θ, δ
(2)
k ).

4. Compute a new θ(2) from (14) with δ = δ
(2) and Bk = B(θ, δ

(2)
k ).

4.3 Improved heuristic

The single iteration heuristic uses an arbitrary value W for the step size which may not produce a very good
solution. We can improve the results if we choose the parameter W based on the difference between the

required rate and the rate achieved by the maximum throughput PA. This increases the chance that the step

will lead to a point to the right of the intersection of the two constraint curves. First we compute a different

value of W for each real-time user

Wk = 2ǫ(ďk−rk). (21)

and then use the maximum Wk among all RT users

W = max
k∈T

Wk (22)

θ = Wθ(1). (23)

This way, we can increase the emphasis we want to put on meeting the rate constraints by increasing the
value of ǫ.

4.4 Infeasibility

We can see on Figure 5 the path of the heuristic in the (θ, δ) space with ǫ = 0.2. In this case, the final point

is feasible since it lies above the rate boundary and lies on the power boundary. We say that the algorithm
has succeeded. On the other hand, it is possible for the algorithm not to succeed for a variety of reasons. A

practical approach could then be to try the fast heuristic first. If it fails, one could either try the zero-finding

solution with a limited number of iterations or simply use the infeasible solution.

The first one is that we don’t know where the intersection of the two boundaries lie so that we don’t

know how far to the right we must go to. Choosing a value of ǫ too small will not go far enough and the final
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Figure 5: Fast heuristic, feasible solution

point will not be feasible. This can be seen on Figure 6 where we have chosen ǫ = 0. The point (θ, 0) is to

the right left of the intersection point of the two boundary curves so that moving to the right until we reach
the power boundary still leaves us below the rate constraint. In this case, the algorithm has failed.

There is another, more subtle reason, why the algorithm may fail. Consider the final point of Figure 5.

We can see that the point is slightly to the left of the power boundary. The reason is that we compute θ(2)

using Bk(θ, δ
(2)
k ) which is not the same as Bk(θ

(2), δ
(2)
k ), hence the small error.

Another potential problem is that by increasing θ from θ(1), the heuristic algorithm reduces the power

of the users that are not in T . If some of these are RT users and have a rate close to ďk, they may become
unfeasible. A simple solution is to add these users to T by increasing their ďk and run the fast heuristic

again.
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Figure 6: Fast heuristic, infeasible solution
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We can see that the algorithm produces a feasible point as follows. We assume that users close to the

unfeasibility boundary are all included in set T by increasing their ďk.

Lemma 3 When successful, the fast algorithm produces a feasible point to problem (3–5).

Proof. By construction, the final point lies on the power boundary. It also lies above the rate boundary for

the following reason. The point (θ, δ
(2)
k ) lies on the rate boundary by construction. Given that the slope of

the rate boundary is positive, all the poinst (θ, δ
(2)
k ) with θ < θ will also lie above the boundary.

Note also that this method can be used with an arbitrary method for computing the unconstrained power
allocation, such as [5, 15, 6], as long as we get the value of θ(1) from the solution.

5 Numerical evaluation

In this section, we compare the three different methods to solve problem (3–7): An exact solution by a

nonlinear solver [20], the boundary solution of 4.1 and the fast heuristic of 4.3. We look at their accuracy

and the cpu time needed to compute a solution. The nonlinear equations were solved by the netlib function
bisect through the Scipy Python interface. All results were obtained on an Intel Core i5 cpu running at 2.5

GHz.

5.1 Generating test cases

Each test case is defined first by the set (K,N,M,P ). We use a Rayleigh fading model to generate the

user channels such that each component of the channel vectors hk,n are i.i.d. random variables distributed

as CN (0, 1). We also assume independent fading between users, antennas and subcarriers. We assign the
subchannels with a variant of the semiorthogonal user selection (SUS) heuristic [2] and then compute the

βn,k from this. After this, we select the number of real-time users R. The set of values we have used is shown

in Table 2.

The next step is to generate the rate bounds in such a way that the problems are known to be feasible.

Also, we would like to control the “difficulty” of the problem to see how much this impacts on the accuracy and
cpu time. First, we maximize the total rate of real-time users by solving problem (3–4) over the pn,k, k ∈ D
only and without the rate constraints. Call this problem P0 and R0 the total rate of the real-time users. We

then know there is enough power to give the real-time users the rates r
(0)
k produced by the unconstrained

solution.

This means that any problem P1 with rate constraints ďk = r
(0)
k has a feasible solution with only the

real-time users having a positive rate and with the rate constraints at their bounds. If this were not the case,

there would be some spare power that could be used to construct a solution to P0 with a total rate R1 > R0

which contradicts the fact that R0 is the optimal value for P0.

Table 2: Parameters for test cases

Number K N M P̂ R

1 20 25 2 5 3

2 20 25 2 5 10

3 80 25 2 5 0

4 80 25 2 5 10

5 80 25 2 5 20

6 80 25 2 5 30

7 80 25 2 5 40

8 80 25 2 5 50

9 80 25 2 5 60
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We also know that any problem with rate constraints ďk = sr
(0)
k is feasible if 0 ≤ s ≤ 1. Furthermore, the

value of s is a rough measure of the “tightness” of the constrained data set. The problem is unconstrained
when s = 0 and is tightly constrained when s = 1 where only the real-time users can get some power. The

scale s will be the primary parameter used to display results.

5.2 Effect of ǫ

First we examine the effect of ǫ on the accuracy of the fast heuristic for problem 1. This is show on Figure 7

where we plot the objective value computed by the heuristic for different values of ǫ and also the optimal
value computed by the nonlinear solver as a function of the scale parameter. For each curve corresponding to

the heuristic, we can define a range of values of s where the heuristic value is below the optimal rate and one

where it is above. In this latter case, this is an indication that the solution computed by the heuristic is not

feasible. The curves show that there is a clear tradeoff between the accuracy of the solution and the range of

problems where the solution is feasible. For small values of ǫ, the range of problems where the heuristic can
produce a feasible solution is quite small but the solutions are quite accurate. This is opposite to the curves

with large ǫ where the algorithm can compute feasible solutions over a larger range of problems but where

the objective function solution is not as good.

5.3 Solution accuracy

Next we show the accuracy of the two heuristics by comparing the total rate they produce with the exact
value as a function of the scale parameter. In all cases, we choose ǫ = 0.2. The first case is for problem 1

shown on Figure 8. Here, it turns out that all the rate constraints are at their bound in the optimal solution.

This is not unexpected if we have a small number of real-time users: There is a good chance that other users

may have a better channel so that once the constraints is satisfied, it is more useful to allocate the power to
these non real-time users since they will get a better rate.

A similar result is shown for problem 2 on Figure 9. This has the same parameters as problem 1 but this

time with 10 real-time users. Here too we see that the rate constraints are at their bound in the optimal

solution. The approximate heuristic does a rather poor job of finding a feasible solution for the value of

ǫ = 0.2 that we have chosen.

The rate bounds in the example of Figure 9 are computed from the problem data and in a sense they
“fit” the values of β. In practice, the rate requirement of real-time users would be determined by the
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Figure 7: Effect of ǫ on heuristic
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Figure 8: Accuracy of heuristics, small network, few real-time users
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Figure 9: Accuracy of heuristics, 10 real-time users

application independently of the channel conditions. To see the accuracy of the solution techniques on these

cases, we have produced the bounds somewhat differently. First, we assume that there is a small number of

applications, three in the present case, with different rate bounds ď
(0)
k in the ratio 1:4:16. For example, this

could correspond to voice, fast data transfer and video. We then compute the largest scaling factor γ such
that the problem is feasible with bounds ďk = γď

(0)
k . We can then control how difficult the problem is by

selecting some scale between 0 and 1 to scale the bounds ďk as above.

We show on Figure 10 the accuracy of the algorithm for problem 4 with the given rate bounds. We can

see that the solution on the boundary is still very close to the optimal solution and the fast heuristic produces

an infeasible solution. Note however that this case has only 10 real-time users out of 80.

The situation is quite different if we have 60 real-time users as in problem 9. These users are divided
into 3 groups of 20 and all users in a group have the same requirement in the order 1:4:16. We can see from
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Figure 10: Accuracy for fixed rate bounds, Problem 4
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Figure 11: Accuracy for fixed rate bounds, Problem 9

Figure 11 that the solution on the rate bounds is much lower than the optimal value for quite a large range

of scales and the fast heuristic again produces infeasible solutions.

We can get a better understanding of these results from Figure 12 where we plot, for each real-time user

and scale 1, the difference rk− ďk for the optimal solution and the approximation. As expected, in the optimal

solution, all users are above zero, since the solution has to be feasible. More important is the fact that for the
first two groups, the ones with the lower bounds, most users actually get more that their minimum rate. This

explains the poor behavior of the bounds algorithms which computes an optimal solution on the boundary.

Also interesting is the approximate solution for the third group, the one with high rate. We see that the

approximate solution is infeasible but that the amount of infeasibility is rather small. Note that this is a
relatively hard problem in the sense that the problem is barely feasible in the first place. Given that the

solution produced by the bounds algorithm is not very good, a reasonable solution would then be to use the

approximation and give some real-time users slightly less than what they require. This may be acceptable
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Figure 12: Difference with rate bounds

considering that the channel conditions will change at the next time frame and that it may then be possible

to give these users the rate that they require.

5.4 CPU time

We present in Figure 13 the cpu time required by the nonlinear solver, labelled exact, the algorithm on the

rate boundary, labelled bounds and the heuristic, labelled heur. The values of the computation times are

plotted as a function of the number of real-time users R for problems 3–9. For each value of R, we have

measured the average, maximum and minimum cpu time required for solving the problem over the whole

range of values of s. The maximum and minimum values are presented as error bars. We can see that there
is about one order of magnitude between each algorithm. The heuristic takes in the order of 10 ms while the

bounds algorithm, about 10 times as much.

0 10 20 30 40 50 60 70
No RT Users

10-3

10-2

10-1

100

101

C
P
U

 s
e
co

n
d
s

Exact
Bounds
Heur

Figure 13: CPU time vs no of RT users



16 G–2014–107 Les Cahiers du GERAD

6 Conclusions

We have looked at the problem of allocating power to a given set of users in a ZF OFDMA-SDMA system with

some real-time users with minimum transmission rate requirements. The approach is to solve the problem
in two steps. First, we solve without taking into account the rate constraints. For this, we provide two fast

algorithms. The first one is based on the solution of the first-order optimality condition via a zero-finding

algorithm. We use the structure of the problem to perform a search over a finite number of intervals for

the one containing the solution. From this, we get the exact value of the solution so that the algorithm is
guaranteed to find a solution in O(log2 NK) steps.

The second algorithm is based on re-writing the optimality conditions as a fixed-point equation which we

can solve by repeated substitution. This is faster than the zero-finding method but there is no guarantee that

it will converge. We have found that in practice, convergence always occurs in a small number of iterations

for all the cases we have tested.

If the solution is feasible, this is the optimal solution for the constrained problem as well. If some real-time
users do not get their minimum rate, we propose two approximate techniques to compute a feasible, or nearly

feasible solution by adjusting the dual multipliers. First, we show that the boundary of the rate constraints

is linear in the (θ, δ) plane. We then use this to propose an algorithm to compute a solution on the rate

boundaries. This is based on finding a zero of the first-order equations for the value of θ only, since we can
use the linearity of the rate boundary to keep the solution feasible.

The second approximation is not iterative and is a one-step adjustment of the multipliers. It is parameter-

ized in such a way that we can emphasize either feasibility, at the cost of having a somewhat less than optimal

value for the rate, or efficiency, where the rate is relatively large but some real-time users get somewhat less

than their required rate.

Finally, we present some results for the cpu time needed by three algorithms: the exact solution by a
nonlinear solver, the bounds algorithm and the approximation. We find that there is roughly one order of

magnitude between each, where the bounds algorithm is an order of magnitude faster than the exact solution,

and the fast heuristic is an additional order of magnitude faster.
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