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Abstract: Since its inception, stochastic Data Envelopment Analysis (DEA) has found many applications.
The approach commonly taken in stochastic DEA is via chance constraint models. This approach cannot,
however, capture the inherent random fluctuations of the efficiency score caused by the random nature of the
input and output variables. Having taken a random efficiency perspective, one can introduce an alternative
approach that provides ground for capturing these fluctuations. One aspect of this alternative approach,
which seems to have been neglected, concerns the distribution of the random efficiency score. We show that
the efficiency score does not have a continuous distribution even if the random input and output variables
distributions are continuous. The efficiency score distribution has, in fact, a point mass decomposition
at 1. This observation renders the non-parametric bootstrap of efficiency score impossible. We introduce
several criteria for the ranking and classification of Decision Making Units (DMUs) using a random efficiency
perspective, including an interactive ranking method that incorporates managers’ knowledge and preferences.
We then apply the point mass decomposition of efficiency score distributions of DMUs and show how these
criteria can be implemented. We also discuss how one may estimate the efficiency score distributions of
DMUs using both Bayesian and frequentist approaches. Our proposed methodology is illustrated using a real
data set.

Key Words: Admissibility; Efficiency Distribution; Empirical Bayes Approach; Interactive Ordering;
Stochastic Data Envelopment Analysis; Stochastic Ordering.
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1 Introduction

Data Envelopment Analysis (DEA), developed by Charnes et al. (1978, 1979) and extended by Banker et al.
(1984), is a non-parametric approach that offers an efficiency analysis for a set of multi-input multi-output

decision making units (DMUs). In many applications, uncertainty is associated with some of the input

and/or output data. One way to model such uncertainty is by imposing a probability distribution on the

input/output data. A common approach to handle the uncertainty is via chance constraint models where

the random Production Possibility Set (PPS) is replaced by an average PPS where average is in the sense of
Vorob’ev (1984). There has been a surge of articles on the stochastic DEA over the past two decades. Some

of the early work on this subject was carried out by Land et al. (1993), Olesen and Petersen (1995), and

Cooper et al. (1998), among others. A recent review of the subject can be found in Cooper et al. (2011).

The efficiency measured with respect to the average PPS is a fixed value. As discussed by Kao and Liu

(2009) the inherent random fluctuation of the efficiency score, caused by the random nature of the input
and output variables, cannot be captured using the chance constraint models. An attempt towards this goal

was taken by Cooper et al. (1999), Cooper et al. (2001), Despotis and Smirlis (2002), and Kao (2006) using

interval data. As discussed by Kao and Liu (2009), this approach is not effective when the intervals are wide

since the efficiency interval becomes too wide to permit reasonable conclusions.

Having taken into account the stochastic nature of the efficiency score, Kao and Liu (2009) use a truncated
Beta distribution and Monte Carlo estimation approach to study fluctuation of the efficiency score. Lamb

and Kai-Hong (2012) use Efron’s non-parametric bootstrap of efficiency score to present a more objective

analysis and suggest a stochastic ranking based on bootstrap confidence intervals for efficiency scores.

A fundamental aspect of these stochastic approaches, which seems to have been neglected, concerns the

distribution of the random efficiency measure. As we show in Theorem 1 the efficiency score distribution
does not have a continuous distribution even if both the random input and output variables are continuous.

The efficiency score has, in fact, a point mass decomposition at 1, except for DMUs which are almost surely

inefficient. The ramifications of Theorem 1 abound. One immediate consequence of this result is that the

non-parametric bootstrap of efficiency is impossible when the probability mass at 1 is unknown, which is the
case in most, if not all, practical applications.

This particular structure of the efficiency score distribution calls for a more careful treatment of the

performance assessment of DMUs. We introduce several measures for ranking DMUs. We start with a

partial ordering that leads to the introduction of a minimal requirement, which we call admissibility, and

which we can use to categorize DMUs into two categories, namely admissible and inadmissible DMUs. Using
the point mass decomposition of the efficiency distribution (Theorem 1), we then provide a sufficient condition

for admissibility. We further suggest several complete (linear) orderings using the efficiency score distribution,

including an interactive ordering that can incorporate preferences of the production manager.

Implementation of these ranking methods require estimation of the efficiency score distributions of DMUs.

We simulate the input and output data for each DMU and measure the efficiency score of each DMU using
a conventional DEA model, for instance the CCR model, for each set of simulated data. This approach

produces a sample from the efficiency score distribution and then using standard statistical methods, we

estimate the efficiency score distributions of DMUs. To this end, we discuss both the frequentist and Bayesian

approaches. We use the bootstrap method for the former approach (Efron and Tibshirani, 1993), while the

latter is achieved using the Markov chain Monte Carlo (MCMC) method (Robert and Casella, 2004).

The frequentist approach has recently been discussed by Kao and Liu (2009) and Lamb and Kai-Hong

(2012), who used bootstrap for resampling efficiency score, among others. The Bayesian approach has also

attracted the attention of some authors (Tsionas and Papadakis, 2010). Tsionas and Papadakis (2010) have

proposed a subjective Bayesian paradigm where a known prior distribution is imposed on the parameters of

data distribution. In contrast, we take a more objective view in our Bayesian approach by using the empirical
Bayes, choosing a data driven prior from a class of priors. This way we maintain both prior robustness and

objectivity in our data analysis. As is well known in statistical literature, the empirical Bayes approach

produces a statistically more efficient analysis (Carlin and Louis, 2008).
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The rest of this manuscript is organized as follows. Section 2 includes some preliminaries needed in the

next sections. In Section 3 we discuss the point-mass structure of the efficiency distribution. We define

several ranking methods for stochastic DMUs using efficiency distribution and explore their relationships in
Section 4. Estimation of the efficiency distribution using both Bayesian and Frequentist approach is studied

in Section 5. We illustrate our methods using a set of real data in Section 6. The last section, Section 7,

includes some possible further extensions of the methods presented earlier.

2 Preliminaries

In this section we recall some basic concepts of deterministic DEA. Consider a set of n DMUs, each using m
inputs to produce s outputs. The ith input variable (i = 1, . . . ,m) and rth output variable (r = 1, . . . , s) of

jth DMU (j = 1 . . . , n) are denoted by xij , and yrj, respectively. The inputs and outputs, xij and yrj, are

all assumed to be non-negative for i = 1, . . . ,m, r = 1, . . . , s, and j = 1, . . . , n. The Production Possibility

Set (PPS), denoted by T , is the set of all feasible activities,

T = {(x, y) | the output y can be produced with the input x}.

Under the standard assumption of inclusion of observations and return to scale, n observations construct the

unique non-empty PPS as follows:

TG =







(x, y) | xi ≥
n
∑

j=1

λjxij , ∀i; yr ≤
n
∑

j=1

λjyrj , ∀r;L ≤
n
∑

j=1

λj ≤ U ;λj ≥ 0, j = 1, . . . , n







, (1)

where L(0 ≤ L ≤ 1) and U(U ≥ 0) are lower and upper bounds for the sum of λj . Setting L = 0 and

U = ∞, constant return to scale assumption, gives TCCR (Charnes et al., 1978); while setting L = U = 1,

variable return to scale assumption, gives TBCC (Banker et al., 1984). Should we take TCCR, for instance,

we can evaluate the relative efficiency by solving the CCR model

θo = min θ (2)

s.t.
n
∑

j=1

λjxij ≤ θxio, i = 1, . . . ,m

n
∑

j=1

λjyrj ≥ yro, r = 1, . . . , s

λj ≥ 0, j = 1, . . . , n.

If θo = 1, then DMUo is CCR-efficient. We confine our attention to the CCR model to simplify our disscution
in the sequal, though our approach is equally applicable to other DEA models.

3 Efficiency Distribution

The efficiency evaluation discussed in Section 2 is suitable for deterministic data. However, it often happens

that we need to take into account some uncertainly associated with the inputs and/or outputs of DMUs. As

discussed in Section 1, one may consider inputs and outputs as random variables distributed according to
some distribution and develop stochastic versions of the aforementioned models. To distinguish between a

random variable and its realized values, in the sequel we use capital letters to denote random variables and

retain small letters for their realized values. We therefore consider the input and output vectors, Xj and Yj
associated with DMUj , to be random vectors of dimension m and s, respectively. All variables are defined
on the probability space (Ω,ℑ, P ), where ℑ is a σ-algebra of the subsets of Ω and P is a probability measure

on ℑ. The stochastic counterpart of TCCR is

T =







Z = (X,Y ) | Xi ≥
n
∑

j=1

λjXij , ∀i;Yr ≤
n
∑

j=1

λjYrj , ∀r;λj ≥ 0, j = 1, . . . , n







. (3)
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Given that the inputs and outputs are all random vectors, the efficiency Θ, being a function of these quantities,

is also a random variable. The following result shows that there is at least one DMU whose efficiency score

distribution has a point mass at 1 irrespective of the type input and output variables.

Theorem 1 Let Θj be the efficiency score of Zj = (Xj , Yj), for j = 1, . . . , n. Then there is at least one Θj

with a positive mass at 1.

See Appendix I for the proof.

In any realistic situation, there should be more than one DMU whose efficiency score carries some positive

mass at 1. Otherwise, the only one with positive mass should be almost surely efficient. Of course, there may

exist some DMUs which are almost surely inefficient and hence their efficiency score distribution does not
have any positive mass at 1. This case does not, however, seem likely in practical applications of stochastic

DEA. Given the stochastic nature of the outputs and inputs, even a DMU with mostly weak performance

may have a small chance to perform strongly, and vice versa. Let FΘj
be the cumulative distribution function

(cdf) of Θj for j = 1, . . . , n, using Theorem 1 we have the following decomposition for the efficiency score of

each DMUj , j = 1, . . . , n,
F̄Θj

(θ) = pj + (1− pj)ḠΘj
(θ), (4)

where pj = P (Θj = 1), and F̄Θj
(θ) = 1 − FΘj

(θ). Similarly we define ḠΘj
(θ) = 1 − GΘj

(θ), where GΘj

represents the cdf of the inefficiency component of the efficiency score distribution. For the sake of simplicity,

we use Fj and Gj to denote FΘj
and GΘj

, for j = 1, . . . , n hereafter.

From an analytic perspective, Theorem 1 tells us that the probability measure of Θj is not dominated by

the Lebesgue measure even if the probability measure of inputs and outputs, Xj and Yj , are both dominated

by the Lebesgue measure.

4 Ranking Methods for Stochastic DMUs

Suppose Θj is the efficiency of DMUj . Having obtained the distribution of Θj , for j = 1, . . . , n, ranking

DMUs is possible using various methods. The simplest ranking method is through ranking pj, which we may
call p-ranking. Alternatively, one may use different measures of central tendency, such as mean, median or

quantiles of Fj(.), for j = 1, . . . , n to rank DMUs. These ranking methods may be called, mean, median and

quantile ranking, respectively. While the aforementioned ranking methods are all based on a summary of

Fj(·), borrowing ideas from reliability theory and Decision theory, one can consider the so-called stochastic

ordering using the whole distribution of Θj , i.e., Fj(·), that encompasses all the information about Θj.

4.1 Ranking Using Stochastic Ordering

Let Ψ be a subset of [0,1].

Definition 1 We say DMUj is stochastically more efficient than DMUj
′ on Ψ, denoted by Θj ≻Ψ Θj′ , if

F j(θ) ≥ F j′(θ), ∀θ ∈ Ψ.

In particular, if Ψ=[0,1], we write Θj ≻ Θj′ , and say DMUj
′ is inadmissible.

Figure 1 illustrates the stochastic ordering notion. It depicts the probability density functions (pdf), f(θ),

and the survival functions, F (θ), of the efficiency of two DMUs. We notice that while the pdfs are overlapping

(left panel), the survival function of DMU1, the solid curve, is always below the survival function of DMU2,
the dashed curve. This shows that the survival function of DMU1 is uniformly dominated by the survival

function of DMU2. That is, the performance of DMU2 is always superior to that of DMU1 probabilistically.

In other words, for any given efficiency level ξ, the efficiency of DMU2 has a greater chance to be above ξ

than the efficiency of DMU1.

Next we investigate the relationship between this general ranking method with the simple and summary

based ranking techniques mentioned above. Let the mean of the random variable Θj be denoted by E(Θj)
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Figure 1: Stochastic ordering of efficiency distributions of DMU1 (solid curve) versus DMU2 (dashed curve).
Comparison densities, left panel, and survival function, right panel (see Definition 1).

and its β-quantile by Ẽβ(Θj), where 0 < β < 1. Each of these quantities can be used for a complete (linear)
ordering of DMUs. For instance, mean ranking can be performed based on E(Θj) and β-quantile ranking

based on Ẽβ(Θj). As a special case using Ẽβ=0.5(Θj), one can order DMUs based on the median of their

efficiency distributions. The following result, whose proof follows from Definition 1, shows that ranking using

stochastic ordering implies mean, median, quantile, and p-ranking. The converse is not necessarily true.

Theorem 2 If Θj ≻ Θj′ then pj > pj′ ,E(Θj) > E(Θj′), and Ẽβ(Θj) > Ẽβ(Θj′) for any 0 < β < 1.

Remark 1 A simple partial reverse connection between ranking based on quantiles and stochastic ordering

immediately follows. If for all 0 < β < 1, Ẽβ(Θj) > Ẽβ(Θ
′
j), then Θj ≻ Θj′ . This observation can be useful

when a sample from both Θj and Θj
′ is available.

The p-ranking method is perhaps the simplest method of ranking among the methods suggested above.

Theorem 2 shows that ranking DMUs using stochastic ordering implies p-ranking. The following result

establishes a partial reverse.

Theorem 3 Let Ψ = [ψ, 1] and pj ≥ pj′ . Then Θj ≻Ψ Θj′ , if one of the following three conditions holds

1. infθ∈Ψ

{

Gj′(θ) −Gj(θ)
}

> 0,

2. infθ∈{θ|Gj(θ)>0}∩Ψ

{

Gj(θ)−Gj′ (θ)

Gj(θ)

}

>
pj−pj′

1−pj
,

3. infθ∈{θ|Gj′ (θ)>0}∩Ψ

{

Gj(θ)−Gj′ (θ)

Gj′ (θ)

}

>
pj−pj′

1−pj′
.

See Appendix I for the proof.

The following corollary follows immediately.

Corollary 1 If Gj(θ) = Gj′(θ) for all θ ∈ Ψ, then Θj ≻Ψ Θj′ if and only if pj > pj′ .

The notion of inadmissibility was introduced in Definition 1. To further investigate and distinguish inadmis-

sible DMUs from the admissible ones, i.e. those not inadmissible, in T , we need the following definition. Let

Γ = {ΘZ : Z ∈ T } where ΘZ is the efficiency variable of Z and F = {FΘ : Θ ∈ Γ}.

Definition 2 An F ∈ F is called admissible with respect to G ⊆ F , if there is no F ∗ ∈ G such that F ∗(θ) ≥
F (θ) for all θ ∈ [0, 1], and the inequality is strict at least for one value of θ.

Direct verification of admissibility using Definition 2 is cumbersome. Using the mass point decomposition of

the efficiency distribution, equation 4, we can present a simple sufficient condition for admissibility.
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Theorem 4 If po > 3−
√
6, then DMUo is admissible.

See Appendix I for the proof.

The notion of admissibility by means of the stochastic ordering provides a partial ranking of DMUs. In
Section 4.2 we propose another ranking method which provides a complete (linear) ordering of DMUs by

taking the production manager preference into account.

4.2 Ranking Using Interactive Ordering

Ranking using stochastic ordering when the efficiency level is restricted to Ψ is motivated by possible pref-

erences a manager may attribute to different levels of efficiency. If the preferences can be modeled in terms
of relative weights, a finer notion of stochastic efficiency which is interactively defined, can be introduced.

Suppose π is a probability measure which represents these relative weights on [0,1] modeled with preferential

information given by the manager. Let Iπ(F j) =
∫

θ
F j(θ)π(dθ). Then Iπ(F j) can essentially be interpreted

as an interactive efficiency score according to π for each DMUj , j = 1, . . . , n.

Definition 3 We say DMUj is interactively more efficient than DMUj′ , if Iπ(F j) ≥ Iπ(F j′ ).

While Definition 1 only allows a partial ordering of DMUs, a complete (linear) ordering is possible using

Definition 3. Although a complete (linear) ordering of DMUs can also be achieved using measures of central

tendencies such as mean and median of the efficiency score distribution, the ranking using interactive ordering

offers an adaptive approach to a manager’s preferences and better interpretation. A manager can specify

different weights over different regions in [0, 1] through the probability measure π. The following theorem
establishes a close tie between admissibility and ranking using interactive ordering.

Theorem 5 F j ∈ G is admissible with respect to G, if there exists a π such that Iπ(F j) > Iπ(F ) for all

F ∈ G.

See Appendix I for the proof.

5 Efficiency Estimation

Implementing the above ranking methods requires estimation of the efficiency score distribution. Suppose

Zj ∼ fZj
(. | νj) where the pdf fZj

is known up to finitely many unknown parameters νj , j = 1, . . . , n. To

generate a sample from the efficiency score distribution of DMUj , j = 1, . . . , n, one needs a sample from

each DMUj , j = 1, . . . , n, i. e., a sample from the PPS. This can be achieved using either the Bayesian or

frequentist perspective. We discuss both approaches in the following sections.

Motivated by our example in Section 6, we consider a DEA analysis in situations where observations
on DMUj , for j = 1, . . . , n can be made at several discrete points in time, say t = 1, . . . , T . A stochastic

approach seems more reasonable for such a framework since the values of inputs and outputs can vary through

time. Denote stochastic DMUj at time t by Zjt = (Xjt, Yjt)
′ for j = 1, . . . , n where Xjt = (X1jt, . . . , Xmjt)

′

and Yjt = (Y1jt, . . . , Ysjt)
′ are respectively the input and output of DMUj and “ ′ ” represents transpose.

Therefore we essentially have a PPS, Tt at each time t. We further denote the whole data vector by z with

entries zijt, where

z = [zijt], i = 1, . . . ,m+ s,

j = 1, . . . , n,

t = 1, . . . , T,

zjt = [zijt], i = 1, . . . ,m+ s, is the observed value of the random vector Zjt, and the data vector of variable

i of DMUj over time t, is denoted by zij = [zijt], t = 1, . . . , T. We assume that DMU1, . . . , DMUn are

independent, but may not be identically distributed.



6 G–2013–96 Les Cahiers du GERAD

5.1 Bayesian Perspective

Bayesian data analysis involves the assignment of two distributions, the likelihood function being the mul-

tivariate distribution of observations given a parameter vector ϑo, say f(zo1, . . . , zoT | ϑo) for DMUo and
the prior distribution of ϑo which itself is parameterized by hyper-parameter ϕ, say f(ϑo | ϕ). We com-

monly assume a proper prior in Bayesian analysis, i.e., we consider a class of prior distributions such that
∫ +∞

−∞ f(ϑo | ϕ)dϑo = 1. We take an empirical Bayes approach, and devise a numerical approximation using

sampling from the posterior predictive distribution of data. In order to sample from the posterior predictive
distribution, parameters of the prior distribution, the so-called hyper-parameters, must either be known or

estimated using the data. Having estimated the hyper-parameters from the marginal likelihood (prior pre-

dictive distribution), a set of DMUs similar to the one observed is simulated and the efficiency is obtained

on the simulated data to produce observations from the efficiency. These observations from the efficiency are

used to estimate the efficiency distribution. Next we expand this road map and explain how this approach
can be implemented.

Applying the empirical Bayes method, we estimate ϕ from data by maximizing the prior predictive

f(z | ϕ) =
n
∏

j=1

∫ +∞

−∞

· · ·
∫ +∞

−∞

f(zj1, . . . , zjt, . . . , zjT | ϑj)f(ϑj | ϕ)dϑj . (5)

The Empirical Bayes estimate of ϕ is

ϕmax = argmaxϕ log f(z | ϕ). (6)

We can generate a sample from the distribution of zo, say z
∗
o by sampling from the posterior predictive

distribution

f(z∗o | zo1, . . . zoT , ϕmax) =

∫ +∞

−∞

· · ·
∫ +∞

−∞

f(z∗o | ϑo)f(ϑo | zo1, . . . , zoT , ϕmax)dϑo, (7)

where

f(ϑo | zo1, . . . , zoT , ϕmax) =
f(zo1, . . . , zoT | ϑo)f(ϑo | ϕmax)

f(zo1, . . . , zoT | ϕmax)

is the posterior distribution of ϑo.

If direct sampling from the posterior predictive distribution is complicated, one may use an indirect

sampling through posterior samples. In other words, sample first from the posterior distribution f(ϑo |
zo1, . . . , zoT , ϕmax), say ϑ

post
o and then generate a sample from z

∗
o by sampling from f(zo | ϑposto ).

To generate a sample from the efficiency of DMUo, say θ
∗
o , one needs to have a sample from the PPS, say

T ∗ which itself requires a predictive sample of all DMUs. Having produced T ∗, a sample from the efficiency

distribution of each DMU (including DMUo) can be obtained by solving the CCR model on T ∗. We repeat

this procedure B times, for B large enough, to find B samples from the efficiency distribution of each DMU.

The pseudo-code for this procedure is provided below:

1. Estimate hyperparameters by φmax = argmax log f(z | φ).
2. For all j = 1, . . . , n, sample from posterior of data parameters

ϑpostj ∼ f(ϑj | zj1, . . . , zjT , ϕmax).

3. For all j = 1, . . . , n, sample a new data point of DMUj by sampling from

z∗j ∼ f(zj | ϑpostj ).

4. For all j = 1, . . . , n, compute θ∗j by solving model (2).

5. Repeat steps 1 to 4, B (large enough) times to produce B samples (θ∗1b, . . . , θ
∗
nb), for b = 1, . . . , B.
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We note that our algorithm generates B samples from the multivariate density f(θ1, . . . , θn | φmax). We then

use these B samples to estimate the unknown parameters of the efficiency distribution for each DMU, namely

po and Go(.).

The estimate of po, say p̂o, is the proportion of θ∗o being one out of B samples. The non-parametric

maximum likelihood estimate of Go(.) based on a sample of size B, θ∗o1, . . . , θ
∗
oB, is given by

ĜoB(t) =
1

B

B
∑

i=1

ε{t|θoi>t}(t),

where εA(x) = 1 if x ∈ A, and equal to zero otherwise. One can show that

||ĜoB −Go||∞ = sup
x∈[0,1]

|ĜoB(x)−Go(x)| = O

(
√

log log(B)

B

)

, almost surely.

When the input and output variables are continuous, Go(θ) = 1 − Go(θ) has a density with respect to

the Lebesgue measure which can be estimated using the kernel, or other, density estimation method if
visualization of the density is required.

5.2 Frequentist Perspective

In the frequentist approach, the parameter ν is treated as an unknown, but fixed. Given that finding a closed

form for GΘ is cumbersome, one usually resorts to computational approaches to approximate p and GΘ, and

hence FΘ. The main computational tool for such purposes in the frequentist approach is bootstrapping (Efron

and Tibshirani, 1993). As we briefly discussed in the introduction, bootstrapping a mixture distribution such

as FΘ, when the mixing proportion p is unknown is not directly possible. One can, however, use the bootstrap
method to generate Zj , j = 1, . . . , n and repeatedly solve a conventional DEA model, such as CCR or BCC

model to generate samples from FΘ. If νj is known, this approach can be readily implemented. Otherwise,

one needs several replications on each Zj, j = 1, . . . , n. In longitudinal studies on the performance of a DMU,

we often collect repeated measurements on the input and output variables. If such repeated measurements
can be assumed independent, then bootstrap can readily be implemented. Otherwise, the dependence of such

repeated measurements should either be estimated or modeled. Short follow-up studies render dependence

estimation infeasible. Long follow-up studies, in contrast, allow estimation of a possible dependence structure

using block bootstrap, see Kunsch (1989), Carlstein et al. (1998), and Inoue and Kilian (2002).

6 Data Analysis

We illustrate the methodologies developed in the previous sections using the airline data of Greene (2011).1

We rescale the data so that each variable (input or output) has unit variance and we use the CCR model.

Note that the CCR model is scale invariant. To simplify the computational aspects of our illustration, in the

sequel we assume that the data are independent through time. Let

zjt | µj ,Σj
iid∼ N(m+s)(µj ,Σj),

µj | τ, κ,Σj
iid∼ N(m+s)(ν, κΣj),

Σj
iid∼ W−1(a,Ψ), (8)

where Nk(µ,Σ) denotes the k-variate normal distribution with mean µ and variance-covariance matrix Σ,
W−1(a,Ψ) denotes the inverse Wishart distribution with a degrees of freedom and scaling matrix Ψ. The

scalar κ is an overdispersion parameter. This model produces the following marginal distribution for a

diagonal matrix Σj , ν = τ1, where 1 is a vector whose components are all equal 1, and Ψ = b
2I,

f(z | ϕ) =
n
∏

j=1

m+s
∏

i=1

b
a
2 Γ
(

a+T
2

)

π
T
2 |V| 12Γ

(

a
2

)

{b + (zij − τ1)′V−1(zij − τ1)}
a+T

2

, (9)

1The data is available online through http://people.stern.nyu.edu/wgreene/Text/tables/TableF7-1.txt.

http://people.stern.nyu.edu/wgreene/Text/tables/TableF7-1.txt
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where each univariate random variable zijt is marginally student-t distributed, see Appendix II for details.

The estimated hyper-parameters and their asymptotic standard errors are as follows: τ = 0.755(0.381),

κ = 34.510(131.869), a = 1.056(0.074) , b = 0.100(0.002) (see Appendix II for details). We simulated

B = 10000 data sets with each data point drawn from the predictive density and computed the efficiency for
each data set. This gives 10000 efficiency values for each DMU. Given that the input and output variables

are all continuous variables, the inefficiency component in (4), G, has the following integral representation

G(θ) =
∫ 1

θ
g(u)du where g(θ) is the pdf of the inefficiency component in (4).

The generated efficiency samples can then be used to estimate the parameters pj and the density gj(.) for

each DMUj , j = 1, . . . , 6. The codes are implemented in R statistical software R (R Development Core Team,
2005) using the package Benchmarking (Bogetoft and Otto, 2010). Ranking DMUs with different methods

and the estimation of pj are reported in Table 1 and the estimation of the inefficiency density, g(.), is reported

in Figure 3. In the upper panel of Figure 2 the continuous parts are almost uniform. In the bottom panel

they are concentrated around 0.20. Therefore DMUs of the upper panel are efficient with probability po
and their efficiency score is anywhere in (0, 1) with probability 1− po, while in the bottom panel a DMU is

efficient with probability po and has efficiency score close to 0.2 with probability 1− po.

Our finding in Table 1 indicates that DMU1 has the best performance according to all the ranking methods

introduced in the previous sections. Ranking DMUs using stochastic ordering is feasible first by p-ranking

and then by checking the conditions of Theorem 3. The result of the analysis is summarized in Table 1.
DMU1 and DMU2 are stochastically unordered, but both are superior to DMU3, DMU4, DMU5 and DMU6.

DMU3 performs better than DMU4, DMU5 and DMU6. DMU4 is better than DMU5, while DMU4 with

DMU6, and DMU5 with DMU6 are stochastically unordered. We can depict this partial ranking of DMUs

using a Hasse diagram. A Hasse diagram shows an arrow from k to j if Θk ≻ Θj, and there is no i such

that Θk ≻ Θi and Θi ≻ Θj , see Rutherford (1965). Given that ranking using stochastic ordering provides
the most comprehensive ranking method, the arrows in the Hess diagram in Figure 2 show which dominance

in DMUs cannot be changed through different specifications of the probability measure Π in ranking using

interactive ordering or using different measures of central tendencies. It is, for instance, evident that using

any measure of central tendency, DMU1 is superior to DMU3, but using different weighting measures π or
applying different central tendency statistics may reverse the ranking of DMU1 with DMU2.

The results reported in Table 1 indicate that DMU3, DMU4, DMU5 and DMU6 are inadmissible, while

using Theorem 4, DMU1 and DMU2 are admissible in T .

DMU 1
DMU 2DMU 3

DMU 4 DMU 6
DMU 5

Figure 2: Hasse diagram of DMU domination, visualizing the result of ranking using stochastic ordering in
Table 1.
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Figure 3: Estimation of the continuous part of DMUs gj(.) using kernel density estimation.

Table 1: Ranking DMUs using different distribution summaries, mean-ranking, median-ranking, p-ranking,
ranking using stochastic ordering, and ranking using interactive ordering.

DMU
1 2 3 4 5 6

mean 0.88 0.81 0.68 0.51 0.48 0.45
median 1.00 1.00 0.81 0.44 0.37 0.34

p̂j 0.74 0.63 0.44 0.25 0.23 0.20
stochastically {3, 4, 5, 6} {3, 4, 5, 6} {4, 5, 6} {5} {} {}
ordered units

interactive efficiency 0.83 0.74 0.58 0.40 0.36 0.34

index ÎΠ(F )

Several DMUs remain unordered according to the stochastic ordering method. The preference of the
manager can be used to achieve a complete ordering of DMUs. An example of the preference of the manager

is






6 if θ ∈ [0.9, 1]
3 if θ ∈ [0.5, 0.9)
1 if θ ∈ [0, 0.5).

(10)

This preference can be translated into the probability measure π(θ) by re-normalizing this function to satisfy
∫ 1

0 π(θ)dθ = 1.

π(θ) =







2.609 if θ ∈ [0.9, 1]
1.304 if θ ∈ [0.5, 0.9)
0.435 if θ ∈ [0, 0.5).

(11)

After assigning π(θ), the interactive efficiency index, Iπ(F ), can be calculated for all DMUs for a given F .

The estimation of the interactive efficiency index is achieved by substituting F with its empirical estimate
1− F̂ , in which F̂ is the empirical cumulative distribution function,

Îπ(F ) =

∫ 1

0

{1− F̂ (θ)}π(θ)dθ.
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According to the last row of Table 1, interactive ordering using (11) suggests that DMU1 has the best

performance.

7 Further Extensions

Up to now we have only considered a deterministic combination of DMUs, i.e., using deterministic λ. A
possible extension is to allow random combinations of DMUs, i.e., ζDMUi + (1 − ζ)DMUj where ζ is also

a random variable defined on the same probability space as the DMUs. This then amounts to defining PPS

path-by-path, i.e., for each ω ∈ Ω. Having taken this view, our PPS for each ω ∈ Ω is

T̃ (ω) =







Z(ω) =

(

X(ω)
Y (ω)

)

| Xi(ω) ≥
n
∑

j=1

λj(ω)Xij (ω), ∀i; Yr(ω) ≤
n
∑

j=1

λj(ω)Yrj(ω), ∀r; λj(ω) ≥ 0,∀j







. (12)

Denote the associated set of efficiency variables and their survival distributions by Γ̃ and F̃ , respectively. It

is clear that Γ ⊆ Γ̃ and F ⊆ F̃ . The following result presents a necessary condition for admissibility in F̃ .

Theorem 6 Suppose F j ∈ F̃ is admissible with respect to F̃ . Then there exists a probability measure π on

[0,1] such that Iπ(F j) ≥ Iπ(F ), ∀F ∈ F̃ .

See Appendix I for the proof.

Remark 2 We should note that F̃ is typically a much larger set than F . As such, the requirement for
admissibility in F̃ is a more stringent condition to be fulfilled than admissibility in F . Theorem 6 holds

true only for a subset of admissible elements of F ; those which are not dominated by convex combination of

elements of F either.

Remark 3 An inspection of Theorem 4 and 5 shows that these theorems also hold true in this setting.

Appendix I

Proof of Theorems

Proof of Theorem 1: We first note that Θ is a random variable defined on the probability space (Ω,ℑ, P ).
We further note that for any ω ∈ Ω we have a PPS. Let Ai = {ω ∈ Ω : Θi(ω) = 1} for i = 1, . . . , n. Since in

any PPS there is at least one efficient DMU, we have Ω =
n
⋃

i=1

Ai. Now suppose that there is no mass point

at 1 for any DMU, i.e., pi = P (ω : Θi(ω) = 1) = P (Ai) = 0 for i = 1, . . . , n. Then using Boole’s inequality,

P (
n
⋃

i=1

Ai) ≤
n
∑

i=1

P (Ai) = 0. On the other hand, P (
n
⋃

i=1

Ai) = P (Ω) = 1. This is a contradiction. �

Proof of Theorem 3: Suppose pj > pj′ and Condition 1 is satisfied; i.e., Gj′ (θ) > Gj(θ), ∀θ ∈ Ψ. Then

(1− pj′)Gj′ (θ)− (1 − pj)Gj(θ) > 0,

which implies

(1− pj′)
(

1− Ḡj′ (θ)
)

− (1 − pj)
(

1− Ḡj(θ)
)

> 0,

and hence

pj + (1− pj)Ḡj(θ) > pj′ + (1− pj′)Ḡj′ (θ).

Therefore F j(θ) > F j′ (θ), ∀θ ∈ Ψ; which implies Θj ≻Ψ Θj′ .

Suppose Condition 2 holds, that is, ∀θ ∈ {θ | Gj(θ) > 0} ∩Ψ, and

inf
θ∈Ψ

{

Gj(θ)−Gj′ (θ)

Gj(θ)

}

>
pj − pj′

1− pj
,
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This is equivalent to
Ḡj′ (θ)− Ḡj(θ)

1− Ḡj′(θ)
>
pj − pj′

1− pj
, ∀θ ∈ Ψ,

hence
{

1− Ḡj(θ)
}

−
{

1− Ḡj′ (θ)
}

−
{

1− Ḡj′(θ)
}

1− pj
{(1− pj′)− (1− pj)} > 0,

which, in turn, implies

(1 − pj)
{

1− Ḡj(θ)
}

− (1− p′j)
{

1− Ḡj′(θ)
}

> 0.

Thus pj + (1− pj)Ḡj(θ) > pj′ + (1− pj′)Ḡj′ (θ), and therefore F j(θ) > F j′(θ), ∀θ ∈ Ψ; yielding Θj ≻Ψ Θj′ .

The proof for Condition 3 is similar. �

To prove Theorem 4, we need to establish the following lemma first.

Lemma 1 If DMUo is inadmissible, then there exists λ̃ =
(

λ̃1, . . . , λ̃n

)

≥ 0 such that P (Ωλ̃) = P (Θλ̃ ≥
Θo) ≥ 2po − p2

o+1
2 .

Proof. Since DMUo is inadmissible, then there exists λ̃ =
(

λ̃1, . . . , λ̃n

)

≥ 0 such that

F λ̃(θ) ≥ F o(θ), ∀θ ∈ [0, 1]. (13)

For any λ ≥ 0 define Ωλ = {ω ∈ Ω | Θλ(ω) > Θo(ω)} . We have

P (Ωλ̃) = P (Θλ̃ ≥ Θo)

= P (Θλ̃ ≥ Θo | Θo = 1)P (Θo = 1) + P (Θλ̃ ≥ Θo | Θo < 1)P (Θo < 1)

= P (Θλ̃ ≥ Θo | Θo = 1)po + P (Θλ̃ ≥ Θo | Θo < 1)(1− po),

where

P (Θλ̃ ≥ Θo | Θo < 1) =

∫ 1

0

P (Θλ̃ ≥ Θo | Θo = θ,Θo < 1)dF (θ | Θo < 1)

=

∫ 1

0

P (Θλ̃ ≥ Θo | Θo = θ,Θo < 1)
(1− po)

P (Θo < 1)
dGΘo

(θ)

=

∫ 1

0

P (Θλ̃ ≥ Θo | Θo = θ,Θo < 1)dGΘo
(θ).

We note that DMUo is not on the boundary for any ω ∈ ⋃
λ

Ωλ. Thus given ω ∈ ⋃
λ

Ωλ, the efficiency of DMUo

cannot affect the efficiency of other DMUs. Thus Θλ̃ is independent of Θo given ω ∈ ⋃λ Ωλ. We therefore

have

P (Θλ̃ ≥ Θo | Θo < 1) =

∫ 1

0

P (Θλ̃ ≥ θ)dGΘo
(θ) =

∫ 1

0

FΘ
λ̃
(θ)dGΘo

(θ).

Using 13,

P (Θλ̃ ≥ Θo | Θo < 1) ≥
∫ 1

0

FΘo
(θ)dGΘo

(θ).

On the other hand, we know

FΘo
(θ) = po + (1 − po)GΘ0

(θ), ∀θ ∈ [0, 1]; and hence
∫ 1

0

FΘo
(θ)dGΘo

(θ) = po + (1− po)

∫ 1

0

GΘo
(θ)dGΘo

(θ) = po +
(1 − po)

2
=

1 + po
2

.
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Then

P (Ωλ̃) ≥ P (Θλ̃ ≥ Θo | Θo = 1)P (Θo = 1) +
(1− p2o)

2

≥ P (Θλ̃ = 1,Θo = 1) +
(1− p2o)

2

= pλ̃ + po − P (Θλ̃ = 1 or Θo = 1) +
(1− p2o)

2

≥ 2po − P (Θλ̃ = 1 or Θo = 1) +
(1− p2o)

2

≥ 2po −
p2o + 1

2
. �

Proof of Theorem 4: Suppose DMUo is inadmissible, then using Lemma 1, there exists λ̃ =
(

λ̃1, . . . , λ̃n

)

such that P (Ωλ̃) = P (Θλ̃ ≥ Θo) ≥ 2po − p2
o+1
2 .

On the other hand, {ω ∈ Ω | Θo(ω) = 1} = (
⋃

λ Ωλ)
c
, where c stands for the complement. Thus

po = P (Θo = 1) = 1− P (
⋃

λ

Ωλ)

≤ 1− P (Ωλ̃)

≤ 1−
(

2po −
p2o + 1

2

)

= −2po +
p2o + 3

2
.

Hence, if DMUo is inadmissible, then −3po +
p2
o+3
2 ≥ 0. This inequality is fulfilled if po ∈ [0, 3−

√
6]. This is

a contradiction. �

Proof of Theorem 5: Suppose DMUo is inadmissible. Then there exists an F ∗ ∈ G such that F ∗(θ) ≥
F o(θ), ∀θ. Let π be a probability measure on [0,1]. Then

Iπ(F ∗) =

∫

θ

F ∗(θ)π(dθ) ≥
∫

θ

F o(θ)π(dθ) = Iπ(F o).

This is a contradiction. �

To prove Theorem 6, we first need establish the following lemma.

Lemma 2 F̃ is a convex set.

Proof. Suppose F
′

and F
′′

∈ F̃ . Then there exist Θ
′

1 and Θ
′′

2 in the set Γ̃ associated with F
′

and F
′′

respectively, and hence we have DMU
′

and DMU
′′

, possibly virtual DMUs, associated with Θ
′

1 and Θ
′′

2 .

Consider αF
′

+ (1 − α)F
′′

where 0 ≤ α ≤ 1. Note that αF
′

(t) + (1 − α)F
′′

= αE
[

ε{ω|Θ′(ω)>t}(ω)
]

+ (1 −
α)E

[

ε{ω|Θ′′(ω)>t}(ω)
]

where

εA(ω) =

{

1 if ω ∈ A
0 if ω /∈ A

and E stands for mathematical expectation. Define binary random variable η such that P (η = 1) = α. Then

αF
′

(t) + (1 − α)F
′′

= E

[

ε{ω|η(ω)Θ′(ω)+(1−η(ω))Θ′′ (ω)>t}(ω)
]

.

On the other hand ηΘ
′

+(1− η)Θ′′

is the efficiency variable associated with ηDMU
′

+(1− η)DMU
′′

. Hence

ηΘ
′

+ (1 − η)Θ
′′ ∈ Γ̃ and therefore αF

′

(t) + (1− α)F
′′

∈ F̃ . �
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Proof of Theorem 6: We first note that if DMUo is admissible, then F o ∈ ∂F̃ where ∂F̃ denotes the

boundary of F̃ . We further note from Lemma 2, F̃ is convex. Define ∆(F o) = {f | f ∈ C([0, 1]) and f(θ) ≥
F o(θ), ∀θ} where C ([0, 1]) is the space of continuous functions on [0,1]. Note that

(

∆(F o

)

\{F o})
⋂ F̃ = ∅.

On the other hand, ∆(F o)\{F o} is a convex body, i.e., ∆(F o)\{F o} has an interior point. The rest of the

proof goes along the lines of Asgharian and Noorbaloochi (1998). In fact, a version of the separation theorem

provides a continuous linear functional. A form of the Riesz representation theorem gives us a signed measure.

Finally, the construction of the convex sets shows that the linear functional is positive and this implies that

the corresponding measure in the Riesz representation theorem is a non-negative measure. �

Appendix II

Model Calculations

Posterior Predictive

Considering a diagonal variance-covariance matrix Σj and Ψ = b
2I, the hierarchical model (8) simplifies to

zijt | µij , σ
2
ij

iid∼ N (µij , σ
2
ij),

µij | τ, κ iid∼ N (τ, κσ2
ij),

σ2
ij

iid∼ Γ−1(
a

2
,
b

2
), (14)

where N (µ, σ2) denotes the univariate normal distribution with mean µ and variance σ2, and Γ−1(a, b)

denotes the inverse gamma distribution with the shape and scale parameters a and b respectively.

Given the independence between the DMUs and within the components of each DMU, we have

f(z | ϕ) =
n
∏

j=1

m+s
∏

i=1

f(zij | ϕ),

where each zij is a vector of length T and

f(zij | ϕ) =

∫ +∞

0

f(zij | σ2
ij)f(σ

2
ij)dσ

2
ij .

We first calculate

f(zij | σ2
ij) =

∫ +∞

−∞

f(zij | µij , σ
2
ij)dµij

=

∫ +∞

−∞

T
∏

t=1

f(zijt | µij , σ
2
ij)f(µij | σ2

ij)dµij

= (2πσ2
ij)

−T
2 (2πσ2

ij)
− 1

2

∫ +∞

−∞

exp

{

− 1

2σ2
ij

T
∑

t=1

(zijt − µij)
2 − 1

2κσ2
ij

(µij − τ)2

}

dµij .

After some simple algebra

f(zij | σ2
ij) = (2π)−

T
2 |σ2

ijV|− 1
2 exp

{

−1

2
(zij − τ1)′(σ2

ijV)−1(zij − τ1)

}

, (15)

where 1 is a vector of length T whose components are all equal 1, V is a T × T symmetric matrix with

diagonal elements 1+κ and equal off-diagonals κ, and |V| denotes the determinant of V. Next, we integrate

(15) with respect to the inverse gamma density f(σ2
ij)
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f(zij | ϕ) = (2π)−
T
2 |V|− 1

2 b
a
2 2−

a
2 Γ(

a

2
)−1 ×

∫ +∞

0

(σ2
ij)

1−T
2
− a

2 exp

{

− (zij − τ1)′V−1(zij − τ1)

2σ2
ij

− b

2σ2
ij

}

dσ2
ij .

After changing the variable of integration with respect to γ = σ−2
ij

f(zij | ϕ) = (2π)−
T
2 |V|− 1

2 b
a
2 2−

a
2 Γ(

a

2
)−1 ×

∫ +∞

0

γ
a+T−2

2 exp

{

−b+ (zij − τ1)′V−1(zij − τ1)

2
γ

}

dγ.

The last integral is the gamma integral and therefore,

f(zij | ϕ) =
b

a
2 Γ
(

a+T
2

)

π
T
2 |V| 12Γ

(

a
2

)

{b+ (zij − τ1)′V−1(zij − τ1)}
a+T

2

. (16)

Posterior Density

Given the independence assumption, the full posterior is the product of individual posteriors

f(µij , σ
2
ij | zij) ∝ f(zij | µij , σ

2
ij)f(µij , σ

2
ij),

where f(zij | µij , σij) is a normal distribution and f(µij , σ
2
ij) = f(µij | σ2

ij)f(σ
2
ij) are normal-inverse-gamma

distributions where the normal-inverse-gamma with parameters τ, κ, a, b is

f(µ, σ2) =
ba(σ2)−a− 3

2

Γ(a)(2πκ)
1
2

exp

{

− 1

2κσ2
(µ− τ)2 − b

σ2

}

µ, τ ∈ R, σ2, a, b, κ > 0.

Therefore, the normal-inverse-gamma has the kernel

f(µ, σ2) ∝ (σ2)−(a+ 3
2
) exp

{

− 1

2κσ2
(µ− τ)2 − b

σ2

}

. (17)

As normal and normal-inverse-gamma are conjugate forms, the posterior is also normal-inverse-gamma. More

precisely,

f(µij , σ
2
ij | zij) ∝

{

T
∏

t=1

f(zijt | µij , σ
2
ij)

}

f(µij , σ
2
ij)

∝ 1

(2πσ2
ij)

T
2

exp

{

− 1

2σ2
ij

T
∑

t=1

(zijt − µij)
2

}

×
b

a
2 (σ2

ij)
− a+3

2

2
a
2 Γ(a2 )(2πκ)

1
2

exp

{

− 1

2κσ2
ij

(µij − τ)2 − b

2σ2
ij

}

.

After some algebraic simplifications

f(µij , σ
2
ij | zij) ∝ (σ2

ij)
−( a+T

2
+ 3

2
) ×

exp







−1 + κT

2κσ2
ij

(

µ− τ + κ
∑T

t=1 zijt
1 + κT

)2

− 1

2κσ2
ij

(τ2 + κb+ κ
T
∑

t=1

z2ijt)







. (18)

Comparing (18) with (17), shows that the posterior is in the normal-inverse-gamma form with parameters

τ∗, κ∗, a∗, and b∗ being

τ∗ =
τ + κ

∑T
t=1 zijt

1 + κT
, κ∗ =

κ

1 + κT
,

a∗ =
a+ T

2
, b∗ =

1

2κ

(

τ2 + κb+ κ

T
∑

t=1

z2ijt

)

.
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