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Abstract: A dynamic global hedging procedure making use of futures contracts is developed for a retailer
of the electricity market facing price, load and basis risk. Statistical models reproducing stylized facts are
developed for the electricity load, the day-ahead spot price and futures prices in the Nord Pool market.
These models serve as input to the hedging algorithm, which also accounts for transaction fees. Backtests
with market data from 2007 to 2012 show that the global hedging procedure provides considerable risk
reduction when compared to hedging benchmarks found in the literature.
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1 Introduction

With the recent liberalization of electricity markets and the disentanglement of the vertical integration in

the electricity supply chain in Nordic countries, continental Europe and North America, new risks have

arisen for some of the participants of the electricity markets. One such risk-facing participant is the retailer

buying from wholesalers to sell to end-users. These retailers1 sign contracts giving them the obligation to

supply electricity to consumers. Retailers often need to supply a quantity of electricity at a fixed price while

acquiring it at a variable market price (Von der Fehr and Hansen 2010, Johnsen 2011), exposing the retailers

to price risk. Furthermore, as the quantity of electricity which must be supplied to consumers is uncertain,

retailers also face load (or volumetric) risk (Deng and Oren 2006).

Electricity is not easily storable and retailers cannot build up electricity reserves upon which to draw to

cover an unexpectedly high load demand or an electricity price increase. The non-storability of electric power

fuels extreme price volatility as highly inelastic demand can cause spot prices to skyrocket when shortages

occur. For retailers, the volatility can affect profitability since an unexpected high cost of electricity can lead

to major losses. The profit margin for a retailer is so small in relation to the price risk that the profit margin

can quickly disappear if the price risk is not hedged (NordREG 2010). In some cases, there was eventual

bankruptcy as with the Pacific Gas and Electric Company in 2001 and Texas Commercial Energy in 2003.

To prevent such events, some government regulatory initiatives were even implemented to force retailers

to hedge their obligation to serve electricity loads. For example, the California Public Utility Commission

now requires load serving entities (LSE) to use forward contracts and options (with mandatory physical

settlement) to reduce their risk exposure (State of California 2004).

It is clear that deficient risk management can lead to financial hardship for retailers and developing

effective hedging methodologies in the electricity market has become paramount. Different approaches, using

different electricity derivatives, have been proposed in the literature. Deng and Oren (2006) survey available

derivatives and list the papers that implement methods pertaining to each. Hedging procedures can be

divided into two main categories: (i) static, and (ii) dynamic. For static hedging, hedging instruments

are bought at one point in time and the hedging portfolio is never rebalanced. For dynamic hedging, the

composition of the hedging portfolio is adjusted through time as additional information becomes available.

Dynamic hedging procedures can be divided into two sub-categories, which we refer to as local and global

hedging. Local hedging procedures minimize the risk associated with the portfolio until the next rebalancing

whereas global hedging procedures minimize the risk related to the terminal cash flow.

Several papers apply static hedging without considering load uncertainty. Stoft et al. (1998) describe

simple hedging strategies with vanilla derivatives. Bessembinder and Lemmon (2002) identify the optimal

position in forward contracts for electricity producers and retailers through an equilibrium scheme. Fleten

et al. (2010) optimize the static futures contract position of a hydro-power electricity producer in Nord Pool.

Other papers studying static hedging incorporate load uncertainty in their model. Wagner et al. (2003) and

Woo et al. (2004) investigate static hedges with forward and futures contracts under different risk constraints.

Deng and Xu (2009) examine hedging strategies using interruptible contracts in a one-period setting. In a

series of papers, Oum et al. (2006), Oum and Oren (2009) and Oum and Oren (2010) propose a static

hedging procedure maximizing the expected utility of a LSE using a portfolio of derivatives. Kleindorfer and

Li (2005) optimize the expected return of an electricity portfolio corrected by a risk measure (either variance

or Value-at-Risk).

To the authors’ best knowledge, there exists no paper on dynamic hedging which incorporates load

uncertainty. The literature on dynamic hedging strategies includes some local procedures. For example,

Ederington (1979) suggests to hedge an underlying asset with its futures in a way to minimize the one-

period variance of the total portfolio. Byström (2003), Madaleno and Pinho (2008), Zanotti et al. (2010),

Liu et al. (2010), and Torro (2012) adapt this procedure to the electricity market, but with different model

specifications for the spot and futures prices. Byström (2003) applies one-week horizon hedges on Nord Pool,

comparing conditional and unconditional hedge ratios. The unconditional version of hedge ratios outperforms

1 Retailers is the term used on Nord Pool for these participants. On the US market, they are referred to as load serving
entities.
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the conditional models. Madaleno and Pinho (2008) and Zanotti et al. (2010) compare different correlation

models for the spot and futures prices to compute optimal hedge ratios on European electricity markets.

Liu et al. (2010) use copulas to represent the relationship between the spot and futures prices. Torro (2012)

studies the case of early dismantlement of the hedging portfolio in the Nord Pool market.

Alternative dynamic hedging schemes are discussed in Eydeland and Wolyniec (2003). For example, there

is delta hedging, a method which consists in building a portfolio with value variations that mimic those of the

hedged contingent claim. Eydeland and Wolyniec (2003) apply delta hedging to achieve perfect replication

when a LSE hedges the price of a fixed amount of load to be served. When perfect replication cannot be

achieved, they propose local mean-variance optimization to tackle hedging problems.

Local procedures are attractive because they are simple to implement. Local risk minimization procedures

are myopic however as they do not necessarily minimize the risk through the entire period of exposure (see

Rémillard 2013). Global hedging procedures remedy this drawback by taking into account the outcomes of

all future time periods at any point in time; they evaluate the adequacy of a hedge by looking at the terminal

hedging error, i.e. at the maturity of the hedged contingent claim. The following is a non-exhaustive list of

papers which study this methodology in general financial contexts. Schweizer (1995) minimizes the global

quadratic hedging error in a discrete-time framework for European-type securities. Rémillard et al. (2010)

extend his work for American-type derivatives. Föllmer and Leukert (1999) minimize the probability of

incurring a hedging shortfall. Föllmer and Leukert (2000) minimize an expected function of the terminal

hedging error. To the authors’ best knowledge, developing global dynamic hedging procedures in electricity

markets has not yet been attempted.

The current paper therefore seeks to fill the gap in the literature concerning global hedging procedures

for electricity markets and offers three main contributions. First, a dynamic global hedging methodology is

developed for a retailer trying to hedge itself with futures contracts by considering both its price and load

risks. Obtaining global solutions to hedging problems is non-trivial and it often requires advanced numerical

schemes. This could explain why this avenue has not yet been explored in electricity markets. We not only

show that the approach is feasible, but present the first dynamic hedging strategy to account for load risk,

and one of very few to account for transaction costs. Second, as our global hedging algorithm uses weekly

futures, we develop the required weekly load model. We also present a statistical model for the joint dynamics

of the spot and futures prices. A statistical approach using multivariate time series analysis is applied. Third,

an empirical study which compares the performance of different hedging procedures on the Nord Pool market

is presented.

The non-quadratic global hedging procedure developed outperforms the benchmarks in reducing the risk

borne by the retailers. Hedging backtests show a significant reduction in several risk metrics applied to the

weekly hedging error. Considering the case of a retailer serving 1% of the Nord Pool load, the TVaR1%

is reduced from 172,900e to 161,900e if our load-basis model is used in the delta hedging procedure (see

Table 7). When our global hedging procedure is applied, the TVaR1% is further shrunk by a considerable

amount to 133,100e.

The remainder of the paper is organized as follows. Section 2 presents the price and volumetric risks faced

by retailers and describes the hedging procedure. Section 3 describes the data used for modeling purposes

and presents the models for the electricity load, the spot price and futures prices. Section 4 describes the

numerical experiments which test the efficacy of the hedging methodology. Section 5 presents concluding

remarks. Some technical results, estimation details and goodness-of-fit tests are relegated to Appendices.

2 Risk exposure and hedging for retailers

In this section, we describe the risks faced by a retailer and the hedging procedure it can undertake to hedge

its exposure with futures contracts.
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2.1 Risks faced by retailers

Consider the case of a retailer forced to supply a quantity of electricity at a fixed price to end-users while

buying it at a variable price on the market. Market conditions for a retailer might differ across different

electricity markets and we look specifically at the Nordic electricity market Nord Pool. This market is chosen

since it is one of the first to operate in a liberalized setup, and the mature markets provide some historical

data less likely to include structural changes.

Assume all electricity purchases occur on the day-ahead market. In this market, the spot price is set on

an hourly basis by balancing supply and demand. Suppose the retailer needs to serve the load Lt,d,h during

hour h of day d in week t, while St,d,h is the Nord Pool system spot price for the corresponding period. The

total load to be served during week t is thus

Lt =

7∑
d=1

24∑
h=1

Lt,d,h. (1)

The mean price paid by a retailer for the purchase of each unit of load during week t is

S∗t =

∑7
d=1

∑24
h=1 Lt,d,hSt,d,h
Lt

, (2)

the load-weighted average of all hourly prices during the week. Assume the retailer charges a constant price

Π for each unit of load. If no hedging is implemented, the retailer cash flow for weekly operations during

week t is

Lt(Π− S∗t ). (3)

A retailer thus faces revenue uncertainty due to (i) price risk caused by the variability of the spot price St,d,h,

and subsequently of S∗t , and (ii) volumetric risk caused by randomness in the total volume Lt of electricity

to be served.

2.2 Electricity futures contracts

A retailer wishes to hedge its exposure to both price and volumetric risks with derivatives on the electricity

markets. Different derivatives are available to hedge those risks: forward and futures contracts, options,

weather derivatives and interruptible contracts. With the exception of forward and futures contracts, most

derivatives on the Nord Pool market are traded over-the-counter, are illiquid, and are not well-suited for

dynamic hedging methodology as they may be unavailable when they are required. More liquid futures and

forwards are better suited for dynamic hedging procedures.

For the Nord Pool market, futures and forward contracts are traded on the NASDAQ OMX. Futures con-

tracts provide hedging for shorter horizons (daily and weekly), while forwards cover longer periods (months,

quarters and years). The current paper focuses on short-term hedging. Tables 1 and 2 present the percentage

of trading days on which non-null trading volumes occur for weekly and daily base load futures.2 Liquidity

is much higher on weekly contracts with 1−, 2− and 3−week maturities. These derivatives will be used in

this paper.

Table 1: Liquidity of weekly futures

Weeks-to-maturity 1 2 3 4 5
Percentage 96% 90% 61% 29% 16%

Notes. Percentage of trading days between January 1st, 2007 and December 31th, 2012 with non-null trading volume of Nord
Pool weekly futures on NASDAQ OMX.

2 Base load means that the contracts deliver electricity during all hours of the day, in opposition to peak load contracts that
only deliver electricity between 8:00 a.m. and 8:00 p.m.
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Table 2: Liquidity of daily futures

Days-to-maturity 1 2 3 4 5
Percentage 64% 16% 8.8% 2.6% 2.0%

Notes. Percentage of trading days between January 1st, 2007 and December 31th, 2012 with non-null trading volume of Nord
Pool daily futures on NASDAQ OMX.

Futures on Nord Pool are cash-settled; no exchange of the underlying commodity occurs. The underlying

asset ST of a weekly futures maturing at week T is the arithmetic average of the Nord Pool system spot price

observed during week T :

St =
1

7× 24

7∑
d=1

24∑
h=1

St,d,h, (4)

where a week starts on Monday and ends on Sunday. Contracts are traded on NASDAQ OMX during

weekdays until the Friday of week T − 1. The futures is thus not traded during its maturity week.

There is a slight mismatch between the average weekly electricity price paid by the retailer, given by (2),

and the underlying asset of weekly futures given by (4). The basis ratio

ηt =
S∗t
St

(5)

links the former and the latter.3 The basis ratio represents an additional source of risk which must be taken

into account by the hedging procedure.

Futures contracts are marked-to-market. This means that (i) their cash flows do not occur strictly at

maturity (in opposition to forward contracts) and (ii) the variation of their quote (referred to as the futures

price) is reflected by the continuous transfer of funds between the margin accounts of the long and short

position holders. Using futures contracts implies having to pay transaction fees and the cost of these will be

accounted for in our methods.4

2.3 Hedging procedure

Throughout this section, the retailer hedges its week T exposure. A self-financing investment portfolio

containing a risk-free asset5 and futures with maturity week T is set up at t0 and rebalanced weekly until

T − 1. Since futures are traded during weekdays only, rebalancing occurs on Fridays at closing time. The
closing price on Friday of week t (or Sunday if t = T ) of the risk-free asset is Bt = exp(rt), and the closing

price of the futures is Ft,T , t = t0, . . . , T − 1. Since futures are cash-settled, the last futures quote on Sunday

of week T is automatically set by the clearing house to FT,T = ST . The hedging procedure is summarized

by the following algorithm:

At week t0. An initial amount of capital Vt0 is allocated for hedging purposes. The retailer enters into

θt0+1 long positions on the futures contract. A portion Mt0 of the initial capital is placed in the margin

account required by the clearing house. Another part is used to pay transaction fees Ct0 . The remainder Bt0
is invested in the risk-free asset. If Vt0 is insufficient to cover the margin call and fees, the money is borrowed.

Since entering positions on futures contracts involves no immediate cash flows besides the amount placed in

the margin,

Vt0 =Mt0 + Bt0 + Ct0 .
3 As shown in Appendix A, the basis ratio η usually evolves between 1 and 1.05. This is explained by a higher spot price

during peak hours when electricity consumption is more important.
4 Transaction fees are described at http://www.nasdaqomx.com/commodities/Marketaccess/feelist/. Fixed annual fees

for membership to the Exchange are disregarded in the current study. Variable fees which are proportional to the volume of
futures transactions include Exchange fees (for trading positions) and Clearing fees (for clearing positions). Exchange fees are
0.004 EUR/MWh. Clearing fees depend on the volume of futures cleared in the most recent quarter, but they range from
0.0035 EUR/MWh to 0.0085 EUR/MWh. For illustrative purposes, a 0.004 EUR/MWh rate is used. Combining Exchange and
Clearing fees, entering or clearing any long or short position is therefore approximated to cost 0.004 EUR/MWh.

5 Since this paper focuses on short-term hedging, a constant weekly risk-free rate r is assumed.

http://www.nasdaqomx.com/commodities/Marketaccess/feelist/
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CapitalMt0 +Bt0 = Vt0 −Ct0 (both inside and outside the margin) is invested (or borrowed) at the risk-free

rate r.6

At week t+ 1, t ∈ {t0, . . . , T − 2}. The total capital available for hedging (the sum of the amount placed in

the margin account and in the risk-free asset) at week t before transaction costs are paid is Vt. This capital

accrues interest up to week t+ 1 and is now worth

(Vt − Ct)
Bt+1

Bt
.

The futures margin account of the retailer is adjusted from marking-to-market,7 the amount θt+1(Ft+1,T −
Ft,T ) is deposited (withdrawn if negative) in the margin account. The total capital available for hedging at

week t+ 1 is therefore

Vt+1 = (Vt − Ct)
Bt+1

Bt
+ θt+1(Ft+1,T − Ft,T ).

The retailer modifies its portfolio to hold θt+2 long positions on the futures contract. Transactions fees Ct+1

are paid. A margin call might be made, but it does not affect the total amount Vt+1 − Ct+1 invested at the

risk-free rate.

At week T . The terminal hedging capital is

VT = (VT−1 − CT−1)
BT
BT−1

+ θT (ST − FT−1,T )− CT ,

where CT are clearing fees. Transaction costs are computed following CT = 0.004|θT | (final clearing costs)

and Ct = 0.004|θt+1 − θt| if t < T with θt0 = 0.

The retailer is at risk of bearing losses when the price it pays to purchase electricity is higher than the

price it charges to its customers. To avoid this situation, the hedging algorithm proposed in this paper

aims at minimizing risks related to electricity procurement costs incurred by the retailer. Having reliable

procurement costs stabilizes the retailer’s profitability.8 Weekly futures, which are used by the retailer to

hedge its exposure, allow locking in the payoff of the variable contingent claim ST to Ft0,T (see Appendix B).9

However, the retailer has short positions on S∗T (instead of ST ) because it needs to buy electricity at that

price. Since S∗T = ηTST , the electricity procurement target price for each unit of load bought by the retailer

during week T is set to (S∗T /ST )Ft0,T = ηTFt0,T . The retailer’s cash flow at time T , given by Equation (3),

can be separated into an unhedged cash flow LT (Π− ηTFt0,T ), the baseline profit margin, and a more risky

component LT (ST − Ft0,T ), the procurement costs risk:

LT (Π− S∗T ) = LT (Π− ηTFt0,T )− LT (S∗T − ηTFt0,T )

= LT (Π− ηTFt0,T )− LT (ST − Ft0,T )

where the load-basis LT is the product of the load and the basis factor:

Lt = ηtLt. (6)

The procurement costs risk can cause large losses when the price ST peaks way above the futures price Ft0,T .

The hedging strategy aims at offsetting the variation of the quantity

6 It is assumed that the retailer can always borrow capital at the risk-free rate. Such an assumption has a limited impact;
hedging errors are very insensitive to interest rates because of the short term horizon of the hedge.

7 To simplify calculations, it is assumed that the futures are marked-to-market weekly. On NASDAQ OMX, marking-to-
market is in reality performed daily. However, because maturities are short-term (and therefore accumulation of interest is
small), such an approximation has only a minor impact.

8 Hedging procurement costs does not remove all risks; profits are still proportional to the load. Adequate hedging of
procurement costs will however prevent extreme losses.

9 This is true if transaction fees are disregarded.
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ΨT = LT (ST − Ft0,T ) (7)

while the retailer determines the fixed price Π to extract an expected but uncertain profit. Considering the

load-basis L (instead of the load L and the basis factor η separately) is convenient since only a single model

is required for the former quantity (instead of two models for the latter).

The retailer would like the terminal value of the hedging portfolio VT to be bigger than the target ΨT

(or at least as close as possible to it) to offset the procurement costs risk. The global hedging problem that

must be solved is thus

min
(θt0+1,...,θT )∈Θ

E [G(ΨT − VT )|Gt0 ] , (8)

where VT = VT (θt0+1, . . . , θT ), G = {Gt|t = t0, ..., T} is the filtration that defines the information available

to the retailer,10 Θ is the set of all trading strategies available to the retailer11 and G is a penalty function

which weights and sanctions losses. Some integrability and regularity conditions might need to be satisfied

to ensure that the solution exists.

There are numerous possibilities for the penalty function G. A standard choice in the literature is the

quadratic function, G(x) = x2, since it conveniently leads to semi-analytical formulas (Schweizer 1995)

and therefore enhances the tractability and the computational speed of the solution. This approach has two

principal caveats: (i) the semi-analytical formulas do not take transaction fees into account; (ii) the quadratic

penalty is symmetric, such that gains and losses are equally penalized.12 To remedy the problem of penalized

gains, we also consider a semi-quadratic penalty13

G(x) = x2I{x>0}. (9)

A retailer using this penalty tries to remove losses as much as possible and disregards gains. A drawback of

using this penalty is that it leads to a substantial increase in the numerical burden. The computations are

however still feasible for the current framework. The computation of solutions for problem (8) with penalty

(9) is discussed in Appendix C. A simulation-based algorithm is proposed to solve the Bellman equation.

This algorithm can accommodate a wide class of penalty functions.

3 Models for the state variables

To compute the optimal trading strategy, the dynamics of the state variables Lt and Ft,T , the key components

in the hedging problem, must be modeled. The proposed models are constructed from historical data.

3.1 Load-basis

We assume that the load the retailer must supply is proportional to the entire system load on the Nord Pool

spot market.14 This proportionality assumption, which is justified by a high correlation between firm load

and market load, is also found in Coulon et al. (2012) for the Texas electricity market.

Load forecasting has been studied in the literature. Weron (2006) surveys different load forecasting

methods and divides them in two classes: artificial intelligence models (neural networks, fuzzy logic, support

vector machines) and statistical models (regression models, exponential smoothing, Box-Jenkins type time

series models). Load forecasting methods are split into three different segments: short-term load forecasting

(STLF), medium-term load forecasting (MTLF) and long-term load forecasting (LTLF). STLF is interested in

hourly forecasts up to one week ahead, MTLF considers forecasts from one week to one year ahead and LTLF

considers even longer horizons. The vast majority of the load forecasting literature considers STLF (Hahn et

10 The retailer is assumed to consider information G relative to past and contemporaneous load-basis, spot prices and futures
prices: Gt = σ{Lu, Su, Fu,u+j

∣∣0 ≤ u ≤ t, j = 1, 2, 3}.
11 In the current paper, this consists of all G−predictable trading strategies, meaning that θt+1 is Gt−measurable for all t.
12 Ni et al. (2012) add a linear term to the quadratic penalty which makes it asymmetric.
13 This penalty is also considered in a hedging problem by François et al. (2012).
14 If the internal load data of the retailer do not support this assumption, the load model should be reworked. For differences

between the load consumption patterns across the four countries that are part of the Nord Pool market, see Huovila (2003).
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al. 2009), but MTLF has attracted more attention recently. Gonzalez et al. (2008) use a combination of neural

networks and Fourier series to represent respectively the trend and the cyclical fluctuation of the monthly load

in the Spanish market. In their paper, Fourier series outperform neural networks in their predictive ability for

the cyclical load fluctuations. Abdel-Aal (2008) compares the use of neural and abductive networks to forecast

the monthly load supplied by a power utility based in Seattle. Abdel-Aal and Al-Garni (1997) compare the

use of univariate ARIMA process, abductive networks and multivariate regression models incorporating

demographic, economic and weather related covariates to forecast the monthly domestic energy consumption

in the Eastern province of Saudi Arabia. ARIMA processes outperformed their competitors in their study.

Barakat and Al-Qasem (1998) propose a regression model with time and temperature as covariates to forecast

the weekly load on the Riyadh system (Saudi Arabia).

To the authors’ best knowledge, no MTLF has been attempted in the literature for the weekly load

in Nord Pool. A parametric statistical model for load dynamics on Nord Pool, that supports our hedging

methodology, is now presented.

3.1.1 Load-basis data

Time series of hourly load (in MegaWatt-hours, MWh) and hourly day-ahead spot price (in Euros, e) on Nord

Pool for the January 1st, 2007 to July 29th, 2012 period are obtained through the Nord Pool FTP server.15

The hourly load is aggregated as shown in (1) and yields 291 weekly load observations. The resulting load

series L and basis ratio series η defined by Equation (5) are then combined to obtain the load-basis series L
in (6).

The most salient feature of the load time series is a seasonal pattern, both in the mean and in the variance.

Autocorrelation between consecutive load departures from its trend is also present. The model chosen for

the dynamics of the load-basis L (observed in Figure 1) is thus:

Lt − g(t) = γ(Lt−1 − g(t− 1)) +
√
v(t)ε

(L)
t (10)

g(t) = β0 +

P∑
j=1

βjC
(sin,j)
t +

P∑
j=1

βj+PC
(cos,j)
t (11)

log v(t) = α0 +

Q∑
j=1

αjC
(sin,j)
t +

Q∑
j=1

αj+QC
(cos,j)
t (12)

where ε(L) is a strong standardized Gaussian white noise. The g function represents the seasonal trend of the

load-basis level and its fitted value is represented by the dashed line in Figure 1. The v function characterizes

the trend in the variance of seasonally corrected load-basis observations and the square root of its fitted value

is represented by the dashed line in Figure 2. Terms of a Fourier expansion

C
(sin,j)
t = sin

(
3π

2
+

2πjt

365.25/7

)
, C

(cos,j)
t = cos

(
3π

2
+

2πjt

365.25/7

)
are used to capture yearly cycles (see also Gonzalez et al. (2008)). The γ parameter in Equation (10) represents

the autocorrelation in seasonally corrected load-basis observations. To preserve the Markov property, only

one lag is considered.16 Parameters to be estimated are γ, β0, . . . , β2P , α0, . . . , α2Q.

3.1.2 Estimation of model parameters

The model estimation is performed in two steps.17 The first consists in estimating γ and β0, . . . , β2P by

quasi-maximum likelihood under the assumption that v(t) is constant. The optimal number P = 3 of Fourier

terms in the mean trend is chosen using the cross-validation procedure described in Appendix D.1. Table 3

15 Nord Pool uses the expression “turnover” to designate the load.
16 Otherwise each additional lag would have to be included as a state variable.
17 Results in Appendix D.2 show that the fitted model is good and a more numerically challenging single-step estimation was

thus not attempted.
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gives estimated parameters and their standard errors for this step. Figure 1 shows the load series L, the load-

basis series L and the estimated load-basis seasonality trend g. Even if the variance v is presumed constant

during the estimation of the trend parameters,18 the overall trend seems reasonably captured. The corrected

load is much larger in winter than in summer; this is expected given the winter heating requirements for

Scandinavian countries. The autocorrelation parameter γ is estimated at 0.68, this large value indicating a

high persistence in load deviations from the trend.

Table 3: Load-basis seasonality trend parameters

Parameter γ β0 × 10−6 β1 × 10−6 β2 × 10−6 β3 × 10−6 β4 × 10−6 β5 × 10−6 β6 × 10−6

Estimated Value 0.68 5.70 −1.13 −0.15 0.06 0.24 0.10 0.11
Standard Error 0.04 0.04 0.06 0.05 0.04 0.06 0.05 0.04

Notes. Estimated parameters and their standard error for the load-basis seasonality trend g defined by Equation (11). Obser-
vations between January 1st, 2007 and July 29th, 2012. Estimated parameter variance is obtained through the inverse of the
observed Fisher information matrix.

Figure 1: Load-basis seasonality trend curves

Notes. Observed total weekly load on the Nord Pool market as defined by (1), corresponding load-basis L and fitted seasonality
trend g(t). Observations between January 1st, 2007 and July 29th, 2012. Load data before 2007 are also included to show the
shift in the overall system load level and justify the use of data starting from January 2007.

Once the trend parameters are estimated, proxy values for
√
v(t)ε

(L)
t , denoted

√
v̂(t)ε̂

(L)
t , can be computed

using Equation (10). Those proxies serve as input in the second step which consists in estimating α0, . . . , α2Q

by maximum likelihood (ML). The optimal number Q = 2 of Fourier terms in the variance trend is selected

through the cross-validation procedure described in Appendix D.1. Table 4 presents the estimated parameters

for the variance model (12). Figure 2 shows the estimated standard deviation trend
√
v̂t (dashed curve) and

the absolute value of the
√
v̂(t)ε̂

(L)
t proxies (full curve). The peak in volatility occurs in the beginning of

winter, while the lowest volatility is observed during the end of the summer. Goodness-of-fit tests that

confirm the adequacy of the load model are found in Appendix D.2.

Table 4: Load-basis variance trend

Parameter α0 α1 α2 α3 α4

Estimated Value 24.40 −0.72 −0.38 0.49 −0.32
Standard Error 0.08 0.11 0.11 0.11 0.12

Notes. Estimated parameters and their standard error for the load-basis variance trend v defined by Equation (12). Observations
between January 1st, 2007 and July 29th, 2012. Estimated parameter variance is obtained through the inverse of the observed
Fisher information matrix.

18 At this step, the constant estimated volatility is
√
v̂ = 2.264× 105.
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Figure 2: Load-basis standard deviation trend curves

Notes. Realized absolute load-basis volatility
√
v̂(t)|ε̂(L)t | and fitted standard deviation trend

√
v̂ as defined by Equation (12).

Data between January 1st, 2007 and July 29th, 2012.

3.1.3 Load-basis forecasting from incomplete information

The selection of θt+1, the number of futures shares detained in the portfolio from the Friday of week t until

the Friday of week t + 1, is based on Lt, the weekly load-basis on week t. However Lt is only observed at

midnight on Sunday of week t, and not at the closing time of markets on Friday. What is observed at the

latter time is the sum of hourly loads from the beginning of week t to 4:00 p.m. on Friday:

L̃t =

4∑
d=1

24∑
h=1

Lt,d,h +

16∑
h=1

Lt,5,h.

When θt+1 is selected, the value of Lt must thus be forecast using L̃t. The accuracy of several forecasting

models were compared through a cross-validation test and the model

L̂t = L̃t ×

`+ c

q∑
j=1

Lt−j
L̃t−j

 (13)

produced the lowest out-of-sample forecasting RMSE. The out-of-sample mean absolute percentage error

(MAPE) is 1.12%.19 The parameter ` drives the long-term average of the ratio Lt/L̃t, while the autoregressive

coefficient c characterizes the dependence of the current ratio on previous ratios. The estimated parameters

obtained when re-estimating with the full dataset are ˆ̀= 0.716, ĉ = 0.171 and q̂ = 3. The long-term average

of the Lt/L̃t ratio is given by ˆ̀/(1− q̂ĉ) = 1.47.20

3.2 Futures and spot price

In this section, time series of futures prices are modeled. Modeling the relation between the spot and futures

prices in the context of electricity markets is complicated by the fact that electricity is not storable. This

prevents the use of the usual cash-and-carry scheme to price futures contracts.

Solving problem (8) requires a model that completely specifies the stochastic dynamics of futures prices.

An important strand of the literature studies the risk premium on electricity futures contracts.21 Although

19 The out-of-sample MAPE obtained by using the naive benchmark L̂t := `L̃t is 1.21%. Obtaining good load forecasts is
crucial to the success of the hedging procedure and the small improvement of model (13) over the naive method justifies its use.

20 This is consistent with what is expected; since L and L̃ are respectively approximately the sum of 168 and 112 hourly loads,
the long-term average of the ratio should revolve around 168/112 = 1.5.

21 For example, Lucia and Torro (2011) study the behavior of the risk premium on Nord Pool weekly futures with an ex-post
econometric model taking into account hydropower reservoir levels.
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these papers provide relevant information concerning the relation between the spot and futures prices, their

models do not directly fit our needs since they do not characterize the futures prices dynamics. Several

approaches are however proposed in the literature for this purpose and they will now be discussed.

Despite the fact that electricity is not storable and not openly traded, some authors follow the risk-neutral

approach commonly used in finance. The dynamics of the spot price are modeled and a martingale measure

is selected to compute futures prices as an expectation of the discounted cash flows. Benth et al. (2008) use

a linear combination of non-Gaussian Ornstein-Uhlenbeck processes to represent the stochastic variability of

the spot. They use the Esscher transform to compute futures prices. Coulon et al. (2012) propose a structural

factor model encompassing natural gas price and electricity load to characterize spot price dynamics on the

ERCOT electricity market. They use the Girsanov transform to compute derivatives prices.

Besides the non-storability of electricity, there is another potential pitfall with the risk-neutral approach

to price futures. On the Nord Pool market, a principal component analysis applied to weekly futures returns

shows that the spot price might be driven by factors different than those driving futures prices (Benth et

al. 2008). The martingale measure approach discounting the expected spot price to obtain the futures price

might thus be inappropriate. This result is consistent with the study of Koekebakker and Ollmar (2005) who

uses principal component analysis to propose a multi-factor model for forward returns. They find that the

number of factors necessary to represent the full forward curve is much larger for electricity futures on the

Nord Pool market than for other commodities; the correlation between short-term and long-term electricity

forward prices is smaller than in other markets.

Benth et al. (2008) also suggest adapting the Heath-Jarrow-Morton framework to electricity markets.

Under such a methodology, the dynamics of forward prices that deliver an infinitesimal volume of electricity

are directly specified. However, futures prices, which are really swap prices in the context of electricity

markets, suffer from severe intractability issues under this model and we did not retain this approach.

The third method proposed in Benth et al. (2008) is to find a statistical model that reproduces the

dynamics of the observed futures returns. This approach is followed in the current paper since it better suits

our need to fully specify the distribution and the stochastic dynamics of futures and spot prices of electricity.

Furthermore, this approach reproduces stylized facts.

Daily prices of futures on NASDAQ OMX are provided by Bloomberg. Since futures prices vary during

the day, closing prices are used.

3.2.1 Our model

For a market participant hedging the cost of electricity at maturity week T , the sequence of observed futures

prices that must be modeled is {FT−j,T |j = 3, 2, 1, 0}. We propose a multivariate time series model for the

joint dynamics of the spot and futures prices. As with financial assets, futures price returns are modeled

(instead of the futures prices) as they are more likely to be stationary. Futures returns defined by

εt,T = log(Ft,T /Ft−1,T ) (14)

are shown in Figure 3 for t = T, T − 1, T − 2.

Futures price returns exhibit autocorrelation, volatility clustering and fat tails. These features suggest

a multivariate AR-GARCH process with innovations drawn from a fat-tail distribution. For the latter, we

choose a Normal Inverse Gaussian (NIG) distribution. More specifically, for i = 0, 1, 2, the trivariate AR(1)-

GARCH(1,1) with NIG innovations is

εt,t+i = µi + ai εt−1,t−1+i + σi,tzi,t (15)

σ2
i,t+1 = min{ς2, κi + γiσ

2
i,t + ξiσ

2
i,tz

2
i,t} (16)

where zt = (z0,t, z1,t, z2,t) has the following properties:
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Figure 3: Futures price returns for different times-to-maturity

Notes. Time series for NASDAQ OMX electricity weekly futures returns (on Nord Pool day-ahead spot price) as defined by
(14) between January 1st, 2007 and July 29th, 2012. The trivariate time series illustrated contains 290 observations.

if s 6= t, zt and zs are independent;

zi,t are drawn from a standardized22 NIG(αi, βi) distribution;

z0,t, z1,t and z2,t are linked by the Gaussian copula.

A bound ζ is used on the volatility to ensure that futures prices are square-integrable.23 The ai parameter

represents autocorrelation of futures returns while µi adjusts their long-term expected level. The κi parameter

adjusts the long-term level of futures return volatility, the γi characterizes the persistence in returns volatility,

and ξi determines how shocks associated with current returns affect the current volatility. The NIG parameter

αi drives the tail thickness in the distribution of the futures return while the βi drives its asymmetry.

3.2.2 Model estimation

A two-step procedure is applied. First, the parameters for the three marginal AR(1)-GARCH(1,1) processes

(εt,t+1, εt,t+2 and εt,t+3) are estimated by ML.24 Plugging the estimated parameters in (15)–(16) yields proxy

values ẑt for zt. Then, the proxies are used to estimate the parameters of the Gaussian copula. Letting

FNIG denote the cdf associated with the NIG distribution and applying the Rosenblatt (1952) transform

to the proxy ẑt yields a series of approximatively independent uniformly distributed observations Ut =(
FNIG(α̂0,β̂0)(ẑ0,t), FNIG(α̂1,β̂1)(ẑ1,t), FNIG(α̂2,β̂2)(ẑ2,t)

)
drawn from the Gaussian copula. ML is used and the

closed-form solution is ρ̂i,j = corr(Φ(−1)(Ui,t),Φ
(−1)(Uj,t)), where corr is the sample correlation and Φ(−1)

is the inverse cdf of a standard Gaussian variable.

Parameter estimates are shown in Tables 5 and 6. The negative mean parameters µi indicate the futures

market is in contango. The GARCH parameters γi and ξi are highly significant, confirming the presence of

volatility clustering in futures returns. The autocorrelation parameters ai are also all significant and positive,

indicating that futures returns are partially predictable. The αi parameters are all low (smaller than 2) so

22 A standardized NIG is a NIG distribution with mean 0 and variance 1. Such a distribution only has two free parameters:
α and β. Note that these α and β should not be confused with those used in the load-basis model in Section 3.1.1.

23 More precisely, the condition

σi,t <
αi − βi

2
a.s. (17)

is necessary and sufficient to obtain E
[
e2εt,t+i

]
< ∞. Thus, the volatility bound ς combined with the additional constraints

αi > ς, and βi ∈ (−αi, αi − 2ς] assure (17) is satisfied.
24 The proxy for the initial value for the volatility σ̂i,0 is its long-term stationary average. The bound is set at ς = 0.6 since

such a constraint is not numerically binding with the available data.
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Table 5: Futures return parameters

Parameter i = 1 i = 2 i = 3

µi × 102 −0.722 (0.001) −1.566 (0.003) −1.265 (0.002)
ai 0.215 (0.005) 0.143 (0.005) 0.073 (0.004)

κi × 102 0.177 (3×10−5) 0.124 (3×10−5) 0.106 (2×10−5)
γi 0.282 (0.018) 0.577 (0.008) 0.603 (0.010)
ξi 0.500 (0.027) 0.373 (0.009) 0.340 (0.010)
αi 1.097 (0.009) 1.270 (0.089) 1.236 (0.022)
βi −0.108 (0.001) −0.056 (0.099) 0.009 (0.006)

Notes. Estimated parameters (standard error) for futures returns model defined in (15)–(16). Observations between January
1st, 2007 and July 29th, 2012 for futures with i = 1, 2 and 3 weeks to maturity.

Table 6: Futures return copula parameters

Parameter ρ0,1 ρ0,2 ρ1,2
Estimate (Standard Error) 0.76 (0.03) 0.67 (0.04) 0.88 (0.01)

Notes. Estimated parameters (standard errors) for the Gaussian copula linking futures returns. ρi,j links returns on futures
with respectively i+ 1 and j + 1 weeks to maturity. Observations between January 1st, 2007 and July 29th, 2012.

the kurtosis of futures returns is more pronounced than in a Gaussian distribution (which corresponds to an

infinite α). The correlation parameters of the Gaussian copula are all higher than 0.65, indicating a somewhat

high correlation between futures returns across the time-to-maturity dimension.

Goodness-of-fit tests that confirm the adequacy of the futures return model are found in Appendix D.3.

Futures returns and load-basis innovations are assumed to be independent. Statistical tests in Appendix D.4

validate this assumption.

4 Performance assessment

We carry out numerical experiments to assess the performance of the hedging strategy given by solutions

of problem (8). We propose two different hedging procedures: (i) the hedging methodology which solves

problem (8) with G(x) = x2 is referred to as quadratic dynamic global hedging (QDGH); (ii) the methodology

solving that same problem but without penalizing the gains, i.e. using (9), is called semi-quadratic dynamic

global hedging (SQDGH). The benchmarks are described in Section 4.1 while the backtests are explained in

Section 4.2.

4.1 Benchmarks

4.1.1 Delta Hedging

If the load to be served by the retailer is known with certainty and no transaction fees exist, the delta hedging

strategy proposed by Eydeland and Wolyniec (2003) completely eliminates the price risk borne by the retailer

by locking in the spot price to Ft0,T (see Appendix B). This strategy is adapted to the case of a stochastic

load by hedging the expected load-basis, i.e. the retailer enters into

θt+1 =
Bt+1

BT
E [LT |Gt] (18)

long positions in the futures contract at time t to cover its exposure at time T . Improved delta hedging

(IDH) uses the load-basis model (10)–(12) to compute E [LT |Gt] in (18).

To quantify the impact of using the (10)–(12) load-basis model in the hedging algorithm, alternative load-
basis models are also proposed to compute E [LT |Gt]. For example, one may state that a good prediction of
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the expected load-basis in a near future is the last observed load-basis. This points to the first alternative,

the naive delta hedging (NDH), which uses the naive prediction model

E[L(NDH)
t+1 |Gt] = L(NDH)

t .

The second alternative, referred to as delta hedging (DH), uses a load-basis model inspired from Wagner

et al. (2003) where the latent variable found in their model is removed for simplicity. Their model specifies

the load dynamics, but is applied here to the load-basis. More specifically, the load-basis model for DH is

L(DH)
t+1 = L(DH)

t + γ(DH)(L̄mt+1
− L(DH)

t ) + Et+1

where E is a Gaussian white noise, L̄m is the mean value of the load-basis during the mth month of the

year (m = 1, . . . , 12) in the estimation set, mt+1 is the month associated with the week t + 1 and γ(DH) is

estimated by ML. We find γ̂(DH) = 0.3477.

4.1.2 Local Minimal Variance Hedging (LMVH)

The objective of this strategy, which is based on the Ederington (1979) scheme, is to construct a port-

folio of futures whose variation mimics the variation of the spot price as closely as possible for the cur-

rent period. More precisely, for each unit of load to serve, the retailer would detain ϑt+1 units of fu-

tures at time t, where ϑt+1 minimizes Var [(St+1 − St)− ϑt+1(Ft+1,T − Ft,T )|Gt]. This yields the solution

ϑt+1 = Cov [St+1, Ft+1,T |Gt]/Var [Ft+1,T |Gt]. To adapt this scheme to the case of stochastic load, the retailer

hedges its expected load-basis by detaining at time t,

θ
(LMVH)
t+1 = E [LT |Gt]

Cov [St+1, Ft+1,T |Gt]
Var [Ft+1,T |Gt]

(19)

long positions in the futures contract to cover its exposure at time T . Many different models are used in the

literature to compute the conditional variance and covariance in (19). We compute these quantities with the

futures model (15) for consistency and refer to the approach as local minimal variance hedging (LMVH).

4.1.3 Static Hedging

Since many papers are devoted to static hedging procedures, we include them in our study. To apply static

hedging (SH), the retailer identifies the solution to problem (8) under the constraint θt0+1 = . . . = θT . We

use the semi-quadratic penalty (9) and identify the optimal trading strategy through simulation.

4.2 Backtests

In all tests, the initial value of the portfolio Vt0 is set to 0 and the annualized continuously compounded risk

free rate is r = 0.0193.25 The case of a retailer serving 1% of the Nord Pool load is considered.

4.2.1 In-sample backtest

In this experiment, our global hedging and the benchmarks are applied to historical data during the 287

weeks over the January 29th, 2007 to July 23th, 2012 period. Hedging errors ΨT − VT are recorded at the

end of week T and the performance of the various approaches are compared through the following metrics:

RMSE =

√√√√ 1

287

287∑
T=1

(ΨT − VT )2, (20)

Semi-RMSE =

√√√√ 1

287

287∑
T=1

(
(ΨT − VT )I{ΨT>VT }

)2
, (21)

25 The average overnight EURO LIBOR rate between January 1st, 2007 and July 29th, 2012.
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TVaRα =

∑287
T=1(ΨT − VT )I{ΨT−VT≥q(1−α)}∑287

T=1 I{ΨT−VT≥q(1−α)}
.

where VaRα = q(1−α) is the quantile of level 1−α of hedging errors ΨT −VT . Results are reported in Table 7.

Table 7: In-sample backtest results

Model SQDGH QDGH IDH DH NDH STAH LMVH NOH

Mean 6.107 7.641 7.696 8.176 7.069 8.240 −18.95 −70.73
RMSE 26.20 27.65 27.36 31.37 35.03 28.05 274.8 474.1

Semi-RMSE 23.68 26.30 26.10 29.75 32.15 26.99 208.4 319.5
VaR5% 48.97 52.41 54.53 60.56 73.85 52.93 414.0 688.7
VaR1% 115.4 130.3 129.2 142.7 153.5 146.9 1206 1471

TVaR5% 89.97 100.3 99.31 115.3 121.0 103.5 784.5 1201
TVaR1% 133.1 163.1 161.9 172.9 180.9 159.2 1273 1831

Notes. Hedging error risk metrics for the in-sample backtest (in 1000e). Semi-quadratic dynamic global hedging (SQDGH),
quadratic dynamic global hedging (QDGH), Delta Hedging (DH), Improved Delta Hedging (IDH), Naive Delta Hedging (NDH),

Static Hedging (STAH), Local Minimal Variance Hedging (LMVH) and No hedging (NOH), i.e. θ
(NOH)
t = 0 for all t.

The main result is that the semi-quadratic SQDGH outperforms all other methods in terms of risk reduc-

tion; it reduces the semi-RMSE, the TVaR5% and the TVaR1% by 2,420e, 9,340e and 28,800e , respectively

(i.e. by 9.3%, 9.4% and 17.8% in relative measurement), with respect to IDH, the best benchmark. Those

improvements can be attributed to using global hedging procedures instead of delta hedging since both ap-

proaches share the same load model. To put these numbers in context, the mean weekly procurement costs

of electricity (the average of LTST for the January 2007 to August 2012 period) for the considered retailer

is 2.35M e. Von der Fehr and Hansen (2010) identify a retail price mark-up ranging between 7.2% and 13%

over the wholesale price for fixed-price contracts in Norway. Using a 10% mark-up for ballpark calculations,

this leaves the retailer with an average weekly margin of 235, 000e to cover expenses and profit; average

profits will be a fraction of that amount. SQDGH reduces the 1% worst-scenarios average loss with respect

to IDH by 28, 800e, a substantial fraction of average profits.

Note that IDH benefits from our load-basis model (10)–(12). The added value of the latter model is

isolated by comparing IDH with DH and NDH. The TVaR1% is reduced from 180, 900e for the NDH to

172, 900e for the DH, and further reduced to 161, 900e for the IDH. This illustrates the importance of

having an accurate load-basis model and the benefits provided by the model (10)–(12) in terms of risk

reduction.

The combined reduction in TVaR1% due to methodology presented in this paper obtained by comparing

SQDGH and NDH is 47, 800e, with a combined reduction in semi-RMSE of 8, 470e.

It is also interesting that the mean hedging error is lower for SQDGH than for all other models except

LVMH and NOH. This indicates the risk reduction yielded by the SQDGH method is not obtained at the

expense of a lesser profitability. The LMVH and NOH methods are the two most profitable on average, but

they yield extremely poor results in terms of risk. The poor performance of the LMVH method is explained

by positions in the futures that are significantly too low. Indeed, since the cash-and-carry relationship of

futures price and the spot price does not hold in this market, the correlation between spot price and futures

price variations are much lower than in other markets. This reduces the θ(LMVH) position and produces

under-hedging. Because the Nord Pool electricity futures market is in contango,26 under-hedging produces

higher average profits than full hedging.

In terms of semi-RMSE, STAH underperforms IDH, QDGH and SQDGH, showing the benefits of dynamic

hedging over a static procedure.

26 The average 3-weeks futures price is 7.7% higher than the arithmetic average spot price for the January 2007 to July 2012
period.
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4.2.2 Out-of-sample backtest

In this experiment, parameters for the state variables models are estimated using only data for the 2007

to 2011 period (the in-sample). Hedging is then performed for exposure weeks in 2012 (the out-of-sample).

This replicates the more realistic application conditions where future observations cannot be used to estimate

state variable models. As our out-of-sample set only comprises 29 observations however, the experiment is

mainly illustrative. Risk metrics (20)–(21) applied to hedging errors for the out-of-sample backtest are given

Table 8. TVaRs are not given because of the low number of observations.

Table 8: Out-of-sample backtest results

Model SQDGH QDGH IDH DH NDH STAH LMVH NOH

Mean 13.64 15.99 15.99 18.30 25.66 16.77 31.75 17.70
RMSE 36.30 38.47 38.65 44.58 50.28 44.49 194.6 517.8

Semi-RMSE 35.18 38.27 38.41 44.09 50.09 43.56 166.9 431.4

Notes. Hedging error risk metrics for the out-of-sample backtest (in 1000e). Semi-quadratic dynamic global hedging (SQDGH),
quadratic dynamic global hedging (QDGH), Delta Hedging (DH), Improved Delta Hedging (IDH), Naive Delta Hedging (NDH),

Static Hedging (STAH), Local Minimal Variance Hedging (LMVH) and No hedging (NOH), i.e. θ
(NOH)
t = 0 for all t.

Once again, SQDGH outperforms all the benchmarks, reducing the half-RMSE by 8.1% with respect

to QDGH, its closest competitor. Furthermore, SQDGH proved to be the most profitable method with an

average hedging error lower than every other method, even LMVH and NOH. The latter should produce

lower hedging errors than the other benchmarks on average since they give under-hedging in a market in a

contango situation. This did not materialize however given the higher volatility of their hedging errors and

the small number of out-of-sample observations. The SQDGH is therefore the best hedging method among

all the proposed methods in both the in-sample and out-of-sample backtests.

5 Conclusion

A dynamic global hedging methodology involving futures contracts is developed to allow retailers to cover

their exposure to price and load risk. Global hedging procedures have received little or no attention in the

electricity markets literature because they often yield solutions which are computationally more complex

than their local counterparts. We show that the approach is not only feasible but easily allows us to account

for load uncertainty, basis risk and transaction costs when seeking the optimal trading strategy.

Statistical models were proposed for the load to be served by the retailer, the electricity spot price and

futures contract prices on the Nord Pool market. Those models were built from weekly historical data and

reproduce their stylized facts. The load basis model accounts for seasonality in the mean and the variance,

as well as autocorrelation in seasonally corrected shocks. The proposed model for futures price returns, a

multivariate AR(1)-GARCH with NIG innovations, exhibits stochastic volatility, partially predictable returns

and fat tails. Multiple goodness-of-fit tests validate the adequacy of all models developed.

Backtests using historical market data show the superiority of the semi-quadratic global hedging procedure

compared to various benchmarks of the literature in terms of risk reduction.

A Basis ratio

The weekly average price S∗t paid for electricity differs from the weekly arithmetic average price St, which is

the underlying asset of weekly futures. The extent to which S∗t and St differ is represented by basis ratio ηt
in (5). Figure 4 shows the observed ratio over the January 1st, 2007 and July 23th, 2012 period.

As ηt is larger than one in all but one instance, S∗t overestimates St. Such a departure has not yet been

considered in the literature. This departure is due to the fact that more electricity is consumed during peak
hours when its price is higher.
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Figure 4: Basis ratio time series

Notes. Observed ratio of the load weighted mean spot price to the arithmetic mean spot price as defined by (5). Observations
between January 1st, 2007 and July 23th, 2012.

B Delta-hedging with futures

If transaction costs are disregarded, the terminal value of the self-financing hedging portfolio with an initial

value of 0 is given by VT =
∑T
j=t0+1 θj(BT /Bj)(Fj,T − Fj−1,T ). Setting θj = Bj/BT , the terminal value of

the portfolio becomes

VT =

T∑
j=t0+1

(Fj,T − Fj−1,T ) = FT,T − FT,t0 = ST − FT,t0 .

Therefore, holding one unit of this portfolio for each unit of load sold (in the case where the load to serve is

known with certainty) permits to lock in the price of electricity to FT,t0 .

C Solving problem (8)

The optimal trading strategy (θ∗T−2, θ
∗
T−1, θ

∗
T ) solving problem (8) with the semi-quadratic penalty (9) is

obtained through dynamic programming (Bertsekas 1995):

ψt,T = min
θt+1

E [ψt+1,T |Gt] with the terminal conditionψT,T = G(ΨT − VT ), (22)

θ∗t+1 = arg min
θt+1

E [ψt+1,T |Gt] . (23)

This optimization problem is tackled using backward induction over time. The traditional approach used

for solving (22) is based on a lattice which includes all state variables of the problem; these include the current

value of the load-basis and futures prices, current futures return volatilities, the current hedging portfolio

value, lagged futures returns and the past portfolio composition. Such an approach is not viable due to its

large dimension. Our approach is a stochastic tree which is feasible because the hedging portfolio is only

rebalanced three times. The optimization of the trading position θt is performed numerically by discretizing

its possible values.

C.1 Simulation of the stochastic tree

Since the terminal condition ψT,T = G(ΨT − VT ) = G(LT (FT,T − FT−3,T ) − VT ) depends on the state

variables (the load-basis L and the futures contracts related variables) and some endogenous variables (the

portfolio value VT and consequently the corresponding portfolio positions θT−1, θT−2, and θT−3), the random

tree must account for all these dimensions.
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At time T − 3, MT−3 scenarios for the state variables are simulated from Equations (10)–(12) and (15)–

(16).27 These scenarios are combined with all the possible portfolio positions28 θT−2 ∈ ΘT−2 to generate

NT−3 = MT−3Card{ΘT−2} simulated values for endogenous variables (VT−2, θT−2).

At time T − 2, these NT−3 scenarios for the state and endogenous variables are subdivided into NT−2 =

MT−2Card{ΘT−1} branches corresponding to all combinations of simulated state variables and possible

portfolio positions. A similar iteration occurs at time T −1, leading to NT−3×NT−2×NT−1 terminal nodes.

C.2 Backward induction

The algorithm solving (22) starts by computing the final hedging penalty at each terminal node29 of the tree:

ψ̂T

(
mT−3,mT−2,mT−1

θT−2,θT−1,θT

)
= G

(
LT
(
mT−3,mT−2,mT−1

θT−2,θT−1,θT

)
(FT,T (mT−3,mT−2,mT−1)− FT−3,T )− VT

(
mT−3,mT−2,mT−1

θT−2,θT−1,θT

))
.

Equations (22)–(23) are then approximated using the following backward recursion for each node of the tree:

θ̂∗T

(
mT−3,mT−2

θT−2,θT−1

)
= arg min

θ∈ΘT

1

MT−1

MT−1∑
m=1

ψ̂T

(
mT−3,mT−2,m
θT−2,θT−1,θ

)
,

ψ̂T−1

(
mT−3,mT−2

θT−2,θT−1

)
= min

θ∈ΘT

1

MT−1

MT−1∑
m=1

ψ̂T

(
mT−3,mT−2,m
θT−2,θT−1,θ

)
,

θ̂∗T−1

(
mT−3

θT−2

)
= arg min

θ∈ΘT−1

1

MT−2

MT−2∑
m=1

ψ̂T−1

(
mT−3,m
θT−2,θ

)
,

ψ̂T−2

(
mT−3

θT−2

)
= min

θ∈ΘT−1

1

MT−2

MT−2∑
m=1

ψ̂T−1

(
mT−3,m
θT−2,θ

)
,

θ̂∗T−2 = arg min
θ∈ΘT−2

1

MT−3

MT−3∑
m=1

ψ̂T−2 (mθ ) ,

ψ̂T−3 = min
θ∈ΘT−2

1

MT−3

MT−3∑
m=1

ψ̂T−2 (mθ ) .

In the experiments of Section 4, the number of scenarios are MT−3 = MT−2 = 1000 and MT−1 = 100 . Fewer

scenarios are required at the final step since the conditional expectations can partially be solved analytically.

More precisely, Equations (22)–(23) involve double integrals (one over the load innovation and the other over

the futures return innovation with a one-week maturity). Fortunately, the load innovation is Gaussian, so

the first integral can be computed analytically. Therefore, instead of using a regular Monte-Carlo simulation

for the futures innovation, a quadrature in a single dimension is applied.

The discrete sets of portfolio positions are ΘT−2 = {0.96, 0.965, . . . , 1.04} and ΘT−1 = ΘT = {0.93, 0.94,

. . . , 1.07}, implying that Card{ΘT−2} = 17 and Card{ΘT−1} = Card{ΘT } = 15.

Variance reduction techniques improve the precision of the Monte Carlo estimates and compensate for

small sample sizes. Antithetic variables are used in the simulation for load-basis innovations ε(L). The first

half of scenarios are simulated by regular Monte-Carlo methods. In the last half of scenarios, the futures

return innovations are identical to the ones in the first half. Load innovations are however set equal to their

antithetic counterparts.

27 Simulating a scenario at time t involves simulating the values of the load-basis and futures price innovations, respectively

ε
(L)
t+1 and εt+1,t+j , j = 1, 2, 3.
28 A discretize subset ΘT−2 of the possible positions is considered. Card{ΘT−2} represents the number of elements it contains.
29 The terminal nodes are identified with the set of indices corresponding to the branches constituting the path:(

mT−3,mT−2,mT−1

θT−2,θT−1,θT

)
.



18 G–2013–88 Les Cahiers du GERAD

C.3 Re-simulation

The previous algorithm determines the optimal hedging strategy
(
θ∗T−2, θ

∗
T−1, θ

∗
T

)
as seen from time T −3. At

time T − 2, the retailer holds θ∗T−2 long futures positions and has to select θ∗T−1 to perform the rebalancing.

The realization of the state variables at time T − 2 will not exactly fall on one particular node of the random

tree. The standard approach used to solve this issue is to interpolate between the nodes of the tree to

determine the optimal hedging position θ∗T−1. We opted for a re-simulation to obtain simulated data which

incorporates the newly observed realization of state variables. More precisely, a two-period random tree is

simulated from time T − 2 up to time T to update the optimal hedging strategy
(
θ∗T−1|T−2, θ

∗
T |T−2

)
. Since

this tree is smaller than the previous one, we opted for a thinner discretization of the portfolio positions:

ΘT−1 = {0.93, 0.9325 . . . , 1.07}, and ΘT = {0.93, 0.94 . . . , 1.07} while keeping MT−2 = 1000 and MT−1 =

100.

Finally, at time T−1, a one-period random tree with ΘT = {0.900, 0.901 . . . , 1.100} is simulated to update

the final hedging position θ∗T |T−1.

D Load-basis model estimation

D.1 Cross-validation procedure for load model selection

To determine the number P of Fourier terms in step 1 of the load-basis model estimation (or Q in step 2),

a cross-validation procedure is implemented. The load-basis data are from 2007 to 2012. Data from year y

are removed and retained as out-of-sample, while remaining data are in-sample. For each value of P (or Q),

the model is estimated in-sample. Denote J y1,P = (γ, β0, ...β2P+1) and J y2,Q = (α0, ...α2Q+1). f denotes the

pdf function.

Ĵ y1,P = argmax
J y1,P

∑
t,year(t)6=y

log fLt|Lt−1
(Lt|Lt−1) (under assumption that v(t) is constant)

Ĵ y2,Q = argmax
J y2,Q

∑
t,year(t)6=y

log fvt(J y2,Q)εt(
√
ṽ(t)ε̃

(L)
t )

where g̃(t) and ṽ(t) are obtained by respectively plugging Ĵ y1,P in (11) and J y2,Q in (12). The ε̃
(L)
t are

calculated by replacing g(t) and v(t) by g̃(t) and ṽ(t) in (10).

Then, a test statistic assessing the goodness-of-fit (MSE for P , log-likelihood for Q) is calculated out-of-

sample:

MSEPy =
1

ny

∑
t,year(t)=y

(Lt − Pred(Lt, Ĵ y1,P ))2

log-lQy =
∑

t,year(t)=y

log f√
vt(Ĵ y2,Q)ε

(L)
t

(
√
v̂(t)ε̂

(L)
t )

where ny is the number of observations in year y. ĝ(t) and v̂(t) are obtained by respectively plugging Ĵ y1,P
in (11) and Ĵ y2,Q in (12). The ε̂

(L)
t are calculated by replacing g(t) and v(t) by ĝ(t) and v̂(t) in (10). The

predicted load-basis is Pred(Lt, Ĵ y1,P ) = ĝ(t) + γ̂(Lt−1 − ĝ(t− 1)) where ĝ is calculated by plugging Ĵ y1,P in

(11) and γ̂ is the first component of Ĵ y1,P . The prediction is obtained by applying a conditional expectation

on (10). This operation is repeated for all years y and the test statistic is aggregated across all years:

RMSEPtotal =

√√√√∑2012
y=2007 nyMSEPy∑2012

2007 ny
or log-lQtotal =

2012∑
y=2007

log-lQy .

Parameters P̂ and Q̂ are selected to optimize the corresponding test statistic

P̂ = argmin
P

RMSEPtotal and Q̂ = argmax
Q

log-lQtotal.
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Results are shown in Tables 9 and 10 and suggest P̂ = 3 and Q̂ = 2.

Table 9: Cross-validation test results for the load-basis seasonality trend

Value for P 1 2 3 4 5
Cross-validation RMSE (×105) 2.386 2.376 2.360 2.364 2.367

Notes. Out-of-sample cross-validation prediction root-mean-square-error for the load-basis model with different numbers of
Fourier terms P in the load-basis seasonality trend g defined by (11).

Table 10: Cross-validation test results for the load-basis variance trend

Value for Q 1 2 3 4 5
Cross-validation log-likelihood (×10−3) −3.973 −3.967 −3.973 −3.974 −3.976

Notes. Out-of-sample cross-validation log-likelihood for the load-basis model with different numbers of Fourier terms Q in the
load-basis variance trend v defined by (12).

D.2 Goodness-of-fit for the load model

In this section, the properties of the standardized residuals ε̂
(L)
t are analyzed to determine the adequacy of

the load-basis model (10)–(12). Figure 5 shows a boxplot of residuals by quarter of the year, a QQ-plot and a

kernel density plot. Residuals look reasonably uniform across quarters; there is thus no obvious evidence that

the seasonal trend is not properly being captured. The Gaussian distribution seems to be a suitable candidate

for residuals, even if the empirical left tail of the load residuals is slightly heavier. A bootstrap Cramer-Von-

Mises goodness-of-fit test for the adequacy of the Gaussian distribution is applied to the residuals and the

p-value is 27%, not rejecting the Gaussian distribution. A Ljung-Box test for autocorrelation of residuals has

a p-value of 92% and does not reject ε̂
(L)
t as white noise. The presence of a GARCH effect in the residuals

is tested through the McLeod-Li test (p-value of 18%) and Lagrange Multiplier test (p-value of 16%); there

is no significant presence of a GARCH effect. Therefore, the ε(L) load-basis innovations are modeled by a

strong Gaussian white noise.

Figure 5: Load-basis model residuals

Notes. Boxplot, Gaussian QQ-plot and kernel plot for load-basis residuals ε̂(L) between January 1st, 2007 and July 29th, 2012.
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D.3 Goodness-of-fit of futures return model

Ljung-Box and McLeod-Li tests for strong white noise are carried out on the scaled residuals ẑj,t, j = 0, 1, 2.

P -values are obtained through simulation (usual p-value formulas incorrectly assume Gaussianity). P -values

are given in Table 11 and none of the tests reject the white noise hypothesis.

Table 11: Autocorrelation tests for futures return innovations

Series z0,t z1,t z2,t

Ljung-Box p-value 0.36 0.35 0.41
McLeod-Li p-value 0.97 0.33 0.72

Notes. Bootstrapped p−values for the Ljung-Box and McLeod-Li tests applied on futures return innovations. Observations
between January 1st, 2007 and July 29th, 2012 for futures with 1, 2 and 3 weeks to maturity.

The choice of the NIG distribution for the innovations must be validated. Figure 6 compares the kernel

density of the ẑi,t, its fitted NIG distribution and a corresponding Gaussian distribution. The NIG distribution

represents more adequately the shape of the empirical residuals distribution than the Gaussian distribution,

the latter is unable to capture the peakedness of the empirical futures returns distribution. Cramer-Von-

Mises tests (with simulated p-value) are applied to assess the adequacy of the fit of the NIG distribution for

the zi,t innovations. P -values are found in Table 12 for each univariate zi,t, i = 0, 1, 2 series. The p-value for

the joint trivariate series is 0.82. The NIG distribution thus provides an acceptable fit.

Figure 6: Futures return distribution

Notes. Kernel density plots of futures return innovations and fitted NIG and Gaussian distributions. Observations between
January 1st, 2007 and July 29th, 2012 for futures with 1, 2 and 3 weeks to maturity.

Table 12: Goodness-of-fit of the futures return distribution

Series z0,t z1,t z2,t
p-value 0.09 0.88 0.65

Notes. Bootstrapped p−values for the Cramer-Von-Mises goodness-of-fit test on the NIG distribution for futures return. Ob-
servations between January 1st, 2007 and July 29th, 2012 for futures with 1, 2 and 3 weeks to maturity.
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To validate the choice of the copula, Cramer-Von-Mises goodness-of-fit tests are applied for the Gaussian

copula on the three following pairs of processes: (z0,t, z1,t), (z0,t, z2,t) and (z1,t, z2,t).
30 The p-values for the

three tests are given in Table 13. Since p-values are all high, the Gaussian copula provides an acceptable fit.

Table 13: Goodness-of-fit of the futures return copula

Innovation Pair (z0,t, z1,t) (z0,t, z2,t) (z1,t, z2,t)
p-value 0.90 0.67 0.97

Notes. Bootstrapped p−values for the Cramer-Von-Mises goodness-of-fit test applied to the Gaussian copula linking futures
returns. Tests are applied on pairs of returns instead of the triplet (z0,t, z1,t, z2,t). Observations between January 1st, 2007 and
July 29th, 2012 for futures with 1, 2 and 3 weeks to maturity.

D.4 Independence of futures return and load-basis innovations

Independence tests for load-basis residuals ε̂
(L)
t and futures return innovation proxies ẑt,i are applied for each

of the three futures return maturities: i = 0, 1, 2. We use a Cramer-Von-Mises goodness-of-fit test on the

independence copula. The p-values are obtained through simulation and are given in Table 14. Large p-values

allow us to assume that the load-basis residuals and the futures return innovations are independent.

Table 14: Independence test for load-basis and futures return innovations

Futures Returns Series i = 0 i = 1 i = 2
p-value 0.28 0.66 0.50

Notes. Bootstrapped p−values for the Cramer-Von-Mises goodness-of-fit test applied to the independence copula linking the
load-basis observations and futures returns. Three tests are applied separately for the three maturities of futures returns.
Observations between January 1st, 2007 and July 29th, 2012 for futures with 1, 2 and 3 weeks to maturity.
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González-Romera, E., M.A. Jaramillo-Morán, D. Carmona-Fernández. 2008. Monthly electric energy demand fore-
casting with neural networks and Fourier series. Energy Conversion and Management 49(11) 3135–3142.

Hahn, H., S. Meyer-Nieberg, S. Pickl. 2009. Electric load forecasting methods: Tools for decision making. Eur. J.
Oper. Res. 199(3) 902–907.

Huovila, S. 2003. Short-term forecasting of power demand in the Nord Pool market. Master thesis, Lappeenranta
University of Technology, Lappeenranta, Finland.

Johnsen, T.A., O.J. Olsen. 2011. Regulated and unregulated Nordic retail prices. Energy Policy 39(6) 3337–3345.

Koekebakker, S., F. Ollmar. 2005. Forward curve dynamics in the Nordic electricity market. Managerial Finance 31(6)
73–94.

Kleindorfer, P.R., L. Li. 2005. Multi-period VaR-constrained portfolio optimization with applications to the electric
power sector. Energy 26(1) 1–26.

Madaleno, M., C. Pinho. 2008. The hedging effectiveness of electricity futures. Working paper, University of Aveiro,
Portugal.

Liu, S.D., J.B. Jian, Y.Y. Wang. 2010. Optimal dynamic hedging of electricity futures based on copula-GARCH
models. IEEM Conf. Proc., Macau. China. 2498–2502.

Lucia, J.J., H. Torro. 2011. On the risk premium in Nordic electricity futures prices. Internat. Rev. Econom. & Finance
20(4) 750–763.

Ni, J., L.K. Chu, F. Wu, D. Sculli, Y. Shi. 2012. A multi-stage financial hedging approach for the procurement of
manufacturing materials. Eur. J. Oper. Res. 221(2) 424–431.

Nordic Energy Regulators (NordREG). 2010. The Nordic financial electricity market. Report 8/2010, November 2010.

Oum, Y., S.S. Oren, S.J. Deng. 2006. Hedging quantity risks with standard power options in a competitive wholesale
electricity market. Naval Res. Logist. 53(7) 697–712.

Oum, Y., S.S. Oren. 2009. VaR constrained hedging of fixed price load-following obligations in competitive electricity
markets. Risk and Decision Analysis 1(1) 43–56.

Oum, Y., S.S. Oren. 2010. Optimal static hedging of volumetric risk in a competitive wholesale electricity market.
Decision Analysis 7(1) 107–122.

Rémillard, B. 2013. Statistical Methods for Financial Engineering. CRC Press, Boca Raton, FL.

Rémillard, B., H. Langlois, A. Hocquard, N. Papageorgiou. 2010. Optimal hedging of American options in discrete
time. R. A. Carmona, P. Del Moral, P. Hu, N. Oudjane, eds. Numerical Methods in Finance. Springer, Berlin,
Germany, 145–170.

Rosenblatt, M. 1952. Remarks on a multivariate transformation. Annals Math. Statist. 23(3) 470–472.

Schweizer, M. 1995. Variance-optimal hedging in discrete time. Math. Oper. Res. 20(1) 1–32.

State of California (2004). Order Instituting Rulemaking to Establish Policies and Cost Recovery Mechanisms for
Generation Procurement and Renewable Resource Development Interim Opinion. Public Utility Commission
Decision No. 04-01-050. http://docs.cpuc.ca.gov/PUBLISHED/FINAL_DECISION/33625.htm

Stoft, S., T. Belden, C. Goldman, S. Pickle. 1998. A primer on electricity futures and other derivatives. Technical
Report, Laurence Berkeley National Laboratory, University of California, Berkeley.

Torro, H. 2011. Assessing the influence of spot price predictability on electricity futures hedging. J. Risk 13(4) 31–61.

Von der Fehr, N.H.M., P.V. Hansen. 2010. Electricity retailing in Norway. Energy 31(1) 25–45.

Wagner, M., P. Skantze, M. Ilic. 2003. Hedging optimization algorithms for deregulated electricity markets. Proc. 12th
Conf. Intelligent Systems Appl. Power Systems, Lemnos, Greece.

Weron, R. 2006. Modeling and Forecasting Electricity Loads and Prices. Wiley, Chichester, England.

Woo, C.K., R. Karimov, I. Horowitz. 2004. Managing electricity procurement cost and risk by a local distribution
company. Energy Policy 32(5) 635–645.

Zanotti, G., G. Gabbi, M. Geranio. 2010. Hedging with futures: Efficacy of GARCH correlation models to European
electricity markets. J. Internat. Financial Markets, Institutions and Money 20(2) 135–148.

http://docs.cpuc.ca.gov/PUBLISHED/FINAL_DECISION/33625.htm

	G1388-enCours
	G1388
	Introduction
	Risk exposure and hedging for retailers
	Risks faced by retailers
	Electricity futures contracts
	Hedging procedure

	Models for the state variables
	Load-basis
	Load-basis data
	Estimation of model parameters
	Load-basis forecasting from incomplete information

	Futures and spot price
	Our model
	Model estimation


	Performance assessment
	Benchmarks
	Delta Hedging
	Local Minimal Variance Hedging (LMVH)
	Static Hedging

	Backtests
	In-sample backtest
	Out-of-sample backtest


	Conclusion
	Basis ratio
	Delta-hedging with futures
	Solving problem (8)
	Simulation of the stochastic tree
	Backward induction
	Re-simulation

	Load-basis model estimation
	Cross-validation procedure for load model selection
	Goodness-of-fit for the load model
	Goodness-of-fit of futures return model
	Independence of futures return and load-basis innovations



	Citation complète: D.J. Dupuis, G. Gauthier, F. Godin, Short-term hedging for an electricity retailer, Energy Journal, 37(2) 31-59, 2016. 
	Numéro de Cahier et mois de publication: G-2013-88
December 2013



