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Abstract: We propose a generalization of the limited-memory Cholesky factorization of Lin and Moré
(1999) to the symmetric indefinite case with special interest in symmetric quasi-definite matrices. We use
this incomplete factorization to precondition two formulations of linear systems arising from regularized
interior-point methods for quadratic optimization. An advantage of the limited-memory approach is predictable
memory requirements. We establish existence of incomplete factors when the input matrix is an H-matrix but
our numerical results illustrate that the factorization succeeds more generally. An appropriate diagonal shift
is applied whenever the input matrix is not quasi definite. As the memory parameter increases an efficiency
measure of the preconditioner suggested by Scott and Tůma (2013) improves. The combination of the 3× 3
block formulation analyzed by Greif, Moulding, and Orban (2012), the SYMAMD ordering, and a moderate
memory parameter results in encouraging performance.

Key Words: Preconditioning, Symmetric Quasi-Definite, Incomplete Factorization, Limited-Memory Factor-
ization, Interior-Point Methods.

Résumé : Nous proposons une généralisation de la factorisation de Cholesky incomplète de Lin and Moré
(1999) au cas symétrique indéfini en nous penchant particulièrement sur les matrices symétriques et quasi
définies. Cette factorisation incomplète est utilisée pour préconditionner deux formulations des systèmes
linéaires provenant des méthodes de points intérieurs régularisées pour l’optimisation quadratique. Un
avantage de l’approche à mémoire limitée est que l’on peut prévoir à l’avance la quantité de mémoire nécessaire.
L’existence d’une factorisation incomplète est établie sous l’hypothèse que la matrice initiale est une H-matrice.
Nos résultats numériques suggèrent cependant que la factorisation se termine avec succès même en l’absence de
cette propriété. Un décalage diagonal est appliqué lorsque la matrice initiale n’est pas quasi définie. Lorsque
le paramètre de mémoire augmente, une mesure d’efficacité du préconditionneur proposée par Scott and Tůma
(2013) augmente elle aussi. On obtient une performance encourageante en combinant la formulation bloc
3× 3 analysée par Greif, Moulding, and Orban (2012), l’ordonnancement SYMAMD et une valeur modeste
du paramètre de mémoire.
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1 Introduction

Symmetric quasi-definite (SQD) matrices are symmetric permutations of a matrix of the form[
E CT

C −F

]
, (1.1)

where E = ET and F = FT are positive definite. Definite matrices are special cases of SQD matrices
corresponding to either E or F being vacuous. SQD matrices arise in a number of practical applications,
among which interior-point methods for nonlinear optimization (Friedlander and Orban, 2012; Greif et al.,
2012) and the solution of stabilized Stokes problems (Elman, Silvester, and Wathen, 2005). Vanderbei (1995)
established that they have a very specific structure beyond symmetry and indefiniteness that sets them apart
from classical saddle-point matrices with F = 0. Chiefly, they are strongly factorizable, i.e., every symmetric
permutation leads to an LDLT factorization without resort to block 2× 2 pivots. Gill, Saunders, and Shinnerl
(1996) provide stability results on this type of factorization. In addition, SQD matrices are always nonsingular
so that the D factor is nonsingular.

The main idea of this paper is that if A is SQD and L and D are its exact factors, the preconditioned
operator

|D|−1/2L−1AL−T|D|−1/2 = |D|−1D,

where |D| is the diagonal matrix whose elements are the absolute values of those of D, possesses only two
distinct eigenvalues: +1 and −1. The hope is therefore that limited-memory factors have the potential
to yield a preconditioned system with favorable spectral structure while keeping the computational effort
reasonable. When L and D are limited-memory factors of A, the preconditioned operator remains symmetric
and indefinite so that it is possible to use MINRES or SYMMLQ (Paige and Saunders, 1975).

Our main result states that if A is an SQD H-matrix, a limited-memory LDLT factorization always exists
in which only the nk + p largest elements of L are retained in column k, where nk is the number of nonzero
elements in the strict lower triangle of the k-th column of A and where p ∈ N is a limited-memory factor
specified by the user. Note that this is quite different from specifying a drop tolerance. A diagonal update
strategy modifies the input matrix to encourage the H-matrix property to hold.

The main message from our numerical experiments is that our LDLT preconditioner exhibits very encourag-
ing performance in MINRES when combined with the symmetric AMD ordering of Amestoy, Davis, and Duff
(1996) and a memory parameter around 10. Our implementation is a modification of that of Lin and Moré
(1999) with an updated object-oriented Matlab interface. It is available from github.com/optimizers/lldl.

This research is strongly inspired by the limited-memory Cholesky factorization of Lin and Moré (1999)
and is a natural generalization to SQD matrices. In particular, if the input matrix is positive definite,
our incomplete factorization coincides with that of Lin and Moré (1999) with the exception that an LDLT

factorization is produced instead of an LLT factorization. It differs from previous approaches in that it
attempts to exploit the SQD structure specifically. The factorization of Lin and Moré (1999) applied to an
SQD matrix would induce far too large a perturbation of the matrix to yield a useful preconditioner since it
would compute α > 0 large enough so that A + αI is sufficiently positive definite, and compute an incomplete
factorization of the latter matrix. Other factorizations, e.g., based on block pivoting are attractive but ignore
the inherent strong factorizability property.

Limited-memory factorizations may not always be the best choice for problems arising from the discretization
of PDEs, where preconditioners based on the underlying functional spaces and mesh are often preferred.
We do not investigate those issues here and concentrate on algebraic problems arising from optimization
applications.

This paper is organized as follows. The rest of this section covers related research and notation. Section 2
provides background results on SQD, M- and H-matrices. Section 3 describes our limited-memory LDLT

factorization. Section 4 is a brief discussion on the stability of the incomplete LDLT factorization of SQD M-

https://github.com/optimizers/lldl
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and H-matrices. Section 5 describes our implementation in relation to that of Lin and Moré (1999). Section 6
provides background on interior-point methods for constrained optimization and the form of the systems
encountered in a typical implementation. Section 7 reports numerical results on systems of the form described
in §6. We briefly mention extensions and the applicability of our limited-memory factorization to more general
symmetric indefinite, but not SQD, matrices in §8. We conclude and give potential research avenues for the
future in §9.

1.1 Related Research

Numerous incomplete factorization schemes have been proposed in the past, especially in the context of
non-symmetric systems (Meijerink and van der Vorst, 1977; Gustafsson, 1978), and enforce a fixed level
of fill or control the fill by way of a parameter. They either have unpredictable memory requirements or
enforce a specific structure in the factors independently of the entries. Drop tolerance strategies, such as that
of Munksgaard (1980) have similar shortcomings. The ILUT factorization of Saad (1994) has predictable
memory requirements but typically does not produce a symmetric factorization even when the input matrix is
symmetric.

The incomplete factorization proposed in the present paper is a generalization of the incomplete Cholesky
factorization of Lin and Moré (1999), which itself improves over that of Jones and Plassmann (1995) by
allowing an additional amount of fill controlled via a memory parameter. The main benefit of both is their
predictable memory requirements. They are based on a shift strategy proposed by Manteuffel (1979, 1980). For
a given symmetric matrix A, they compute and incomplete lower triangular factor L such that LLT ≈ A +αI

for a shift α ≥ 0 chosen to ensure that A + αI is sufficiently positive definite. If A is already sufficiently
positive definite, α = 0 and as the memory parameter increases, the incomplete factor L converges to the
exact Cholesky factor of A. If nj is the number of nonzero entries in the lower triangular part of the j-th
column of A, Lin and Moré (1999) retain the nj + p largest entries in the j-th column of L, where p ∈ N is a
user-specified memory parameter. The Jones and Plassmann (1995) factorization corresponds to p = 0.

Scott and Tůma (2013) also build upon the incomplete Cholesky factorization of Lin and Moré (1999)
but require additional memory during the computation of the factors that is later discarded, following an
approach suggested by Tismenetsky (1991) and Kaporin (1998). The input matrix A is shifted so as to be
sufficiently positive definite.

Greif and Liu (2013) propose an incomplete factorization of general symmetric indefinite and skew-
symmetric matrices. Though their software, named SYM-iLDL, also refers to the factorization as LDLT, their
factorization is inspired by that of Bunch and Kaufman (1977) and D is block diagonal with blocks of size
1× 1 and 2× 2. Their implementation builds upon ideas proposed by Li, Saad, and Chow (2003) and Li and
Saad (2005). As the memory parameter increases, the incomplete factors converge to the exact factors.

To the best of our knowledge, no incomplete factorization specifically aimed at the SQD structure has
been proposed so far.

1.2 Notation

Matrices and vectors are denoted by uppercase and lowercase latin letters typeset in bold math font, respectively.
Capital Latin letters in standard font are reserved for index sets.

The i-th component of a vector x is xi. Vector inequalities are understood componentwise, so x > 0 is
equivalent to xi > 0 for all indices i. The notation diag(x) refers to the diagonal matrix whose diagonal
entries are the components xi of x.

If K is a n-by-n matrix, I ⊆ {1, . . . , n} and J ⊆ {1, . . . , n}, the submatrix of K whose row indices are in
I and column indices are in J is denoted K(I, J). The complements of I and J in {1, . . . , n} are denoted Ī
and J̄ respectively. For such an index set I and provided K(I, I) is nonsingular, the Schur complement of
K(I, I) in K is the matrix K(Ī , Ī)−K(Ī , I)K(I, I)−1K(I, Ī), denoted K/K(I, I) for short.
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If K is a n-by-n matrix and S is a nonsingular principal submatrix of K, the Schur complement of S in K

is simply denoted K/S.

Throughout this paper, the terminology LDLT refers to the factorization of a symmetric, not necessarily
definite, matrix K into the product LDLT where L is unit lower triangular and D is diagonal.

The absolute value of a vector |x| or of a matrix |A| is the vector or matrix whose elements are the absolute
values of the elements of the original vector or matrix. The spectral condition number of A is denoted κ2(A).

2 Background

We begin with a few definitions and properties.

Definition 2.1 A matrix K is symmetric and quasi definite (SQD) if K = KT and there exists a permutation
matrix P such that PTKP may be partitioned as (1.1) where E = ET and F = FT are positive definite.

Vanderbei (1995) establishes that SQD matrices are always nonsingular and have an SQD inverse. In
addition, SQD matrices have the following important property of strong factorizability.

Theorem 2.2 (Vanderbei, 1995) If K is SQD, the matrix PTKP possesses an LDLT factorization
without pivoting for any permutation matrix P.

Symmetric indefinite matrices are not strongly factorizable in general. We note however that Tůma (2002)
establishes that saddle-point matrices possess an LDLT factorization for a well-chosen symmetric permutation.

The following result will be useful. Its proof follows from the proof of (Vanderbei, 1995, Theorem 2.1) and
basic properties of the Schur complement. Our inspiration for this result is the proof of (George and Ikramov,
2000, Theorem 3.1).

Lemma 2.3 Suppose K is an SQD matrix and S is a principal submatrix of K. Then both S and K/S
are SQD.

Proof. That S is SQD is established in the proof of (Vanderbei, 1995, Theorem 2.1). Observe now that if S

is a principal submatrix of K, then (K/S)−1 is a principal submatrix of K−1. Since the latter is SQD, so is
(K/S)−1 by the first part of the lemma, and therefore, so is K/S.

We will make use of a special case of Lemma 2.3 stated as the next result.

Corollary 2.4 Suppose that the n-by-n matrix [
α wT

w B

]
(2.1)

is SQD, where α ∈ R, w ∈ Rn−1 and B = BT is an (n−1)-by-(n−1) matrix. Then the Schur complement
B− α−1wwT is an SQD matrix.

Definition 2.5 A nonsingular real square matrix A = (aij) is called an M-matrix if aij ≤ 0 for i 6= j and
A−1 ≥ 0, i.e., all entries of A−1 are nonnegative.
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Definition 2.6 A real square matrix A = (aij) is called an H-matrix if the comparison matrix M(A) =

(mij(A)) defined as

mij(A) =

{
|aij | if i = j,

−|aij | if i 6= j,

is an M-matrix.

Lemma 2.7 Let K be an SQD matrix that is strictly diagonally dominant. Then K is an H-matrix.

Proof. The result follows directly by applying (Axelsson, 1994, Lemma 6.4) toM(K).

Other properties of M-matrices and H-matrices are used by Lin and Moré (1999) and stated in (Axelsson,
1994). We restate them here for reference.

Lemma 2.8 Let A = (aij) be a square matrix. Then
1. If aij ≤ 0 for i 6= j, A is an M-matrix if and only if there exists x > 0 such that Ax > 0.
2. A is an H-matrix if and only if A is generalized strictly diagonally dominant, i.e., there exists x > 0

such that A diag(x) is strictly diagonally dominant.
3. If A is an M-matrix and B ≥ A is such that bij ≤ 0 for i 6= j, then B is an M-matrix.
4. If A is an M-matrix, Any symmetric permutation of A is an M-matrix.
5. If A is an M-matrix, so is the Schur complement of any principal submatrix of A.

Proof. Items 1–3 appear as Lemma 6.4 and Remark 6.8 in (Axelsson, 1994).

Let A be an M-matrix. Item 1 shows that there exists x > 0 such that Ax > 0. Let P be a permutation
matrix. Then y := PTx > 0 and PTAPy = PTAx > 0 because this is the permutation of a positive vector.
Item 1 then shows that PTAP is an M-matrix.

Item 5 follows from Item 4 and (Axelsson, 1994, Theorem 6.10).

3 Incomplete LDLT Factorization

For a given n-by-n symmetric matrix A = (aij), the LDLT factorization attempts to compute a unit lower
triangular matrix L = (`ij) and a diagonal matrix D represented by a vector d = (d1, . . . , dn) such that
A = LDLT. Typically, the unit diagonal of L is not kept in memory explicitly, the strict lower triangle of A

is overwritten with L and the diagonal of A is overwritten with d. The well-known LDLT factorization in
column form, suitable if matrices are held in compressed sparse column format, is described in Algorithm 3.1—
see (Ortega, 1988) for various implementations of the Cholesky factorization, from which corresponding
implementations of the LDLT factorization may be derived.

The first iteration of Algorithm 3.1 may be represented as the decomposition[
a11 wT

w B

]
=

[
1

a−111 w I

] [
a11

B− a−111 wwT

] [
1 a−111 wT

I

]
, (3.1)

where B is the bottom principal submatrix of A consisting in all rows and columns of A except for the first,
and w contains the (n− 1) last elements of the first column of A. If A is SQD, Corollary 2.4 ensures that
B− a−111 wwT is also SQD. Therefore, the leading element of the latter matrix must be nonzero and the second
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Algorithm 3.1 LDLT Factorization
Require: A
1: Initialize L and d to the strict lower triangle and diagonal of A.
2: for j = 1, . . . , n do
3: for k = 1, . . . , j − 1 do
4: for i = j + 1, . . . , n do
5: `ij = `ij − `ikdk`jk
6: for i = j + 1, . . . , n do
7: `ij = `ij/dj
8: di = di − dj`

2
ij

iteration will complete. This reasoning may be applied recursively to confirm that Algorithm 3.1 terminates
successfully when initialized with an SQD matrix, as anticipated by Theorem 2.2.

The limited-memory variant of Algorithm 3.1 follows the principles set out by Lin and Moré (1999) and is
described as Algorithm 3.2.

Algorithm 3.2 Limited-Memory Sparse LDLT Factorization
Require: A, p ∈ N
1: Initialize L and d to the strict lower triangle and diagonal of A.
2: for j = 1, . . . , n do
3: q = |{i > j | `ij 6= 0}| // Number of nonzeros in column j of L
4: for k = 1, . . . , j − 1 such that `jk 6= 0 do
5: for i = j + 1, . . . , n such that `ik 6= 0 do
6: `ij = `ij − `ikdk`jk
7: for i = j + 1, . . . , n such that `ij 6= 0 do
8: `ij = `ij/dj
9: di = di − dj`

2
ij

10: Retain the largest q + p elements in absolute value in the j-th column of L.

The proof of existence of the limited-memory LDLT factorization for H-matrices follows the proof of
existence of the limited-memory Cholesky factorization of Lin and Moré (1999) and is included for completeness.
As indicated by Lin and Moré (1999), the last loop of Algorithm 3.2 updates the future pivots based on all
nonzero elements in the j-th column of L. A variant of this algorithm may also be of interest, in which line 10
appears just before the last loop, causing the future pivots to be updated based on the retained nonzero
elements only. In the next result, we establish that both versions compute an incomplete LDLT factorization
in the sense that Algorithm 3.2 does not break down.

Theorem 3.1 If K is a symmetric n-by-n H-matrix with no zeros on the diagonal, Algorithm 3.2 computes
an incomplete LDLT factorization.

Proof. Iteration j of Algorithm 3.2 consists in computing the vector w in a matrix of the form (2.1), where
α = dj 6= 0 is the current pivot, w consists in the (n− j) last elements of the j-th column of L before they
are divided by dj , and B is the portion of K that is yet to be eliminated. Note however that the diagonal
elements of B, i.e., dj+1, . . . , dn, were updated in the previous iterations. Next, some components of w are
discarded, resulting in the sparser vector w̄. In the variant described by Algorithm 3.2, we next perform the
decomposition (3.1), i.e.,[

α wT

w B

]
=

[
1

α−1w̄ I

] [
α

B− α−1(w̄w̄T +∆W2)

] [
1 α−1w̄T

I

]
+ E (3.2)
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where ∆w := w − w̄, ∆W = diag(∆w), and

E :=

[
∆wT

∆w α−1∆W2

]
is the error due to substituting w̄ for w and is discarded. Note that the Schur complement above corresponds
to the elimination with respect to w̄ but contains the updated diagonal elements based on the nonzeros in w.
Note also that the only nonzero components of the vector ∆w are wi in locations that were not discarded. In
particular, the diagonal elements of the modified Schur complement are(

B− α−1(w̄w̄T +∆W2)
)
ii

= bii − α
−1(w̄2

i +∆w2
i ) = bii − α

−1w2
i , (3.3)

and coincide with the diagonal elements of the original Schur complement.

Suppose now that K is an H-matrix. At the first iteration of Algorithm 3.2, K is the matrix on the
left-hand side of (3.2). By definition,M(K) is the M-matrix[

|α| −|w|T
−|w| M(B)

]
and Lemma 2.8 states that the Schur complementM(B)− |α|−1|w||w|T is also an M-matrix. But we have

M(B)− |α|−1|w||w|T ≤M
(
B− α−1(w̄w̄T +∆W2)

)
(3.4)

componentwise because w̄i is either zero or wi. Indeed, the (i, j)-th element of the left-hand side of (3.4) has
the form

mij(B)− |α|−1|wi||wj | =

{
|bii| − |α|

−1w2
i (i = j),

−|bij | − |α|
−1|wi||wj | (i 6= j).

On the other hand, we see from (3.3) that diagonal elements of the right-hand side of (3.4) have the form

|bii − α
−1w2

i | ≥ |bii| − |α|
−1w2

i ,

while, since ∆W is diagonal, off-diagonal elements have the form

−|bij − α
−1w̄iw̄j | ≥ −|bij | − |α|

−1|w̄i||w̄j | ≥ −|bij | − |α|
−1|wi||wj |,

where we used the triangle inequality and the fact that w̄ ≤ w. We have established (3.4) and Lemma 2.8
states that the updated Schur complement is an H-matrix with a nonzero diagonal.

The proof of the second variant of Algorithm 3.2 is established by noting that ∆W only affects the
diagonal of the right-hand side of (3.4). The elements (3.3) become bii − α

−1w̄2
i . Using again the inequality

w̄ ≤ w, we have
|bii − α

−1w̄2
i | ≥ |bii| − |α|

−1w̄2
i ≥ |bii| − |α|

−1w2
i ,

which completes the proof.

According to Lemma 2.7, Theorem 3.1 applies in particular to strictly diagonally dominant SQD matrices.
In order to ensure successful computation of an incomplete LDLT factorization for general SQD matrices, we
employ Algorithm 3.3. Because A is SQD, the diagonal scaling matrix S is nonsingular. The scaled matrix Â

at line 2 is still SQD and so is each matrix of the form Â +αkD̂. Note also that since Â is SQD, it has no zero
diagonal elements, its positive diagonal elements belong to the positive-definite block E, in the notation of
(1.1), and its negative diagonal elements belong to the negative-definite block −F. In essence, Algorithm 3.3
performs the separate updates E← E + αkI and F← F + αkI.

That Algorithm 3.3 terminates finitely is established by the following result, whose proof follows directly
from the proof of (Lin and Moré, 1999, Theorem 3.2) and from Lemma 2.7.



Les Cahiers du GERAD G–2013–87 7

Algorithm 3.3 Limited-Memory LDLT Factorization for General SQD Matrices
Require: A SQD, αmin > 0
1: Compute the scaling matrix S := diag(‖Aei‖2).
2: Let Â := S−1/2AS−1/2.
3: Define D̂ := diag(sign(Âii)) and set α0 := 0.
4: for k = 0, 1, . . . do
5: If Algorithm 3.2 applied to Â + αkD̂ succeeds, set αF := αk and exit.
6: Set αk+1 := max(2αk, αmin).

Theorem 3.2 Let A be SQD. If β is the maximum number of nonzeros in any column of A, and Â and
D̂ are defined as in Algorithm 3.3, then Â + αD̂ is SQD and strictly diagonally dominant for α > β1/2,
and is therefore an H-matrix.

4 Stability Considerations

In this section, we review stability results on the full LDLT factorization of a SQD matrix, and specialize
known results on the stability of incomplete factorizations to the context of Algorithm 3.2.

We refer to the LDMT factorization of a matrix as one with L and M unit lower triangular and D diagonal
(Golub and Van Loan, 1996). Gill, Saunders, and Shinnerl (1996) observe that the LDLT factorization of (1.1)
is a simple transformation of the LDMT factorization of the unsymmetric but positive-definite matrix

K̄ :=

[
E −CT

C F

]
(4.1)

and that the stability of one is equivalent to the stability of the other. In particular, upon defining
Ī := blkdiag(I,−I),

K = LDLT if and only if K̄ = LD̄MT,

where D̄ := DĪ and M := ĪLĪ. Because K̄ is positive definite, it may be factored without row interchanges.

We say that the factorization is stable if there exists a moderate constant γ > 0 such that

‖|L| |D̄| |MT|‖ ≤ γ(‖K̄S‖+ ‖K̄UK̄−1S K̄U‖), (4.2)

where K̄S and K̄U are the symmetric and unsymmetric parts of K̄, respectively (Higham, 2002). Formulated
in terms of the components of (1.1), Gill et al. (1996) establish the following stability result.

Theorem 4.1 (Gill et al., 1996, Result 4.2) The factorization PTKP is stable for every permutation P
if

θ(K) :=

(
‖C‖2

max(‖E‖2, ‖F‖2)

)2

max(κ2(E), κ2(F))

is not too large.

Note that Theorem 4.1 gives a sufficient condition. There may exist permutations that lead to more stable
factorizations than others.

Let γ > 0 be a stability constant associated the the SQD matrix K in the sense of (4.2). We say that
the incomplete factorization LpDpL

T
p produced by Algorithm 3.2 with memory parameter p, if it succeeds,
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is at least as stable as the complete factorization LDLT of K if |Lp| ≤ |L| and |Dp| ≤ |D|. In other words,
(4.2) continues to hold if the exact factors are replaced with the incomplete factors in the left-hand side. A
number of results on the stability of incomplete factorizations may be found in the literature. For instance,
Buoni (1990) establishes stability of incomplete factorization of H-matrices with column-diagonally-dominant
pivoting. Our incomplete factorization, and that of Lin and Moré (1999), fit in the framework of Meijerink
and van der Vorst (1977) who establish the following result.

Theorem 4.2 (Meijerink and van der Vorst, 1977, Theorem 3.2) If A is an M-matrix, then the con-
struction of an incomplete LU decomposition is at least as stable as the construction of a complete LU
decomposition of A without pivoting.

When specialized to the present context, Theorem 4.2 yields the following corollary.

Corollary 4.3 Let K be an SQD M-matrix, and K̄ be given by (4.1). The incomplete factorization of K

described by Algorithm 3.2 is at least as stable as the LDLT factorization of K without pivoting.

In Corollary 4.3, we used the fact that the LU (or LDMT) factorization of K̄ is precisely the LDLT

factorization of K. Therefore, for M-matrices, stability is guaranteed provided that θ(K) is not too large
because Theorem 4.1 is independent of the ordering.

Messaoudi (1995) generalizes Theorem 4.2 to H-matrices.

Theorem 4.4 (Messaoudi, 1995, Theorem 2.8) If A is an H-matrix, then the construction of an incom-
plete LU decomposition is at least as stable as the construction of a complete LU decomposition ofM(A)
without pivoting.

Theorem 4.4 and the identityM(K̄) =M(K) yield the following corollary.

Corollary 4.5 If K is a SQD H-matrix, the incomplete factorization described by Algorithm 3.2 is at least
as stable as the LU (or LDMT) factorization ofM(K) without pivoting.

In the admittedly special case where K is strictly diagonally dominant, so isM(K). Because the latter is
symmetric and has a positive diagonal, it is symmetric and positive definite, and Corollary 4.5 guarantees
stability.

5 Implementation

Our implementation, code-named LLDL, is a modification of that of Lin and Moré (1999), including a revision
of the dated Matlab interface. The factorization part essentially follows the original implementation with
obvious changes to implement the LDLT factorization instead of the LLT factorization. The input matrix is
held in compressed sparse column format. The shifting strategy described in Algorithm 3.3 is implemented by
adding αk to positive diagonal elements and subtracting αk from negative diagonal elements.

In the rest of this section, we concentrate on invoking our library from Matlab. Because Algorithm 3.2
only need access the lower triangle of the input matrix A, it is technically possible to devise a Matlab
implementation of an iterative solver that only requires storage of this triangle. Recall that Matlab has no
concept of a symmetric matrix and needs to store both triangles to perform, e.g., matrix-vector products. For
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1 K = mmread(’matrix.mtx’); % Lower triangle in MM format.
2 rhs = load(’rhs.txt’);
3 P = symamd(K); % Only references lower triangle.
4 PKP = K(P,P); % Permuted matrix.
5 M = opLLDL(PKP , 10) % Memory factor p=10.
6 [x, flags , resids] = minres(rhs(P), opSymMatrix(PKP), M);

Listing 1: Example usage of the LLDL Matlab interface

this reason we introduce a new operator class opSymMatrix based on the SPOT abstract linear operator library
for Matlab (Friedlander and van Den Berg, 2013). This operator embodies and behaves like a symmetric
matrix but only stores its lower triangle, i.e., if A is an opSymMatrix object representing A using only its lower
triangle, A*x returns the expected value. Similarly, an operator class opLLDL embodies the limited-memory
factorization—instantiating it performs the limited-memory factorization with the requested value of p and
stores the factors inside the object. If M is an opLLDL instance, the operation M*x is equivalent to the forward
and backward sweeps L−T|D|−1L−1x. This allows us to write preconditioned iterative methods for linear
systems without the need to pass explicit matrices or functions as arguments— we merely need to pass objects
that support multiplication. This is more natural from both an iterative method and a programming point
of view. Listing 1 gives an example where the lower triangle of a matrix stored in MatrixMarket format is
loaded along with a right-hand side vector, a symmetric AMD permutation is computed, a limited-memory
factorization of the permuted matrix is performed with p = 10 and finally, our implementation of the
preconditioned MINRES method is called to solve the permuted system. Note that the coefficient matrix is
wrapped into an opSymMatrix operator and the preconditioner is given as an opLLDL operator. Internally,
our implementation of MINRES only performs products A*x with the operator supplied and M*x with the
preconditioner; it does not assume that one or the other is an explicit matrix. Our implementation is available
from github.com/optimizers/lldl.

6 Interior-Point Methods

One of the main motivations for this work is the iterative solution of linear systems arising from interior-point
methods for inequality-constrained optimization problems. We test our limited-memory preconditioner on
systems generated in the course of the iterations of the method proposed by Friedlander and Orban (2012) for
convex quadratic programs

minimize
x∈Rn

gTx + 1
2xTHx subject to Jx = b, x ≥ 0, (6.1)

where H = HT is positive semi-definite. Applying a primal-dual interior-point method to (6.1) leads to
symmetric linear systems with coefficient

K3 :=

 H JT −Z
1
2

J

−Z
1
2 −X

 or K2 :=

[
H + X−1Z JT

J

]
, (6.2)

where X := diag(x) and Z := diag(z) are positive definite and z is the vector of dual variables associated to
the bound constraints of (6.1). The above matrices are symmetric and indefinite but not SQD. We refer the
interested reader to the overviews of Forsgren, Gill, and Wright (2002) and Gould, Orban, and Toint (2005)
for more information and numerous pointers to the literature.

In order to account for situations where the leading block of (6.2) is not positive definite and/or J does
not have full row rank, Friedlander and Orban (2012) propose to solve instead the regularized problem

minimize
x∈Rn

,r∈Rm
gTx + 1

2xTHx + 1
2ρ‖x− xk‖

2
2 + 1

2δ‖r + yk‖
2
2

subject to Jx + δr = b, x ≥ 0,
(6.3)

https://github.com/optimizers/lldl
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where ρ > 0 and δ > 0 are iteration-dependent regularization parameters, r is a vector of auxiliary variables,
xk is the current primal estimate and yk is the current estimate of the Lagrange multipliers associated to the
equality constraints of (6.1). An interior-point method applied to (6.3) leads to systems with coefficient

K3(ρ, δ) :=

H + ρI JT −Z
1
2

J −δI
−Z

1
2 −X

 or K2(ρ, δ) :=

[
H + X−1Z + ρI JT

J −δI

]
, (6.4)

which are SQD. Owing to their block dimension, we refer to the above matrices as the 3× 3 and 2× 2 block
formulations. Greif et al. (2012) conduct a spectral analysis of both regularized matrices, as well as their
unregularized counterparts, and conclude that if strict complementarity is satisfied at a solution of (6.1),
i.e., xi + zi > 0 for all i = 1, . . . , n, the 3× 3 block matrix has unconditionally uniformly bounded condition
number. By contrast, the condition number of the 2× 2 block formulation increases without bound provided
at least one component of x vanishes in the limit, which is the typical situation.

Gill et al. (1996) establish that the LDLT factorization of K2(ρ, δ) is stable after an appropriate scaling,
except perhaps in the last few iterations of the interior-point method.

In order to determine when a general SQD matrix such as (1.1) is an H-matrix, it is instructive to use the
block inverse formula

M(K)−1 =

[
M(E) −|C|T
−|C| M(F)

]−1
=

[
S−1 S−1|C|TM(F)−1

M(F)−1|C|S−1 M(F)−1 +M(F)−1|C|S−1|C|TM(F)−1

]
,

where S := K/M(F) =M(E)− |C|TM(F)−1|C|. If both E and F are H-matrices, note that the off-diagonal
elements of S are all nonpositive. General conditions for K to be an H-matrix impose that S−1 ≥ 0, which
occurs if S is an M-matrix. In turn, (Axelsson, 1994, Lemma 6.2) guarantees that this occurs if S is strictly
diagonally dominant. In the case of K2, K3 and their regularized counterparts, we can be more precise. Note
first that if K3, respectively K3(ρ, δ), is an H-matrix, item 5 of Lemma 2.8 guarantees that K2, respectively
K2(ρ, δ), is an also H-matrix.

In the remainder of this section, we establish the following proposition. Note that in the special case
of linear programming, H = 0 and the assumption on H may be dropped. The proposition gives sufficient
conditions on ρ and δ for K3(ρ, δ) to be an H-matrix.

Proposition 6.1 Assume H is a symmetric positive semi-definite H-matrix. Let S := M(H) + ρI −
Z1/2X−1Z1/2 and assume that S is nonsingular, that (x, z) > 0, that ρ > mini zi/xi, and that S̃ :=

δI− |J|S−1|J|T is an M-matrix. Then K3(ρ, δ), and therefore also K2(ρ, δ), is an H-matrix.

Proof. Let

W :=

[
H + ρI −Z1/2

−Z1/2 −X

]
. (6.5)

Then

M(W) =

[
M(H) + ρI −Z1/2

−Z1/2 X

]
, (6.6)

and

M :=M(W)−1 =

[
S−1 S−1Z1/2X−1

X−1Z1/2S−1 X−1Z1/2S−1Z1/2X−1 + X−1

]
. (6.7)
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NowM(K3(ρ, δ))−1 is a symmetric permutation of

M(K̃3(ρ, δ))−1 =

[
M(W) −|J̃|T

−|J̃| δI

]−1
=

[
M + M|J̃|TS̃−1|J̃|M MJ̃TS̃−1

S̃−1J̃M S̃−1

]
, (6.8)

where J̃ :=
[
J 0

]
and S̃ = δI− |J̃|M|J̃|T = δI− |J|S−1|J|T.

Consider first the case of linear programming where H = 0. Then S is an M-matrix provided that
ρ > mini zi/xi. Under the latter assumption, S−1 > 0. Since (x, z) > 0, all blocks of (6.7) are nonnegative
and W is an H-matrix. Consider now (6.8). Since M ≥ 0, it is clear that K3(ρ, δ) is an H-matrix provided
that S̃ is an M-matrix.

In the general case where H 6= 0, the same reasoning as above applies under the additional assumption
that H is an H-matrix. Indeed, item 1 of Lemma 2.8 implies that there exists v > 0 such thatM(H)v > 0.
If ρ > mini zi/xi, then Sv > 0 and S is an M-matrix.

In the absence of regularization, i.e., ρ = δ = 0, W and K3 are in general not H-matrices because the
Schur complements S = −Z1/2X−1Z1/2 and S̃ = −|J|S−1|J|T are nonpositive and item 1 of Lemma 2.8
implies that they cannot be M-matrices.

Note that the off-diagonal elements of S̃ are all nonnegative. Its diagonal elements have the form

δ − |aj |
TS−1|aj | = δ −

n∑
i=1

s−1i a2ji, j = 1, . . . ,m,

where si is the i-th diagonal of S and aT
j is the j-th row of J, i.e., the j-th constraint gradient. From (Axelsson,

1994, Lemma 6.2), S̃ is an M-matrix if its diagonal elements are positive and if it is strictly diagonally
dominant, i.e.,

δ >

n∑
i=1

|aj |
TS−1|ai|, j = 1, . . . , n. (6.9)

Under the assumption (6.9), S̃ is an M-matrix and as a consequence, K3(ρ, δ) and K2(ρ, δ) are H-matrices.

The above may be construed as a proof of Theorem 3.2 for the special case of K3(ρ, δ) and K2(ρ, δ).

As we illustrate in the next section, the lower bounds on the regularization parameters found in the
present section for a limited-memory factorization to exist are pessimistic overestimates in practice and our
implementation identifies effective limited-memory preconditioners even for very small values of ρ and δ.

7 Numerical Experiments

Given an SQD system Ax = b, a permutation matrix P and p ∈ N, we compute the limited-memory factors
L and D of PTAP and solve the preconditioned system

|D|−1/2L−1PTAPL−T|D|−1/2x̄ = |D|−1/2L−1PTb,

where x̄ := |D|1/2LTPTx with MINRES. As this system is still symmetric and the preconditioner is positive
definite, MINRES may be equivalently applied to PTAPx = PTb with preconditioner L−T|D|−1L−1.

We generated linear systems at iterations 0, 5 and 10 of the interior-point method of Friedlander and
Orban (2012), implemented as part of the NLPy1 framework. The test problems are sparse convex quadratic

1github.com/dpo/nlpy

https://github.com/dpo/nlpy
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programs taken from the CUTEr collection (Gould, Orban, and Toint, 2003). Iteration 0 uses the initial
primal-dual guess as computed by the standard procedure suggested by Mehrotra (1992). At iteration 0,
far from a solution, the matrices (6.4) should both be reasonably well conditioned and ρk = δk = 1. At
iterations 5 and 10, the method uses ρk = δk = 10−5 and 10−8, respectively, and the conditioning of the 2× 2

formulation worsens. This ill-conditioning is not particularly due to the values of the regularization parameters,
except when J is rank deficient, but mostly to components of x and z converging to zero (Greif et al., 2012,
Section 4). Table 7.1 summarizes our test problems and some of their characteristics. The matrices come with
their corresponding right-hand side, also output during the iterations of the interior-point method. The table
reports the systems size and the density of the strict lower triangle computed as nnz(K)/(n(n− 1)/2), where
n is the size of K and nnz(K) represents the number of nonzeros in the strict lower triangle of K. Some
problems do not have inequality constraints. For those, the two formulations (6.4) are the same.

The aim of the experiments below is to evaluate the potential of limited-memory preconditioners in the
context of interior-point methods. The current implementation of the interior-point method rests upon
Theorem 2.2 and solves the systems with a full LDLT factorization. Some problems require less than 5 or 10

iterations to be solved, so that 76 systems were output at iteration 0, 58 at iteration 5, and 42 at iteration 10.

Table 7.1: Test linear systems arising in quadratic programs from the CUTEr
collection. The problem size and density of the strict lower triangle are reported
for the 2× 2 and 3× 3 block formulations (6.4).

Name 2× 2 Density 3× 3 Density
aug2d 30200 8.8e−05 30200 8.8e−05
aug2dc 30200 8.8e−05 30200 8.8e−05
aug2dcqp 70600 3.2e−05 90800 2.4e−05
aug2dqp 70600 3.2e−05 90800 2.4e−05
aug3d 4873 5.5e−04 4873 5.5e−04
aug3dc 4873 5.5e−04 4873 5.5e−04
aug3dcqp 12619 1.8e−04 16492 1.3e−04
aug3dqp 12619 1.8e−04 16492 1.3e−04
cvxqp1_l 55000 5.6e−05 75000 3.7e−05
cvxqp1_m 5500 5.6e−04 7500 3.7e−04
cvxqp1_s 550 5.5e−03 750 3.7e−03
cvxqp2_l 52500 5.6e−05 72500 3.7e−05
cvxqp2_m 5250 5.6e−04 7250 3.7e−04
cvxqp2_s 525 5.5e−03 725 3.7e−03
cvxqp3_l 57500 5.6e−05 77500 3.7e−05
cvxqp3_m 5750 5.6e−04 7750 3.7e−04
cvxqp3_s 575 5.5e−03 775 3.7e−03
dual1 426 4.3e−02 596 2.3e−02
dual2 481 4.2e−02 673 2.2e−02
dual3 556 4.2e−02 778 2.2e−02
dual4 376 4.4e−02 526 2.4e−02
dualc1 474 2.0e−02 706 9.9e−03
dualc2 492 1.6e−02 734 7.9e−03
dualc5 595 1.4e−02 888 7.2e−03
dualc8 1045 8.4e−03 1563 4.2e−03
genhs28 18 2.2e−01 18 2.2e−01
gouldqp2 3844 5.7e−04 5242 4.1e−04
gouldqp3 3844 6.1e−04 5242 4.3e−04
hs118 133 1.7e−02 192 1.2e−02
hs21 12 1.7e−01 17 1.2e−01
hs21mod 25 6.3e−02 34 5.0e−02
hs268 15 3.8e−01 20 2.4e−01
hs35 11 2.2e−01 15 1.5e−01

Continued on next page
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Table 7.1 – Continued from previous page
Name 2× 2 Density 3× 3 Density
hs35mod 9 2.8e−01 12 2.0e−01
hs51 8 3.2e−01 8 3.2e−01
hs52 8 3.2e−01 8 3.2e−01
hs53 28 7.7e−02 38 5.5e−02
hs76 18 1.5e−01 25 1.0e−01
hues-mod 30002 8.9e−05 40002 6.2e−05
huestis 30002 8.9e−05 40002 6.2e−05
ksip 2022 1.0e−02 3023 4.8e−03
liswet1 30002 8.9e−05 40002 6.2e−05
liswet10 30002 8.9e−05 40002 6.2e−05
liswet11 30002 8.9e−05 40002 6.2e−05
liswet12 30002 8.9e−05 40002 6.2e−05
liswet2 30002 8.9e−05 40002 6.2e−05
liswet3 30002 8.9e−05 40002 6.2e−05
liswet4 30002 8.9e−05 40002 6.2e−05
liswet5 30002 8.9e−05 40002 6.2e−05
liswet6 30002 8.9e−05 40002 6.2e−05
liswet7 30002 8.9e−05 40002 6.2e−05
liswet8 30002 8.9e−05 40002 6.2e−05
liswet9 30002 8.9e−05 40002 6.2e−05
lotschd 43 8.6e−02 55 6.1e−02
mosarqp1 8900 2.3e−04 12100 1.7e−04
mosarqp2 3900 7.1e−04 5400 4.7e−04
powell20 30000 6.7e−05 40000 5.0e−05
primal1 497 4.8e−02 583 3.5e−02
primal2 843 2.3e−02 940 1.9e−02
primal3 969 4.6e−02 1081 3.7e−02
primal4 1641 1.2e−02 1717 1.1e−02
primalc1 678 1.1e−02 902 6.7e−03
primalc2 703 8.4e−03 939 5.3e−03
primalc5 859 7.8e−03 1145 4.8e−03
primalc8 1542 4.4e−03 2053 2.7e−03
qpcblend 354 1.1e−02 468 7.3e−03
qpcboei1 2335 2.0e−03 3306 1.2e−03
qpcboei2 903 4.6e−03 1281 2.7e−03
qpcstair 1740 3.2e−03 2272 2.1e−03
s268 15 3.8e−01 20 2.4e−01
stcqp1 22537 2.1e−04 30731 1.3e−04
stcqp2 22537 2.1e−04 30731 1.3e−04
tame 7 3.3e−01 9 2.5e−01
ubh1 54021 4.9e−05 66027 3.9e−05
yao 6004 4.4e−04 8005 3.1e−04
zecevic2 14 1.5e−01 20 1.1e−01

In the following numerical experiments, we evaluate the quality of limited-memory preconditioners in
terms of the factor density and the number of iterations taken by MINRES to solve the linear system to within
a relative stopping tolerance of 10−6 with a limit of min(n, 500) iterations. More precisely, our performance
measure is the efficiency, suggested by Scott and Tůma (2013), and defined as the product of the number of
nonzeros in L with the number of preconditioned MINRES iterations. All our tests are run with Matlab
R2012a on a MacBook Pro equipped with a 2.6GHz Intel Core i7 processor and 16 GB of RAM.

We examine the impact of two reorderings on the incomplete factorization and the subsequent system solve.
The first is the symmetric approximate minimum degree reordering of Amestoy et al. (1996). This ordering



14 G–2013–87 Les Cahiers du GERAD

aims to minimize the fill-in in factors and the Matlab function symamd() plays well with our implementation
since it only references the lower triangle of the coefficient matrix. The second is the reverse Cuthill and
McKee (1969) ordering—see also (Chan and George, 1980). Again, the Matlab function symrcm() is in
line with our implementation because symrcm(A) works with the sparsity pattern of A + AT and therefore is
appropriate if only the lower triangle of A is stored. We tested other orderings, notably those included in the
packages HSL_MC64 and HSL_MC80 from the HSL (2013) but we do not consider them in the numerical
results below as they consistently yielded denser factors and more MINRES iterations in our experiments.

Our results are presented in the form of performance profiles (Dolan and Moré, 2002) on a logarithmic
scale. Recall that for competing algorithms Ai, i = 1, . . . , N , the performance profile of algorithm Aj is the
step function

τ ∈ [1,∞) 7→ ρj(τ) :=
∣∣∣{s ∈ S | µj,s ≤ τ min

i
µi,s

}∣∣∣ ,
where S is the set of test systems considered, and µi,s is the performance measure of algorithm Ai on system
s. In our case, the performance measure is the efficiency. In other words, for a given τ ≥ 1, ρj(τ) is the
proportion of problems on which Aj is within a factor τ of the best performing algorithm. In the results
below, a logarithmic scale in base 2 is used for τ , which helps differentiate the curves.

Figure 7.1 reports numerical results on the problems of Table 7.1 with p = 0, 10 and 20 and at iteration 0

of the interior-point method. The first row of profiles corresponds to the SYMAMD ordering while the second
row corresponds to SYMRCM. Hence, the top left plot of Figure 7.1 indicates that the unpreconditioned
variant and the preconditioned variants with p = 0, 10 and 20 are the best in terms of efficiency on about 5%,
25%, 65%, and 80% of the test problems, respectively. Large values of τ indicate that the unpreconditioned
variant solves almost all test problems, while all preconditioned variants solve all test problems, i.e., identify a
solution with a relative residual below 10−6 before the limit of 500 iterations is attained. When τ = 2, the
variant with p = 0 is within a factor of 4 of the best on about 90% of the problems.

Figures 7.2 and 7.3 report corresponding results on problems generated at iterations 5 and 10 of the
interior-point method. In all cases, the final value of the shift αk from Algorithm 3.3 is zero, i.e., the incomplete
factorization succeeds at the first attempt. This is in part due to the fact that the input matrices are already
SQD, but it also means that Algorithm 3.2 never broke down in our tests. At iteration 5, the preconditioned
variant with p = 0 still fails to solve about 21% of the 2× 2 problems for both orderings, while p = 10 and 20

solve all problems. The global trend across all tests is that the efficiency improves as p increases, though the
fact that the profiles for p = 10 and p = 20 are often nearly superposed suggests that there may not be virtue
in increasing p further. We also note that at iteration 10, the benefit of the preconditioners on 2× 2 systems
is less pronounced in terms of efficiency than for 3× 3 systems. Overall, the unpreconditioned variant is less
robust on 3× 3 systems than on 2× 2 systems.

On all sets of plots, both orderings appear to have the same qualitative behavior. In order to compare
them, we selected the variant with p = 20 as it exhibits good performance and robustness with both orderings.
As Figure 7.4 illustrates, SYMAMD consistently outperforms SYMRCM regardless of problem size or iteration
number. In all cases, SYMAMD combined to p = 20 performs best on about 90% of the problems.

Finally, we compare the variants in terms of CPU time as measured by the Matlab etime function.
Our measurements include the time to compute the preconditioner and the time to perform the MINRES
iterations, but exclude the time to apply the reordering, as the latter is part of all experiments. In our
Matlab implementation, the triangular solves are performed implicitly inside the opLLDL operator using the
backslash command. Figure 7.5 reports our results for the systems generated at iteration 0 of the interior-point
method, and Figures 7.6 and 7.7 correspond to iterations 5 and 10, respectively. The profiles indicate that
the benefit of the limited-memory preconditioner in terms of time is most apparent on the 3 × 3 systems
and that this benefit increases as the interior-point method progresses. At iteration 0, when all systems are
reasonably conditioned, the preconditioned variants cause an overall increase in solution time on the 2× 2

problems, while the variants with p = 10 and p = 20 are already effective on the 3× 3 systems. At iteration 5,
all preconditioned variants globally improve the solution time. At iteration 10, the variant with p = 0 has
a slightly adverse impact on time on the 2× 2 systems, while all preconditioned variants improve both the
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Figure 7.1: Efficiency profiles for 2× 2 and 3× 3 systems (6.4) at iteration 0 of the interior-point method.
The variants compared are MINRES without preconditioner, and with limited-memory preconditioners
corresponding to p = 0, 10 and 20. The top row corresponds to SYMAMD ordering and the bottom row to
SYMRCM ordering.

efficiency and the time on the 3× 3 systems. We expect that this is because the conditioning of the 2× 2

systems continues to deteriorate, while that of the 3× 3 systems stabilizes around a moderate value (Greif
et al., 2012).

We define the growth factor as

g :=
max{|˜̀ij | | i, j = 1, . . . , n}
max{|aij | | i, j = 1, . . . , n}

, where L̃ := L|D|
1
2 .

Note that this definition of the growth factor coincides with that used in the Cholesky factorization in the
case of a positive-definite A. In all of our tests, the growth factor remained under 210 for 2× 2 systems and
under 1, 000 for 3× 3 systems, except in the following cases using SYMAMD ordering. The 2× 2 formulation
of problem hues-mod generates a growth factor of 1.3 · 105 at iteration 5 and 5.9 · 104 at iteration 10, both
with p = 0. The 3× 3 formulation of problem ksip generates a growth factor of 1.9 · 105 at iterations 5 and
10 with p = 0. Increasing the memory parameter brings the growth factor back within acceptable bounds.
Overall the SYMRCM ordering appears to keep the growth factor consistently modest independently of the
memory parameter.
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Figure 7.2: Efficiency profiles for 2× 2 and 3× 3 systems (6.4) at iteration 5 of the interior-point method.
The variants compared are MINRES without preconditioner, and with limited-memory preconditioners
corresponding to p = 0, 10 and 20. The top row corresponds to SYMAMD ordering and the bottom row to
SYMRCM ordering.

8 Potential Extensions

Future versions of LLDL could feature a number of enhancements compared to the simple implementation
presented here. Firstly, a drop tolerance could be specified by the user in addition to a memory factor so as
to encourage further sparsity. It remains to be seen whether Theorem 3.2 generalizes to the case of a drop
tolerance. Secondly, for performance reasons, the ordering could be performed implicitly in the course of the
factorization and recorded in the permutation vector rather than performed explicitly before attempting a
factorization. Finally, Algorithm 3.3 can be applied to a general symmetric indefinite matrix, e.g., one with a
zero bottom block. This would result in preconditioning a general symmetric system with the incomplete LDLT

factorization of a related SQD operator. A conceptual disadvantage of this approach is that, by contrast with
the SQD case, the incomplete factors do not necessarily converge to exact factors as the memory parameter
increases. However, preconditioning with SQD operators has been suggested in the past by Axelsson and
Neytcheva (2003). Theorem 3.2 generalizes to the symmetric indefinite case because for all sufficiently large
α > 0, Â + αD̂ is SQD and diagonally dominant. Assuming F = 0 in (1.1), Algorithm 3.3 then computes an
incomplete factorization of [

E + αI CT

C −αI

]
.
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Figure 7.3: Efficiency profiles for 2× 2 and 3× 3 systems (6.4) at iteration 10 of the interior-point method.
The variants compared are MINRES without preconditioner, and with limited-memory preconditioners
corresponding to p = 0, 10 and 20. The top row corresponds to SYMAMD ordering and the bottom row to
SYMRCM ordering.

As the experiments of §7 suggest, the factorization is likely to succeed for moderate values of α.

The following simple experiment suggests that even in the general symmetric indefinite case, the growth
factor does not necessarily take large values. We computed the growth factor associated to incomplete factors
of a Helmholtz-type operator. As the eigenvalues of the discrete two-dimensional Laplacian lie between 0 and
8, we use shifts ranging from 1 to 7 so the shifted operator is indefinite. The Matlab excerpt of Listing 2
produces the results of Table 8.2. In the table, λ is the shift applied to the Laplacian, g is the growth factor,
and α is the shift resulting from Algorithm 3.3. The incomplete factorization always succeeds with the smallest

1 K = delsq(numgrid(’S’, 100+2)); % 2D Laplacian of size 10000.
2 growth = []; shifts = [];
3 for fact = [1:7]
4 LLDL = opLLDL(K - fact * speye(size(K)), 10); % p = 10.
5 growth = [growth LLDL.growth ]; shifts = [shifts LLDL.shift];
6 end

Listing 2: Incomplete factors of a Helmholtz-type operator
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Figure 7.4: Efficiency profiles comparing the SYMAMD and SYMRCM orderings using a limited-memory
preconditioner with p = 20. The left column corresponds to 2 × 2 systems and the right column to 3 × 3
systems.
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Figure 7.5: Time profiles for 2 × 2 and 3 × 3 systems (6.4) at iteration 0 of the interior-point method.
The variants compared are MINRES without preconditioner, and with limited-memory preconditioners
corresponding to p = 0, 10 and 20. The top row corresponds to SYMAMD ordering and the bottom row to
SYMRCM ordering.

shift, i.e., α = 10−3. The growth factor is at its largest when λ is between 3 and 5, i.e., when the shifted
Laplacian is the most indefinite. Nevertheless g remains modest. Results with p = 0 and p = 20 are similar.

Table 8.2: Growth factor observed in incomplete factors of a shifted two-dimensional Laplacian with p = 10.
λ 1 2 3 4 5 6 7
g 3.0e+01 5.2e+01 4.4e+02 3.7e+02 4.4e+02 5.2e+01 3.0e+01
α 1.0e−03 1.0e−03 1.0e−03 1.0e−03 1.0e−03 1.0e−03 1.0e−03

The incomplete Bunch-Kaufman factorization of Greif and Liu (2013) is a sensible choice when the
input matrix is symmetric indefinite but not SQD. The tests above and Axelsson and Neytcheva (2003)
suggest that LLDL may also have certain advantages in this general setting. A proper comparison of the two
implementations is beyond the scope of the present paper but is in progress jointly with the authors of iLDL.
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Figure 7.6: Time profiles for 2 × 2 and 3 × 3 systems (6.4) at iteration 5 of the interior-point method.
The variants compared are MINRES without preconditioner, and with limited-memory preconditioners
corresponding to p = 0, 10 and 20. The top row corresponds to SYMAMD ordering and the bottom row to
SYMRCM ordering.

9 Concluding Remarks

The limited-memory Cholesky factorization of Lin and Moré (1999) generalizes elegantly to SQD systems.
Preliminary experiments suggest that limited-memory LDLT preconditioners are effective on systems arising
from a regularized interior-point method, especially if using a SYMAMD ordering of the 3× 3 block system
analyzed by Greif et al. (2012). In our framework, the preconditioned system is still symmetric and indefinite,
but not SQD, and is therefore a good candidate for MINRES.

It is possible to ensure that the preconditioned system is SQD, e.g., by choosing L block diagonal. This
may be achieved by selecting L11 and L22 as incomplete Choleksy factors of M and N, respectively, and
setting L = blkdiag(L11,L22) and |D| = I, or otherwise discarding elements of L that lie outside of the
diagonal blocks.

SQD linear systems arise in other applications, such as the discretization of the stabilized Stokes equations
(Elman et al., 2005), and evaluating the quality of limited-memory preconditioners in such contexts would
be worthwhile. Arioli and Orban (2013) describe several families of iterative methods that exploit the SQD
structure and are based on Schur-complement reductions of (1.1). As it turns out, it is legitimate to apply
the conjugate gradient method to an SQD system with an appropriate initial guess. As Arioli and Orban
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Figure 7.7: Time profiles for 2 × 2 and 3 × 3 systems (6.4) at iteration 10 of the interior-point method.
The variants compared are MINRES without preconditioner, and with limited-memory preconditioners
corresponding to p = 0, 10 and 20. The top row corresponds to SYMAMD ordering and the bottom row to
SYMRCM ordering.

establish, Schur-complement-based methods for SQD systems provably perform half of the work as both the
conjugate gradient method and MINRES provided both M and N can be inverted. When working with the
full 3× 3 systems, the limited-memory preconditioners of the present paper appear to be viable options.
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