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Abstract: In this paper we present a forecasting method for time series using copula-based models for
multivariate time series. We study how the performance of the predictions evolves when changing the
strength of the different possible dependencies and compare it with a univariate version of our forecasting
method introduced recently by Sokolinskiy & Van Dijk. Moreover, we also study the influence of the marginal
distribution with the help of a new performance measure and lastly we look at the impact of the dependence
structure on the predictions performance. We also give an example of practical implementation with financial
data.

Résumé : Dans cet article, on présente une méthode de prévision pour des séries chronologiques multidimen-
sionnelles, modélisées à l’aide de copules. On étudie comment la performance des prévisions évolue en fonction
de la force de la dépendance et l’on compare aussi nos résultats avec ceux obtenus par Sokolinskiy & Van
Dijk dans le cas unidimensionnel. Par ailleurs, nous étudions également l’influence des lois marginales à l’aide
d’une nouvelle mesure de la performance, et enfin nous examinons l’impact de la structure de dépendance
sur la performance des prévisions. Nous donnons également un exemple de mise en œuvre pratique avec des
données financières.
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1 Introduction

For many years, copulas have been used for modeling dependence between random variables. See e.g. Genest

et al. (2009) for a survey on copulas in finance. The possibility to model the dependence structure inde-

pendently from marginal distributions allows for a better understanding of the dependence structure and a

wide range of joint distributions. More recently, copulas have been used to model the their temporal depen-

dence in time series, first in the univariate case, as in Chen and Fan (2006) and Beare (2010), and then in

a multivariate setting (Rémillard et al., 2012). Once again, the flexibility of copulas allows to model more

complex dependence structures and thus to better capture the evolution of the time series. In the recent

work of Sokolinskiy and Van Dijk (2011), copulas were used to forecast the realized volatility associated with

a univariate financial time series, and it was shown there that copula-based forecasts perform better than

forecasts based on heterogeneous autoregressive (HAR) model, Corsi (2009). The later method had been

proven successful in Andersen et al. (2007), Corsi (2009) and Bush et al. (2011).

In this paper, we extend the methodology of Sokolinskiy and Van Dijk (2011) by proposing a forecasting

method using copula-based models for multivariate time series, as in Rémillard et al. (2012). As one can

guess, we show that forecasting multivariate time series using copula-based models gives better results than

forecasting a single time series, since more information means more precision, in general. For example, let

{(X1,t, X2,t); t = 0, 1, . . .} be two dependent time series with both series showing temporal dependence.

Suppose one wants to forecast X1,T+1 based on the information available at period T . We show that

forecasting the joint values of (X1,T+1, X2,T+1) using the observed values (X1,T , X2,T ) gives significantly

better predictions of X1,T+1 in general than predictions on X1,T+1 based only on the single value of X1,T ,

which of course has to be expected. Since {X1,t} and {X2,t} are dependent and temporally dependent, the

knowledge of (X1,T , X2,T ) gives more informations than the knowledge of X1,T alone.

As a second matter, we also study the impact of the strength of the different dependencies, the structure

of the dependencies as well as the impact of marginal distributions of the vector (X1,t−1, X2,t−1, X1,t, X2,t)

on the performance of the predictions.

Although our numerical experiments focus on the bivariate case, our presentation can be readily extended

to an arbitrary number of dimensions. Actually, the results of Rémillard et al. (2012), which provide the

estimation methods, are given for an arbitrary number of time series and most of the theoretical background

is going to be presented in the general case. Moreover, the results of our numerical experiments should

naturally extend to the multivariate case.

The rest of the paper is structured as follows. In Section 2 we give some basic results about copulas and

apply the results to model time series. In Section 2.3 we define our forecasting methods. Section 3 contains the

result of our numerical experiments as well as the analysis of the results. We also give a complete example of

practical implementation with financial data in Section 4. The last section contains some concluding remarks.

2 Modeling time series with copulas

2.1 Copulas

We begin by giving some definitions and basic results about copulas. More details about copulas can be

found in Nelsen (1999) and Rémillard (2013).

Definition 2.1 (Copula)

A d-dimensional copula is a distribution function with domain [0, 1]d and uniform margins.

Equivalently, the function C : [0, 1]d → [0, 1] is a d-dimensional copula if and only if there exists random

variables U1, . . . , Ud such that P (Ui ≤ u) = ui for i = 1, . . . , d and C(u) = P (U1 ≤ u1, . . . , Ud ≤ ud) for all

u = (u1, . . . , ud) ∈ [0, 1]d. The existence of a copula function for any joint distribution is given by the Sklar’s

theorem.
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Theorem 2.1 (Sklar’s theorem)

Let X1, . . . , Xd be d random variables with joint distribution function H and margins F1, . . . , Fd. Then

there exists a d-dimensional copula C such that for all (x1, . . . , xd) ∈ R̄d,

H(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)), (1)

where R̄ = R
⋃
{−∞,∞}.

We note that the copula function in (1) is uniquely defined on the set Range(F1)× · · · ×Range(Fd). Hence,

if Range(Fi) = [0, 1] for i = 1, . . . , d the copula is unique.

We define the left continuous inverse of a distribution function F as

F−1(u) = inf {x;F (x) ≥ u} , for all u ∈ (0, 1).

Using this inverse and Sklar’s theorem, we have a way to define the copula function in terms of the quasi-

inverses and the joint distribution.

Assuming that the density fi of Fi exists for each i = 1, . . . , d, then the density c of C exists if and only

if the density h of H also exists. It this case, differentiating equation (1), we get

h(x1, . . . , xd) = c(F1(x1), . . . , Fd(xd))Π
d
i=1fi(xi).

Furthermore, for all (u1, . . . , ud) = (0, 1)d,

c(u1, . . . , ud) =
h(F−11 (u1), . . . , F−1d (ud))

Πd
i=1fi(F

−1
i (ui))

. (2)

Following the example of conditional distributions it is also possible to define conditional copulas. Let (X,Y)

be a (d1 + d2)-dimensional random vector with joint distribution H, where X has marginal distributions

F1, . . . , Fd1 and Y has marginal distributions G1, . . . , Gd2 .

Setting F(X) = (F1(X1), . . . , Fd1(Xd1)), G(Y ) = (G1(Y1), . . . , Gd2(Yd2)) and defining the random vector

(U,V) = (F(X),G(Y )) we can define the copula CUV of the vector (X,Y ) as the joint distribution function

of (U, V ). Assuming that the density functions exist and applying equation (??), one obtains that the

conditional copula CU|V, i.e., the conditional distribution of U given V , is given by

CU|V(u;v) =
∂v1 · · · ∂vd2CUV(u, v)

cV(v)
,

with density

cU|V(u;v) =
cUV(u, v)

cV(v)
,

where cV is the density of the copula CV(v) = CUV(1, . . . , 1, v) associated to Y or V.

Having defined conditional copulas, one can now look at how to obtain copula-based models for multi-

variate time series.

2.2 Modeling time series

In order to get a prediction method, we first need to present how to use copulas for modeling time series.

The ideas presented here were developed in Soustra (2006) and Rémillard et al. (2012), extending the results

of Chen and Fan (2006) to the multivariate case.

Let X = {Xt; t = 0, 1, . . . } be a d-dimensional time series and assume that X is Markovian and stationary.

We note Fi the marginal distribution of Xi,t for i = 1, . . . , d and H the joint distribution of (Xt−1,Xt)

and assume that all distributions are continuous. From the stationarity assumption, it follows that all
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distribution functions F1, . . . , Fd and H are time-independent. Using Sklar’s theorem, there is a unique

copula C associated to (Xt−1,Xt) and and unique copula Q associated to Xt−1, viz.

Q(u) = C(1d, u) = C(u,1d) for all u ∈ [0, 1]d,

where 1d is the d-dimensional unit vector. Set Ut = F(Xt), for t ≥ 0.

The next step is to deduce the conditional copula of Xt given Xt−1, which is

C(u;v) = CUt|Ut−1
(u;v) =

∂v1 · · · ∂vdC(u, v)

q(v)
,

with density

cUt|Ut−1
(u;v) =

c(u, v)

q(v)
,

where q is the density of Q.

Combining the knowledge of the marginal distributions and the conditional copula above we can get the

conditional distribution of Xt given Xt−1. This is what we use to define our predictions.

2.3 Forecasting method

To expose our forecasting method, we first make the assumption that the joint distribution as well as the

marginal distributions of the time series are known. However, for practical implementation, these distributions

are unknown and estimations are to be done. This will be treated next.

The use of a copula-based model for time series allows for a more flexible model of the dependence

structure.

Let X = {Xt; t = 0, 1, . . . , T} be a d-dimensional time series. Our goal is to forecast XT+1 based on

the information available at time T . Suppose that for all t ≥ 0, Fi is the marginal distribution of Xi,t

for i = 1, . . . , d and the 2d-dimensional vector (Xt−1,Xt) as joint distribution H and copula C. Using the

preceding section we can define the conditional copula C of Xt given Xt−1, namely CUt|Ut−1
(u;v).

Now suppose we observe the value XT = y for the time series at time T . The prediction of X1,T+1 goes

as follows:

1. Set v = F(y).

2. Simulate n realizations of the conditional copula, U(i) ∼ C(·;v), i = 1, . . . , n.

3. For i = 1, . . . , n, set X
(i)
T+1 = F−1(U(i)) .

4. Set

X̂T+1 =
1

n

n∑
i=1

X
(i)
T+1. (3)

We use X̂T+1 as a predictor for XT+1.

4′ One can also define a prediction interval of level 1 − α ∈ (0, 1) for X1,T+1 by taking the estimated

quantiles of order α/2 and 1− α/2 amongst {X(i)
1,T+1; i = 1, . . . , n}. We denote by L̂BT+1 and ÛBT+1

the lower and upper values for the prediction interval.

Remark 1 We would like to mention that for a one period ahead prediction, the simulation of the Xi,T+1

for i = 2, . . . , d is useless. We could have built the predictor X̂1,T+1 on the conditional distribution of

X1,T+1 given (X1,T , . . . , Xd,T ). However, including it allows to extend the methods to predictions of a longer

horizon. To get a prediction for the value X1,T+K for K > 1, one recursively predicts XT+j for j = 2, . . . ,K

by replacing the known value at T + j − 1 by X̂T+j−1.
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As mentioned previously, we are going to compare our predictions performance with the univariate version

presented in Sokolinskiy and Van Dijk (2011). Let D be the copula associated with (X1,t−1, X1,t) for t =

0, 1, . . ., i.e., D is the copula of (U1,t−1, U1,t).

Suppose we observe the value X1,T+1 = y1; The predictor presented in Sokolinskiy and Van Dijk (2011)

is defined as

X̄1,T+1 = n−1
n∑
i=1

F−11 (Z(i)) (4)

where Z(i) are realizations of D(·; v1) where v1 = F1(y1) and D is the conditional copula associated with

X1,t given X1,t−1. As before, we can define the prediction interval using the α/2 and 1 − α/2 quantiles of

{X(i)
1,T+1; i = 1, . . . , n}.

2.3.1 Implementation in practice

For practical implementation, one has to replace the known distributions F and the copula C by estimated

versions. The estimation method for copula-based model for time series is presented in Rémillard et al. (2012)

which use non-parametrical estimation for marginal distribution and parametrical estimation for conditional

copula where the copula parameters are estimated through pseudo maximum likelihood. Goodness-of-fit tests

are also provided to help choose the right copula family, but in the context of forecasting, one can also choose

copulas by their prediction power.

2.4 Including more information

The methodology proposed here can also be applied to predict X1,T+1 given Xt and X2,T+1, . . . , Xd,T+1,

since the joint copula of (Xt,Xt+1) is given.

3 Simulation results

To better understand the performance of our forecasting method we use simulated datas and compare the

performance of our predictor with the predictor from Sokolinskiy and Van Dijk (2011). We restrict our

simulations to the case of bivariate series but the results can easily be extrapolated to higher dimensions.

The reason why our multivariate method gives better results is obviously because we are using the

additional information provided by the second series. Consequently, the gain in performance is affected

by the strength of the different dependencies as well as the dependence structure of the vector (X1,t−1,

X2,t−1, X1,t, X2,t). To understand how these factors come into play, we first simulate datas from the

Student copula. This choice is motivated by the fact that we can directly specify the correlation matrix

for the Student distribution which in return defines the strength of the dependencies in the related copula.

Actually there is a bijection between the correlation matrix and the Kendall’s tau matrix. If R = [Ri,j ] for

i, j = 1, . . . , d are the elements of the correlation matrix, the Kendall’s tau matrix for the Student copula is

defined as τi,j = 2
πarcsin(Ri,j), see Rémillard (2013) proposition 8.7.1. In order to test a different dependence

structure we also use datas simulated from the Clayton copula. See Appendix A for details about simulating

Student and Clayton copulas.

Another question is the impact of the marginal distributions. To this matter it seems inappropriate

to compare directly the predictions when the marginal distributions are different. We can expect that the

predictions of a random variable with large variance should be less precise than when the variance is small.

To eliminate this effect we propose a new measure of performance.

For pointwise predictions we use two different performance measures. First, the mean absolute error,

which is defined as

MAE(X̂) = N−1
N−1∑
t=0

|Xt − X̂t|
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for a predictor X̂. The second performance measure is designed to compare prediction error through different

marginals distributions. We call this measure mean absolute rank error and it is defined as

MARE(X̂) = N−1
N−1∑
i=0

|F (Xt)− F (X̂t)|

where Xt is the observed values, X̂t are the predictions and F is the marginal distribution of Xt for all

t = 0, 1, . . .

In addition to pointwise predictions we also compute confidence intervals at a 95% confidence level for both

predictors. To measure the performance of the confidence intervals we take the mean length of the confidence

intervals. Let CIut and CI lt be the upper and lower value of the confidence interval for t = 0, . . . , N − 1, we

define the mean length as

ML(CI) = N−1
N−1∑
t=0

(
CIut − CIdt

)
.

3.1 Impact of the dependencies strength

As we already said, the structure and the strength of the dependencies of the vector Xt = (X1,t−1, X2,t−1,

X1,t, X2,t) should have an impact on the performance of our predictor. In order to understand how this

impact appears we first simulate Xt with Student copula and study the impact of each the different possible

correlations. We choose a degree of freedom ν = 8 and fix the initial values (X1,0, X2,0) = (0, 0). In order to

isolate the effect of the correlation we take the margins as Student with ν = 8 degree of freedom, that is the

vector Xt follows a multivariate distribution. For these experiments we simulate series of length N = 1000

and we set n = 300 in the definition of the predictors (3) and (4).

The first simulation study the impact of the dependence between both series. We simulate the series

using Kendall’s tau matrices

τα =


1 α 0.1609 0.1609
α 1 0.1609 0.1609

0.1609 0.1609 1 α
0.1609 0.1609 α 1


with

α ∈
{
− 0.2620,−0.1940,−0.1282,−0.0638,−0.0318,−0.0064,

0.0064, 0.0318, 0.0638, 0.1282, 0.1940, 0.2620, 0.3333,

0.4097, 0.4936, 0.5903, 0.7129
}
. (5)

As we see in Figure 1 the error of prediction increases when the Kendall’s tau ([τ ]1,3 and [τ ]3,1) increases. The

same pattern appears for the mean length of confidence intervals, see Figure 2. To explain this result, suppose

the extreme case where the correlation between X1 and X2 is one. Then the two series are identical and

hence our predictor has no additional information coming from the second serie. This also explain why the

difference in the prediction error gets close to zero when the correlation is high, or equivalently the Kendall’s

tau. Again, as long as the correlation increases, the predictor X̄1 does as good X̂1 since the information from

the second serie becomes irrelevant.

For the second simulation, Figure 3 and 4, we study the impact of the correlation between X1,t and

X1,t−1. We simulate the series using Kentall’s tau matrices

τα =


1 0.1609 α 0.1609

0.1609 1 0.1609 0.1609
α 0.1609 1 0.1609

0.1609 0.1609 0.1609 1





6 G–2013–85 Les Cahiers du GERAD

Figure 1: Evolution of MAE in function of the strength of the dependence between X1 and X2. The dashed
line is the MAE(X̄) and the continuous line is MAE(X̂).

Figure 2: Evolution of ML(CI) in function of the strength of the dependence between X1 and X2. The
dashed line is the ML(C̄I) and the continuous line is the ML(ĈI).
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Figure 3: Evolution of MAE in function of the strength of the dependence between X1,t and X1,t−1. The

dashed line is the MAE(X̄) and the continuous line is MAE(X̂).

Figure 4: Evolution of ML(CI) in function of the strength of the dependence between X1,t and X1,t−1. The

dashed line is the ML(C̄I) and the continuous line is the ML(ĈI).
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with

α ∈
{
− 0.4936,−0.4097,−0.3333,−0.2620,−0.1940,−0.1282,−0.0638,

− 0.0318,−0.0064, 0.00640.0318, 0.0638, 0.1282, 0.1940,

0.2620, 0.3333, 0.4097, 0.4936, 0.5903, 0.7129
}
. (6)

We remark that range of α is not the same than before. The reason is that we have to keep the correlation

matrices positive semi-definite. As we can expect, the predictions are better when the dependence is strong.

But it is interesting to notice that X̂ benefits more from the negative correlation than X̄. Finally, when the

correlation is close to one, the information given by the first lag dictates almost completely the succeeding

value and the information given by the second serie becomes marginal. That is why the difference in prediction

error is close to zero when the correlation is close to one.

The last simulation is about the impact of the strength of the dependence between X1,t and X2,t−1, see

Figures 5 and 6. As we expect, this is the most important dependence in the comparative performance of

our predictor. Since the information given by X2,t−1 cannot be used by X̄, our predictor gives much better

performance when this dependence is strong. In the case where this dependence is strong, the information

of X2,t−1 almost completely dictate the value of X1,t and that is why we observe a great difference in the

performance of X̂ and X̄.

3.2 Impact of the marginal distributions

Another question we want to tackle is the impact of the marginal distributions. In order to isolate more

closely the impact of the correlation in our first simulations we did not really use copulas as it is usually meant

to, since a Student copula with ν degree of freedom with Student margins with also ν degree of freedom is

simply a multivariate Student distribution. In the next experiment we still use Student copula, but we are

going to use different marginal distributions. The parameters of the Student copula are the same as before

and we fix the Kendall’s tau matrix at τi,j = 0.1609 for all i 6= j.

Table 1: Evolution of MAE and MARE in function of the marginal distributions.

Marginals distributions MARE(X̄) MARE(X̂) MAE(X̄) MAE(X̂)

T(·;5) 0.240260 0.207765 0.910358 0.815375
T(·;8) 0.240165 0.207626 0.849395 0.756528
T(·;10) 0.240162 0.207623 0.831341 0.739301
T(·;15) 0.240180 0.207648 0.808801 0.717971
T(·;20) 0.240202 0.207661 0.798150 0.707883
T(·;30) 0.240225 0.207676 0.787869 0.698152
T(·;50) 0.240244 0.207691 0.779895 0.690627

log-normal(·;0,1) 0.271711 0.232255 1.217649 1.095158
Chi-squared(·;8) 0.243123 0.211028 3.015161 2.679748

Exp(·;3) 0.256026 0.221556 2.137274 1.896555
Normal(·;0,1) 0.240274 0.207719 0.768335 0.679747
Normal(·;0,2) 0.240274 0.207719 1.086590 0.961308
Normal(·;0,4) 0.240274 0.207719 1.536670 1.359494
Normal(·;0,8) 0.240274 0.207719 2.173180 1.922615
Normal(·;2,1) 0.240274 0.207719 0.768335 0.679747
Normal(·;4,1) 0.240274 0.207719 0.768335 0.679747
Normal(·;8,1) 0.240274 0.207719 0.768335 0.679747

Our first observation is that for the same marginal distribution the MAE is affected by the change of

parameters while the MARE is almost constant. This observation seems to confirm that our performance

measure behaves as we intended to. So, looking at the MARE values we conclude that it is the general shape

of the distribution that affect the performance of the predictions. We see that for symmetric distributions

(normal and Student) the results are very close but they differs for the asymmetric ones (exponential, chi-

squares and log-normal). For the same experiment we also computed the mean length of the confidence

interval, see Table 2. We see that the behavior is the same as the MAE.
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Figure 5: Evolution of MAE in function of the strength of the dependence between X1,t and X2,t−1. The

dashed line is the MAE(X̄) and the continuous line is MAE(X̂).

Figure 6: Evolution of ML(CI) in function of the strength of the dependence between X1,t and X2,t−1. The

dashed line is the ML(C̄I) and the continuous line is the ML(ĈI).
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Table 2: Evolution of MAE and MARE in function of the marginal distributions.

Marginals distributions ML(C̄I) ML(ĈI)

T(·;5) 4.917631 4.330145
T(·;8) 4.426599 3.859385
T(·;10) 4.273358 3.755346
T(·;15) 4.088474 3.594310
T(·;20) 4.004253 3.552873
T(·;30) 3.928587 3.458193
T(·;50) 3.859412 3.421150

Log-normal(·;0,1) 6.725636 5.875235
Chi-squared(·;8) 14.721604 13.119912

Exp(·;3) 10.538524 9.452441
Normal(·,0,1) 3.756359 3.337330
Normal(·,0,2) 5.315825 4.732659
Normal(·,0,4) 7.533007 6.676207
Normal(·,0,8) 10.651699 9.433832
Normal(·,2,1) 3.762691 3.338162
Normal(·,4,1) 3.757399 3.342431
Normal(·,8,1) 3.754095 3.346136

3.3 Impact of the dependence structure

Our last numerical experiment shows that the dependence structure has an impact on the gain in performance

of our predictor X̂ compare to X̄. At first sight, we could think that using the information provided by the

serie X2 might always give better predictions but we find that the dependence structure of the Clayton

copula almost negate this advantage. From the definition of the Clayton copula we see that the dependence

structure is symmetric, that is, all the dependencies of the vector Xt = (X1,t−1, X2,t−1, X1,t, X2,t) are the

same. Moreover the strength of the dependencies increase when θ increases. When θ is close to zero, the

elements of the vector Xt are close to be independent and so, there is not much information to use to predict

the next value. On the opposite, when θ is high, both series are almost the same and, this time, the serie X2

cannot provides useful informations to our predictor.

The results in Figures 7 and 8 show the evolution of prediction performances in terms of the parameter θ.

We see that both predictors perform badly when θ is small and perform better as long as θ becomes bigger.

We also see that that the difference between both prediction errors is slowly decreasing for high values of

θ. This is due to the fact that the correlation between X1,t and it’s first lag X1,t−1 is close to one, and
so, the additional information provided by X2 becomes marginal. Obviously, the multivariate version of the

predictor will always have an advantage but in the context of the Clayton copula this advantage is minor.

4 Application

In this section we present an application of our method for forecasting realized volatility. Realized volatility

might be defined as an empirical measure of returns volatility. In a general setting, if we suppose that the

value of an asset is a semimartingale X, then the realized volatility of X over the period [0, T ] is the quadratic

variation at time T , [X]T . Thus, an estimator of the realized volatility can be defined as the sum of squared

returns

R̂V (X)[0,T ] =

N∑
i=1

(
Xti −Xti−1

)2
, (7)

where Xti , i = 0, . . . , n, are observed values and 0 = t0 ≤ t1 ≤ · · · ≤ tn = T . The first mention of realized

volatility is probably Zhou (1996) but we refer the reader to Andersen et al. (2001) for a detailed justification

of the realized volatility estimation. It is well known that each price observation is polluted by some random

noise and a more realistic model for observed price should be Yti = Xti+εti , where εti is a random variable. In

this context, it is easy to show that (7) is an inconsistent estimator. A common practice to estimate realized

volatility is to use (7) and to take observations every 5 to 30 minutes. In using less observations the bias
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Figure 7: Evolution of MAE for the predictors X̄ and X̂ in function of the parameter θ in Clayton copula

Figure 8: Evolution of ML(CI) for the predictors X̄ and X̂ in function of the parameter θ in Clayton copula
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due to noise is somewhat diminished and the estimation precision becomes acceptable. However, to perform

our realized volatility estimation we used the estimator of Zhang et al. (2005) which is an asymptotically

unbiased estimator an allows to used high-frequency datas. Another good estimator is given by Martens

and van Dijk (2006) which makes use of high and low observed values. The reason we preferred the former

estimator is that we used trade prices and it seems that this estimator is less affected by bid/ask spread.

The datas we are using are from de Trade and Quote database. We used Apple.inc (APPL) trade prices

from 2006/08/08 to 2008/02/01 which consists of 374 days of trading. In order to avoid periods of lower

frequency trading we used datas from 9:00:00 to 15:59:59. In combination with the estimation of realized

volatility we also compute the aggregated volume of transactions, see Figure 9. For our time series to satisfy

the required hypothesis of stationarity we had to take the first difference of the logarithm of both series. We

define X2,t = Log(r̂vt)−Log(r̂vt−1) and X2,t = Log(v̂olt)−Log(v̂olt−1) where r̂vt is the estimated volatilty,

v̂olt is the aggregate volume of transaction and time is in days. To verify the stationarity assumption of both

series we used a non-parametric change point test using the Kolmogorov-Smirnov statistic. The p-values of

0.217 and 0.341 for the series X1 and X2 lead us to not reject the null hypothesis of stationarity. We carried

parameters estimation and goodness of fit tests for Clayton, Frank, Gaussian and Student copulas. From the

p-values given by the goodness of fit test, see Table 3, we selected the Student copula as the best model for

(X1,t−1, X2,t−1, X2,t, X2,t). The estimated parameters for the Student distribution are the degree of freedom,

ν̂ = 12.6451, and the correlation matrix

R̂ =


1 0.6936 −0.3628 −0.1234

0.6936 1 −0.2960 −0.3035
−0.3628 −0.2960 1 0.6936
−0.1234 −0.3035 0.6936 1

 .
The Kendall’s tau matrix is then

R =


1 0.4880 −0.2364 −0.0788

0.4880 1 −0.1913 −0.1963
−0.2364 −0.1913 1 0.4880
−0.0788 −0.1963 0.4880 1

 .
Then we use our algorithm to make one period ahead predictions for out of sample values of the series X1.

The result of the prediction are in Figure 11. It is not clear from the graphics but if we take the mean length

of the confidence interval over the 100 forecasts we get 2.1181 for the predictions using bivariate copula and

2.1523 for the univariate, which asserts that the bivariate copula gives a better prediction.

Table 3:

Copula p-value

Clayton 0

Frank 0

Gaussian 0.037

Student 0.0931

5 Concluding remarks

From the work of Sokolinskiy and Van Dijk (2011) we knew that copulas could be successfully used to

forecast time series. In this paper we showed that using copula-based model for multivariate time series it

is possible to further improve predictions. To understand the advantages of our multivariate predictor we

studied how the performance of predictor evolve in function of the strength of the dependencies as well as

the structure of the dependence. Using the MARE performance measure we also showed that the shape of

the marginal distribution might affect the performance of the predictions in an absolute manner since the
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Figure 9: On top figure, the estimated realized and the daily volume of transactions.

Figure 10: Scatter plot for the first difference of the log for the realized volatility and the volume of transaction.
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Figure 11: On top figure, predictions of the first difference of the log of the realized volatility using 95%
confidence interval with bivariate copula on top panel and univariate copula on the lower panel.

MARE measure remove the scaling effect of the marginal distributions. Finally, based on the estimation

methods and goodness-of-fit tests provided by Rémillard et al. (2012) we could present a complete practical

implementation of the forecasting method.

A Simulation

A.1 Simulation of time series with Student copula

The Student copula is based on a multivariate Student distribution. Suppose (X,Y ) is a d = (d1 + d2)-

dimensional random vector which follows a Student distribution with mean 0, correlation matrix R and ν

degree of freedom. We write the matrix R as a block matrix

R =

[
RX RXY
RY X RY

]
where RX , RY , RY X and RXY are respectively the correlation matrices of the variables in subscript. It is

possible to show that all joint distributions of a multivariate Student vector are also of Student distributions

with respective correlation matrix and the same degree of freedom. Let Tν,R be the distribution function of

a multivariate Student vector. The Student copula, noted Cν,R is defined as

Cν,R(u, v) = Tν,R(T−1ν (u1), . . . , T−1ν (ud1), T−1ν (v1), . . . , T−1ν (vd2)).

Using Schur complement on the correlation matrix it is possible to show that the conditional copula of Y

given X is also a Student copula with ν̃ = ν + d1 degree of freedom, correlation matrix R̃ = ν̃
2Ω and mean

µ = XBT where Ω = RY − RXYR−1X RXY and B = RXYR
−1
X . The details of the derivations are given in

Appendix B.

To generate a 2d-dimensional time serie {Xt}t=0,1,... such that (Xt−1, Xt) follows a Student conditional

copula Cν,R with marginal distributions F1, . . . , Fd we use the following algorithm:
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1. Generate Y0 from a d-dimensional Student distribution with ν degree of freedom and correlation matrix

RX where RX is the correlation matrix of Xt.

2. For all t = 1, 2, . . ., generate Yt from a d-dimensional Student distribution with ν̃ degree of freedom,

correlation matrix R̃ and mean Xt−1B
T .

3. Set Ut = Tν(Yt).

4. Define (X1t, . . . , Xdt) = (F−11 (U1t), . . . , F
−1
d (Udt)).

To generate a d-dimensional random vector Y from the Student distribution Tν,µ,R one can generate V from

the χ2
ν distribution and set Y = Z

√
ν/V + µ where Z is a d-dimensional normal vector independent of V

with mean 0 and correlation matrix R.

A.2 Simulation of time series with Clayton copula

The Clayton copula is a member of the Archimedean family. A copula Cφ is said to be Archimedean with

generator φ if

Cφ(u) = φ−1 (φ(u1) + · · ·+ φ(ud))

for any bijection φ : [0, 1) → [0,∞). Archimedean copulas are uniquely defined by the generator up to

a scaling factor. The Clayton copula is part of the Archimedean family and is defined by the generator

φθ(t) = (t−θ − 1)/θ with θ > 0. Note that more generally it is possible to define a generator for the Clayton

copula with parameter θ ≥ − 1
d−1 but we restrict ourself to the case with positive parameter. Suppose that

(U, V ) is a (d1 + d2)−dimensional random vector which follows a Clayton copula Cφθ . Then it is possible to

show that the conditional copula of V given U is Clayton copula with parameter θ̃ = θ
1+d1θ

.

To generate a 2d-dimensional time seire {Xt}t=0,1,... such that (Xt−1, Xt) follows a Clayton copula Cφθ
with marginal distributions F1, . . . , Fd we use the following algorithm:

1. Generate U0 from the distribution Cφθ .

2. For all t = 1, 2, . . . set AUt−1
= Cφθ (Ut−1,1d).

3. Generate Vt from a the distribution Cφθ̃ with θ̃ = θ
1+dθ .

4. Set Uit =
[(∑d

i=1 U
−θ
it−1 − d+ 1

)(
V −θ̃it − 1

)
+ 1
]−1/θ

.

5. Set Xit = F−1i (Uit) for all i = 1, . . . , d and all t = 1, 2, . . ..

To generate a d-dimensional random vector Y from a Clayton copula Cφθ we simulate independently S from

a Gamma(1/θ, 1) and E1, . . . , Ed from a Exp(1), then we set Yi = (1 + Ei/S)−θ for i = 1, . . . , d.

B Conditional Student copula

Let XT = (X1, X2) be a d = (d1 + d2)-dimensional random vector which follows a multivariate Student

distribution Td(x; ν, µ,R), where ν is the degree of freedom, µ = (µ1, µ2) is a (d1 + d2)-dimensional real

vector which is the location vector and

R =

[
RX1

RX1X2

RX2X1
RX2

]
is the correlation block matrix. Let Id and 0d be respectively the d−dimensional identity matrix and null

matrix. Using Schur method we can write R = A×M ×B where

A =

[
Id1 0d1×d2

RX2X1R
−1
X1

Id2

]

M =

[
RX1

0d1×d2
0d2×d1 RX2

−RX2X1
R−1X1

RX1X2

]
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B =

[
Id1 R−1X1

RX1X2

0d2×d1 Id2

]
.

Then we see that we can write the inverse of R the following way,

R−1 =

[
R−1X1

+ B̃M̃−1Ã −B̃M̃−1
−M̃−1Ã M̃−1

]
(8)

where Ã = RX2X1
R−1X1

, M̃ = RX2
−RX2X1

R−1X1
RX1X2

and B̃ = R−1X1
RX1X2

. Using (8) have the decomposition

XTR−1X = (X2 − ÃX1)T M̃−1(X2 − ÃX1) +XT
1 R
−1
X1
X1. (9)

The density function of the above multivariate Student distribution is defined as

td(x; ν, µ,R) =
Γ(ν2 + d

2 )

|RX1
|1/2Γ(ν2 )(πν)−d/2

(
1 +

(X − µ)TR−1(X − µ)

ν

)−( ν2+ d
2 )

(10)

where Γ(x) is the gamma function. Moreover, it is well know that all joint distributions of a multivariate

Student distribution are also Student. For our concern we have that X1 follows a d1-dimensional multivariate

distribution with parameters ν, µ1 and RX1
. Fix µ = 0, then using (9) and some algebraic manipulation

it is possible to show that the conditional distribution of X2 given X1 = x1 is a d2-dimensional Student

distribution with degree of freedom ν̃ = ν + d1, location parameter µ̃ = Ãx1 and scale matrix λ
ν̃ M̃ , where

λ = ν + xT1 R
−1
X1
x1 that is

td2(x2; ν̃, µ̃,
λ

ν̃
M̃) =

td(x; ν, 0d, R)

td1(x1; ν, 0d1 , RX1
)
.
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