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Abstract: This paper proposes a stochastic integer programming (SIP) formulation to address the op-
timization of long-term mine production schedules, whereby the supply of metal from a mineral deposit
is considered uncertain and can be described by a set of equally probable orebody representations. The
proposed SIP formulation maximizes the expected net present value of the production over the life of the
mine while reducing the risk of deviating from production targets. The proposed modelling methodology
considers a set of limiting surfaces to facilitate the scheduling of larger size deposits, where a surface defines
a limit that separates mining blocks assigned to two consecutive production periods, and is represented by a
discrete set of elevations. A key characteristic of the formulation is that it facilitates a divide-and-conquer
approach to scheduling, where the scheduling can be performed sequentially, thus controlling the number of
binary variables in multi-period production scheduling, which in turn facilitates production scheduling for
large mineral deposits

The proposed SIP production scheduling formulation is tested at a copper deposit. First, scheduling with
the proposed SIP shows the intricacies and performance of the formulation. Subsequently, the method is
applied sequentially to show the equivalence of solutions while assessing computational requirements and
demonstrates empirically that the proposed SIP formulation can reduce the processing time from days to
minutes.

Key Words: Mine planning, production scheduling, geological uncertainty, surface, stochastic optimization,
stochastic orebody models, risk analysis.
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1 Introduction

Mineral projects aim to produce metal available in the Earth’s subsurface to meet the needs of society

and its development through the sustainable utilization of mineral resources while generating revenue. The

longstanding conventional approach of using exploration drilling data to estimate the attributes of interest

(grade, material types, density, etc.) in a mineral deposit has been found limiting and does not capture the

intrinsic geological variability and uncertainty. As a result, conventional optimization formulations used to

optimize mine production schedules and assess discounted cashflows over production years have been shown

to be both misleading in production forecasts (Dimitrakopoulos et al, 2002; Dowd, 1997) and undervalues

potential metal production and project value (Godoy, 2003). A review of these issues as well as overview

of recent developments in dealing with uncertainty (stochasticity) in optimizing mine design and production

scheduling can be found in Dimitrakopoulos (2011).

Stochastic optimization for long-term mine production scheduling using simulated annealing was first

introduced by Godoy and Dimitrakopoulos (2004). Although the simulated annealing framework remains

relevant and is being expanded to control production deviations in mining complexes with multiple mines

and processing destinations (Goodfellow and Dimitrakopoulos, 2012), it may be limited in its ability to

guarantee an optimal solution. Stochastic integer programming with recourse was introduced as an alternative

framework (Ramazan and Dimitrakopoulos, 2005) to address the limitations of simulated annealing. Ramazan

and Dimitrakopoulos (2012) detail an SIP formulation with recourse that maximizes total discounted cash

flows and minimizes deviations from production targets (ore tonnage, grade and metal).The key drawback

of the SIP approach is computational: as the number of binary variables increases with the number of

mining blocks being scheduled, the amount of time required to generate an optimal solution often becomes

impractical, particularly as mineral deposits may be represented by Notable variations of the SIP framework

includes long- and short- term mine production scheduling based on simulated future grade control data

(Jewbali and Dimitrakopoulos, 2009) and using the SIP formulation for pushback design and demonstrating

that stochastically generated pit limits are larger than the corresponding conventional ones (Albor and

Dimitrakopoulos, 2009). Menabde et al. (2007) proposes an alternate formulation that uses a variable cut-off

grade and relies on aggregations of blocks to ensure the problem is computationally tractable. Boland et al.

(2008) propose a multi-stage stochastic programming approach that considers both processing and mining

decisions, however, their formulation has practical limitations, in terms of usability for mining engineering

problems and also computational limitations.

To address the computational and size limits of the above SIP mine scheduling formulations, Lamghari

and Dimitrakopoulos (2012) introduce Tabu and variable neighborhood search, bypassing the need to solve

SIP formulations with conventional solvers such as CPLEX. Results reported are very close to optimality,

while executing orders of magnitude faster. Despite the improvements in terms of solving faster than before,

further developments are needed if very large size deposits are to be scheduled.

Goodwin et al. (2005) propose a new “mine state” concept for open pit production scheduling. A mine

state is defined as a set of elevations, one for each (x, y) coordinate of a three-dimensional orebody model,

which are used to represent the pit depth (the distance from a fixed higher elevation) at a given mining period.

The evolution from one period to the next is given by downward vertical increments, updating the mine

state each time. Slope constraints are controlled over each mine state, comparing only adjacent elevations.

Each state is always below previous ones, as only positive increments are allowed. Unfortunately, in their

formulation, the objective function is non-convex, which limits the use of conventional integer programming

techniques. In addition, uncertainty is not accounted for. The mine state concept is the same as the surface

concept used herein and is presented in the subsequent sections, with the difference that surfaces carry exact

elevations in space, instead of measures of depth from a fixed elevation.

The present paper expands on previous work by proposing a SIP formulation to address the optimization

of mine production scheduling, defining constraints over surfaces to reduce the number of constraints in the

mathematical formulation. Uncertainty and risk are controlled through additional hard constraints, instead

of resource actions over the objective function as formulated in prior work. It is important to note that

the management of slope constraints is simpler and more general, given the linear aspect of the formulation
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proposed. The concepts and stochastic scheduling formulation based on surfaces is detailed will first be

discussed. Following this, a sequential implementation of the proposed method is revisited in an effort to use

its properties to yield more computationally efficient implementations that have solutions close to optimality.

A case study using a copper deposit demonstrates the full implementation of the proposed SIP formulation,

the sequential implementation and the performance aspects. Conclusions follow.

2 A Stochastic Programming Formulation Based on Surfaces

2.1 Surfaces and related concepts

Surface relations used herein are based on the fact that blocks are not independently distributed in space and

can be grouped into vertical columns. More specifically, surfaces are defined as sets of elevations in which

the periods are divided. Each column of blocks (fixed x and y coordinates) can be partitioned by T surfaces

into T + 1 groups of blocks, which then becomes the T mining periods in addition to the blocks that are not

extracted. For each surface (or period) T , cell c is defined by a fixed pair of coordinates (x, y), and each cell

c has an elevation ect associated with period t. Variables ect are linear and assume values from the origin up

to the highest elevation allowed in the orebody model. Using the concept of surfaces, maximum slope angle

constraints can be controlled over surfaces, rather than blocks. This is a tradeoff, where new variables ect
are included but fewer constraints are required, as shown in subsequent sections.

Past approaches for modelling the production scheduling problem are typically based on binary variables

xit, where xit = 1, if block i is mined in period t, and zero otherwise. Here, the notation of xit is modified to

xzct, where each i corresponds to a pair (c, z), for correlating ect (elevation; linear) with xzct (block; binary).

The xzct variable assumes the value 1 only if block (c, z) is the deepest block being mined in period t and in

column c; otherwise, the xzct variable is zero.

Block attributes such as total/ore/metal tonnages are accumulated starting from the topography down

to the last block over each column, with cumulative values being stored at each level; attributes for single

blocks are discarded for the optimization process, which allows quick operations between surfaces by taking

differences. A key aspect of this approach is the need to associate blocks with surface cells and is performed

by comparing their elevations in space (Figure 1): a block (c, z) will be considered the last block mined over c

in a given period t if its centroid elevation Ez
c lies between ect and ect +4z, where 4z is the block dimension

in z. Figure 2 shows, in a sectional view, cells representing the end of first and second periods, with blocks

valued and coloured accordingly. Note that for each column (given x and y) and each period,
∑
xzct = 1,

which is a strong constraint given by the approach proposed herein that reduces processing time.
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Figure 2: Assigning a period to a block according to surface elevations.

2.2 Notation

The following notation is used:

Indices

1. M : number of cells in each surface; where M = x× y represents the number of mining blocks in x and

y dimensions.

2. c: cell index corresponding to each (x, y) block/cell location, c = 1, . . . ,M .

3. Z: number of levels in the orebody model.

4. z: level index, z = 1, . . . , Z.

5. T : number of periods over which the orebody is being scheduled and also defines the number of surfaces

considered.

6. t : period index, t = 1, . . . , T .

7. S: number of simulated orebody models considered.

8. s: simulation index, s = 1, . . . , S.

Constants and sets

9. Ez
c : elevation of the centroid for a given block (c, z).

10. Hx: maximum difference in elevation for adjacent cells in contact laterally in the x direction, calculated

by Hx = 4x× tan(θ), where 4x is the block size in x and θ is the maximum slope angle.

11. Hy: maximum difference in elevation for adjacent cells in contact laterally in the y direction, calculated

by Hy = 4y × tan(θ), where 4y is the block size in y.

12. Hd: maximum difference in elevation for adjacent cells in contact diagonally, calculated by Hd =√
4x2 +4y2 × tan(θ).

13. Xc, Yc and Dc: equivalent to Hx, Hy and Hd concept, the sets of adjacent cells, laterally in x, in y and

diagonally, for a given cell c, respectively.

14. T z
c : cumulative tonnage of block (c, z) and all blocks above it (scenario independent).

15. Oz
cs: cumulative ore tonnage of block (c, z) and all blocks above it in scenario s.

16. Mz
cs: cumulative amount of metal contained in block (c, z) and all blocks above it in scenario s.

17. EV z
cs: cumulative economic value of block (c, z) and all blocks above it in scenario s.
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Parameters

18. Tt and Tt: lower and upper limits, respectively, in total tonnage to be extracted during period t.

19. OR
t and OR

t : lower and upper limits, respectively, on ore tonnage to be processed over period t, where

R is used to denote “risk”.

20. OA
t and OA

t : lower and upper limits, respectively, on expected ore tonnage to be processed over period

t, where A is used to denote “average”.

21. α: economic discount rate.

22. V z
cts: discounted economic value to be generated for all blocks extracted up to period t in scenario s.

Variables

23. ect: scenario-independent linear variables associated with each cell c for each period t, representing cell

elevations.

24. xzct: binary variable that assumes 1 if block (c, z) is the last block being mined in period t over c, and

0 otherwise.

2.3 Formulation

2.3.1 Objective function

The proposed objective function in Eq. (1) maximizes the expected net present value from mining and

processing selected blocks over all considered periods. Recall that all values are cumulative and xzct − xzc,t−1

is associated with the difference between the surfaces. (xzct − xzc,t−1) results in 0, 1 or −1, depending on

location (c, z) and period (t).

max

S∑
s=1

T∑
t=1

M∑
c=1

Z∑
z=1

V z
cts(x

z
ct − xzc,t−1) (1)

2.3.2 Constraints

The constraints presented in Equations (2)–(7) and (10) are scenario-independent, while constraints (8)–(9)

are scenario-dependent stochastic constraints.

Surface constraints

The following set of constraints (Eq. 2) guarantee that each surface t has, at maximum, the same elevation

as surface t− 1, which is used to avoid crossing surfaces and blocks being mined more than once.

ec,t−1 − ect ≥ 0 c = 1, . . . ,M ; t = 2, . . . , T (2)

Slope constraints

The maximum surface slope angle is guaranteed herein by Equations (3)–(5). Each cell elevation is compared

to the elevation of the 8 adjacent cells, which therefore represents a set of 8×nx×ny×T linear constraints.

Slope constraints controlled by surface relations do not depend on the slope angle, which is efficient in the

sense that it requires fewer constraints.

ect − ext ≤ Hx c = 1, . . . ,M ; t = 1, . . . , T ; x ∈ Xc (3)

ect − eyt ≤ Hy c = 1, . . . ,M ; t = 1, . . . , T ; y ∈ Yc (4)

ect − edt ≤ Hd c = 1, . . . ,M ; t = 1, . . . , T ; d ∈ Dc (5)
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Link constraints

Blocks and surfaces are linked together in the formulation by comparing the elevation of each block centroid

with the elevation of each surface. Variables xzct will assume value 1 only for block centroids that are the

closest above the correspondent surface (index t). Constraints (6) guarantee this link and, consequently,

guarantee that there is only one block defining the end of each period t over each column c of blocks z.

0 ≤
Z∑

z=1

(Ez
cx

z
ct)− ect ≤ 4z c = 1, . . . ,M ; t = 1, . . . , T (6)

Mining constraints

Constraints (7) ensure that the requirements on the mining production (ore and waste) are respected during

each period:

Tt ≤
M∑
c=1

Z∑
z=1

T z
c (x

z
ct − x

z
c,t−1) ≤ T t t = 1, . . . , T (7)

Variability constraints

Constraints (8) guarantee that processed ore tonnages are not outside lower and upper bounds, OR
t and

OR
t . These hard constraints guarantee, when there is a solution, that acceptable deviations from production

targets are met.

OR
t ≤

M∑
c=1

Z∑
z=1

Oz
cs(x

z
ct − x

z
c,t−1) ≤ OR

t s = 1, . . . , S; t = 1, . . . , T (8)

Target constraints

Constraints (9) guarantee that expected processed ore tonnages are not outside lower and upper bounds,

OA
t and OA

t , keeping results close to defined targets. Other constraints over metal and grade, for multiple

variables, can be modeled using the same approach.

OA
t ≤

1

S

S∑
s=1

M∑
c=1

Z∑
z=1

Oz
cs(x

z
ct − x

z
c,t−1) ≤ OA

t t = 1, . . . , T (9)

Tightening constraints

Constraints (10) are optional and are related to the concept that there is only one block representing the end

of a given period for a given column (Figure 2). Link constraints already guarantee this property, but it has

been shown empirically that the following constraints may help solving the optimization faster.

Z∑
z=1

xzct = 1 c = 1, . . . ,M ; t = 1, . . . , T (10)

Variables definition

ect ∈ R c = 1, . . . ,M ; t = 1, . . . , T (11)

xzct ∈ {0, 1} c = 1, . . . ,M ; t = 1, . . . , T ; z = 1, . . . , Z (12)
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3 Alternative Implementation

3.1 Intricacies

The formulation proposed in Section 2 has a specific characteristic that is can be exploited; the binary

variables in the formulation are related to surface elevations by constraints (6). When solving the linear

relaxation of the formulation previously presented, situations like the ones presented in Figure 3 become

feasible.

199 

 

 

Figure 3: Linear relaxation of binary variables. 
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instead of running the optimization for the entire first period at once, the algorithm runs 

fractional periods sequentially, rescaling the full period targets and limits. For example, 

Figure 3: Linear relaxation of binary variables.

Given a cell elevation ect, any combination of fractional values for variables xzct for each c and t that

respect (6) and (10) will be part of a valid solution. However, to comply with constraints (6), fractional

values must exist both above and below the cell elevation. Establishing strong superior or inferior limits for

surface elevations, where blocks are fixed to zero outside, reduces considerably the possible combinations of

fractional solutions, which consequently reduces the processing time. Past SIP formulations do not have this

characteristic, although they are more efficient for unconstrained cases, as waste blocks can be defined as

linear variables (Ramazan and Dimitrakopoulos, 2004). As a result, the formulation presented in this section

is only efficient when considered as part of an approach with limiting surfaces.

The number of variables and constraints in the formulation in Section 2 is proportional to the number of

periods in the schedule; increasing the number of mining periods results in an increased number of possible

solutions, and the solution time using integer programming techniques becomes even slower. The opposite

happens when the scheduling process can be first broken into single period optimizations and the subsequent

periods are sequentially included in the process, while the previous period(s) is also adjusted. A new period

t is added to the optimization process only after the method returns its best solution for t−1.The scheduling

process starts from the first period and the results from each step are used as reasonable limiting assumptions

for the next steps, until the last period is included and the algorithm terminates.

3.2 Sequential Implementation

The sequential implementation of the proposed method considers some engineering aspects of a mine’s pro-

duction schedule. The first objective of the sequential implementation is to find the best available limits when

mining a single period. The original topography serves as an upper limit for this single period. For defining

reasonable lower limits, realistic constraints should be considered. More specifically, the implementation

considers the following.

Bench limits

Mining operations have limits on minimum/maximum benches over a production year, productivity and

operational constraints related to long-term plans and mining capacities. For this reason, bench limits are

established for each period to define the maximum depth for a surface. For the illustrative example depicted
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in Figures 4 to 8, periods 1 and 2 are not permitted to mine below the 6th and 3rd benches, respectively,

while the third period is left unconstrained.

Fractional periods

Given that it is possible mine many benches over each long-term production period, bench limits are not

enough to reduce the complexity of the optimization process. Thus, instead of running the optimization for

the entire first period at once, the algorithm runs fractional periods sequentially, rescaling the full period

targets and limits. For example, consider all mining targets and limits for quarters of production; the

algorithm runs four consecutive smaller schedules, always using the previous period result as an upper limit

for the next; the bottom of these four quarters is considered a surface for the entire mining period. The

number of fractional periods (four in the given example) is user-defined and unlimited. Fractional periods

guide the developments of the mine to regions where short-term periods will also tend to respect defined

constraints (exception is the case where the optimization process may need to spend the entire production

period stripping). Bench limits can also be defined for each fractional period.

Maximum mining depth

While the bench limit do not allow mining below a fixed elevation, the maximum mining depth parameter

defines the maximum distance that each cell of the surface can move, creating a bottom limit parallel to

the top. This parameter is valid only for fractional periods, considering that it is operationally impossible

to mine deeply in the same location and in a short amount of time. The combination of these parameters

(bench limits, number of fractional periods and maximum depth) affects the efficiency of the optimization

process, as decisions are taken locally and sequentially. Figure 4 shows an example of two fractional periods

considering maximum depth of 20 meters for each. The maximum depth is represented by arrows for each

column until reaching the blue limit, 20 meters below the actual surface. Note that, for clarification purposes,

only mining blocks and limits are presented in the figure, however all operations are related to cell elevations,

which are linear variables and are not required to be at the bottom elevation of the blocks. The bottom of

the last fractional period is considered the surface representing the first period of the schedule.

Tolerance range

Until this point, all decisions are taken optimally within the use of local constraints. To assess potential

further improvements, a distance range is introduced above and below the first period surface found as the

new top and bottom limits, and the optimization is executed again. The algorithm loops over this process

until no better solution is found. In this step, the surface is allowed to move, blending blocks from different

parts of the mine that are located inside given ranges. Bench limits are still respected in this step. Figure 5

illustrates one loop over this step with a range of 10 meters (dashed lines) over the surface of period 1

(continuous line), where elevations are changed, including two blocks and excluding the other two.

Having the best result allowed by the method for period 1, period 2 is then considered. Instead of creating

an optimization of two periods, thereby doubling the number of variables, the optimization is first run for a

single period, step by step, until completing the last fractional period, which contains enough material for

periods 1 and 2 together. The surface defined for period 1 is considered as a top limit. Results obtained for

period 1 are summed with targets for period 2 and fractional periods consider cumulative targets. The result

will be a feasible initial solution for the surface of period 2, as illustrated in Figure 6.
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Larger pit limits

An additional search is performed beyond the limits of the last period to allow additional mining blocks to

be included in the schedule. This step is performed by fixing all previous periods and setting as the top limit

for running again the last joint optimization, that is, new blocks can be included but not excluded. Figure 8

shows the resulting 3-period schedule, including one extra block.
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Figure 13: Final schedule after including the third period and looking deeper. 
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The above implementation considerations focus on generating solutions during the first periods, before

evaluating later ones. A summary of the main steps of the sequential implementation is as follows:

1. Define the top limit as the actual topography.

2. Define the bottom limit by eliminating external volumes containing only mining blocks with low prob-

ability of being ore. No surface in any period can go beyond these limits.

3. Rescale mining and processing targets and limits according to the number of fractional periods defined.

4. Run fractional periods sequentially, using bench and maximum depth limits, until achieving targets for

period 1.

5. Define a tolerance range and rerun for period 1 (not fractional). Loop over this step until no better

solution is found.

6. Run fractional periods for period 2, using targets of periods 1 and 2 together and the final surface found

in step 5 as top limit.

7. Define tolerance ranges and re-optimize all periods jointly. Loop until there are no further improvements

in the solution.

8. Loop over steps 7 and 8 until the last period of the schedule.

9. Freeze all periods except by the last and look for extra blocks to be included.

The sequential implementation of the SIP formulation in Section 2, as discussed above, raises the questions

of optimality of the related production sequence. This topic is addressed and explored next through an

application.
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4 Tests at a Copper Deposit

A copper deposit is used in this case study and is the one described by and simulated in Leite (2006). The

orebody model consists of 9953 blocks, each measuring 20 × 20 × 10 m3, simulated using the direct block

simulation method (Godoy, 2003). The parameters considered for scheduling are given in Table 1.

Table 1: General parameters.

Copper price, $/lb 1.9
Selling cost, $/lb 0.4
Mining cost, $/t 1.0
Processing cost, $/t 9.0
Processing recovery 0.9
Discounting rate per period, % 10
Block tonnage, t 10800
Maximum mining production, Mt/year 28.0
Minimum expected ore production, Mt/year 7.45
Maximum expected ore production, Mt/year 7.55
Cutoff grade, % 0.3

The potential annual ore production variability is controlled with a set of hard constraints defined experi-

mentally and assuming a life of mine of 8 years (as known from previous studies (Albor and Dimitrakopoulos,

2010). Table 2 presents the predefined levels of acceptable deviations for yearly production targets used in

this study.

Table 2: Accepted deviations from ore production targets.

PERIOD MINIMUM (Mt) MAXIMUM (Mt)

1 7.4 7.6
2 7.3 7.7
3 7.2 7.8
4 7.1 7.9
5 7.0 8.0
6 6.9 8.1
7 6.8 8.2
8 not restricted not restricted

In the following subsections, 7 variants in scheduling the copper deposit are presented. The application of
the “Full SIP” presented in Section 2 is first detailed. Then, Case 1 introduces fractional periods, maximum

depth limits and weak bench constraints; Case 2 establishes more reasonable bench limits; Case 3 tests the

sensitivity of the maximum depth parameter; and, lastly, Case 4 explores variability constraints.

4.1 Scheduling with the Full SIP

In generating the life-of-mine production schedule for the above copper deposit and information provided in

Tables 1 and 2, the results from the optimization of the formulation presented in Section 2, or the “Full SIP”,

is presented here. Results are summarized in Figures 9 and 10, which report the average forecasts of ore,

waste, metal and cumulative cashflows along with the corresponding P10, P50 and P90. The Full SIP results

are based on 15 simulated realizations of the deposit (Albor and Dimitrakopoulos, 2009), while the production

forecasts reported and their probabilistic assessment is based on 20 simulations. The expected NPV is $277

million, which is 23% higher than the results generated from the conventional best industry practices, as

reported in Leite and Dimitrakopoulos (2007) and using the same information and parameters. On average,

ore production is close to the specified ore production target and is associated with lower variability over the

first two periods. Although not controlled directly in the model, the waste risk profile increases gradually

over time. Metal production starts at higher levels at the beginning of the life of mine and decreases in the

end, which is expected given that the optimizer looks for more profitable blocks when there is less of an

impact from the time value of money (discounting). Figure 10 presents the cumulative NPV for this project

showing a 90% probability of achieving at least 254 million dollars.
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Figure 9: Risk profile for ore and waste tonnages for Full SIP solution. 
Figure 9: Risk profile for ore and waste tonnages for Full SIP solution.

208 

 

 

Figure 10: Risk profile for metal tonnages and NPV for Full SIP solution. 

 

 

 Figure 11: Coefficient of variation of ore, waste and metal over mining periods. 

 

 

Figure 12: Coefficient of variation of NPV over mining periods. 

Figure 10: Risk profile for metal tonnages and NPV for Full SIP solution.

Figures 11 and 12 present the coefficient of variation (CV) for ore, waste, metal tonnages, and NPV over

mining periods. The presented CV’s are very low in general and make a very eloquent point: the spaces

of uncertainty being mapped by ore, metal, waste production and cashflows are less than 0.1 and with two

exceptions (Figure 12) that are below 0.3. This is distinctly low a CV and, thus demonstrates that the use

of larger numbers of simulated realizations of the deposit would not add any additional information to the

results for the project indicators of interest. This is distinctly different from the CV of datasets of metal

grades from exploration drilling used to model the deposits considered in scheduling studies, which usually

have CVs of over 2. Figure 13 shows, in a vertical section, the physical schedule obtained.
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Figure 13: East-West deepest vertical section (N10290) for Full SIP schedule. 

4.2 Sequential implementation of the Full SIP 

Case 1 

Case 1 uses the same parameters from the Full SIP (Tables 1 and 2). Additionally, mining 

depth is limited to 12 benches per period with 4 fractional periods, with a dynamic 

maximum mining depth, starting from 20m and increasing to 30m if no solution is found. 

The resulting schedule appears identical to the schedule generated for the Full SIP, with 

the exception of two blocks. As a result, the risk profiles and the chosen vertical section 

are the same as in Figures 9, 10 and 13. 

Case 2 

Figure 13: East-West deepest vertical section (N10290) for Full SIP schedule.

4.2 Sequential implementation of the Full SIP

Case 1

Case 1 uses the same parameters from the Full SIP (Tables 1 and 2). Additionally, mining depth is limited

to 12 benches per period with 4 fractional periods, with a dynamic maximum mining depth, starting from

20m and increasing to 30m if no solution is found. The resulting schedule appears identical to the schedule

generated for the Full SIP, with the exception of two blocks. As a result, the risk profiles and the chosen

vertical section are the same as in Figures 9, 10 and 13.

Case 2

In Case 2, bench limits are set to the highest possible level that contains less than 10 mining blocks below

it. As a result, the number of benches that are allowed to be mined from periods 1 to 8 have the following

bench limit configuration: 9, 6, 5, 3, 2, 1, 1, free.

All other parameters are kept the same as in Case 1. All results are quite similar to Case 1, as presented

in Figures 14 to 16. The solution indicates that an additional average of 0.4Mt of ore and 3Mt of waste being

mined in this case with the same average NPV of 277 million dollars, with 90% chance of being higher than

252 million dollars. Comparing these numbers, vertical sections and risk profiles, the schedules in Cases 1

and 2 are identical for all practical purposes.

Case 3

Regarding the maximum depth parameter, defining deeper limits allows finding better solutions at each step

given that more options are available; however, it incurs additional processing time. Case 3 is executed for a

fixed maximum depth of 30 meters and uses the same parameters as Case 2. Figures 17 to 19 indicate that

there are negligible differences in the risk profiles and vertical sections of the two cases.
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Figure 16: East-West vertical section (N10290) for Case 2 schedule. 
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Figure 18: Risk profile for metal tonnages and NPV for Case 3. 

 

Figure 19: East-West vertical section (N10290) for Case 3 schedule. 

 

 

 

Case 4 

Case 4 presents results when experimenting with constraining the amount of acceptable 

risk (ore production variability) through the constraints presented in Eq. (8). The 

parameters used are shown in Table 3.  Results obtained show similar physical schedule 

and risk profiles when compared to previous cases, however, there is minimally improved 

control in the ore production variability, which increases over time, as presented in 

Figures 24 to 26. 

 

Table 3: Maximum and minimum ore production accepted for Case 5. 

PERIOD MINIMUM (Mt) MAXIMUM (Mt) 

Figure 18: Risk profile for metal tonnages and NPV for Case 3.
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Figure 19: East-West vertical section (N10290) for Case 3 schedule.

Case 4

Case 4 presents results when experimenting with constraining the amount of acceptable risk (ore production

variability) through the constraints presented in Eq. (8). The parameters used are shown in Table 3. Results

obtained show similar physical schedule and risk profiles when compared to previous cases, however, there

is minimally improved control in the ore production variability, which increases over time, as presented in

Figures 20 to 22.

Table 3: Maximum and minimum ore production accepted for Case 4.

PERIOD MINIMUM (Mt) MAXIMUM (Mt)

1 7.45 7.55
2 7.40 7.60
3 7.35 7.65
4 7.30 7.70
5 7.25 7.75
6 7.20 7.80
7 not restricted not restricted
8 not restricted not restricted

4.3 Comparisons

All cases present similar physical schedules for practical purposes. This shows that, in this case study, the

proposed approach converges to a similar solution, regardless of when different parameters are used. There

are, however, differences in computing times for the various cases. The following reporting is based on

using a 64-bit computer with Intelr Coretm i7-2600S CPU @ 2.80GHz, 8Gb RAM, 8 processors and using

CPLEX 12.4. The proposed alternative sequential implementation reduces substantially the processing times.

Results for Cases 1 to 4 are given in Table 4.
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Figure 24: Risk profile for ore and waste tonnages for Case 5. 

 

Figure 25: Risk profile for metal tonnages and NPV for Case 5. 

Figure 20: Risk profile for ore and waste tonnages for Case 4.
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Figure 25: Risk profile for metal tonnages and NPV for Case 5. 
Figure 21: Risk profile for metal tonnages and NPV for Case 4.
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Figure 26: East-West vertical section (N10290) for Case 5 schedule. 

 

Table 4: Binary variables and processing times for Cases 1 to 6, and Full SIP. 

CASE 
MAX NUMBER 

OF BINARIES 

PROCESSING 

TIME 

Full SIP 163276 ~3 days 

1 11265 31 minutes 

2 11813 25 minutes 

3 9939 29 minutes 

4 9030 24 minutes 
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slope angle management. The proposed sequential implementation divides the scheduling 

Figure 22: East-West vertical section (N10290) for Case 4 schedule.

Table 4: Binary variables and processing times for Cases 1 to 4, and Full SIP.

CASE MAX NUMBER OF BINARIES PROCESSING TIME

Full SIP 163276 ˜3 days
1 11265 31 minutes
2 11813 25 minutes
3 9939 29 minutes
4 9030 24 minutes
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5 Conclusions

The formulation proposed in this study introduces the use of limiting surfaces in the context of SIP for mine

production scheduling optimization, adding the benefits of better slope angle management. The proposed

sequential implementation divides the scheduling problem to smaller sub-problems using surfaces found in

single optimization processes, based on the engineering aspects of multi-period scheduling. Fractional peri-

ods are defined to increase efficiency and guide the developments of the mine to regions where short-term

periods also tend to respect constraints. Each multi-period solution is further optimized by allowing iterative

changes in surface elevations of all periods simultaneously. The case study at a copper deposit shows the

generation of equivalent physical schedules for different parameters. The expected NPV is similar to previous

stochastic scheduling approaches and more than 23% higher than the schedule reported obtained in a related

conventional (deterministic) production scheduling study. The proposed method can be used to generate

results in approximately 12 minutes of processing time, against days for the full SIP case.
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