
Les Cahiers du GERAD

CITATION ORIGINALE / ORIGINAL CITATION

GERAD HEC Montréal
3000, ch. de la Côte-Sainte-Catherine
Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053	
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca

Les Cahiers du GERAD ISSN: 0711–2440

CUTEst: A Constrained and Unconstrained
Testing Environment with Safe Threads

N. Gould, D. Orban,
Ph.L. Toint

G–2013–27

April 2013

Les textes publiés dans la série des rapports de recherche HEC n’engagent que la responsabilité de leurs auteurs. La publication de

ces rapports de recherche bénéficie d’une subvention du Fonds de recherche du Québec – Nature et technologies.

CUTEst: A Constrained and Unconstrained Testing
Environment with Safe Threads

Nick Gould

Scientific Computing Department
Rutherford Appleton Laboratory

Chilton, Oxfordshire, OX11 0QX, England

nick.gould@stfc.ac.uk

Dominique Orban

GERAD & Department of Mathematics and Industrial Engineering
Polytechnique Montréal

Montréal (Québec) Canada, H3C 3A7

dominique.orban@gerad.ca

Philippe L. Toint

Department of Mathematics
University of Namur

Namur, Belgium

philippe.toint@unamur.be

April 2013

Les Cahiers du GERAD

G–2013–27

Copyright c© 2013 GERAD

ii G–2013–27 Les Cahiers du GERAD

Abstract: We describe the most recent evolution of our constrained and unconstrained testing environment
and its accompanying SIF decoder. Code-named SIFDecode and CUTEst, these updated versions feature
dynamic memory allocation, a modern thread-safe Fortran modular design, a new Matlab interface and a
revised installation procedure integrated with GALAHAD.

Key Words: CUTE, CUTEr, CUTEst, optimization, modeling, benchmarking.

Résumé : Nous décrivons la plus récente version de notre environnement de test avec et sans contraintes
ainsi que de son décodeur SIF. Nommés SIFDecode et CUTEst, ces nouvelles versions comportent l’allocation
dynamique de mémoire, une conception modulaire à fil sécurisé en Fortran 2003, une interface Matlab mise
à jour ainsi qu’une procédure d’installation intégrée avec celle de GALAHAD.

Mots clés : CUTE, CUTEr, CUTEst, optimisation, langage de modélisation, étalonnage.

Acknowledgments: We are extremely grateful to Roger Fletcher, Philip Gill, Michal Kočvara, Michael
Powell, Klaus Schittkowski and Elizabeth Wong for making their latest codes available to us so that we could
build and test interfaces.

Research of the second author was partially supported by NSERC Discovery Grant 299010-04.

Les Cahiers du GERAD G–2013–27 1

1 Introduction

The Constrained and Unconstrained Environment (CUTE) [3] and its associated set of optimization examples

have been widely adopted and used since its introduction in 1993. The test set has grown over time and

now numbers approximately 1150 examples, many of them of variable dimension. In addition, since both the

MPS linear programming format [6] and its quadratic programming extensions [16; 17; 13] are compatible

with CUTE’s Standard Input Format (SIF) [5, Ch.7], CUTE and its successor CUTEr [12] provide access to

other test sets such as those from Netlib [9] and and Maros and Meszaros [16].

To set the scene, recall that a SIF file provides a portable description of group-partially separable opti-

mization problem [4]. Such a file is translated by the package SifDec to a number of Fortran subroutines that

compute values and derivatives of constituent element and group functions, together with data that explains

how the functions are glued together. Armed with these components, CUTE(r) reassembles them to allow

users to compute values and derivatives of both the objective function and/or its constraints as required, as

well as providing static information such as bounds on variables and constraints.

The core (Fortran 77) routines behind CUTE(r) have not changed significantly since their original release.

A main limitation of standard Fortran 77 is that it offers no mechanism for dynamic memory management,

something programmers of other languages (particularly C) take for granted. This defect had a significant

implication for CUTE and CUTEr, namely that a one-size-fits-all set of array dimensions are set at compile

time, and CUTEr and its relatives return to the user if this choice is insufficient, with a recommendation

for recompilation with values that might be appropriate. Many CUTEr users have learned to detest this

inflexibility, and it is certainly the main source of complaint we receive.

Of course, modern Fortran (90 and later) provide dynamic memory-allocation, and it has mostly been

the scale of the task of rewriting CUTEr to do this that has stopped us; CUTEr (and its dependent SifDec)
numbered roughly 50,000 lines of code. Now, we have done so. The new, Fortran 2003 packages CUTEst and

SIFDecode both request array storage as needed. The data for any array that is not currently large enough

is written to temporary store (or, if there is insufficient room in memory, to disk), the array de-allocated and

re-allocated with some “elbow-room” and the existing data copied back. A more general concern about the

lack of freely-available reliable modern Fortran compilers has also vanished with the arrival of both g95 and

gFortran; there are of course many excellent commercial Fortran compilers available.

An additional limitation of CUTE/CUTEr was that it relied on Fortran common blocks to share data

between tools. Some of this data, such as that required to describe the structure of a problem, was fixed after

calling “setup” routines, while the remainder was constantly rewritten as problem function (and derivative)

evaluations took place. This use of common meant that the packages were not thread safe, and could not be

used in a multi-threaded (parallel) environment (for example to test branch-and-bound methods for integer

programming or global optimization). This deficiency has also been addressed in CUTEst, and indeed the

data is now split so that a single copy of the fixed data is available to all threads, while dynamic data is

stored on a per-thread basis.

We have also taken the opportunity to revise the way the packages are organised and installed. We have

adopted the scheme we currently use within GALAHAD [11], and this leads to some isolation of common

components that are distributed separately. Since GALAHAD was itself a major user of CUTEr, we have also

updated components of GALAHAD to use CUTEst packages. In addition, we have upgraded all of CUTEr’s
interfaces to external optimization packages—written in a variety of languages—that are still distributed

(there have been a few casualties since 2003), and have also provided interfaces of a number of new ones. We

have also considerably simplified the interface to Matlab.

This short paper is arranged as follows. We first describe how CUTEst is now organised, and how it may

be used to test external packages. We then give a few details of the new features provided. A few words

about the SIF decoder are followed by a description of the instalation procedure.

2 G–2013–27 Les Cahiers du GERAD

2 New package organisation

CUTEst is provided as a series of directories and files, all lying beneath a root directory that we shall refer

to as $CUTEST. The directory structure is illustrated in Figure 1.

$CUTEST

tools

algencan

. . . other packages . . .

matlab

test

src

makefiles

seds

objects

versions

include

modules

bin sys

doc pdf

man
man1

man3
sif

packages

architecture1

architecture2

. . . other architectures . . .

double

single

double

single

architecture

architecture2

. . . other architectures . . .

double

single

double

single

defaults

architecture

. . . other architectures . . .

double

single

Figure 1: Structure of the CUTEst directories

Before installation the sub-directories objects, modules, makefiles, versions and bin/sys will all

be empty. The script install_cutest prompts the user for the answers to a series of questions aimed at

determining what machine type, operating system and compiler (from a large list of predefined possibilities

encoded in a separate package, ArchDefs, that is distributed with CUTEst, and shared with SIFDecode and

GALAHAD) to build CUTEst—we call this combination of a machine, operating system and compiler an

Les Cahiers du GERAD G–2013–27 3

architecture. Each architecture is assigned a simple (mnemonic) architecture code name, say architecture—

for example a version for the NAG Fortran 95 compiler on a PC runing Linux is coded pc.lnx.n95, while

another for the IBM Fortran 95 compiler on an PowerPC system running AIX is ppc.aix.x95. Having

determined the architecture, the installation script builds sub-directories of objects, modules and packages

named architecture, as well as further sub-directories double and single of these to hold architecture-

dependent compiled libraries, module file information and external package linking information if required.

In addition, architecture-dependent makefile information and environment variables for execution scripts are

placed in files named architecture in the makefiles and bin/sys sub-directories, and a file recording how

the code is related to the architecture is put in versions.

The source codes for each CUTEst package interface occurs in a separate sub-directory of the src directory.

The main CUTEst evaluation tools all lie in the sub-directory tools, while a set of comprehensive test

programs are available in test. The remaining sub-directories contain interface programs between the tools

and each of the external packages supported. Each sub-directory contains the interface, a default options

specification file, an example program that tests the interface without requiring the external package, a

README that explains what a user needs to do to make the external package work with CUTEst, and a

makefile. Since the order of compilation of Fortran modules is important, and as we have seen there is a

strong interdependency between the CUTEst packages, the makefiles have to be carefully crafted. For this

reason, we have chosen not to use variants of tools such as imake to build and maintain the makefiles. A set

of configuration files that provides default link details between CUTEst and each external package is provided

in the directory packages/defaults, and users may copy and modify these to architecture and dimension

specific sub-directories of packages to override the default choices. Man pages for CUTEst as a whole and

each individual tool are provided sub-directories of the man directory, and translations are also available in

PDF format in the pdf sub-directory of the documentation directory doc.

Once the correct directory structure is in place, the installation script builds a random-access library

of the required precision by visiting each of the sub-directories of src and calling the Unix utility make.

CUTEst package interfaces are all written in double precision, but if a user prefers to use single precision, the

makefiles call suitable Unix sed scripts (stored in seds) to transform the source prior to compilation. A user

may choose to install all of CUTEst with or without Matlab support or just the tools themselves; the tools

for unconstrained and constrained optimization may also be installed separately. Recompilation following

updates is easily performed by issuing the command make from the src directory, while make test from the

same directory runs comprehensive tests of all compiled components.

3 Interfaces to the CUTEst test set

To run one of the supported packages on an example stored in EXAMPLE.SIF, say, a user needs to issue the

command

runcutest -A architecture -p package -D EXAMPLE[.SIF]

where architecture is the architecture code discussed in §2, package defines the package to be used—

the manual page for runcutest gives a list of current possibilities—and the suffix [.SIF] is optional. This

command translates the SIF file into Fortran subroutines and related data using the decoder provided in

SIFDecode, and then calls the required optimization package to solve the problem. A default architecture

may be defined by setting the environment variable $MYARCH, and if so the -A flag may be avoided. Once a

problem has been decoded, it may be re-used (perhaps with different options) using the auxiliary command

runcutest -A architecture -p package

For Matlab use, the command

cutest2matlab EXAMPLE[.SIF]

may be used instead; since Matlab is very specific about the Fortran compilers it supports, requests for a

CUTEst-Matlab installation will adjust compiler options accordingly.

4 G–2013–27 Les Cahiers du GERAD

A few SIF examples are given in the sif directory, while the runcutest and cutest2matlab commands

are in the bin sub-directory, and have man-page descriptions in the man/man1 sub-directory.

4 Improvements

4.1 New features

As we mentioned in the introduction, CUTEst and SIFDecode both use the Fortran 2003 allocate/deallocate

features to create and modify array storage. Each CUTEst tool uses a module CUTEST that provides access to

two derived types CUTEST_data_type and CUTEST_work_type used to store workspace arrays. The former

collects data that describes problem structure and is set prior to any problem function evaluation, and

unchanged thereafter, while the latter is used to hold data that may change at every evaluation. Data in

these arrays is made available to the tools through a scalar CUTEST_data_global of type CUTEST_data_type

and an allocatable array CUTEST_work_global of type CUTEST_work_type.

All evaluation tools are available as both simple (unthreaded) and threaded versions. For the latter,

which may be distinguished by the suffix _threaded, CUTEST_work_global is allocated to be large enough

to hold all the threads that will be used by the setup subroutines, and each evaluation call specifies access

to CUTEST_work_global(i) for the particular thread i required.

We give a list of all CUTEst tools and their functionality in Appendix A. Most are rewritten version of

their CUTEr counterparts, with argument-list changes to remove redundant size parameters and occasional

order changes to handle inconsistencies. An additional status argument has been added to each to report any

fatal memory errors (such as array allocation/deallocation failures) and inabilities to evaluate functions at

specified values; CUTEr dealt with such eventualities by terminating execution. We have added termination

tools to allow users to deallocate all storage created by the setup procedure when they have no longer need

for it. In addition, constraints may now be ordered so that equalities precede or follow inequalities, or so that

linear constraints precede or follow nonlinear ones, and variables so that those that only appear linearly in

the problem precede or follow those that appear nonlinearly. New tools have also been introduced to describe

the sparsity patterns of the Hessian of the objective and Lagrangian functions. Finally, a new tool has been

added to compute the sparse gradient of the objective function for constrained problems; this corrects an

oversight since we already provide similar functionality for the gradients of individual constraints.

4.2 New Matlab calls

The Matlab interface has been substantially revised and simplified. It is now entirely written in C instead of

Fortran to facilitate interaction with Matlab’s own API and usage of its index types. The interface merges

the constrained and unconstrained tools together so users may use familiar and consistent function calls

such as cutest_obj() to obtain the objective function value and possibly its gradient regardless of the

presence of constraints. In this regard, the interface exploits Matlab’s ability to determine how many output

arguments are required by the user. This allows both f = cutest_obj(x) and [f,g] = cutest_obj(x).

Another example is the cuter_cons() function, which allows to evaluate all or individual constraints and/or

constraint gradients.

A problem is “loaded” into Matlab by calling a simple function with no arguments: prob = cutest_-

setup(). The single output argument of the setup function is a Matlab structure containing problem data

such as the number of variables, number of constraints, number of nonzeros in the Jacobian and Hessian,

initial guess, bounds, initial multipliers, and arrays indicating which constraints are linear and which are

equality constraints. Those fields may be accessed using the familiar dot notation, e.g., prob.n, prob.x,

prob.cl, etc.

Help is included with all CUTEst tools, available to Matlab users by way of the familiar help call. In

particular, help cutest gives an overview of the tools available.

Les Cahiers du GERAD G–2013–27 5

Finally, the current interface makes it easier to decode problems and build the corresponding MEX

files from inside Matlab. For instance, the commands probname = ’LUBRIFC’; unix([’cutest2matlab ’,

probname]) generate the MEX file corresponding to problem LUBRIFC in the current directory.

See Appendix B for a complete description of the Matlab CUTEst tools and their functionality.

4.3 New interfaces

In addition to the still-current packages supported by CUTEr, CUTEst provides new interfaces to ALGENCAN

[2], BOBYQA [19], Direct Search [7], filterSD [8], NEWUOA [18], NLPQLP [21], NOMAD [15], PENNLP [14], QL [20],

SPG [1] and SQIC [10], as well as various new packages within GALAHAD [11].

Interfaces to the obsolete packages hsl_ve12, osl, va15, ve09 and ve14 supported in CUTEr have been

withdrawn.

4.4 New test examples

Almost 200 new examples have been added to the test-problem collection since the release of CUTEr. These

include large collections of problems arising from linear complementarity, and of real-life quadratic program-

ming problems.

All test problems are now under version control in the same way as the source code and users may update

their local repository easily when new problems are added or changes are made to existing problems.

5 A revised SIF decoder

As we mentioned in the introduction, the lack of dynamic memory allocation affects the SIF decoding package

SifDec just as severely as it does CUTEr. A new stand-alone Fortran package SIFDecode has been written to

address this issue. All of the functionality of the subroutines previously in SifDec have been subsumed into a

single Fortran 2003 module SIFDECODE. Since required array sizes are not known beforehand, default initial

values are increased as required as the package makes a single pass through the SIF file under consideration;

default initial values may be changed to make the processing more efficient, but this is not crucial.

The distributed package is organised in the same way as CUTEst (see §2), although now the src directory

simply contains two source sub-directories, decode that holds the decoder and its main program, and select

containing the test-problem database interrogation tools from CUTE [3, §2.3].

Once the package has been installed, the decoder is called by issuing the command

sifdecoder -A architecture EXAMPLE[.SIF]

where architecture and EXAMPLE.SIF are as before; the -A option may be omitted when using the default

architecture.

6 New installation procedures

The installation procedure has been updated to recognise that most users will need to install both SIFDecode
and CUTEst, and may also wish to integrate these with GALAHAD. A single script, install_optsuite,

prompts the user to describe what features are needed and which architecture is desired. An opportunity to

modify default compilation flags is provided, after which the script will automatically download and install

the software.

6 G–2013–27 Les Cahiers du GERAD

7 Obtaining the packages

All of the required and optional packages ArchDefs, SIFDecode, CUTEst and GALAHAD are available from the

CCPForge project, funded by The Joint Information Systems Committee (http://www.jisc.ac.uk) and main-

tained by the Scientific Computing Department of the Science and Technology Facilities Council (http://www.

stfc.ac.uk/SCD/default.aspx) under the departmental SLA with EPSRC. See

http://ccpforge.cse.rl.ac.uk/gf/project/cutest/wiki/

for download details.

Both SIFDecode and CUTEst are distributed and made available under the terms of the GNU Lesser

General Public License. See

http://www.gnu.org/licenses/lgpl-3.0.txt

for details.

8 Conclusions and perspectives

We believe CUTEst is a considerable improvement over past versions because of its improved modular and

thread-safe design exploiting recent additions to the Fortran standard, dynamic allocation, simplified and

unified tool calling sequences, improved Matlab interface and, last but not least, the more user-friendly

installation process. Despite the age of the standard input format and the advent of more modern modeling

languages, CUTE and CUTEr remained widely-used tools in the optimization community and beyond, as

illustrated by the large number of user comments and request that we receive and the associated problem

collection remains a staple of optimization software testing and benchmarking.

Since all packages and test problems are maintained and distributed via a source code revision system,

bug fixes, improvements and additions are easily available.

A Available tools

Separate evaluation tools are provided for unconstrained and constrained problems. Both unthreaded and

threaded versions are available when this is relevant. See the appropriate man page for full details.

A.1 Unconstrained problems

cutest_udimen (both threaded and unthreaded) determine the number of variables.

cutest_usetup (unthreaded) and cutest_usetup_threaded (threaded) setup internal data structures and

determine variable bounds.

cutest_unames (both threaded and unthreaded) determine the names of the problem and the variables.

cutest_uvartype (both threaded and unthreaded) determine whether the variables are continuous or dis-

crete.

cutest_udimsh (both threaded and unthreaded) determine the number of nonzeros in the sparse Hessian.

cutest_udimse (both threaded and unthreaded) determine the number of nonzeros in the finite-element

Hessian.

cutest_ufn (unthreaded) and cutest_ufn_threaded (threaded) evaluate the objective function value.

cutest_ugr (unthreaded) and cutest_ugr_threaded (threaded) evaluate the gradient of the objective func-

tion.

cutest_uofg (unthreaded) and cutest_uofg_threaded (threaded) evaluate both the values and gradients

of the objective function.

cutest_udh (unthreaded) and cutest_udh_threaded (threaded) evaluate the Hessian of the objective func-

tion as a dense matrix.

Les Cahiers du GERAD G–2013–27 7

cutest_ugrdh (unthreaded) and cutest_ugrdh_threaded (threaded) evaluate the objective gradient and

dense Hessian.

cutest_ushp (both threaded and unthreaded) evaluate the sparsity pattern of the Hessian of the objective

function.

cutest_ush (unthreaded) and cutest_ush_threaded (threaded) evaluate the Hessian of the objective func-

tion as a sparse matrix.

cutest_ugrsh (unthreaded) and cutest_ugrsh_threaded (threaded) evaluate the objective gradient and

sparse Hessian.

cutest_ueh (unthreaded) and cutest_ueh_threaded (threaded) evaluate the Hessian of the objective func-

tion as a finite-element matrix.

cutest_ugreh (unthreaded) and cutest_ugreh_threaded (threaded) evaluate the objective gradient and

finite-element Hessian.

cutest_uhprod (unthreaded) and cutest_uhprod_threaded (threaded) evaluate the product of the Hessian

of the objective function with a vector.

cutest_ubandh (unthreaded) and cutest_ubandh_threaded (threaded) obtain the part of the Hessian of

the objective that lies within a specified band.

cutest_ureport (unthreaded) and cutest_ureport_threaded (threaded) discover how many evaluations

have occured and how long this has taken.

cutest_uterminate (both unthreaded and threaded) remove internal data structures when they are no

longer needed.

A.2 Constrained problems

cutest_cdimen (both threaded and unthreaded) determine the number of variables and constraints.

cutest_csetup (unthreaded) and cutest_csetup_threaded (threaded) setup internal data structures and

determine variable and constraint bounds.

cutest_cnames (both threaded and unthreaded) determine the names of the problem, the variables and the

constraints.

cutest_connames (both threaded and unthreaded) determine the names of the constraints.

cutest_cvartype (both threaded and unthreaded) determine whether the variables are continuous or dis-

crete.

cutest_cdimsj (both threaded and unthreaded) determine the number of nonzeros in sparse constraint

Jacobian.

cutest_cdimsh (both threaded and unthreaded) determine the number of nonzeros in the sparse Hessian.

cutest_cdimse (both threaded and unthreaded) determine the number of nonzeros in the finite-element

Hessian.

cutest_cfn (unthreaded) and cutest_cfn_threaded (threaded) evaluate the objective function and con-

straint values.

cutest_cgr (unthreaded) and cutest_cgr_threaded (threaded) evaluate the gradients of the objective

function and constraints.

cutest_cofg (unthreaded) and cutest_cofg_threaded (threaded) evaluate both the value and gradient of

the objective function.

cutest_cofsg (unthreaded) and cutest_cofsg_threaded (threaded) evaluate both the value and sparse

gradient of the objective function.

cutest_csgr (unthreaded) and cutest_csgr_threaded (threaded) evaluate the sparse gradients of the ob-

jective function and constraints.

cutest_ccfg (unthreaded) and cutest_ccfg_threaded (threaded) evaluate the values and gradients of the

constraints.

cutest_ccfsg (unthreaded) and cutest_ccfsg_threaded (threaded) evaluate the values and sparse gradi-

ents of the constraints.

8 G–2013–27 Les Cahiers du GERAD

cutest_ccifg (unthreaded) and cutest_ccifg_threaded (threaded) evaluate the value and gradient of an

individual constraint.

cutest_ccifsg (unthreaded) and cutest_ccifsg_threaded (threaded) evaluate the value and sparse gra-

dient of an individual constraint.

cutest_cdh (unthreaded) and cutest_cdh_threaded (threaded) evaluate the Hessian of the Lagrangian

function as a dense matrix.

cutest_cidh (unthreaded) and cutest_cidh_threaded (threaded) evaluate the Hessian of the objective

function or an individual constraint as a dense matrix.

cutest_cgrdh (unthreaded) and cutest_cgrdh_threaded (threaded) evaluate the constraint Jacobian and

Hessian of the Lagrangian function as dense matrices.

cutest_cshp (both threaded and unthreaded) evaluate the sparsity pattern of the Hessian of the Lagrangian

function.

cutest_csh (unthreaded) and cutest_csh_threaded (threaded) evaluate the Hessian of the Lagrangian

function as a sparse matrix.

cutest_cshc (unthreaded) and cutest_cshc_threaded (threaded) evaluate the Hessian of the Lagrangian

function not including the objective as a sparse matrix.

cutest_cish (unthreaded) and cutest_cish_threaded (threaded) evaluate the Hessian of the objective

function or an individual constraint as a sparse matrix.

cutest_csgrsh (unthreaded) and cutest_csgrsh_threaded (threaded) evaluate the constraint Jacobian

and Hessian of the Lagrangian function as sparse matrices.

cutest_ceh (unthreaded) and cutest_ceh_threaded (threaded) evaluate the Hessian of the Lagrangian

function as a finite-element matrix.

cutest_csgreh (unthreaded) and cutest_csgreh_threaded (threaded) evaluate the constraint Jacobian as

a sparse matrix and the Hessian of the Lagrangian function as a finite-element matrix.

cutest_chprod (unthreaded) and cutest_chprod_threaded (threaded) evaluate the product of the Hessian

of the Lagrangian function with a vector.

cutest_chcprod (unthreaded) and cutest_chcprod_threaded (threaded) evaluate the product of the Hes-

sian of the Lagrangian function not including the objective with a vector.

cutest_cjprod (unthreaded) and cutest_cjprod_threaded (threaded) evaluate the product of the con-

straint Jacobian or its transpose with a vector.

cutest_creport (unthreaded) and cutest_creport_threaded (threaded) discover how many evaluations

have occured and how long this has taken.

cutest_cterminate (both unthreaded and threaded) remove internal data structures when they are no

longer needed.

A.3 Both unconstrained problems and constrained problems

cutest_probname (both threaded and unthreaded) determine the name of the problem.

cutest_varnames (both threaded and unthreaded) determine the names of the variables.

A call to cutest u/csetup[threaded] must precede calls to any other evaluation tool with the exception of

cutest u/cdimen. Once cutest u/cterminate[threaded] has been called, no further calls should be made

without first recalling cutest u/csetup[threaded].

B Matlab interfaces

Les Cahiers du GERAD G–2013–27 9

T
ab
le

1
:

A
va

il
a
b

le
M

a
tl

a
b

to
o
ls

M
at

la
b

to
ol

C
U
T
E
st

to
ol

(s
)

P
u

rp
o
se

c
u
t
e
s
t
_
d
i
m
s

c
d
i
m
e
n

O
b

ta
in

p
ro

b
le

m
d

im
en

si
o
n

s
c
u
t
e
s
t
_
s
e
t
u
p

u
s
e
t
u
p

/
c
s
e
t
u
p

S
et

u
p

p
ro

b
le

m
d

a
ta

st
ru

ct
u

re
c
u
t
e
s
t
_
o
b
j

u
o
f
g

/
c
o
f
g

E
va

lu
a
te

o
b

je
ct

iv
e

fu
n

ct
io

n
va

lu
e

a
n

d
it

s
g
ra

d
ie

n
t

if
re

q
u

es
te

d
c
u
t
e
s
t
_
g
r
a
d

u
g
r

/
c
g
r

E
va

lu
a
te

o
b

je
ct

iv
e

fu
n

ct
io

n
g
ra

d
ie

n
t

c
u
t
e
s
t
_
s
o
b
j

c
o
f
s
g

E
va

lu
a
te

o
b

je
ct

iv
e

fu
n

ct
io

n
va

lu
e

a
n

d
it

s
g
ra

d
ie

n
t

a
s

a
sp

a
rs

e
ve

ct
o
r

if
re

q
u

es
te

d
c
u
t
e
s
t
_
o
b
j
c
o
n
s

c
f
n

E
va

lu
a
te

o
b

je
ct

iv
e

a
n

d
co

n
st

ra
in

ts
c
u
t
e
s
t
_
c
o
n
s

c
c
i
f
g

E
va

lu
a
te

co
n

st
ra

in
t

b
o
d

ie
s

a
n

d
th

ei
r

g
ra

d
ie

n
ts

if
re

q
u

es
te

d
.

E
va

lu
a
te

a
si

n
g
le

co
n

st
ra

in
t

va
lu

e
a
n

d
it

s
g
ra

d
ie

n
t

if
re

q
u

es
te

d
c
u
t
e
s
t
_
s
c
o
n
s

c
c
i
f
s
g

E
va

lu
a
te

co
n

st
ra

in
t

b
o
d

ie
s

a
n

d
J
a
co

b
ia

n
in

sp
a
rs

e
fo

rm
a
t.

E
va

lu
a
te

a
si

n
g
le

co
n

st
ra

in
t

va
lu

e
a
n

d
it

s
g
ra

d
ie

n
t

a
s

a
sp

a
rs

e
ve

ct
o
r

c
u
t
e
s
t
_
l
a
g
j
a
c

c
g
r

E
va

lu
a
te

J
a
co

b
ia

n
a
n

d
g
ra

d
ie

n
t

o
f

ei
th

er
o
b

je
ct

iv
e

o
r

L
a
g
ra

n
g
ia

n
c
u
t
e
s
t
_
s
l
a
g
j
a
c

c
s
g
r

E
va

lu
a
te

J
a
co

b
ia

n
in

sp
a
rs

e
fo

rm
a
t

a
n

d
g
ra

d
ie

n
t

o
f
ei

th
er

o
b

je
ct

iv
e

o
r

L
a
g
ra

n
g
ia

n
a
s

a
sp

a
rs

e
ve

ct
o
r

c
u
t
e
s
t
_
J
p
r
o
d

c
j
p
r
o
d

E
va

lu
a
te

th
e

m
a
tr

ix
-v

ec
to

r
p

ro
d

u
ct

b
et

w
ee

n
th

e
J
a
co

b
ia

n
a
n

d
a

v
ec

to
r

c
u
t
e
s
t
_
J
t
p
r
o
d

c
j
p
r
o
d

E
va

lu
a
te

th
e

m
a
tr

ix
-v

ec
to

r
p

ro
d

u
ct

b
et

w
ee

n
th

e
tr

a
n
sp

o
se

J
a
co

b
ia

n
a
n

d
a

ve
ct

o
r

c
u
t
e
s
t
_
h
e
s
s

u
d
h

/
c
d
h

E
va

lu
a
te

th
e

H
es

si
a
n

m
a
tr

ix
o
f

th
e

L
a
g
ra

n
g
ia

n
,

o
r

o
f

th
e

o
b

je
ct

iv
e

if
th

e
p

ro
b

le
m

is
u

n
co

n
-

st
ra

in
ed

c
u
t
e
s
t
_
i
h
e
s
s

u
d
h

/
c
i
d
h

E
va

lu
a
te

th
e

H
es

si
a
n

m
a
tr

ix
o
f

th
e

i-
th

p
ro

b
le

m
fu

n
ct

io
n

(i
=

0
is

th
e

o
b

je
ct

iv
e

fu
n

ct
io

n
),

o
r

o
f

th
e

o
b

je
ct

iv
e

if
p

ro
b

le
m

is
u

n
co

n
st

ra
in

ed
c
u
t
e
s
t
_
h
p
r
o
d

u
h
p
r
o
d

/
c
h
p
r
o
d

E
va

lu
a
te

th
e

m
a
tr

ix
-v

ec
to

r
p

ro
d

u
ct

b
et

w
ee

n
th

e
H

es
si

a
n

o
f

th
e

L
a
g
ra

n
g
ia

n
(o

r
th

e
o
b

je
ct

iv
e

if
u

n
co

n
st

ra
in

ed
)

a
n

d
a

ve
ct

o
r

c
u
t
e
s
t
_
g
r
a
d
h
e
s
s

u
g
r
d
h

/
c
g
r
d
h

E
va

lu
a
te

th
e

g
ra

d
ie

n
t

o
f

ei
th

er
th

e
o
b

je
ct

iv
e

o
r

th
e

L
a
g
ra

n
g
ia

n
,

th
e

J
a
co

b
ia

n
(o

r
it

s
tr

a
n

s-
p

o
se

)
a
n

d
th

e
H

es
si

a
n

o
f

th
e

L
a
g
ra

n
g
ia

n
in

d
en

se
fo

rm
a
t

c
u
t
e
s
t
_
s
p
h
e
s
s

u
s
h

/
c
s
h

E
va

lu
a
te

th
e

H
es

si
a
n

m
a
tr

ix
o
f

th
e

L
a
g
ra

n
g
ia

n
,

o
r

o
f

th
e

o
b

je
ct

iv
e

if
th

e
p

ro
b

le
m

is
u

n
co

n
-

st
ra

in
ed

,
in

sp
a
rs

e
fo

rm
a
t

c
u
t
e
s
t
_
i
s
p
h
e
s
s

u
s
h

/
c
i
s
h

E
va

lu
a
te

th
e

H
es

si
a
n

m
a
tr

ix
o
f

th
e

i-
th

p
ro

b
le

m
fu

n
ct

io
n

(i
=

0
is

th
e

o
b

je
ct

iv
e

fu
n

ct
io

n
),

o
r

o
f

th
e

o
b

je
ct

iv
e

if
p

ro
b

le
m

is
u

n
co

n
st

ra
in

ed
,

in
sp

a
rs

e
fo

rm
a
t

c
u
t
e
s
t
_
v
a
r
n
a
m
e
s

v
a
r
n
a
m
e
s

O
b

ta
in

va
ri

a
b

le
n

a
m

es
a
s

a
li

st
o
f

st
ri

n
g
s

c
u
t
e
s
t
_
c
o
n
n
a
m
e
s

c
n
a
m
e
s

O
b

ta
in

co
n

st
ra

in
t

n
a
m

es
a
s

a
li

st
o
f

st
ri

n
g
s

c
u
t
e
s
t
_
t
e
r
m
i
n
a
t
e

u
t
e
r
m
i
n
a
t
e

/
c
t
e
r
m
i
n
a
t
e

R
em

ov
e

ex
is

ti
n

g
in

te
rn

a
l

w
o
rk

sp
a
ce

10 G–2013–27 Les Cahiers du GERAD

References
[1] E. G. Birgin, J. M. Martinez, and M. Raydan. Algorithm 813: SPG—software for convex-constrained optimiza-

tion. ACM Transactions on Mathematical Software, 27:340–349, 2001.

[2] E. G. Birgin, R. Castillo, and J. M. Martinez. Numerical comparison of augmented Lagrangian algorithms for
nonconvex problems. Computational Optimization and Applications, 31(1):31–56, 2005.

[3] I. Bongartz, A. R. Conn, N. I. M. Gould, and Ph. L. Toint. CUTE: Constrained and unconstrained testing
environment. ACM Transactions on Mathematical Software, 21(1):123–160, 1995.

[4] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. An introduction to the structure of large scale nonlinear
optimization problems and the LANCELOT project. In R. Glowinski and A. Lichnewsky, editors, Computing
Methods in Applied Sciences and Engineering, pages 42–51, Philadelphia, USA, 1990. SIAM.

[5] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. LANCELOT: a Fortran package for Large-scale Nonlinear
Optimization (Release A). Springer Series in Computational Mathematics. Springer Verlag, Heidelberg, Berlin,
New York, 1992.

[6] International Business Machine Corporation. Mathematical programming system/360 version 2, linear and
separable programming-user’s manual. Technical Report H20-0476-2, IBM Corporation, 1969. MPS Standard.

[7] E. D. Dolan, A. P. Gurson, P. L. Shepherd, C. M. Siefert, V. J. Torczon, and A. Yates. C++ direct searches.
http://www.cs.wm.edu/˜va/software/DirectSearch/direct code/, 2001.

[8] R. Fletcher. A sequential linear constraint programming algorithm for NLP. SIAM Journal on Optimization, 22
(3):772–794, 2012.

[9] D. M. Gay. Electronic mail distribution of linear programming test problems. Mathematical Programming
Society COAL Newsletter, December 1985. See http://www.netlib.org/lp/data/.

[10] P. E. Gill and E. Wong. Methods for convex and general quadratic programming. Technical Report NA 10-1,
Dept. of Mathematics, University of California, San Diego, 2013.

[11] N. I. M. Gould, D. Orban, and Ph. L. Toint. GALAHAD—a library of thread-safe fortran 90 packages for
large-scale nonlinear optimization. ACM Transactions on Mathematical Software, 29(4):353–372, 2003.

[12] N. I. M. Gould, D. Orban, and Ph. L. Toint. CUTEr (and SifDec), a Constrained and Unconstrained Testing
Environment, revisited. ACM Transactions on Mathematical Software, 29(4):373–394, 2003.

[13] IBM Optimization Solutions and Library. QP Solutions User Guide. IBM Corportation, 1998.

[14] M. Kocvara and M. Stingl. PENNON: A code for convex nonlinear and semidefinite programming. Optimization
Methods and Software, 18(3):317–333, 2003.

[15] S. Le Digabel. Algorithm 909: NOMAD: Nonlinear optimization with the MADS algorithm. ACM Transactions
on Mathematical Software, 37(4):1–15, 2011.

[16] I. Maros and C. Meszaros. A repository of convex quadratic programming problems. Optimization Methods and
Software, 11-12:671–681, 1999.

[17] D. B. Ponceleón. Barrier methods for large-scale quadratic programming. PhD thesis, Department of Computer
Science, Stanford University, Stanford, California, USA, 1990.

[18] M. J. D. Powell. The NEWUOA software for unconstrained optimization without derivatives. In G. Di Pillo and
M. Roma, editors, Large-Scale Nonlinear Optimization, volume 83 of Nonconvex Optimization and Its Applica-
tions, pages 255–297, Heidelberg, Berlin, New York, 2006. Springer Verlag.

[19] M. J. D. Powell. The BOBYQA algorithm for bound constrained optimization without derivatives. Technical Re-
port DAMTP NA2009/06, Department of Applied Mathematics and Theoretical Physics, Cambridge University,
Cambridge, UK, 2009.

[20] K. Schittkowski. QL: A Fortran code for convex quadratic programming—User’s guide, Version 2.11. Technical
report, University of Bayreuth, Department of Computer Science, 2005.

[21] K. Schittkowski. NLPQLP: A Fortran implementation of a sequential quadratic programming algorithm with
distributed and non-monotone line search. Technical report, University of Bayreuth, Department of Computer
Science, 2010.

	G1327-enCours
	G1327
	Introduction
	New package organisation
	Interfaces to the CUTEst test set
	Improvements
	New features
	New Matlab calls
	New interfaces
	New test examples

	A revised SIF decoder
	New installation procedures
	Obtaining the packages
	Conclusions and perspectives
	Available tools
	Unconstrained problems
	Constrained problems
	Both unconstrained problems and constrained problems

	Matlab interfaces

	Citation complète: Gould, N., Orban, D., Toint, Ph.L., CUTEst: A Constrained and unconstrained testing environment with safe threads, computational optimization and application,60 (3), 545-557, 2015.
Doi: 10.1007/s10589-014-9687-3
	Numéro de Cahier et mois de publication: G-2013-27
April 2013

