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Abstract: Dantzig-Wolfe reformulation solved by Column Generation is an approach to obtain improved
bounds for Mixed Integer Programs. A downside of this approach is that the Column Generation process can
be very time consuming due to degeneracy of the master problem and the tailing-off effect. To counter this
problem in the Column Generation process, we also perform a number of Lagrangean Relaxation iterations
to generate new columns after each time that we solve the master problem. This potentially reduces the
number of times we have to solve the master problem. We explore this combination of Column Generation
and Lagrangean Relaxation for the Job Grouping Problem. In our test set, we observe that the time spent
to solve the master problem is decreased by a factor 4, while the total time spent on solving the subproblems
remains approximately equal.
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1 Introduction
Dantzig-Wolfe decomposition is a reformulation technique aimed at obtaining improved lower bounds for
Mixed Integer Programs (MIP), see Lübbecke and Desrosiers (2005). In this paper we consider minimiza-
tion problems. The main idea is to split up the original formulation into a set of linking and subproblem
constraints. Next, the original variables are replaced by a convex combination of the extreme points of the
convex hull of the linking constraints for a bounded problem. This typically leads to a master problem (MP)
formulation with a very large number of variables. To solve such large formulations in a practical way, Column
Generation (CG) is used. Only a small proportion of the variables are needed to find the linear programming
(LP) relaxation of the Dantzig-Wolfe reformulation. Column Generation is an iterative process, where we
solve subproblems to generate new columns as needed and we resolve the MP with the newly added columns.
The coordination between the master and the subproblems is done via the dual prices of MP, which are used
in the objective function of the subproblems to calculate the reduced costs of the missing variables. Over
many iterations, the value of MP decreases until we obtain the exact Dantzig-Wolfe LP relaxation bound. In
the past years, column generation techniques have successfully been applied to a variety of problems such as
vehicle routing and crew scheduling problems (Desaulniers et al. 1998), cutting stock problems (Ben Amor
et al. 2006, Degraeve and Peeters 2003) and lot sizing problems (Degraeve and Jans 2007).

It is well known that column generation suffers from degeneracy and a tailing off effect. Degeneracy implies
that new columns are found and added to the MP, but the LP relaxation value of this master problem does
not improve. Tailing off happens towards the end of the column generation process when many columns
have to be added in order to find the optimal value. Both effects slow down the overall column generation
process. A lot of research has been devoted to accelerating the column generation process. However, only a
few studies have used a combination with Lagrangean Relaxation (LR) to speed up the process, whereas it
has a much more general applicability.

The focus of this paper is on evaluating the opportunity to improve the column generation process by combing
it with Lagrangean relaxation for clustering problems. We use the Job Grouping Problem to explain and
illustrate our approach. The aim is to find an algorithm that efficiently integrates both approaches.

2 On the Integration of Column Generation and Lagrangean Relaxation
Many methods exist to obtain good lower bounds besides Dantzig-Wolfe reformulation solved by Column
Generation. Another approach that is widely used is Lagrangean Relaxation. In Lagrangean Relaxation, a
set of complicating constraints is dualized into the objective function of the original formulation using a set
of Lagrangean multipliers. The solution of such a Lagrangean problem, with a specific set of multipliers,
provides a lower bound on the optimal value of the original MIP. The Lagrangean Dual Problem (LDP)
consists now of finding the set of multipliers that gives us the best lower bound. The Lagrangean multipliers
are generally updated in iterative steps with the aim of improving the lower bound. A traditional approach
for updating the multipliers is subgradient optimization (Fisher 1981).

The Column Generation approach and the Lagrangean Relaxation approach have both their advantages and
disadvantages.

Advantages of CG: CG is an exact method that results in the exact LP relaxation value of the Dantzig-
Wolfe reformulation. At each step of the CG, a lower bound on the optimal LP relaxation value of the
Dantzig-Wolfe reformulation can be calculated, by subtracting the optimal reduced costs resulting from the
latest subproblems from the value of the latest master problem. This lower bound corresponds in fact to
the Lagrangean lower bound with the latest set of dual prices used as the Lagrangean multipliers. (see e.g.
Lübbecke and Desrosiers 2005). At each iteration when the master problem is solved, a primal LP solution
is found which can be used in heuristics to find an upper bound on the original MIP formulation.

Disadvantages of CG: Using the simplex algorithm to solve the master problem leads to dual prices that are
extreme solutions, and that do not necessarily give a good representation if alternative dual solutions exist.
Therefore, the columns generated using these simplex dual prices lead to degenerate steps in the master
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problem, i.e., they do not necessarily improve the objective function value. Resolving the master problem at
each step of the Column Generation process can take a lot of time. Moreover tailing off effect occurs at the
end of the optimizing process.

Advantages of LR: The subgradient optimization method for updating the Lagrangean multipliers is very at-
tractive from a computational perspective since it is not a very time-consuming calculation. The subgradients
obtained at each iteration are indeed valid columns that can be used in the CG approach.

Disadvantages of LR: LR is not an exact approach. In practice, there is no guarantee that the Lagrangean
multipliers will converge towards the optimal multipliers, and the Lagrangean Relaxation is usually stopped
before the optimal Lagrangean Dual Bound is found. The Lagrangean Relaxation will hence find a lower
bound on the optimal value of the original MIP formulation and on the LP value of the Dantzig-Wolfe
reformulation. No primal solution is available, and hence it is (more) difficult to construct upper bounds on
the original MIP problem. An upper bound on the original MIP is needed for the subgradient optimization
procedure. The update process of the multipliers only makes use of the latest subgradient while CG uses all
generated ones (at a much higher computational time).

The combined CG-LR method aims to combine the respective strengths of both methods. This combination
is possible because there exist some interesting theoretical links between Column Generation and Lagrangean
Relaxation, see Lübbecke and Desrosiers (2005). The optimal value of the CG master problem is the same as
the optimal value of the Lagrangean Dual Problem. The Dantzig-Wolfe reformulation and the Lagrangean
Dual Problem are in fact each other’s dual (Geoffrion 1974). The problem that remains to be solved in the
Lagrangean approach is exactly the same as the subproblem in the Column Generation approach. Hence,
the subgradient solution of the Lagrangean problem can be used as a new column in the Column Generation
process. The dual prices resulting from the optimal master problem also give the best Lagrangean bound
(Magnanti, Shapiro and Wagner 1976).

The general idea of the combined CG-LR method is to start by solving the master problem, which is initialized
with some columns that guarantee feasibility. The dual prices of this master are used in the subproblems
to generate new columns. Instead of immediately resolving the master with the new columns, we are first
going to generate more columns via Lagrangean Relaxation. Therefore, we take the simplex dual prices as
our initial Lagrangean multipliers, and use subgradient optimization to update the multipliers. Using these
new multipliers in the objective function of our Lagrangean problems, we generate new columns. These new
columns, generated with Lagrange multipliers, are evaluated using the latest simplex dual prices. If the
reduced cost of such a column is negative, we add the column to the current master problem. This process
of updating the multipliers using subgradient optimization and of generating new columns with the updated
multipliers is repeated for a number of steps. Next, the columns are added to the master, and we solve the
master problem using a simplex algorithm again, giving us again simplex dual prices. We continue this process
until we reach a suitable stopping criterion, which typically is that no columns with a negative reduced cost
are found when solving the subproblems using the latest simplex dual prices, or when the difference between
the Lagrangean lower bound and the value of the master LP is within a specified tolerance. An overview of
this procedure can be found in Figure 1.

The advantage of this combined method is that we do not always have to solve the master problem in order to
generate new dual prices, and hence we avoid this time consuming process. Moreover, the multipliers of the
Lagrangean relaxation approach generally provide good columns that can be added to the master problem.
Because the subgradient optimization process is not very time consuming, we can hence quickly generate new
good columns.

The combined CG-LR method has not received much attention in the literature. Only a few papers have
proposed such a combination. Barahona and Jensen (1998) discuss an application for a plant location
problem. It has further been applied to solve cutting stock problems (Degraeve and Peeters 2003) and lot
sizing problems (Degraeve and Jans 2007). A general discussion can be found in Huisman et al. (2005).

Many questions related to this combined process still exist. How many iterations of LR should be done
before returning to solving the master problem? Which upper bound should be used in the subgradient
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Solve Master Problem 

Obtain Simplex Dual Prices 

Calculate UB on the DW LP value 

Solve Subproblems 

If Reduced Cost < 0, add columns to 
the Master Problem 

Set Lagrange multipliers = Simplex 
Dual Prices 

Update Lagrangean multipliers 
using Subgradient Optimization 

Solve Subproblems with the 
updated Lagrangean multipliers 

Add `good’ columns to the Master 
Problem 

Maximum number of LR 
iterations reached? 

YES NO 

Figure 1: Overview of the combined CG-LR method

updating formula (specifically an upper bound on the original MIP, or the latest master LP value which is
an upper bound on the DW LP value). Which columns generated during the LR phase should be added?
All of them versus the ones that have a negative reduced cost evaluated using the latest simplex dual prices,
or the ones that have a negative reduced cost using the Lagrangean multipliers. After resolving the master
problem, should the Lagrangean multipliers be set equal to the latest simplex dual prices, or are there other
alternatives? We could set them equal to the last Lagrangean multipliers found, or a combination of the
latest simplex dual prices and latest Lagrangean multipliers, or a combination of previous simplex dual prices.
What is the impact of the initial columns on this process?

In the following sections, we explore the various issues raised by considering the specific application of the
Job Grouping Problem. We discuss in detail how this algorithm can be applied to that problem, and finally
we discuss some computational results.
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3 The Job Grouping Problem
In the Job Grouping Problem (JGP), several jobs have to be assigned to machines, with the aim of minimizing
the number of identical machines used. Each job requires one or more specific tools, which have to be installed
on the machine on which the job is processed. Each machine can only hold a limited number of different
tools.

To define the problem, we use the following notation:

Sets:

N the set of jobs i = {1, . . . , n};
L the set of different tools `;
Li the set of tools required to process job i;
M the set of machines j = {1, . . . ,m}.

Parameters:

C maximum number of different tool slots available on each machine;
s` number of slots needed by tool `.

Binary decision variables:

xij one if job i is assigned to machine j, zero otherwise;
y`j one if tool ` is assigned to machine j, zero otherwise;
zj one if machine j is used, zero otherwise.

A formulation of the problem is then as follows (Crama and Oerlemans 1994, Denizel 2003, Konak et al.
2008):

Min
∑
j∈M

zj (1)

s.t.
∑
j∈M

xij = 1 ∀i ∈ N (2)

xij = y`j ∀i ∈,∀` ∈ Li,∀j ∈M (3)∑
`∈L

s`y`j = Czj ∀j ∈M (4)

xij , y`j , zj ∈ {0, 1} ∀i ∈ N, ∀` ∈ L,∀j ∈M (5)

The objective function (1) minimizes the number of machines used. Each job has to be assigned to exactly
one machine (2) and if a job is assigned to a specific machine, then all the tools needed by that job must also
be assigned to that machine (3). Finally, each machine has only a limited tool slot capacity (4). All variables
are binary (5).

Let v∗ be the optimal value of formulation (1)–(5), and let v̄ be the LP relaxation value of the same formu-
lation. This LP relaxation value is generally very weak. It has been shown that the LP relaxation is equal
to S/C, where S =

∑L
`=1 s` (Tang and Denardo 1988, Crama and Oerlemans 1994, and Denizel 2003). We

can make this LP bound a bit stronger by rounding up this value: dS/Ce. Crama and Oerlemans (1994)
proposed to use Column Generation to obtain a better lower bound for the JGP, whereas Denizel (2003) uses
Lagrangean Relaxation. In this paper, we look how we can speed up the CG process by combining the two
methods.

3.1 Dantzig-Wolfe reformulation and Column Generation for the JGP

We can apply the Dantzig-Wolfe decomposition principle to formulation (1)–(5) by considering the job as-
signment constraint (2) as the complicated constraint, while constraints (3)–(5) define the domain of the
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feasible columns. The general idea of Dantzig-Wolfe decomposition for binary problem is to consider the set
of all extreme points, defined by constraints (3)–(5). Let P be this set. We can think of P as the set of all
feasible assignments of jobs to a machine so that the tool capacity limit is not exceeded. We also refer to
these feasible assignments as columns. In order to formally define the Dantzig-Wolfe reformulation, define a
new parameter aki which equals one if extreme point (i.e. column or assignment) k contains job i. A new
binary decision variable sk indicates if assignment k is chosen or not. The Dantzig-Wolfe reformulation then
becomes (Crama and Oerlemans 1994):

Min
∑
k∈P

sk (6)

s.t.
∑
k∈P

aiksk = 1 ∀i ∈ N (7)

sk ∈ {0, 1} ∀k ∈ P (8)

The objective (6) minimizes the number of chosen assignments, whereas (7) indicates that each job must
appear in exactly one assignment. Given the objective (6) and the fact that each subset of a column is also
a valid assignment, we can transform the set of constraints in (7) into greater or equal inequalities:

s.t.
∑
k∈P

aiksk ≥ 1 ∀i ∈ N (9)

In that case, the simplex dual prices associated to these constraints become restricted to take nonnegative
values rather than being free real numbers. Let v∗DW be the optimal value of the Dantzig-Wolfe reformulation,
and let v̄DW be the LP relaxation value of this formulation. The optimal value of Dantzig-Wolfe reformulation
is the same as the optimal value of the original formulation (1)–(5), that is, v∗ = v∗DW . However, the LP
relaxation value of (6), (8)–(9) is better than (or equal to) the LP relaxation value of the original formulation
(1)–(5), i.e., v̄ ≤ v̄DW .

The Dantzig-Wolfe reformulation contains a huge number of variables (extreme points), and hence cannot
be solved efficiently. Therefore, we do not generate all the feasible columns, but only those that are needed
to obtain the optimal Dantzig-Wolfe relaxation value v̄DW . In order to generate these columns, we need
λi ≥ 0, i ∈ N , which is the dual variable of a constraint in (9). The subproblems are used to check if we
can find new columns with a negative reduced cost. In this case, the subproblem decomposes into identical
problems for each machine, and therefore, we drop the machine index j in the following formulation of the
subproblem:

Min z −
∑
i∈N

λixi (10)

s.t. xi = y` ∀i ∈ N, ∀` ∈ Li (11)∑
`∈L

s`y` = Cz (12)

xi, y`, z ∈ {0, 1} ∀i ∈ N, ∀` ∈ L (13)

The objective function (10) minimizes the reduced cost of a new column. Constraints (11)–(13) correspond
to our original constraints (3)–(5) for a generic machine. We add new columns to the master as long as
we find columns with a negative reduced cost (10). In the above formulation of the subproblem, setting z

equal to zero gives us the null solution, where no jobs are assigned to the machine and with a corresponding
reduced cost of zero. In practice, we set z = 1, and use this formulation to check if we can find a column
with a negative reduced cost.

3.2 Lagrangean relaxation for the JGP

The general idea of Lagrangean Relaxation is to delete difficult constraints from the formulation, but re-
introduce them in the objective function with a penalty function. Starting from formulation (1)–(5), we relax



6 G–2013–26 Les Cahiers du GERAD

the assignment constraint (2) into the objective function, with nonnegative multipliers λi ≥ 0, ∀i ∈ N :

Min
∑
j∈M

zj −
∑
i∈N

λi

∑
j∈M

xij − 1

 (14)

s.t. xij = y`j ∀i ∈ N, ∀` ∈ Li,∀j ∈M (15)∑
`∈L

s`y`j = Czj ∀j ∈M (16)

xij , y`j , zj ∈ {0, 1} ∀i ∈ N, ∀` ∈ L,∀j ∈M (17)

This problem decomposes into identical subproblems for each machine j. The problem becomes equivalent
to solving m times the same subproblem, where m is the number of machines. To show this, we first re-write
the objective function (14) as follows:

∑
j∈M

zj −
∑
i∈N

λi

∑
j∈M

xij − 1

 =
∑
j∈M

(
zj −

∑
i∈N

λixij

)
+
∑
i∈N

λi

We observe that in this latest expression, the final term is a constant factor. The first term is a summation
over all possible machines j of a specific cost function, but the coefficients in this cost function are independent
of the machine j. Consequently, the first term is equivalent to solving m times the same subproblem, and we
can hence omit the index j for the machines.

∑
j∈M

(
zj −

∑
i∈N

λixij

)
+
∑
i∈N

λi = m

(
z −

∑
i∈N

λixi

)
+
∑
i∈N

λi

Our Lagrangean problem can hence be re-written as follows:

Min m

(
z −

∑
i∈N

λixi

)
+
∑
i∈N

λi (18)

s.t. xi = y` ∀i ∈ N, ∀` ∈ Li (19)∑
`∈L

s`y` = Cz (20)

xi, y`, z ∈ {0, 1} ∀i ∈ N, ∀` ∈ L (21)

For optimization purposes, we can ignore the final term in (18) because it is a constant, and we can further
leave out the multiplication by m. The objective function in the Lagrangean relaxation formulation hence
becomes:

Min z −
∑
i∈N

λixi (22)

Formulations (18)–(21) and (19)–(22) have the same optimal solution. Given the optimal solution and
the optimal objective function value (22), we can easily calculate the corresponding value for the original
Lagrangean objective function (18). We also note that the subproblem (10)–(13) in the CG procedure is
exactly the same as the Lagrangean problem (19)–(22). Hence, be solving the Lagrangean problems, we
generate valid assignments (columns) that can be added to the master problem.

Let v̄LR(λ) be the optimal solution of the Lagrangean Relaxation formulation for a specific set of multipliers
λ = {λ1, λ2, . . . , λn}. The Lagrangean Dual Problem consists now in finding the multipliers that provides
the best bound: v̄LD = maxλ≥0v̄LR(λ). The Lagrangean Dual Bound v̄LD is the same as the optimal
Dantzig-Wolfe relaxation value v̄DW .
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Using subgradient optimization, the Lagrangean multipliers are updated in iterative steps. Let xr =
(xr1, xr2, . . . , xrn) be the optimal assignment variables for the Lagrangean problem (17) – (20) at step r
using multipliers λr = {λr1, λr2, . . . , λrn}. The formula used for updating the multipliers is as follows (Fisher
1981):

λr+1
i = max (0, λri + tr (1−mxri )) ∀i ∈ N

The stepsize tr is determined as follows:

tr =
αr
(
UB − v̄LR(λr)

)∑
i∈N (mxri − 1)2 (23)

The scalar αr is set at 2 initially, and reduced by half each time the Lagrangean bound fails to improve for
a specific number of iterations. UB represents an upper bound on the Lagrangean Dual value. In a pure
Lagrangean Relaxation approach, we set UB equal to the number of available machines, or to a better UB if
available. In the combined CG-LR approach, we can take the optimal value of the objective function of the
latest restricted master problem.

4 Computational Experiments
In this section, we present the results of our numerical comparison between the regular Column Generation
approach (CG) and the combined Column Generation and Lagrangean Relaxation algorithm (CG-LR). First,
there are a number of parameters to be set in the subgradient optimization of the Lagrangean Relaxation.
Specifically, in the calculation of the step size (23), we have to determine an initial value for α1 and we have
to decide how this step size changes over time. We half the αr each time the algorithm has failed to improve
the Lagrangean lower bound after β iterations. In our testing, we checked the following five combinations of
α1 and β (notation: α1/β): 2/∞, 1/∞, 0.5/∞, 2/5, 2/3. In Figure 2, we see the evolution of the Lagrangean
lower bound v̄LR(λ) for these various settings on a specific problem instance. The value of the Dantzig-Wolfe
LP relaxation (and hence of the Lagrangean Dual) is 3.889, whereas the best setting (2/5) found a Lagrangean
lower bound of 3.707. In the remainder of the experiments, we choose the setting 2/5.

Next, we present the results of our testing on a set of 20 instances with 20 jobs and 15 tools and a tool
capacity of 8. We compared the Column Generation approach (CG) with the combined Column Generation
and Lagrangean Relaxation method (CG-LR). The experiments were done on a workstation with a 2.10 GHz
Duo CPU and 2 GB of RAM, using CPLEX 12.2 to solve the master and subproblems. The algorithms were
coded within the OPL language of CPLEX. The results are presented in Table 1. The first column indicates
the problem instance. The column LB gives the final lower bound, obtained at the end of the algorithm. The
column Time gives the total time to find this lower bound, and it can be subdivided into 3 main elements:
the time for the initialization (INITime), the time spent solving the master problem (MPTime) and the time
spent solving the subproblems (SPTime). Finally, the column Iter gives the total number of iterations, i.e.,
the number of times that a subproblem is solved. In this implementation of CG-LR, we solve 3 subproblems
for each time we solve the master problem. Finally, MPIter indicates the number of times the master is
solved in CG-LR.

We observe that for this test set, CG-LR finds on average the optimal Dantzig-Wolfe relaxation bound
(v̄DW ) in 126 seconds, compared to 135 for CG. Although this difference is not very large, we observe a more
substantial difference when considering the time spent to solve the master problem. The advantage of CG-LR
is that we generally have to solve fewer restricted master problems. Indeed, the results indicate that the time
spent to solve the master is 3.2 seconds for CG-LR and 14.3 seconds for CG. So we obtain a significant
reduction due to the fact that on average we solve only 12 master problems in the CG-LR approach and 39 in
the CG approach. However, in total the relative reduction is smaller since most of the time of the algorithm
is spent on solving the subproblems (and not the master).
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Table 1: Comparison of the CG and CG-LR approaches
CG CG-LR

Prob LB Time INITime MPTime SPTime Iter LB Time INITime MPTime SPTime Iter MPIter
1 4.50 139.5 0.6 14.5 122.7 47 4.50 133.0 0.2 3.3 129.5 37 13
2 5.50 104.3 0.5 9.4 91.1 32 5.50 122.1 0.5 6.4 115.2 34 12
3 6.00 86.6 1.1 6.1 74.9 25 6.00 106.2 0.6 2.3 103.3 28 10
4 5.88 142.6 0.5 12.0 127.9 41 5.88 161.4 0.1 4.4 156.8 43 15
5 6.25 151.7 0.5 16.2 131.0 43 6.25 87.9 0.5 3.3 84.1 25 9
6 6.25 153.0 0.5 18.3 130.3 43 6.25 84.9 0.5 1.7 82.7 25 9
7 4.50 177.0 0.5 21.0 153.4 51 4.50 137.5 0.6 3.9 133.1 37 13
8 4.00 125.3 0.5 15.5 107.6 44 4.00 121.7 0.5 2.9 118.4 37 13
9 5.88 139.6 0.5 13.5 124.4 39 5.88 157.5 0.5 5.4 151.5 43 15
10 7.00 145.0 0.5 12.4 129.1 38 7.00 151.0 0.5 3.5 147.0 40 14
11 5.00 140.0 0.5 15.1 118.4 40 5.00 127.6 0.6 1.9 125.1 37 13
12 5.36 145.3 1.1 18.1 122.1 42 5.36 146.1 1.1 3.9 141.1 40 14
13 5.50 94.9 0.5 8.2 83.5 29 5.50 78.0 0.5 1.8 75.7 22 8
14 4.90 158.0 0.5 18.2 136.9 43 4.90 162.2 0.6 4.0 157.5 43 15
15 7.00 86.8 0.5 6.6 76.5 25 7.00 65.1 0.5 1.7 62.9 19 7
16 5.75 143.3 0.5 15.0 124.5 39 5.75 146.2 0.6 3.4 142.1 37 13
17 4.00 152.7 0.5 22.4 126.0 52 4.00 136.6 1.1 3.0 132.4 37 13
18 4.73 172.1 0.5 18.5 150.2 46 4.73 137.6 0.5 3.4 133.6 37 13
19 9.00 91.7 1.1 8.5 77.7 24 9.00 97.1 1.1 1.8 94.1 25 9
20 6.38 154.4 0.5 16.8 134.2 44 6.38 170.2 1.0 3.1 166.0 43 15

avg 5.67 135.2 0.6 14.3 117.1 39.4 5.67 126.5 0.6 3.2 122.6 34.5 12.2

5 Conclusions
In this paper, we presented and tested a column generation approach which is combined with a Lagrangean
Relaxation algorithm. The main advantage of such a combination would be to obtain a better convergence
and to solve fewer times the master problem. In our computational experiments, we indeed observed an
important reduction by a factor 4 in the number of times we have to solve the master problem. For this



Les Cahiers du GERAD G–2013–26 9

specific problem, most of the time is still spent on solving the subproblems which takes about the same total
time in both approaches. Therefore, the reduction in total time is less pronounced.

In many applications of CG, however, a lot of time is spent on solving the master and hence the CG-LR
could show a much bigger effect on the overall time. One possible reason why this is not the case for the
JGP is that we used the general Branch-and-Bound solver of CPLEX to solve the subproblems, whereas in
most applications a dedicated algorithm is used to solve the subproblems. Therefore, we think it is important
for further research to also test the CG-LR on problems for which we have a dedicated and fast algorithm
to solve the subproblem, and for which hence the most of the total time is spent on the solving the master
problem. We will look in the literature for problems that have been solved using CG, but for which solving
the master problems takes more time compared to solving the subproblems. An example of these is the class
of highly degenerate multiple depot vehicle scheduling problems (Benchimol et al. 2012). Further, it would
also be interesting to test other implementations of CG-LR. We could, for example, test the effect of the
various factors such as the number of Lagrangean iterations after solving each master problem, the choice of
the upper bound, and the updating procedure for the Lagrangean multipliers.
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