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Abstract: Introduced during the late nineties of the last century, Variable Neighborhood Search (VNS) was first
designed for solving specific problems in combinatorial andglobal optimization. Nowadays, VNS is widely used
as a general framework for solving many different scientificproblems and even in scientific discovery. Actually, it
is used for discovery in graph theory. The AutoGraphiX (AGX)system exploits different techniques from Variable
Neighborhood Search to find extremal graphs, with respect tothe maximization or minimization of a graph invariant,
and then uses them for generating conjectures. AGX uses three approaches for conjecture–making:analytic, algebraic
andgeometric.In this paper, we describe the AutoGraphiX system and the VNSused in its optimization component.
We present a survey of the conjectures and results obtained with AGX. Different forms of results that can be studied
by AGX, and future development in the system are also discussed. Moreover, more than 150 open conjectures are
mentioned.

Key Words: Variable Neighborhood Search; AutoGraphiX; Extremal graphs; Conjecture; Refutation; Automation;
Computer assisted; Open problems on graphs.

Résumé : Introduite durant les dernières années du siècle passé, la Recherche à Voisinage Variable (RVV), fut
d’abord conçue pour résoudre approximativement des problèmes spécifiques d’optimisation combinatoire ou glob-
ale. Aujourd’hui la RVV est un cadre largement utilisée pour la résolution de problèmes scientifiques nombreux et
divers et même la découverte scientifique, en particulieren théorie des graphes. Le système AutoGraphiX (AGX)
exploite différentes techniques de la RVV pour trouver desgraphes extrêmaux ou quasi–extrêmaux maximisant ou
minimisant un invariant graphique, et les utilise pour générer des conjectures. AGX utilise trois approches pour ce
faire : analytique, géométrique et algébrique. Dans le présent article, nous décrivons le système AutoGraphiX et
l’utilisation de la RVV dans sa composante d’optimisation.Nous passons en revue les conjectures et résultats obtenus
avec AGX. Nous discutons également de différentes formesde résultats qui pourraient être étudiées avec AGX et les
futurs développements potentiels de ce système. Enfin, nous mentionnons plus de 150 conjectures ouvertes.

Mots clés : Recherche à Voisinage Variable; AutoGraphiX; Graphes extrêmaux; Conjectures; Réfutation; Automa-
tisation; Interactivité; Problèmes ouverts sur les graphes.
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1 Introduction

Metaheuristicsare general frameworks to build heuristics for solving combinatorial and global optimization problems.
They have been the subject of intensive research since Kirkpatrick, Gellatt and Vecchi [133] proposed Simulated
Annealing as a general scheme for building heuristics whichget out of local minima. Several other metaheuristics
were soon proposed. For discussion of the best-known of themthe reader is referred to the books of surveys edited by
Reeves [171], Glover and Kochenberger [94] and Burke and Kendall [46]. Some of the many successful applications
of metaheuristics are also mentioned there.

Variable Neighborhood Search(VNS) [113, 114, 115, 116, 159] is a metaheuristic which exploits systematically the
idea of neighborhood change, both in descent to local minimaand in escape from the valleys which contain them. VNS
exploits systematically the following observations:

• A local minimum with respect to one neighborhood structure is not necessary so for another.

• A global minimum is a local minimum with respect to all possible neighborhood structures.

• For many problems local minima with respect to one or severalneighborhoods are relatively close to each other.

Unlike many other metaheuristics, the basic schemes of VNS and its extensions are simple and require few, and
sometimes no parameters. Therefore, in addition to providing very good solutions, often in simpler ways than other
methods, VNS gives insight into the reasons for such a performance, which, in turn, can lead to more efficient and
sophisticated implementations.

Figure 1: Steps of the basic VNS.

The Basic VNS (BVNS) method [159] combines deterministic and stochastic changes of neighbourhood. Its steps are
given in Figure1. Often successive neighbourhoods will be nested. Observe that pointx′ is generated at random in
Step 4 in order to avoid cycling, which might occur if deterministic rules were applied. In Step 5, several neighborhoods
may be used. In this case, we speak aboutvariable neighborhood descent(VND), the scheme of which is given in
Figure2. For more details about VNS ans its applications in solving problems in different domains of sciences see the
recent survey [117] as well as the references therein.

Figure 2: Steps of the basic VND.
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In all its applications, VNS is used as an optimization tool.These applications are mainly solving specific optimization
problems. However, VNS can also be used indiscovery science, i.e., help in the development of theories. The first
domain to be addressed in this way was graph theory. VNS is thefundamental tool exploited in the system Auto-
GraphiX (AGX, for short) [12, 54, 55], which is devoted to conjecture–making, and therefore to scientific discovery,
in graph theory. A long series of papers with the common title“Variable neighborhood search for extremal graphs”
was published. The title are listed in Table1. Several of the papers which use VNS without being included within this
series are listed in Table2. This system addresses the following problems:

• Find a graph satisfying given constraints;

• Find optimal or near optimal graphs for an invariant subjectto constraints;

• Refute a conjecture;

• Suggest a conjecture (or repair or sharpen one);

• Provide a proof (in simple cases) or suggest an idea of proof.

A basic idea is then to consider all of these problems as parametric combinatorial optimization problems on the infinite
set of all graphs (or in practice some smaller subset) solvedwith a generic heuristic. This is done by applying VNS to
find extremal graphs, with a given numbern of vertices (and possibly also a given number of edges). Thena VND with
many neighbourhoods is used. Those neighborhoods are defined by modifications of the graphs such as the removal
or addition of an edge, rotation of an edge, and so forth. Oncea set of extremal graphs, parametrized by their order, is
found, their properties are explored with various data mining techniques, leading to conjectures, refutations and simple
proofs or ideas of proof.

Table 1: List of papers in the series “VNS for extremal graphs”.

Ref. Author(s) Title

1 [55] Caporossi, Hansen The AutoGraphiX System.

2 [49] Caporossi, Cvetković, Gutman, Hansen Finding graphs with extremal energy.

3 [74] Cvetković, Simić, Caporossi, Hansen On the Largest Eigenvalue of Color-Constrained Trees.

4 [51] Caporossi, Gutman, Hansen Chemical trees with extremal connectivity index.

5 [54] Caporossi, Hansen Three ways to automate finding conjectures.

6 [110] Hansen, Mélot Analysing Bounds for the Connectivity Index.

7 [93] Fowler, Hansen, Caporossi, Soncini Polyenes with maximum HOMO-LUMO gap.

8 [17] Aouchiche, Caporossi, Hansen Variations on Graffiti 105.

9 [109] Hansen, Mélot Bounding the irregularity of a graph.

10 [98] Gutman, Hansen, Mélot Comparison of irregularity indices for chemical trees.

11 [39] Belhaiza, Abreu, Hansen, Oliveira Bounds on algebraic connectivity.

12 [112] Hansen, Mélot, Gutman A note on the variance of bounded degrees in graphs.

13 [30] Aouchiche, Hansen À propos de la maille (French).

14 [12] Aouchiche, Bonnefoy, Fidahoussen, Caporossi,
Hansen, Hiesse, Lacheré, Monhait

The AutoGraphiX 2 system.

15 [118] Hansen, Stevanović On Bags and Bugs.

16 [11] Aouchiche, Bell, Cvetković, Hansen, Rowlinson,
Simić, Stevanović

Some conjectures related to the largest eigenvalue of a graph.

17 [35] Aouchiche, Hansen, Stevanović Further conjectures and results about the index.

18 [37] Aouchiche, Hansen, Zheng Conjectures and results about the Randić index.

19 [36] Aouchiche, Hansen, Zheng Further conjectures and results about the Randić index.

20 [15] Aouchiche, Caporossi, Hansen Automated comparison of graph invariants.

21 [13] Aouchiche, Brinkmann, Hansen Conjectures and results about the independence number.

22 [20] Aouchiche, Favaron, Hansen Extending bounds for independence to upper irredundance.

23 [119] Hansen, Vukičević On the Randić index and the chromatic number.

24 [173] Sedlar, Vukičević, Aouchiche, Hansen Conjectures and results about the clique number.

25 [174] Sedlar, Vukičević, Aouchiche, Hansen Products of connectivity and distance measures.

26 [19] Aouchiche, Favaron, Hansen Nouveaux résultats sur la maille (French).

27 [16] Aouchiche, Caporossi, Hansen Families of extremal graphs.
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Table 2: A further list of papers on AGX and its conjectures.

Ref. Author(s) Title

1 [1] Abdo. Dimitrov, Gutman On the Zagreb indices equality.

2 [2] Abreu Old and new results on algebraic connectivity of graphs.

3 [5] Andova, Bogoev, Dimitrov, Pilipczuk,
Škrekovski

On the Zagreb index inequality of graphs with prescribed vertex de-
grees.

4 [6] Andova, Cohen,̌Skrekovski A note on Zagreb indices inequality for trees and unicyclic graphs.

5 [7] Andova, Cohen,̌Skrekovski Graph classes (dis)satisfying the Zagreb indices inequality.

6 [8] Andriantiana Unicyclic bipartite graphs with maximum energy.

7 [9] Andriantiana, Wagner Unicyclic graphs with large energy.

8 [10] Aouchiche Comparaison automatisée d’invariants en théorie des graphes.

9 [14] Aouchiche, Caporossi, Hansen Open problems on graph eigenvalues studied with AutoGraphiX.

10 [18] Aouchiche, Caporossi, Hansen, Laffay AutoGraphiX: A Survey.

11 [21] Aouchiche, Hansen Two Laplacians for the distance matrix of a graph.

12 [22] Aouchiche, Hansen Proximity, remoteness and girth in graphs.

13 [24] Aouchiche, Hansen The normalized revised Szeged index.

14 [25] Aouchiche, Hansen Proximity and remoteness in graphs: results and conjectures.

15 [26] Aouchiche, Hansen On a conjecture about the Szeged index.

16 [27] Aouchiche, Hansen Nordhaus-Gaddum Relations for Proximity and Remoteness inGraphs.

17 [28] Aouchiche, Hansen A survey of automated conjectures in spectral graph theory.

18 [29] Aouchiche, Hansen Bounding Average Distance Using Minimum Degree.

19 [31] Aouchiche, Hansen Automated Results and Conjectures on Average Distance in Graphs.

20 [32] Aouchiche, Hansen On a Conjecture about the Randić Index.

21 [33] Aouchiche, Hansen, Lucas On the extremal values of the second largest Q–eigenvalue.

22 [34] Aouchiche, Hansen, Stevanović A sharp upper bound on algebraic connectivity using domination num-
ber.

23 [38] Bekkai, Kouider On mean distance and girth.

24 [42] Bykoǧlu, Leydold Graphs of given order and size and minimum algebraic connectivity.

25 [43] Bogoev A proof of an inequality related to variable Zagreb indices for simple
connected graphs.

26 [47] Caporossi Découverte par Ordinateur en Théorie des Graphes.

27 [48] Caporossi, Chasset, Furtula Some conjectures and properties of distance energy.

28 [50] Caporossi, Dobrynin, Gutman, Hansen Trees with Palindromic Hosoya Polynomials.

29 [52] Caporossi, Gutman, Hansen, Pavlović Graphs with maximum connectivity index.

30 [53] Caporossi, Hansen A learning optimization algorithm in Graph Theory. Versatile Search
for extremal graphs using a learning algorithm.

31 [56] Caporossi, Hansen, Finding relations in polynomial time.

32 [57] Caporossi, Hansen, Vukičević Comparing Zagreb indices of cyclic graphs.

33 [58] Caporossi, Paiva, Vukičević, Segatto Centrality and betweenness: vertex and edge decompositionof the
wiener index.

34 [59] Cardoso, Cvetković, Rowlinson, Simić A sharp lower bound for the least eigenvalue of the signless Laplacian
of a non-bipartite graph.

35 [61] Chang, Tam, Wu Theorems on partitioned matrices revisited and their applications to
graph spectra.

36 [62] Chen, Li, Liu The (revised) Szeged index and the Wiener index of a nonbipartite
graph.

37 [63] Chen, Li, Liu On a relation between the Szeged index and the Wiener index for bipar-
tite graphs.

38 [69] Cvetković, Rowlinson, Simić Eigenvalue bounds for the signless Laplacian.

39 [70] Cvetković, Simić Towards a spectral theory of graphs based on the signless Laplacian, I.

40 [71] Cvetković, Simić Towards a spectral theory of graphs based on the signless Laplacian,
II.

41 [72] Cvetković, Simić Towards a spectral theory of graphs based on the signless Laplacian,
III.

42 [75] Cygan, Pilipczuk,Škrekovski On the inequality between radius and Randić index for graphs.

43 [76] Das Proof of conjectures on adjacency eigenvalues of graphs.
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44 [77] Das Proof of conjectures involving the largest and the smallestsignless
Laplacian eigenvalues of graphs.

45 [78] Das Proof of conjecture involving the second largest signless Laplacian
eigenvalue and the index of graphs.

46 [79] Das Conjectures on index and algebraic connectivity of graphs.

47 [80] Das On conjectures involving second largest signless Laplacian eigenvalue
of graphs.

48 [81] Das On comparing Zagreb indices of graphs.

49 [82] Deng, Tang, Zhang On a conjecture of Randić index and graph radius.

50 [84] Divnić, Pavlović Proof of the first part of the conjecture of Aouchiche and Hansen about
the Randić index.

51 [85] Dvořàk, Lidický, Škrekovski Randić index and the diameter of a graph.

52 [90] Feng, Yu On three conjectures involving the signless Laplacian spectral radius of
graphs.

53 [99] Gutman, Miljković, Caporossi, Hansen Alkanes with small and large Randić connectivity indices.

54 [101] Hansen How far is, should and could be conjecture-making in graph theory an
automated process?

55 [102] Hansen Computers in Graph Theory.

56 [105] Hansen, Caporossi AutoGraphiX: an automated system for finding conjectures ingraph
theory.

57 [106] Hansen, Hertz, Kilani, Marcotte, Schindl Average distance and maximum induced forest.

58 [107] Hansen, Lucas Bounds and conjectures for the signless Laplacian index of graphs.

59 [108] Hansen, Lucas An inequality for the signless Laplacian index of a graph using the chro-
matic number.

60 [111] Hansen, Mélot Computers and Discovery in Algebraic Graph Theory.

61 [120] Hansen, Vukičević Comparing the Zagreb indices.

62 [122] Horoldagva, Das On comparing Zagreb indices of graphs.

63 [123] Horoldagva, Lee Comparing Zagreb indices for connected graphs.

64 [124] Hou Unicyclic graphs with minimal energy.

65 [125] Hou, Gutman, Woo Unicyclic graphs with maximal energy.

66 [126] Hua Bipartite unicyclic graphs with large energy.

67 [127] Hua, Das, Zhang, Xu Proof of a conjecture involving remoteness and radius of graphs.

68 [128] Huo, Ji, Li Solutions to unsolved problems on the minimal energies of two classes
of graphs.

69 [129] Huo, Li, Shi Complete solution to a problem on the maximal energy of unicyclic bi-
partite graphs.

70 [130] Huo, Li, Shi Complete solution to a conjecture on the maximal energy of unicyclic
graphs.

71 [131] Ilić On the extremal properties of the average eccentricity.

72 [132] Ilić, Stevanović On comparing Zagreb indices.

73 [136] Larson A survey of research in automated mathematical conjecture–making.

74 [138] Li, Liang Notes on “A proof for a conjecture on the Randić index of graphs with
diameter”.

75 [139] Li, Liu Bicyclic graphs with maximal revised Szeged index.

76 [140] Li, Liu A proof of a conjecture on the Randić index of graphs with given girth.

77 [141] Li, Liu, Liu Complete solution to a conjecture on Randić index.

78 [142] Li, Shi On a relation between the Randić index and the chromatic number.

79 [143] Li, Shi Randić index, diameter and the average distance.

80 [144] Li, Shi A survey on the Randić index.

81 [145] Li, Shi Corrections of proofs for Hansen and Mélot’s two theorems.

82 [146] Li, Shi, Wang On a relation between Randić index and algebraic connectivity.

83 [147] Li, Zhang, Wang On bipartite graphs with minimal energy.

84 [148] Liang, Liu A proof of two conjectures on the Randić index and the average eccen-
tricity.

85 [149] Liang, Liu On the Randić index and girth of graphs.

86 [150] Lima, Oliveira, Abreu, Nikiforov The smallest eigenvalue of the signless Laplacian.

87 [151] Liu On a conjecture about comparing Zagreb indices.

88 [152] Liu, Gutman On a conjecture on Randić indices.
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89 [153] Liu, Liang, Cheng, Liu A proof for a conjecture on the Randić index of graphs with diameter.

90 [154] Liu, Pavlović, Divnić, Liu, Stojanović On the conjecture of Aouchiche and Hansen about the Randić index.

91 [155] Liu, You A survey on comparing Zagreb indices.

92 [156] Ma, Wu, Zhang Proximity and average eccentricity of a graph.

93 [157] Majstorovic, Caporossi Bounds and relations involving adjusted centrality of the vertices of a
tree.

94 [158] Mélot On Automated and Computer Aided Conjectures in Graph Theory.

95 [163] Oliveira, Lima, Abreu, Kirkland Bounds on the Q-spread of a graph.

96 [165] Pavlović Comment on “Complete solution to a conjecture on Randić index”.

97 [169] Rada Lower bounds for the energy of digraphs.

98 [172] Sedlar Remoteness, proximity and few other distance invariants ingraphs.

99 [175] Sedlar, Vukicević, Hansen Using size for bounding expressions of graph invariants.

100 [177] Stevanović Comparing the Zagreb indices of the NEPS of graphs.

101 [178] Stevanović Resolution of AutoGraphiX conjectures relating the index and matching
number of graphs.

102 [179] Stevanović Research problems from the Aveiro Workshop on Graph Spectra.

103 [181] Stevanović On a relation between the Zagreb indices.

104 [182] Stevanović, Aouchiche, Hansen On the spectral radius of graphs with a given domination number.

105 [183] Stevanović, Hansen The minimum spectral radius of graphs with a given clique number.

106 [184] Stevanović, Ilić Spectral properties of distance matrix of graphs.

107 [185] Stevanović, Milanić Improved inequality between Zagreb indices of trees.

108 [186] Sun, Chen Comparing the Zagreb indices for graphs with small difference between
the maximum and minimum degrees.

109 [187] Sun, Wei Comparing the Zagreb indices for connected bicyclic graphs.

110 [189] Vukičević, Caporossi Network descriptors based on betweenness centrality and transmission
and their extremal values.

111 [190] Vukičević, Graovac Comparing Zagreb M1 and M2 indices for acyclic molecules.

112 [191] Vukičević, Gutman, Furtula, Andova, Dimitrov Some observations on comparing Zagreb indices.

113 [193] Wu, Liu, An, Yan, Liu A conjecture on average distance and diameter of a graph.

114 [194] Yang, Lu The Randić index and the diameter of graphs.

115 [195] Yang, Wu, Yan On the sum of independence number and average degree of a graph.

116 [196] Ye, Fan, Wang Maximizing signless Laplacian or adjacency spectral radius of graphs
subject to fixed connectivity.

117 [197] You, Liu On a conjecture of the Randić index.

118 [198] Yu, Lu, Tian New upper bounds for the energy of graphs.

119 [199] Zhang, Liu On a conjecture about the Randić index and diameter.

120 [200] Zuo About a conjecture on the Randić index of graphs.

The rest of the paper is organized as follows. In the next section we describe the AutoGraphiX system, and how it uses
VNS. We also briefly report on the earliest results of AGX. Section 3 summarizes AutoGraphiX conjectures that are
bounds on single graph invariants. Section4 is a survey of results of the form calledAGX Form 1. These results were
obtained as the outcome of systematic comparison of more than twenty graph invariants. Other forms of AutoGraphiX
results such as bounds on a combination of more than two invariants or Nordhaus–Gaddum type relations, are over
viewed in Section5. In Section6, we discuss different forms of results that can be studied using AutoGraphiX. To
finish some conclusions are drawn, in terms of desirable properties of conjectures and how much they are shared by
those found with AGX.

2 The AutoGraphiX system

Among the first application of VNS, a computer program, called theAutoGraphiX system(AGX, for short) [12, 54, 55],
was built for conjecture–making in graph theory. This system has been developed at GERAD, Montreal, since 1997.
Conjectures obtained with AGX were proved by the present authors or by graph theorists from several countries, mainly
Serbia and China.
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A graph invariant is a function of a graphG which does not depend on labeling ofG’s vertices or edges. Examples of
graph invariants are the diameter, the radius, the average distance, the independence number and the index (definitions
will be given below). Graph theory is replete with theorems involving graph invariants. They are eitheralgebraic,
i.e.,equalities or inequalities involving one or several invariants, orstructural, i.e.,characterizations of the families of
graphs for which an invariant takes an extremal value. Both types of results can be conjectured by AGX, in a fully
automated way, or in some cases, to be carefully distinguished, in an assisted way.

Let Gn andGn,m denote respectively the sets of all graphs withn vertices, and withn vertices andm edges. Two basic
ideas underlie the systems AGX:

• Most problems of extremal graph theory can be viewed as problems of parametric combinatorial optimization of
the form

min/max
G∈Gn

i(G) or min/ max
G∈Gn,m

i(G) (1)

for some invariant i(G) with parameters n and m, or the exploitation of their solutions (in practice only moderate
values of n and m will be considered);

• All problems of the form (1) can be solved approximately by a generic heuristic.

To obtain such a heuristic, the Variable Neighborhood Search metaheuristic (VNS) is specialized. VNS exploits sys-
tematically changes in neighborhoods used in the search, both in a descent phase to obtain a locally extremal graph,
and in a ”shaking” phase, to get out of the corresponding valley (or away from the corresponding mountain) in order
to find a better graph.

Rules of VNS applied in AGX are the following:

1. Select the set of neighborhood structuresNk, k = 1, . . .kmax that will be used in the search for a better locally
optimal graph, and a stopping condition. Choose an initial graphG.
Repeat until the stopping condition is met:

2. Setk= 1;

3. Until k= kmax, repeat the following steps:

(a) (shaking) generate a graphG′ from thekth neighborhood ofG (G′ ∈Nk(G));

(b) (descent) applyVariable Neighborhood Descent (VND)with G′ as initial graph; denote withG′′ the locally
optimal graph obtained;

(c) (improvement or continuation) if i(G′′) is better thani(G), the best value ofi for a previously visited graph,
move there,i.e., replaceG by G′′, and continue search withinN1(G); otherwise, setk← k+1.

The stopping condition is usually a maximum computing time.The optimization routine of VNS is calledvariable
neighborhood descent. It exploits systematically larger and larger neighborhoods of the current graph, and performs
a move whenever it is profitable (fast improvement) or is alsobest within its neighborhood (best improvement). The
neighborhoods used initially in AGX are the following: remove, add, move, detour, short cut, 2–opt, insert pending
vertex, add pending vertex, and remove vertex. They are illustrated in Figure3.

In the most recent version of AGX, the VND routine is replacedby Learning Descent(LD), in order to keep track
of which transformations are the most fruitful and to reinforce their use. The learning descent used in AGX was
described in [53]; it is an improvement of the optimization algorithm that was described in [12]. The Learning Descent
(LD) is based upon a meta-transformations that could eventually be used within the VND frame. However, by itself,
the learning descent replaces most of the classical transformations as those available in the early version of AGX for
example. Each transformation is described as the replacement of an induced subgraphg′ of G by another subgraphg′′.
In the current implementation, the order ofg′ (andg′′) is 4, which implies at most 6 edges. There are 26 = 64 possible
labelled subgraphs to be considered. Each induced subgraphg′ of G is identified and the substitution ofg′ by any other
subgraphg′′ is considered. As enumerating and evaluating all the alternative subgraphsg′′ to replaceg′ would be very
time consuming, replacingg′ by g′′ will only be evaluated if there are good reasons to believe itis worthwhile.

The implementation of this method encodes each subgraphg′ or g′′ as a label (number) based upon the 64 patterns
as follows. After relabeling its vertices from 1 to 4 by preserving their order, each subgraphg′ is characterized by a
unique label from 0 to 63 as follows:
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Figure 3: Neighborhoods initially implemented in AGX.

pattern 0 (vector = 000000): empty subgraph
pattern 1 (vector = 000001):E = {(1,2)}
pattern 2 (vector = 000010):E = {(1,3)}
:
pattern 13 (vector = 001101):E = {(1,2),(1,4),(2,3)}
:
pattern 63 (vector = 111111): complete subgraph on 4 vertices.

A 64×64 transformation matrixT = {ti j } is used to store information on the performance of each possible transfor-
mation from patterni to patternj.

The LD algorithm on Figure4 could be described by the following observations:

1. The pertinence of changingg′ into g′′ (replacing patternp′ by patternp′′) is memorized in a 64×64 matrixT
which is initially set toT = {ti j = 0}.

2. During the optimization, each induced subgraphg′ is considered for replacement by any possible alternative
subgraphg” but this replacement will not necessarily be evaluated.

3. The probability to test the replacement of patterni (g′) by j (g”) is p= sig(ti j ) = 1
1+e−ti j

. The initial probability
to test a replacement is 50% according to point 1.

4. For any tested transformation, if changingg′ (with patternp′) to g′′ (with patternp′′) improves the solution, the
entrytp′,p′′ of T is increased byδ+ (and reduced byδ− otherwise), withδ+ > δ− because it is more important
to use an improving transformation than to avoid a bad one. Also, a good transformation may fail, specially
if the graph already has a good performance (here, we useδ+ = 1 andδ− = 0.1). The probability to test a
transformation increases when it succeeds, but decreases if it does not.

As it is often the case in neural networks, the sigmoid functionsig(x) is used to define the probability to test a transfor-
mation. Figure5 represents the replacement ofpattern 60by pattern 27on a given graphG for the induced subgraph
g′ defined by vertices 1, 3, 5 and 6.

Note that if the algorithm were restricted to Step 2, it wouldtend to reduce the probability to use any transformation
when good solutions are encountered since few transformations would improve such solutions. To avoid this problem,
the matrixT is centered after each local search to an average valuet̄ = 0.

Once a set of (presumably) extremal graphs has been found, conjectures can be stated by one of the following 3
approaches [54]:

(i) a numerical methodwhich applies the mathematics of Principle Component Analysis [56] to determine, in
polynomial time, a basis of affine relations between invariants, satisfied by the extremal graphs found.
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Figure 4: Rules of the Learning Descent.

(ii) a geometric methodwhich views extremal graphs as points in invariants space and applies a “gift-wrapping”
algorithm to find their convex hull and linear inequality relations associated with its facets. Note that a similar
approach is used in the recent system GraPHedron [60];

(iii ) analgebraic method[10, 15, 12] which recognizes to which family (or families) of graphs the extremal graphs
belong, then uses a database of formulae for invariants in function of the order ofG to obtain conjectures.

3 Bounding invariants

The AutoGraphiX system was built for finding extremal graphswith respect to a given invariant or an algebraic com-
bination of invariants,i.e. finding graphs that minimize or maximize a given invariant function. Once the extremal
graphs obtained, research is done for finding a lower bound, in the case of minimization, or an upper bound in case of
maximization, on the invariant function under study. Thus,naturally, the first AGX task is bounding one invariant at
time, i.e., without considering combinations of invariants.

Thedegreeof a vertexv in G, denoted byd(v) = dG(v) is the number of vertices adjacent tov in G. The minimum,
average andmaximum degreesin G are denoted byδ , d and∆ respectively. The distanced(u,v) = dG(u,v) between
two verticesu andv in a graphG is the length(number of edges) of a shortest path betweenu andv. Theaverage
distanceis denoted byl .

The problem of upper bounding the average distance in terms of order and minimum degree was studied using Auto-
GraphiX in [29]. Six conjectures were obtained, one of which was proved. First, we state the proved result.

Theorem 3.1 ([29]) Let G= (V,E) be a connected graph on n≥ 7 vertices with average distancel and minimum
degreeδ ≥ 2. Then

l ≤ n+1
3
− 8

n
+

4
n−1

with equality if and only if G is composed of two triangles linked by a path.
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Figure 5: Illustration of the transformation ofG (left) to G′ (right).

After the above result, we progressively generalized our experiments according to the value of the minimum degree:
δ = 3, δ = 4 andδ = 5. Then, the general case, with a given lower bound onδ was considered. Among the obtained
conjectures, we recall only the next two. Some graph definitions are needed.

(a) Letn andδ be integers such thatn= q(δ +1) with q≥ 2 andδ ≥ 3. Consider the graphG obtained from the
graph composed ofq copies ofKδ+1, sayK i

δ+1 for i = 1,2, . . .q, by removing an edgeuivi from eachK i
δ+1 for

i = 2, . . .q−1, then adding the edgesviui+1, uu2 andvq−1v whereu is any vertex fromK1
δ+1 andv any vertex

fromKq
δ+1. If q= 2, there are two copies ofKδ+1, then we add only the edgeuv. See Figure6 for (n,δ ) = (25,4).

Figure 6: Presumably extremal graph for(n,δ ) = (25,4).

(b) Let n andδ be integers such thatn= q(δ +1)+2 with q≥ 2 andδ ≥ 3. Consider the graphG obtained from
the graph described in (a) by replacing each ofK1

δ+1 andKq
δ+1 by the graphH obtained fromKδ+2 on the set

of vertices{w1,w2, . . .wδ+2}, by deleting the edgesw1w2, w1w3 andwiwi+1 for i = 4,6, · · · p+1, wherep= δ
if δ is even andp = δ +1 if δ is odd. The verticesu andv from the graph described in (a) correspond tow1

from each copy ofH respectively. Again, ifq= 2, there are two copies ofH, then we add only the edgeuv. See
Figure7 for (n,δ ) = (22,4).

Figure 7: Presumably extremal graph for(n,δ ) = (22,4).
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Conjecture 3.2 ([29]) Let G= (V,E) be a connected graph on n vertices with minimum degreeδ ≥ 3 where n=
(δ +1) ·k for some integer k≥ 2. Then the average distancel of G satisfies

l ≤ n+1
δ +1

− 4δ
n

+
4δ 2− δ −2

(δ +1)(n−1)

with equality if and only if G is obtained as described in (a).

Note that Kouider and Winkler [134] gave the extremal graphs of Conjecture3.2 as extremal cases, without a proof,
for the casen= (δ +1)k. However, the corresponding bound does not appear to be generalizable for all integersn and
δ . If true, the next conjecture provides a global and sharp upper bound onl in terms ofδ .

Conjecture 3.3 ([29]) Let G= (V,E) be a connected graph on n vertices with minimum degreeδ ≥ 3. Then the
average distancel of G satisfies

l ≤ n+1
δ +1

− 2δ 2−14δ +36
n

+
12δ 2−75δ +150
(δ +1)(n−1)

.

The bound is reachable only if n= (δ +1) · k+2 for some integer k≥ 2, in which case the extremal graph G is the
graph obtained as described in (b).

Theadjacency matrix Aof G is a 0–1n×n–matrix indexed by the vertices ofG and defined byai j = 1 if and only if
i j ∈E. Denote by(λ1,λ2, . . . ,λn) theA–spectrum ofG, i.e., the spectrum of the adjacency matrix ofG, and assume that
the eigenvalues are labeled such thatλ1≥ λ2≥ ·· · ≥ λn. Thespectral spreadof G is defined bys(G) = λ1(G)−λn(G).
The problem of finding the maximum value ofs(G) among the class of connected graphs of given ordern is an open
problem. Experiments were done with the AutoGraphiX systemto study the problem, and the extremal graphs were
found. Little can be found in the literature concerning the spectral spread of a graph. All graphs whose spectral spread
does not exceed 4 are determined in [166]. The spectral spread of unicyclic graphs has been studied in [176]. The
problem of maximizings(G) over the class of connected graphs was studied using AutoGraphiX in [11] (see also
[14, 28]). A conjecture was obtained, but before its statement, recall the following definition. Acomplete split graph
with parametersn,q (q≤ n), denoted byCS(n,q), is a graph onn vertices consisting of a clique onq vertices and an
independent set on the remainingn− q vertices in which each vertex of the clique is adjacent to each vertex of the
independent set. An example of a complete split graph is given in Figure8.

Figure 8: The complete split graphCS(10,4) and its complement.

The spectrum of a complete split graphCS(n,q) is






q−1
2 +

√
4qn−3q2−2q+1

2 0 −1 q−1
2 −

√
4qn−3q2−2q+1

2

1 n−q−1 q−1 1






.

Now, we can state the conjecture which seems to be very hard toprove.

Conjecture 3.4 ([14]) Let G be a connected graph on n≥ 3 vertices. Then

s(G)≤
√

4qn−3q2−2q+1

with equality if and only if G is the complete split graph CS(n,q) with an independent set of size n−q=
⌈

n
3

⌉

and a
clique of size q=

⌊2n
3

⌋

.
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Note that the above conjecture did appear in [95], in terms of extremal graphs only, where it has been verifiedby
computer for graphs up to 9 vertices, but remained unsolved.

Theenergy E(G) of a graphG, introduced by Gutman [97] in 1978 (see [96] for a survey), is defined as the sum of the
absolute values of its eigenvalues,i.e.

E(G) =
n

∑
i=1

|λi(G)|= 2 ∑
λi>0

λi(G) = 2 ∑
λi<0

|λi(G)|.

A lollipop Loln,g, with n≥ g≥ 3, is a graph obtained from a cycleCg and a pathPn−g by adding an edge between
a vertex from the cycle and an endpoint from the path (see Figure 9 for Lol10,6). Loln,n−1 is called the short lollipop
while Loln,3 is the long lollipop andLoln,n is the cycleCn.

Figure 9: The lollipopLol10,6.

In order to find lower and upper bounds on the energy, Caporossi, Cvetković, Gutman and Hansen [49] used the AGX
system. They found the following conjectures afterwards proved by hand.

Figure 10: Unicyclic graphs with largest energy forn= 5, . . . ,12.

Theorem 3.5 Let G be a simple graph on n vertices and m edges with energy E. Then

1. E≥ 4m/n;

2. E≥ 2
√

m with equality if and only if G is a complete bipartite graph plus possibly some isolated vertices;

3. if G is connected, E≥ 2
√

n−1 with equality if and only if G is the star Sn;

4. E≤ 2m with equality if and only if G is composed of disjoint edges and possibly isolated vertices.

In this study, the particular case of unicyclic graphs was considered. Some unicyclic graphs that maximize the energy
are given in Figure10. The following conjecture was stated.

Conjecture 3.6 Among unicyclic graphs on n vertices the cycle Cn has maximal energy if n≤ 7 and n= 9,10,11,13
and15. For all other values of n the unicyclic graph with maximum energy is the lollipop Loln,6.

This conjecture was studied and partial results were found in Andriantiana [8], Andriantiana and Wagner [9], Hua
[126], Hou, Gutman and Woo [125], Huo, Li and Shi [129, 130].

The problem of finding bicyclic graphs with maximum energy was also widely studied. It was posed by Gutman and
Vidović [100]. In [14], the authors considered a more general form of the problem.First, we need the following
definitions. Letp,q, r be integers such thatr = p+q. For an integern such thatn≥ 6r +2, letPp×6;q×6

n be the graph
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Figure 11: The tricyclicP2×6;1×6
n and the quadricyclicP2×6;2×6

n graphs.

obtained fromr copies ofC6 and a pathPn−6r with endpointsu andv, by adding an edge betweenu and each ofp
copies ofC6 and an edge betweenv and each of theq other copies ofC6. See Figure11 for P2×6;1×6

n andP2×6;2×6
n .

Now the general conjecture is the following.

Conjecture 3.7 Let r and n be positive integers such that n≥ 6r +4. Then

E(G)≤ E(Pp×6;q×6
n ),

where p= ⌈r/2⌉ and q= ⌊r/2⌋, with equality if and only if G≡ Pp×6;q×6
n .

TheLaplacianof a graphG is the matrix defined byQ= Deg−A, whereDeg is the diagonal matrix whose diagonal
entries are the vertex degrees inG andA is the adjacency matrix ofG. TheLaplacian spectrumof G is the spectrum of
Q and is denoted byµ1,µ2, . . .µn, whereµ1≥ µ2≥ ·· · ≥ µn−1≥ µn = 0. The second smallest Laplacian eigenvalue of a
graphG is calledalgebraic connectivityof G [91] and denotea= a(G). In [39], Belhaiza, Abreu, Hansen and Oliveira
performed experiments using AGX and obtained lower and upper bounds on the algebraic connectivity. Among their
results the following upper bound.

Theorem 3.8 ([39]) Let G be a connected graph on n vertices and m edges with algebraic connectivity a. If G6∼= Kn,
then

a≤
⌊

−1+
√

1+2m
⌋

.

Moreover, the bound is sharp for all m≥ 2.

Thesignless Laplacianof a graphG is the matrix defined byQ= Deg+A, whereDeg is the diagonal matrix whose
diagonal entries are the vertex degrees inG andA is the adjacency matrix ofG. Thesignless Laplacian spectrumof G
is the spectrum ofQ and is denoted byq1,q2, . . .qn, whereq1≥ q2≥ ·· ·qn. For more details aboutQ and its spectrum,
see [70, 71, 72, 69]. The paper [69], by Cvetković, Rowlinson and Simić, reports on AutoGraphiX conjectures obtained
at GERAD and related to the signless Laplacian spectrum of a graph. Some examples of these results are given below
and a complete list is given in Table10 in the Appendix. Hansen and Lucas [108] used AutoGraphiX for studying the
problem of upper bounding the largest signless Laplacian eigenvalueq1 in terms of ordern and chromatic numberχ of
G (the minimum number of colors that can be assigned to the vertices of a graph such that two adjacent vertices are not
assigned the same color), and also in therms of order and clique numberω (the maximum number of pairwise adjacent
vertices in a graph). The bounds obtained using AGX and then proved are gathered in the next theorem.

Theorem 3.9 ([108]) Let G be a graph on n vertices with largest signless Laplacianq1, chromatic numberχ and
clique numberω . Then

q1≤
2n(χ−1)

χ
with equality if and only if G is is a complete regularχ-partite graph; and

q1≤
2n(ω−1)

ω

with equality if and only if G is is a complete regularω-partite graph.
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TheAlbertson irregularity Al= Al(G) of a graphG= (V,E), introduced by Albertson [3] in 1997, is defined as the of
the absolute values of the differences between the degrees of the end-vertices of the edges ofG, i.e.,

Al = Al(G) = ∑
uv∈E
|d(u)−d(v)|.

Note that the difference|d(u)−d(v)|, for an edgeuv is called by Albertson [3] the imbalanceof uv.

Hansen and Mélot [109] used AutoGraphiX to find an upper bound on the Albertson irregularity in terms of order
n and sizem. Their experiments did not only conjecture a bound but also did suggest a clear idea for proving it.
Some of the extremal graphs suggested by AutoGraphiX are presented in Figure12. These graphs belong to the
well–known family offanned complete split graphs. A fanned complete split graphwith parametersn,q, t(n≥ q≥ t),
denoted byFCS(n,q, t), is a graph (onn vertices) obtained from a complete split graphCS(n,q) by connecting a vertex
from the stable set by edges tot other vertices of the stable set. The curves of the irregularity for 9 ≤ n≤ 12 and
n−1≤m≤ n(n−1)/2 are given in Figure13.

Figure 12: The extremal graphs forAl with n= 7 and 6≤m≤ 20.

Figure 13: The curves ofAl for 9≤ n≤ 12.

The extremal graphs were obtained by AutoGraphiX using a single move:the rotation of an edge(if uv∈E anduw 6∈E,
the rotation of theuv to uw is the suppression ofuv and the addition ofuw). From where the proof idea: show that for
any non-optimal graph, there exists an edge rotation that increases the irregularity. This proof works and the result is
the following:
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Theorem 3.10 ([109]) If G is a graph on n vertices and m edges, then

Al(G)≤ s(n− s)(n− s+1)+ t(t−2s−1)

where

s=







n− 1
2
−

√

(

n− 1
2

)2

−2m







 and t= m− s(n− s)− s(s−1)
2

.

Moreover, the bound is attained if and only if G is fanned complete split graph.

4 AGX Form 1

In this section, we report on a particular form of results obtained using AGX. More precisely, in our experiments, we
considered a set of invariants (20 at first and then few otherswere added) and sought expressions of the following form
(called AGX Form 1):

b(n)≤ i1⊕ i2≤ b(n) (2)

wherei1 andi2 are invariants of a graphG from the chosen set,⊕ denotes one of the 4 operations+,−,/ and×, b(n)
andb(n) are, respectively, lower and upper bounding functions depending on theorder n, or number of vertices, ofG
which arebest possible, i.e.,such that for each value ofn (except possibly very small ones, due to border effects) there
is a graphG for which the bound is tight. The order of invariantsi1 and i2 in (2) is arbitrary. For⊕ equal to+ or
×, changing this order has no effect; for⊕ equal to− or /, such a change permutes lower and upper bounds (bounds
being multiplied by−1 in the former case and ratios in the bounds inverted also in the latter one). Note that the form
(2) is reminiscent of the well-known Nordhaus-Gaddum relations [161]; however, it generalizes this last form in two
ways:

(i) the operations− and/ are considered in addition to+ and×;

(ii) the invariantsi1 and i2 are independent instead of havingi2(G) = i1(G), whereG denotes the complementary
graph ofG, in which an edge joins verticesvi andv j if and only if there is no such edge inG.

In the thesis [10] expressions of AGX Form 1 were systematically studied for all pairs of invariants among a list of 20,
given in Table3. This amounts to 1520 cases. Results are summarized in Table8 given in the Appendix. For each
case, we give the formulae for the lower and upper bounds together with the status of the conjecture: known (K), trivial
(T), open (O), assisted open (AO), structural open (SO), refuted (R). For a proved automated, assisted or structural
conjecture, we refer to the paper where it is proved, and we indicate that no result is obtained (NR) whenever it is the
case. Statistics on the numbers of cases which fall in these categories are given in Table4. It appears that:

(i) cases in which no result was obtained (because the graphsobtained by AGX do not present sufficient regularity)
are rare ( 3.62%);

(ii) known results rediscovered by AGX are also rare (2.43%);

(iii) complete results,i.e., algebraic formulae and extremal graphs, are frequent (82.89%). They comprise obvious
results, usually proved automatically by AGX (55.59%), andnon trivial results proved by hand either at GERAD
or by graph theorists of various countries (23.75%), in suchcases references to the proofs are given;

(iv) in some other cases only structural conjectures,i.e., only families of extremal graphs are obtained (11.06%), in
some cases formulas are obtained by hand (5.67%);

(v) cases where AGX conjectures were refuted are rare (3.62%);

(vi) there remains a consequent number of open conjectures (8.42%). This is due to the fact that our systematic effort
done to prove some families of conjectures was not enough or that some invariants appearing there are hard to
handle or that some conjectures appear to be hard.

Results for a pair of invariants can becomplete, i.e.,consist of both conjectured best possible functionsb(n) andb(n)
and the corresponding characterizations of the extremal graphs, orstructural, i.e., consist of the characterizations of
extremal graphs only. This last case occurs when algebraic expressions forb(n) andb(n) are too difficult for AGX to
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Table 3: The 20 invariants considered in [10] for the AGX Form 1.

∆ The maximum degree.

δ The minimum degree.

d The average degree.

l The average distance between all pairs of vertices.

D The diameter.

r The radius.

g The girth, the length of the smallest cycle in a graph.

ecc The average eccentricity.

π The proximity or minimum normalized transmission.

ρ The remoteness is maximum normalized transmission.

λ1 The index or spectral radius.

Ra The Randić index.

a The algebraic connectivity or second smallest Laplacian eigenvalue.

ν The vertex connectivity.

κ The edge connectivity.

α The independence number.

β The domination number.

ω The clique number.

χ The chromatic number.

µ The matching number.

Table 4: Summary of results.

Known results reproduced 37 (2.43 %)

Obvious results 845 (55.59 %)

Complete results proved by hand 361 (23.75 %)

Proved structural results and formulae by hand 46 (3.03 %)

Proved structural results only 21 (1.38 %)

Open complete results 33 (2.17 %)

Open structural results and formulae by hand 34 (2.24 %)

Open structural results only 61 (4.01 %)

Refuted complete results 21 (1.38 %)

Refuted structural results and formulae by hand 6 (0.40 %)

Refuted structural results only 0 (0.00 %)

No results 55 (3.62 %)

Total 1520 (100 %)

obtain, or when such expressions do not exist,e.g.because they correspond to solutions of an equation of degree 5 or
more.

In some fairly frequent cases, complete results are simple and can be proved by AGX in a fully automated way; we
then refer to them asobservations. If results are structural, algebraic expressions forb(n) andb(n) can sometimes be
deduced, in an assisted way, from the characterization of extremal graphs. In some fairly rare cases the graphs obtained
by AGX and conjectured to be extremal present very little or no regularity and no results are obtained.

In each case,i.e., each bound, graphs with 5 to 20 vertices were considered. Computing time on Intel Xeon with
2.66 GHz and 2 Gb RAM, at that moment, varied from less than 1 second in the frequent case in which a bound could
be obtained automatically, without using VNS, up to 75 seconds per graph in the most complex cases, whether results
were obtained or not. Trying longer computing times did not give better results.

Among all bounds conjectured in [10], 128 remain open, and among all possible cases, AGX failed to find a conjecture
or a false conjecture in 82 cases. Under the assumption that these open conjectures are difficult to prove and that AGX
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failed when the cases are difficult to handle, we tried to figure out the reasons of these difficulties and we gathered the
statistics summarized in Table5 regarding the invariants, Table6 regarding the operations and Table7 regarding the
bounds. In these tables, we use O, AO and SO for open, assistedopen and structural open conjecture, respectively, and
R and AR for refuted conjecture and refuted assisted conjecture. NR is used to say that no result is obtained in the
corresponding case. T–O and T–R are used for the total over open conjectures and cases with no result or with refuted
conjectures, respectively. Total indicates the sum of T–O and T–R.

In Table5, the invariants are sorted in a decreasing way according to their total occurrences in the cases considered as
difficult (open or refuted conjecture or no result is obtained in the corresponding case). According to these statistics,
the most difficult invariant to handle is the domination number β with a total of 46 occurrences over 420 (10.95 %).
The second most difficult invariant seems to be the Randić indexRawith 39 occurrences (9.51 %). Then comes a set of
three invariants with 35 occurrences each (8.33 %). Two of these three invariants are eigenvalues, the indexλ1 and the
algebraic connectivitya, and the third is a metric invariant, namely, the remotenessρ . After that, we can find three sets
each containing two invariants with almost the same occurrences: the average eccentricityeccand the average distance
l with 30 and 29 occurrences (7.14 % and 6.91 %), respectively,the proximityπ and the independence numberα with
25 occurrences each (5.95 %), and the radiusr and the maximum degree∆ with 20 and 19 occurrences, respectively.
The remaining nine invariants can be split into three sets each with three invariants with almost the same number of
occurrences: the average degreed, the diameterD (the maximum distance in a graph) and the chromatic numberχ ,
with 14, 13 and 13 occurrences, respectively, form the first set, the minimum degreeδ , the edge connectivityκ and the
clique numberω , with 9, 9 and 8 occurrences, respectively, form another set, and finally, the set of the less frequent
invariants is composed of the matching numberµ , the girthg and the vertex connectivityν with 6, 5 and 5 occurrences,
respectively.

Table 5: Difficulties regarding the invariants.

Invariant O AO SO T–O NR R AR T–R Total

β 9 11 12 32 12 0 2 14 46

Ra 9 12 6 27 8 4 0 12 39

λ1 5 1 11 17 10 7 1 18 35

a 4 6 19 29 6 0 0 6 35

ρ 3 8 17 28 6 1 0 7 35

ecc 5 6 9 20 6 4 0 10 30

l 3 5 9 17 9 2 1 12 29

π 6 3 8 17 8 0 0 8 25

α 5 4 7 16 7 2 0 9 25

r 5 4 2 11 8 1 0 9 20

∆ 0 2 3 5 12 1 1 14 19

d 2 1 6 9 1 1 3 5 14

D 3 0 2 5 3 4 1 8 13

χ 0 2 6 8 2 2 1 5 13

δ 2 0 2 4 1 4 0 5 9

κ 2 1 0 3 2 4 0 6 9

ω 0 0 2 2 3 1 2 6 8

µ 1 1 0 2 3 1 0 4 6

g 1 0 1 2 1 2 0 3 5

ν 1 1 0 2 2 1 0 3 5

If we consider the difficulty with respect to the operations,it is easy to see that the product is the most difficult
combination to handle. It occurs 79 times over 210 (37.62 %).The other three operations appear to present the same
degree of difficulty: 41 occurrences (19.52 %) for the addition, 43 occurrences (20.48 %) for the subtraction and 47
occurrences (22.38 %) for the division.
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Table 6: Difficulties regarding the operations.

Operation O AO SO T–O NR R AR T–R Total

− 11 9 11 31 6 4 2 12 43

+ 5 7 8 20 14 6 1 21 41

/ 5 10 18 33 12 1 1 14 47

× 12 8 24 44 23 10 2 35 79

If we distinguish between lower and upper bound, it is almostthe same degree of difficulty in both cases even if the
upper bounds seems to be slightly more difficult than the lower bound with 117 (55.71 %) cases among 210.

Table 7: Difficulties regarding the bounds.

Bound O AO SO T–O NR R AR T–R Total

Lower 11 18 22 51 31 9 2 42 93

Upper 22 16 39 77 24 12 4 40 117

Among the bounds considered in the thesis [10], some were already known in graph theory literature. Amongthese
results, we can cite

δ ≤ d≤ λ1≤ ∆ [68];

l ≤ α [64];

χ ≤ λ1+1 [192];

a≤ nδ
n−1 [91];

whereδ , d and∆ respectively denote the minimum, average and maximum degrees,l is the average distance,χ the
chromatic number,α denotes the independence number (the maximum number of pairwise non adjacent vertices),λ1

is the spectral radius of (the adjacency matrix of) a graph, anda denotes the algebraic connectivity (the second smallest
eigenvalue of the Laplacian matrix of a graph).

Note that some of the above listed inequalities were obtained twice. For instance, the inequalityλ1 ≤ ∆ was obtained
asλ1−∆≤ 0 andλ1/∆≤ 1.

Some of the bounds are naturally easy to obtain. When both invariants considered come from the same vector or
matrix, sayS, by taking its minimum (m= minS), averages= 1

|S| ∑s∈Ss) or maximum value (M = maxS), it is obvious
that

m≤ s≤M

with equality if and only if the entries ofSare equal. Immediate consequences of this double inequality are

M− s≥ 0, s−m≥ 0, M−m≥ 0,
M
s
≥ 1,

s
m
≥ 1 and

M
m
≥ 1.

For example, for all connected graphsG with n≥ 2 vertices, diameterD (the maximum among all the distances inG)
and average distancel ,

D− l ≥ 0 and
D

l
≥ 1

with the equalities if and only ifG is a complete graph.

There exists another kind of bounds easy to obtain. Actually, when the relevant families of extremal graphs for the
invariantsi1 and i2 are considered and if they have a non-empty intersection a proved and best possible bounding
function is obtained. For our next example, we need the following definitions. Theeccentricity ecc(v) of a vertexv
in G is the maximum among the distances fromv to all other vertices inG. Theradius r= r(G) of a graphG is the
maximum over the eccentricities of its vertices. TheRandíc index Ra(G) of a graphG= (V,E), introduced in [170], is
defined by

Ra= Ra(G) = ∑
uv∈E

1√
dudv

,



18 G–2013–12 Les Cahiers du GERAD

wheredu anddv denote the degree of the verticesu andv, respectively. It is well known that, on the one hand, the
Randić indexRa is minimum for the starSn, which is among the graphs that minimize the radiusr, and on the other
hand,Rais maximum for any regular graph, and among the regular graphthe cycleCn maximizesr. Thus the following
bounds are immediately obtained.

1+
√

n−1≤ Ra+ r ≤ n
2
+
⌊n

2

⌋

and
√

n−1≤ Ra· r ≤ n
2
·
⌊n

2

⌋

with equality in both lower (resp. upper) bounds if and only if G is the starSn (resp. cycleCn).

Another example: the average distancel is minimum (resp. maximum) for the complete graphKn (resp. pathPn)
with l(Kn) = 1 (resp.l(Pn) = (n+1)/3, while the maximum degree∆ is maximum forKn, with ∆(Kn) = n−1, and
minimum forPn, with ∆(Pn) = 2. Thus

2−n≤ l −∆≤ n−5
3

and
1

n−1
≤ l

∆
≤ n+1

6

with equality in both lower (resp. upper) bounds if and only if G is the complete graphKn (resp. pathPn).

The other results were obtained as conjectures and can be divided into three types. A common step for all the three
types is the VNS optimization. At that step, the optimization component of AutoGraphiX is executed and presumably
extremal graphs are obtained. Then, a component, aimed for finding (linear) relations (see Section2) between selected
invariants, is executed. In case of success, we obtain a formulae: a lower bound for a minimizing problem or an upper
bound for a maximizing problem. Thus, we get a conjecture containing a bound with corresponding extremal graphs
and we speak aboutcomplete conjectures, that constitute the first type of results. Among such results, we cite the
following theorems and conjectures.

Theorem 4.1 ([35]) Let G be a connected graph on n≥ 3 vertices with indexλ1 and average distancel. Then

λ1+ l ≤ n

with equality if and only if G is the complete graph Kn.

Conjecture 4.2 ([107]) Let G be a connected graph on n≥ 6 vertices with signless Laplacian spectral radius q1

and chromatic numberχ . Then

q1− χ ≤ 3n−8
2

with equality if and only if G is the⌊n/2⌋–partite graph Kp,2,2,...,2, where p= 2+n mod(2).

A relation between the signless Laplacian index and the maximum degree, obtained by AGX, is proved by Cvetković,
Rowlinson and Simić [69].

Theorem 4.3 ([69]) Let G be a connected graph on n≥ vertices with signless Laplacian index q1 and maximum
degree∆. Then

q1−∆≥ 1

with equality if and only if G is the star Sn.

The girth g = g(G) of a connected graphG on n≥ 3 vertices with at leastn edges, is the length (number of edges)
of its smallest cycle. The following theorem, proved independently by Bekkai and Kouider [38] and in [19], was first
conjectured by AGX.

Theorem 4.4 ([19, 38]) Let G be a connected graph on n≥ 3 vertices and m≤ n edges with girth g and average
distancel. Then

l ·g≤
{

n3

4(n−1) if n is even,
n2+n

4 if n is odd
and

l
g
≥
{ n

4(n−1) if n is even,
n+1
4n if n is odd.

Moreover, both bounds are reached for cycles.
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Thematching numberµ = µ(G) of a graph is the maximum number of independent (pairwise non-incident) edges in
G. The following result was conjectured using AGX and then proved by Stevanović [178].

Theorem 4.5 ([178]) Let G be a connected graph, G6∼= K3, on n≥ 3 vertices with adjacency indexλ1 and matching
numberµ . Then

λ1− µ ≤ n−1−
⌊n

2

⌋

with equality if and only if G is the complete graph Kn. Also,

λ1

µ
≤
√

n−1

with equalities if and only if G is the star Sn.

Note that Stevanović [178] constructed an infinite family of counterexamples for the relationλ1+µ ≥
√

n−1+1 first
conjectured by AGX.

When AGX could not provide a complete conjecture, an interactive procedure for recognizing the extremal graphs
was launched. If the extremal graph are recognized and the corresponding formulas of the invariants under study
are available in the database, substitutions are done and then bounds are obtained. The results so obtained are called
assisted conjectures. First, recall that thevertex(resp.edge) connectivityν = ν(G) (resp.κ = κ(G)) of a connected
graphG is the minimum number of vertices (resp. edges) whose removal disconnectsG.

Theorem 4.6 ([79, 196]) Let G be a connected graph on n≥ 3 vertices with indexλ1, vertex connectivityν and
edge connectivityκ . Then

λ1−ν ≤ n−3+ t;
λ1

ν
≤ n−2+ t; λ1−κ ≤ n−3+ t;

λ1

κ
≤ n−2+ t,

where t is such that0< t < 1 and t3+(2n−3)t2+(n2−3n+1)t−1= 0. Moreover, equalities hold if and only if G
is the kite Kin,n−1.

Finding the bound in the above theorem in an automated way wasnot possible since it contains a factor that uses an
implicit solution of a difficult to solve equation.

Another example with a complicated bound is the following theorem proved in [20].

Theorem 4.7 ([20]) Let G= (V,E) be a connected graph of order n with independence numberα and maximum
degree∆. Then

α−∆≤max

{⌊

n− n−1
⌈√

n−1
⌉

⌋

−
⌈√

n−1
⌉

,

⌊

n− n−1
⌊√

n−1
⌋

⌋

−
⌊√

n−1
⌋

}

.

The bound is reached for every n.

For the above theorem, the difficulty is in the fact that the bound is an integer that implies a combination of fractions
and square roots of integers. A similar difficulty is encountered in the next bound.

Theorem 4.8 ([35]) Let G be a connected graph on n≥ 2 vertices with indexλ1 and independence numberα. Then

α +λ1≤
n+α ′−1+

√

(n−α ′−1)2+4α ′(n−α ′)
2

,

with equality if and only if G is the complete split graph CS(n,n−α ′), whereα ′ is given by

α ′ =















⌊

n+1+
√

n2−n+1
3

⌋

for n= 3k or n= 3k+2,
⌈

n+1+
√

n2−n+1
3

⌉

for n= 3k+1.
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Finally, when the recognition of the extremal graphs succeeded, but no formulae were found, we state a conjecture
about the structure of the extremal graphs. In this case, we speak aboutstructural conjectures.

The well–known result, in spectral graph theory,λ1(G) ≥ d(G) with equality if and only ifG is a regular graph, was
proved by Collatz and Sinogowitz [65] in 1957. Then, they proposed to consider the difference between the index and
the average degree as a measure of theirregularity of a graph (other definitions of irregularity in graphs have been
proposed, see [3, 40], and for a comparison between them see [98]). Thus the irregularity of a graphG is defined
by Irr (G) = λ1(G)− d(G). The problem of finding an upper bound on the irregularity andcharacterizing the most
irregular graphs remains open. The following conjecture related to the irregularity of a graph have been formulated
after some experiments with the system AGX. First, we need the following definition. Apineapplewith parameters
n,q (q≤ n), denoted byPA(n,q), is a graph onn vertices consisting of a clique (a set of pairwise adjacent vertices) onq
vertices and an independent set (a set of pairwise non-adjacent vertices) on the remainingn−q vertices in which each
vertex of the independent set is adjacent to a unique and the same vertex of the clique. Some pineapples are illustrated
in Figure14.

Figure 14: Presumably most irregular graphs forn= 7,8,9,10.

Conjecture 4.9 ([11, 14]) The most irregular connected graph on n(n≥ 10) vertices is a pineapple PA(n,q) in
which the clique size q is equal to⌈n

2⌉+1.

The issue in the above theorem, as well as in the next, is the difficulty to get an explicit formulae of the index for some
classes of graphs.

Theorem 4.10 ([19]) Over all connected graphs on n≥ 4 vertices and m≥ n edges with girth g and indexλ1, g+λ1

is maximum for the kite Kin,3 (see Figure15 for Ki9,3). Moreover, for each t> 0, there exists an integer nt such that
for all n≥ nt , 3+

√
5− t < g(Kin,3)+λ1(Kin,3)< 3+

√
5.

Figure 15: Ki9,3: an extremal graph in Theorem4.10.

A study similar to that of [10] was done by Hansen and Lucas [107] where the signless Laplacian spectral radiusq1 is
compared to 19 other graph invariants. The results, to whichbelongs Conjecture4.2, are summarized in Table9.

In [175], Sedlar, Vukičević and Hansen introduced a first generalization of AGX Form 1 to AGX Form 2:

b(m)≤ i1⊕ i2≤ b(m) (3)

in which the lower and upper bounding functionsb(m) andb(m) depend on the sizem (or number of edges) of the
graph instead of its order. Otherwise the symbols have the same meaning and assumptions are the same. Among the
AGX Form 2 results, we give the following theorem.
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Theorem 4.11 ([175]) Let G be a connected graph with size m≥ 1, radius r and minimum degreeδ . Let k and l be
integers such that m= k(k−1)/2− l, where0≤ l < k−1. Then

if l = 0, 2− k
if 0< l < k/2, 3− k
if k/2≤ l ≤ k−1, 4− k







≤ r− δ ≤
⌊

m+1
2
−1

⌋

; (4)

if l = 0, 1/(1− k)
if 0< l < k/2, 1/(2− k)
if k/2≤ l ≤ k−1, 1/(3− k)







≤ r
δ
≤
⌊

m+1
2

⌋

; (5)

2≤ r + δ ≤
⌊m

2

⌋

+2; (6)

1≤ r + δ ≤
⌊m

2

⌋

. (7)

The lower bounds for (4) and (5) are attained by the complete graph Kk if l = 0, by Kk \Ml , where Ml is a matching
containing l edges, if0< l ≤ k/2 and by Kk \Cl , where Cl is a cycle containing l edges, if k/2< l < k−1. The lower
bounds for (6) and (7) are attained by the star Sm+1.

The upper bounds for (4) and (5) are attained by the path Pm+1. The upper bounds for (6) and (7) are attained by the
cycle Cm.

5 Other forms

Besides bounding invariants and bounds of AGX Form 1, several results of different forms were studied using Auto-
GraphiX. In this section, we report on relations that do not belong to those described in the two previous sections. As a
first example, we give relations involving more than two graph invariants, in addition to the ordern. Such relationships
are rare in the graph theory literature. A second example is aresult about one invariant, in which we consider the
behavior of the invariant instead of its minimum or maximum values. Other examples are given below and more can be
found in Aouchiche, Bell, Cvetković, Hansen, Rowlinson, Simić, Stevanović [11], Aouchiche, Caporossi and Hansen
[14], Aouchiche and Hansen [27], Caporossi and Hansen [54], Cvetković, Rowlinson and Simić [69], Cvetković and
Simić [70, 71, 72], Cvetković, Simić, Caporossi and Hansen [74], Hansen and Mélot [109],

Any tree is a bipartite graph and therefore its vertex set canbe partitioned into two independent subsets. Leta be the
number of vertices in one subset andb in the other. In this case, we speak about an(a,b)–partition. Assume, without
loss of generality thata≥ b and letTa,b be the class of all trees that can be partitioned into an(a,b)–partition. In [74],
the authors considered the problem of finding extremal treesT ∈ Ta,b with respect to the adjacency indexλ1(T), i.e.,
solving the problems

min
T∈Ta,b

λ1(T) and max
T∈Ta,b

λ1(T)

for givena andb. Among their results, we recall the following two theorems and conjecture.

Theorem 5.1 ([47, 74]) For fixed order n= a+b and for T∈ Ta,b, the minimal value ofλ1(T) increases monoto-
nously with a−b.

Conjecture 5.2 ([47, 74]) A vertex from the subset with a vertices in a minimal tree overthe classTa,b, with respect
to λ1, has degree1 or 2.

For the statement of the next conjecture, we need the following definition. Acomet Con,∆ is the tree obtained from a
starS∆ by insertingn−∆ vertices (of degree 2) into the same edge.

Theorem 5.3 ([47, 74]) For a= b+2 and n= a+b≥ 6, trees T∗ ∈Ta,b with minimalλ1 are comets Con,4. More-
over

lim
n→+∞

λ1(T
∗) = 2.

In [54], after experiments using AutoGraphiX on trees inTa,b with fixed a andb, the authors obtained the following
unexpected conjecture involving five invariants.
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Conjecture 5.4 ([47, 54]) For fixed integers a and b, let T∈ Ta,b with size m, independence numberα, diameter
D, radius r and n1 pendent edges. Then

2α−m−n1+2r−D = 0.

The above conjecture is not valid for the class of trees in general. Experiments done in [47, 54] with AutoGraphiX led
to the following theorem, first obtained as a conjecture.

Theorem 5.5 ([47, 54]) Let T be a tree on n vertices and m edges with independence number α, diameter D, radius
r and n1 pendent edges. Then

m+n1+D−2r−
⌊

n−2
2

⌋

≤ 2α ≤m+n1+D−2r

In 1956, Nordhaus and Gaddum [161] proved that

2
√

n≤ χ(G)+ χ(Ḡ)≤ n+1 and n≤ χ(G) · χ(Ḡ)≤ (n+1)2

4
,

whereχ is the chromatic number of a graph. Finck [92] showed that these bounds were sharp (taking floors and ceilings
if necessary) and characterized extremal graphs. Similar bounds were obtained for a large number of graph invariants
by a variety of authors. Leti(G) denote a graph invariant. Classical Nordhaus-Gaddum relations are of the following
form:

l1(n)≤ i(G)+ i(Ḡ)≤ u1(n) and l2(n)≤ i(G) · i(Ḡ)≤ u2(n).

In more general form, the lower and upper bounding functionsmay depend on several variables. For an extensive
survey of such relations see [23] and over 350 references therein. Here, we are interested inNordhaus–Gaddum
relations only for the index. Nosal [162] and Amin and Hakimi [4] independently proved that

n−1≤ λ1(G)+λ1(Ḡ)≤
√

2(n−1).

The lower bound (attained if and only if the graph is regular)has been proved independently by Nosal [162] in 1970
and Amin and Hakimi [4] in 1972, and has been improved in 2007 by Nikiforov [160] to

λ1(G)+λ1(G)≥ n−1+
√

2
div2(G)

n3 ,

wherediv(G) = ∑u∈V(G)

∣

∣d(u)− 2m
n

∣

∣.

The best bound known up to now is proved by Csikvári [67] in 2009:

λ1(G)+λ1(G)≤ 1+
√

3
2

n−1.

The problem of finding an upper bound for the index of the Nordhaus–Gaddum type was studied using AGX [11, 14].
The AutoGraphiX conjecture about the upper bound is as follows.

Conjecture 5.6 ([11, 23]) For any simple graph G, with complementG, indexλ1(G) and n vertices we have

λ1(G)+λ1(G)≤ 4
3

n− 5
3
−







f1(n) i f n mod(3) = 1
0 i f n mod(3) = 2
f2(n) i f n mod(3) = 0,

where f1(n) =
3n−2−

√
9n2−12n+12
6 and f2(n) =

3n−1−
√

9n2−6n+9
6 .

This bound is sharp and attained if and only if G orG is a complete split graph with an independent set on⌊n
3⌋ vertices

(and also on⌈n
3⌉ vertices if n mod(3) = 2).
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We shall describe in some detail the use of AGX in formulatingConjecture5.6.

Additional experiments have shown that maximal graphs forλ1+λ1 for givenn andm are complete split graphs or
fanned complete split graphs with a few exceptions.

When looking for extremal graphs with the system AGX, using Variable Neighborhood Search metaheuristic, we
defined the objective function asλ1(G)+λ1(G) to be maximized over the class of all graphs of order from 4 to 24.
To be coherent in our investigations, we required the graphG, but not necessarily its complementG, to be connected.
This constraint is without loss of generality because of thefact that at least one of the complementary graphsG andG
is connected.

For a fixed ordern, the extremal graphG is composed of a clique onq vertices and an independent set withs vertices
in which every vertex is connected to all vertices of the clique. When we observed the values ofq ands for different
graphs, we found the following:

q=

{

⌊n
3⌋ i f n mod(3) = 1
n
3 i f n mod(3) = 0

and s=

{

⌈2n
3 ⌉ i f n mod(3) = 1
2n
3 i f n mod(3) = 0.

While the experiments show regularity for the casesn mod(3) = 0 andn mod(3) = 1, it was not the case when
nmod(3) = 2. Sometimes we haveq = ⌊n

3⌋ ands= ⌈2n
3 ⌉ and at other times, we haveq = ⌈n

3⌉ ands= ⌊2n
3 ⌋. We

decided to examine the two cases interactively onAGX for everyn up to 24, and we observed that the objective func-
tion has the same value in both cases (q= ⌊n

3⌋ or q= ⌈n
3⌉).

AGX did not find any conjecture on the relation between the objective functionλ1(G)+λ1(G) and the order when using
all the presumably extremal graphs obtained by AGX. But whenwe separated the set of graphs into three subsets, with
n mod(3) = 0 for the first subset,n mod(3) = 1 for the second one andn mod(3) = 2 for the third one, AGX did not
find anything about the two first subsets but suggested the following linear relation for the third one (n mod(3) = 2)

λ1(G)+λ1(G) =
4
3

n− 5
3
.

The difficulty in proving Conjecture5.6 is that we have almost no lemmas on the behavior of the corresponding
invariant under local graph transformations. Experimentswith GRAPH [73], newGRAPH [180] and AGX could be
useful in producing conjectures for such lemmas (e.g. adding an edge, rotating an edge etc.). Some partial results about
that conjecture can be found in [11, 14].

The problem of finding Nordhaus–Gaddum inequalities was also considered with AutoGraphiX for the two other
invariants.

The transmission t(v) of a vertexv in a connected graphG, is the sum of the distances fromv to all other vertices in
G. It is said to benormalized, and then denoted̃t(v), when divided byn−1. Theproximityπ = π(G) andremoteness
ρ = ρ(G) [10, 15] of G are, respectively, the minimum and the maximum normalized transmission inG. That is

π = min
v∈V

t̃(v) and ρ = max
v∈V

t̃(v).

Some properties of proximity and remoteness are studied in [10, 15, 25, 22, 172]. In [27], the authors derived and
proved Nordhaus–Gaddum type inequalities forπ and forρ . The results are stated below.

Theorem 5.7 ([27]) For any connected graph G on n≥ 5 vertices for whichG is connected

2n
n−1

≤ π +π ≤
{

n+1
4 + n+1

n−1 if n is odd,
n
4 +

n
4(n−1) +

n+1
n−1 if n is even.

The lower bound is attained if and only if∆(G) = ∆(G) = n−2. The upper bound is attained if and only if either G or
G is the cycle Cn.

Theorem 5.8 ([27]) For any connected graph G on n≥ 5 vertices for whichG is connected

n2

(n−1)2 ≤ π ·π ≤







(n+1)2

4(n−1) if n is odd,
n(n+1)
4(n−1) +

n(n+1)
4(n−1)2

if n is even.
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The lower bound is attained if and only if∆(G) = ∆(G) = n−2. The upper bound is attained if and only if either G or
G is the cycle Cn.

Theorem 5.9 ([27]) For any connected graph G on n≥ 6 vertices for whichG is connected

3≤ ρ +ρ ≤ n+2
2

+
2

n−1
.

The lower bound is attained if and only if n≥ 8, G is regular and D= D = 2. The upper bound is attained if and only
if G or G is the path Pn, the comet Con,3 or the path-complete graph PKn,n when n≥ 7, and if and only if G orG is the
path P6, the comet Co6,3, the path-complete graph PK6,6 or one of the graphs in Figure16.

Figure 16: Graphs withD = 3 that maximizeρ +ρ for n= 6.

Theorem 5.10 ([27]) For any connected graph G on n≥ 7 vertices for whichG is connected

ρ ·ρ ≤











16n+20
27 + 8

9(n−1) +
4

27(n−1)2
if n = 0 (mod3),

16n+20
27 + 2

3(n−1) if n = 1 (mod3),
16n+20

27 + 8
9(n−1) +

5
27(n−1)2

if n = 2 (mod3).

The upper bound is the best possible as shown by the comets Con,⌈ n
3⌉+1, and Con,⌈ n

3⌉ if n = 1 (mod3).

Recall that theLaplacianof a graph is the matrix defined byL = Deg−A, whereDeg is the diagonal matrix whose
diagonal entries are the vertex degrees inG andA is the adjacency matrix ofG. TheLaplacian eigenvaluesof a graphG
are those of its Laplacian matrix. The are usually denoted byµ1,µ2, . . . ,µn and indexed such thatµ1 ≥ µ2≥ ·· · ≥ µn.

Among the relations obtained using AutoGraphiX and where more than two invariants were involved, we cite the
following three conjectures.

Conjecture 5.11 ([69]) Let G be a connected graph on n≥ 4 vertices with signless Laplacian index q1, adjacency
indexλ1 and average degreed. Then

q1−λ1−d≤ n−2−
√

n−1+
2
n

with equality if and only if G is the star Sn.

Conjecture 5.12 ([69]) Let G be a connected graph on n≥ 4 vertices with signless Laplacian index q1, Laplacian
indexµ1 and adjacency indexλ1. Then

µ1+λ1−q1≤
√

⌊n
2

⌋

·
⌈n

2

⌉

with equality if and only if G is the complete bipartite graphK⌊ n
2⌋,⌈ n

2⌉.

Conjecture 5.13 ([69]) Let G be a connected graph on n≥ 4 vertices with signless Laplacian index q1, smallest
signless Laplacian eigenvalue qn and independence numberα. Then

q1+qn+2α ≤ 3n−2

with equality if and only if G is the complete split graph CS(n,n−α).
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All the results discussed above deal, besides the bounding functions, also with the characterizations of the correspond-
ing extremal graphs. AGX can also be used for finding characterizations of a given class of graphs. For instance, in
[69], a characterization of the complete graph is obtained using AutoGraphiX.

Theorem 5.14 ([69]) Let e(Q) be the number of distinct eigenvalues of the signless Laplacian of a graph and m(qi)

the multiplicity of the eigenvalue qi of Q. Then

e(Q) = 2 ⇐⇒ m(q2) = n−1 ⇐⇒ G∼= Kn.

In this case q2 = n−2.

6 Extensions

In the previous sections, we discussed several forms of conjectures obtained using the AutoGraphiX system, and
therefore exploiting variable neighborhood search techniques. In this section we discuss forms of conjectures that can
potentially be explored with the help of AGX. In [104], the authors addressed the following question:What makes
a mathematical result interesting?Despite its obvious interest, this question of mathematical philosophy is scarcely
discussed. Views of several famous scientists on this topicare interspersed with discussions of graph theoretical
conjectures in the largeWritten on the wallfile of Fajtlowicz [86]. Colton [66] and Larson [137], also address this
question in detail. Some criteria of interestingness of a mathematical result were set in [104]:

• Simplicity: simple formulae are the most used ones, and thus the most likely to have many consequences. They
also have the most potential falsifiers, as explained by Popper in his famous bookThe Logic of scientific discovery
[167]. However, it may be hard to find many simple, new and true formulae. Moreover, some of them may be
trivial, e.g., that the clique number of a graph is not largerthan its chromatic number.

• Centrality: conjectures should preferably involve the most central concepts of graph theory as e.g. connected-
ness, stability, colorability, and so forth. To illustrate, some new concepts proved to be interesting and lead to
numerous results, as e.g. pancyclicity or having elementary cycles of all possible lengths, introduced by Bondy
[44], which is close to the basic concept of cycle. This is far from being always the case for the numerous new
concepts which nowadays proliferate and, to some extent, threaten the unity of graph theory.

• Problem solving: instead of considering centrality in terms of concepts, one may examine it in terms of problems
posed by scientists in a given field. This leads to another criterion, again stated by Popper in [167]: Only if it
is the answer to a problem a difficult, a fertile problem, a problem of some depth does a truth, or a conjecture
about the truth, become relevant to science. This is so in pure mathematics, and it is so in the natural sciences.

• Surprisingness: Conways answer to the question “What makes a good conjecture?”, according to [86], was “It
should be outrageous”. This means a trained mathematician finds something contrary to what suggests his well-
educated intuition, and so gets a new insight. Of course, it remains to be examined whether some explanation
may be found, together with new results, or the conjecture will remain an isolated curiosity.

• Distance between concepts: a conjecture will be the more interesting the farther the concepts involved are one
from another. This implies an operational notion of distance, either in the conjecture-making program or possibly
in a lattice of graph-theoretical concepts.

• Information-contentrelative to databases of conjectures and graphs. A conjecture is interesting if it tells more,
for at least one graph than the conjunction of all other conjectures. It also means the conjecture should not be
redundant. This criterion is discussed in [101].

• Sharpness: the conjecture should be best possible in the weak sense,i.e., sharp for some values of the parameters,
or in the strong sense,i.e., sharp for all values of the parameters compatible with the existence of a graph [101].

In addition to such abstract criteria one might take a pragmatic view and say that a conjecture is interesting if it has
attracted the attention of mathematicians, whoever they may be. This is fairly tautological. Note, moreover, that
popularity of a result depends not only on its intrinsic merits but also on its visibility (Journal where it was published,
computer systems which mention it or give access to it, as well as relations and aptitude for marketing of its authors).

The following observations on AutoGraphiX behavior can be made in view of the results discussed above: simplicity,
the AGX Form 1 and 2 are quite simple. Other simple forms couldbe explored also, as suggested in [104]; centrality,
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the invariants are chosen by the user of AGX who may focus on central ones; problem solving, AGX has been used
to find conjectures in subfields of graph theory which are our topics, the main example being the study of the signless
Laplacian of graphs [33, 69, 70, 71, 72, 107]; surprisingness, the generalization of Chung’s theorem it i.e., l ≤ α to
l ≤ α2/2 [106], whereα2 denotes the maximum cardinality of an induced bipartite subgraph. The generalization was
done with the help of AGX and is surprising, particularly as no similar generalization holds forα3, the cardinality of the
maximum cardinality of an induced tripartite subgraph; distance between concepts has not been systematically studied
yet. It could be a good guide for invariant selection; information-content, the concept of proximity and remoteness of
a graph are easily derived from the concept of transmission.They have the advantage of being of ordern as are several
other distance based invariants, e.g., the radius and the diameter; sharpness, most of AGX conjectures are sharp. It is
the case each time complete results are obtained.

Let us also mention that AGX results can suggest ideas of proof. A good example is the proof of the upper bound on
the irregularity done in [60] (see the discussion on Theorem3.10in the present paper).

Another task for which AGX is proven to be useful is extendingbounds about an invariants to another (but close)
invariant. Actually, AutoGraphiX was successfully used byAouchiche, Favaron and Hansen [20] to extend a series of
bounds on the independence number, proved in [10, 13, 30], to bounds on theupper irredundance. For more details on
upper irredundance see [87, 88, 121].

All conjectures obtained using AutoGraphiX are algebraic relations between graph invariants. The forms of the con-
jectures are of different types. Conjectures of AGX Form 1 (see Section4) were systematically generated for more
than 20 graph invariant. Conjectures of AGX Form 2 type were systematically generated for few invariants (see [175]).
Thus AGX Form 2 type relations remain to be explored for many invariants.

A well–known relation on thechromatic indexχ ′ of a graph (the minimum number of colors to assign to the edge of a
graph such that any two incident edge are assigned differentcolors) is the double inequality∆≤ χ ′ ≤ ∆+1 proved by
Vizing [188] and where∆ denote the maximum degree. The Vizing double inequality canbe generalized in a natural
way. Leti1 andi2 be two graph invariants and consider the problem of finding two functionL(i2) andU(i2) such that

L(i2)≤ i1 ≤U(i2)

for all graphs or at least for a given class of graphs. A basic relation of this type is that, well-known, between the order
n and sizem among the class of connected graphs:

n−1≤m≤ n(n−1)
2

with equality for the lower bound if and only if the graph is a tree, and for the upper bound if and only if the graph is
complete. Contrary to the double inequality, the case of a single inequality (lower or upper bounding of a graph invari-
ant) is widely studied in graph theory. This generalized form could be studied systematically using the AutoGraphiX
system.

Another kind of results that can be studied with the help of AGX it the behavior of an invarianti1 with respect to
another invarianti2, i.e., qualitative relationsbetween graph invariants. Results of this type are rare in graph theory,
but quite frequent in other domains of sciences. Qualitative relations betweeni1 andi2 can be expressed by

invariant i1 increases when invariant i2 increases,

or
invariant i1 increases when invariant i2 decreases,

or using the usual differentiation notation:

∂ i1
∂ i2

> 0 or
∂ i1
∂ i2

< 0.

Theorem5.1illustrates well such type of results.

The statement of sufficient conditions for a graphG to belong to a given class of graphs is a kind of results widely
studied in graph theory. A few examples and well-known results of this type are gathered in the following theorem.
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Theorem 6.1 A graph G of order n≥ 3 with degree sequence d1≤ d2≤ ·· · ≤ dn is Hamiltonian if one of the following
conditions holds:

• dk ≥ n/2 for all k = 1,2, . . .n (Dirac [83]);

• du+dv≥ n for all pairs of non adjacent vertices u and v (Ore [164]);

• dk > k for all k with 1≤ k≤ n/2 (Pósa [168]);

• di +d j ≥ n for all i, j with di ≤ i and dj ≤ j−1 (Bondy [45]).

The above conditions are expressed in terms of graph parameters, thus the use of AutoGraphiX in investigating then
could be fruitful. Such investigations may be extended to the case of necessary conditions or both necessary and
sufficient conditions in which case we speak about characterizations of classes of graphs.

Among the earliest results in graph theory the following:a tree is a connected graph without cycles. If one wants
to express this result in terms of graph class, it could bethe class of trees is the intersection between the class of
connected graphs and that of graphs without cycles. The question that generalizes such a result could bewhich class
of graphs is an intersection of two or more classes? Instead of speaking aboutequals an intersection, we may consider
only inclusioni.e., all graphs in classC1 belong to classC2. A well–known result of this type:all trees are bipartite
graphs. In the case of double inclusion, of course, we speak about equality such as in the Kuratowski theorem.

Theorem 6.2 ([135]) A graph G is planar if and only if it does not contain an inducedsubgraph homeomorphic to
K5 or to K3,3.

In the graph theory literature, it is quite frequent to find that a relationR1 can be deduced, immediately or by means of
some algebraic manipulations, from another relationR2. In such a case, we speak aboutimplication between relations:
R2⇒R1. In some cases there is a double implication, and therefore,anequivalence: R2⇔R1. For instance, The lower
bound, proved by Berge [41], on the independence numberα of a graphG onn vertices andmedges,

α ≥ n2

2m+n

is implied by that proved by Favaron, Mahéo and Saclé [89],

α ≥









2n− 2m
⌈ 2m

n ⌉
⌈2m

n

⌉

+1









which is equivalent to the lower bound proved by Hansen [103],

α ≥
⌈

n− 2m

1+
⌊2m

n

⌋

⌉

+













n−
⌈

n− 2m
(1+⌊ 2m

n ⌋)(1+⌊ 2m
n ⌋)

⌉

2+
⌊2m

n

⌋













,

and is best possible.

The use of the computer in the study of all these kinds of results could be fruitful and remains to be done.

Appendix

In the next table, we summarize the results of AGX Form 1 type obtained and studied in [10]. The invariants involved in
that table are defined in Table3. The first column of Table8 contains the different combinations of pairs of invariants.
Columns 1, 2 and 3 contain, when available, the lower bound, an extremal graph corresponding to the bound and its the
status, respectively. The three last columns contain, whenavailable, the lower bound, an extremal graph corresponding
to the bound and its the status, respectively. We use the following notation for the status of the bound: K for a known
result, T when the bound is trivial, O for an open conjecture with a formulae and extremal graphs, SO for an open
structural conjecture and NR to indicate that no results were obtain in that case. Finally, when a result is proved, we
refer to the paper containing the proof by its number in the bibliography.
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For the extremal graphs, in addition to the notations definedabove, we the following ones:ReGfor an arbitrary (degree)
regular graph;TReGfor an arbitrary transmission regular graph (all vertices having the same transmission);Tun,g for
a turnip, i.e., the graph obtained from a cycleCg by addingn−g pending edges incident to the same vertex from the
cycle;Tk

n for a balanced completek–partite graph,i.e., a completek-partite graph in which the cardinalities of any two
independent sets differ by at most 1;PTPfor the graph obtained from a pathPn−6 by attaching a triangle at each of its
endpoints;Ctr for a caterpillar,i.e., the tree obtained from a path by attaching pending edges at its internal vertices;
Urn for an urchin graph,i.e., the graph obtained from a cliqueK⌈n/2⌉ by attaching a pending edge at each of⌊n/2⌋ of
its vertices;Treefor an arbitrary tree;Kn−e for the graph obtained fromKn by the deletion of an edge;Kn−M for the
graph obtained fromKn be the deletion of⌊n/2⌋ disjoint edges;Kn−R for the graph obtained fromKn be the deletion
of n/2 disjoint edges ifn is even, or the deletion of(n−3)/2 disjoint edges and a path on the three vertices that are
not incident to the deleted edges;Clqsfor a graph composed of a set of disjoint cliques of almost equal size connected
with at most one edge between two cliques such that there is not cycle that is not entirely included in a clique;Bagp,q

for a graph obtained from a complete graphKp by replacing an edge with a pathPq; Bugp,q1,q2 for a graph obtained
from a complete graphKp by deleting an edgeuvand attaching pathsPq1 andPq2 atu andv, respectively;Kq

p the graph
on p+q−1 vertices obtained from two cliquesKp andKq by the coalescence of two vertices, one from each cliques;
Keq

p the graph onp+q vertices obtained from two cliquesKp andKq by adding an edge between the cliques;DCn,p,q

for adouble cometonn vertices maximum and second maximum degreesp andq, i.e., the tree obtained from two stars
Sp+1 andSq+1 and a pathPn−p−q−2 by adding an edge between an endpoint of the path to a pendent vertex fromSp+1

another edge between the other endpoint of the path to a pendent vertex fromSq+1.

When a family of graphs is recognized but there is not enough regularity to derive its parameters, we usex to denote
the missing parameter, such as inKin,x corresponding to the extremal graphs for the upper bound ond/a , or x and
y whenever there are two parameters such as inDCn,x,y corresponding to the extremal graphs for the upper bound on
l −β .

Table8 bellow reads as follows. Consider the bloc corresponding the comparison of the average degreed with the
algebraic connectivitya, i.e.,

d−a −1 Kn [10] n−4+4/n Kin,n−1 O
d+a 4− 2

n −2cosπ
n Pn T 2n−1 Kn T

d/a n−1
n Kn [10] Kin,x SO

d ·a
(

4− 4
n

)(

1−cosπ
n

)

Pn T n(n−1) Kn T

The lower and upper bounds ond+a andd ·a are trivial (T), so they can be stated as observations only:

Observation: Let G be a graph on n vertices with average degreed and algebraic connectivity a. Then

4− 2
n
−2cos

π
n
≤ d+a≤ 2n−1 and

(

4− 4
n

)

(

1− cos
π
n

)

≤ d ·a≤ n(n−1).

Moreover, the bounds are the best possible as shown by the Pn for both lower bounds and by the complete graph Kn for
both upper bounds.

The lower bounds ond−a andd/a are not trivial and are proved in [10], so they can be stated as a theorem:

Theorem: Let G be a graph on n vertices with average degreed and algebraic connectivity a. Then

d−a≥−1 and d/a≥ n−1
n

.

Moreover, the bounds are the best possible as shown by the complete graph Kn.

The upper bounds ond−a andd/a are stated as conjectures:

Conjecture: Let G be a graph on n vertices with average degreed and algebraic connectivity a. Then

d−a≤ n−4+
4
n
,

and the bound is the best possible as shown by the short kite Kin,n−1; andd/a is maximum for some kite.
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Table 8: List of AGX conjectures obtained in [10].

i1⊕ i2 lower bound G st. upper bound G st.

∆−δ 0 ReG T n−2 Sn T

∆+δ 3 Pn T 2n−2 Kn T

∆/δ 1 ReG T n−1 Sn T

∆ ·δ 2 Pn T (n−1)2 Kn T

∆−d 0 ReG T (n−1)(n−2)/n Sn T

∆+d 4−2/n Pn T 2n−2 Kn T

∆/d 1 ReG T n/2 Sn T

∆ ·d 4−4/n Pn T (n−1)2 Kn T

∆− l (5−n)/3 Pn T n−2 Kn T

∆+ l NR n+1−2/n Sn [31]

∆/l 6/(n+1) Pn T n−1 Kn T

∆ · l NR PKn,m [31]

∆−D 3−n Pn T n−2 Kn T

∆+D NR n+1 Sn [10]

∆/D 2/(n−1) Pn T n−1 Kn T

∆ ·D NR ⌊(n+1)/2⌋ Co
n,
⌊

n+1
2

⌋ [10]

∆− r 2−
⌊

n
2

⌋

Pn T n−2 Kn T

∆+ r NR n Kn [10]

∆/r 2/
⌊

n
2

⌋

Pn T n−1 Kn T

∆ · r NR







⌊

n+2
2

⌋

·
⌊

n+2
4

⌋

if n≡ 2[4],

⌊

n+4
2

⌋

·
⌊

n+2
4

⌋

if n 6≡ 2[4].
Co

n,n−2
⌊

n+7
4

⌋ AO

∆−g 2−n Cn T n−4 Kn T

∆+g 6 Kin,3 [30] n+2 Cn [30]

∆/g 2/n Cn T (n−1)/3 Kn T

∆ ·g 9 Kin,3 [30]
⌊

n+2
2

⌋⌈

n+2
2

⌉

Tu
n,
⌊

n+2
2

⌋ [30]

∆−ecc







2− 3n+1
4

n−1
n if n is odd

2− 3n−2
4 if n is even

Pn T n−2 Kn T

∆+ecc NR n+1− 1
n Sn [10]

∆/ecc







8
3n+1

n
n−1 if n is odd

8
3n−2 if n is even

Pn T n−1 Kn T

∆ ·ecc NR PKn,x SO

∆−π







7−n
4 if n is odd

8−n
4 − n

4n−4 if n is even
Pn T n−2 Sn T

∆+π NR n Sn [10]

∆/π







8
n+1 if n is odd,

8(n−1)
n2 if n is even.

Pn T n−1 Sn T

∆ ·π NR PKn,x SO

∆−ρ (4−n)/2 Pn T n−2 Kn T

∆+ρ







n+9
4 if n is odd,

2+ n2

4n−4 if n is even
Cn AO (n2−2)/(n−1) Sn [10]

∆/ρ 4/n Pn T n−1 Kn T

∆ ·ρ NR PKn,x [10]

∆−λ1 0 ReG K n−1−
√

n−1 Sn [35]

∆+λ1 2+2cos
( π

n+1

)

Pn T 2n−2 Kn T

∆/λ1 1 ReG K
√

n−1 Sn [35]

∆ ·λ1 4cos
( π

n+1

)

Pn T (n−1)2 Kn T

∆−Ra (4−n)/2 Cn T n−1−
√

n−1 Sn T

∆+Ra (n+1+2
√

2)/2 Pn R (3n−2)/2 Kn T

∆/Ra 4/n Cn T
√

n−1 Sn T

∆ ·Ra n−3+2
√

2 Pn [36] n(n−1)/2 Kn T
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∆−a −1 Kn [10] n−2 Sn [10]

∆+a 4−2cos( π
n ) Pn T 2n−1 Kn T

∆/a (n−1)/n Kn [10] Con,⌊ n
2 ⌋

SO

∆ ·a 4−4cos( π
n ) Pn T n(n−1) Kn T

∆−ν 0 Cn K n−2 Sn T

∆+ν 3 Pn T 2n−2 Kn T

∆/ν 1 Cn K n−1 Sn T

∆ ·ν 2 Pn T (n−1)2 Kn T

∆−κ 0 Cn K n−2 Sn T

∆+κ 3 Pn T 2n−2 Kn T

∆/κ 1 Cn K n−1 Sn T

∆ ·κ 2 Pn T (n−1)2 Kn T

∆−α
⌈

2
√

n−1
⌉

−n [20] n−2 Kn T

∆+α
⌈

n
⌈√n⌉

⌉

+ ⌈√n⌉−1 [20] 2n−2 Sn T

∆/α 2
⌈ n

2⌉
Pn or Cn [13] n−1 Kn T

∆ ·α n−1 Kn [13] (n−1)2 Sn T

∆−β 3−⌊n/2⌋ Ctr [10] n−2 Sn T

∆+β ⌈n/3⌉+2 Pn AR n Sn K

∆/β 2/⌈n/3⌉ Pn [10] n−1 Kn T

∆ ·β 2⌈n/3⌉ Pn [10]
⌈

n
2

⌉⌊

n
2

⌋

Urn [10]

∆−ω −1 Kn K n−3 Sn T

∆+ω 4 Pn T 2n−1 Kn T

∆/ω (n−1)/n Kn [173] (n−1)/2 Sn T

∆ ·ω 4 Pn T n(n−1) Kn T

∆−χ −1 Kn K n−3 Sn T

∆+χ 4 Pn T 2n−1 Kn T

∆/χ







3/2 if n is odd,

n/(n−1) if n is even







Cn

Kn

[10] (n−1)/2 Sn T

∆ ·χ 4 Pn T n(n−1) Kn T

∆−µ ⌊(n−4)/2⌋ Pn T n−2 Sn T

∆+µ NR ⌊n/2⌋+n−1 Kn T

∆/µ 2/⌊n/2⌋ Pn T n−1 Sn T

∆ ·µ n−1 Sn [10] ⌊n/2⌋(n−1) Kn T

δ −d −(n−2)2/n Kin,n−1 [10] 0 ReG T

δ +d 3−2/n Tree T 2n−2 Kn T

δ/d n/(n2−3n+4) Kin,n−1 [10] 1 ReG T

δ ·d 2−2/n Tree T (n−1)2 Kn T

δ − l (2−n)/3 Pn T n−2 Kn T

δ + l (2n2−4)/(n(n−1)) Kin,n−1 [31] n Kn [31]

δ/l 3/(n+1) Pn T n−1 Kn T

δ · l (n2+n−4)/(n(n−1)) Kin,n−1 [31] n−1 Kn [31]

δ −D 2−n Pn T n−2 Kn T

δ +D 3 Sn T n Kn [10]

δ/D 1/(n−1) Pn T n−1 Kn T

δ ·D 2 Sn T 2n−4 Kn−e R

δ − r 1−⌊n/2⌋ Pn T n−2 Kn T

δ + r 2 Sn T n Kn [10]

δ/r 1/⌊n/2⌋ Pn T n−1 Kn T

δ · r 1 Sn T







2n−6 if n is odd,

2n−4 if n is even
Kn−R O

δ −g 2−n Cn T n−4 Kn T

δ +g 4 Kin,3 T n+2 Kn [30]

δ/g 1/(n−1) Tun,n−1 T (n−1)/3 Kn T
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δ ·g 3 Kin,3 T 3n−3 K−n [30]

δ −ecc

{

1− (3n+1)(n−1)
4n if n is odd,

1− 3n−2
4 if n is even

Pn T n−2 Kn T

δ +ecc 3−1/n Sn [10] n Kn [10]

δ/ecc

{

4n
(3n+1)(n−1) if n is odd,

4
3n−2 if n is even

Pn T n−1 Kn T

δ ·ecc 2−1/n Sn [10]

{

(n−2)(2−1/n) if n is odd,
2n−4 if n is even Kn−M R

δ −π







3−n
4 if n is odd,

4−n
4 − n

4n−4 if n is even
Pn T n−2 Kn T

δ +π 2 Sn T n Kn [10]

δ/π







4/(n+1) if n is odd,

(4n−4)/n2 if n is even
Pn T n−1 Kn T

δ ·π 1 Sn T n−1 Kn [10]

δ −ρ (2−n)/2 Pn T n−2 Kn T

δ +ρ 3−1/(n−1) Sn [10] n Kn [10]

δ/ρ 2/n Pn T n−1 Kn T

δ ·ρ (2n−3)/(n−1) Sn [10] NR

δ −λ1 0 ReG K 3−n− t, where 0< t < 1 and Kin,n−1 [35]

t3+(2n−3)t2+(n2−3n+1)t = 1

δ +λ1 1+2cos π
n+1 Pn T 2n−2 Kn T

δ/λ1 1 ReG K 1/(n−2+ t), where 0< t < 1 and Kin,n−1 [35]

t3+(2n−3)t2+(n2−3n+1)t = 1

δ ·λ1 2cos π
n+1 Pn T (n−1)2 Kn T

δ −Ra − 3n−13+
√

6+3
√

2
6 [36] (n−2)/2 Kn [36]

δ +Ra 1+
√

n−1 Sn T (3n−2)/2 Kn T

δ/Ra 6/(3n−7+
√

6+3
√

2) [36] (2n−2)/n Kn [36]

δ ·Ra
√

n−1 Sn T n(n−1)/2 Kn T

δ −a −1 Kn [10] K

⌊

n+1
2

⌋

⌈

n+1
2

⌉ SO

δ +a 3−2cosπ
n Pn T 2n−1 Kn T

δ/a (n−1)/n Kn K TPT SO

δ ·a 2−2cosπ
n Pn T n(n−1) Kn T

δ −ν 0 Cn K ⌊(n−3)/2⌋ [10]

δ +ν 2 Pn T 2n−2 Kn T

δ/ν 1 Cn K ⌊(n−1)/2⌋ [10]

δ ·ν 1 Pn T (n−1)2 Kn T

δ −κ 0 Cn K ⌊(n−4)/2⌋ [10]

δ +κ 2 Pn T 2n−2 Kn T

δ/κ 1 Cn K ⌊(n−2)/2⌋ [10]

δ ·κ 1 Pn T (n−1)2 Kn T

δ −α 2−n Sn T n−2 Kn T

δ +α 3 Kin,n−1 [13] n Sn [13]

δ/α 1/(n−1) Sn T n−1 Kn T

δ ·α 2 Kin,n−1 [13] ⌈n/2⌉⌊n/2⌋ K⌈n/2⌉,⌊n/2⌋ [13]

δ −β 1−⌊n/2⌋ Urn T n−2 Kn T

δ +β 2 Sn T n Kn [10]

δ/β 1/⌊n/2⌋ Urn T n−1 Kn T

δ ·β 1 Sn T







2n−6 if n is odd,

2n−4 if n is even
O

δ −ω 2−n Kn,n−1 [173] ⌊n/2⌋−2 K⌊n/2⌋,⌈n/2⌉ R

δ +ω 3 Tree T 2n−1 Kn T

δ/ω 1/(n−1) Kin,n−1 [173] ⌊n/2⌋/2 K⌊n/2⌋,⌈n/2⌉ [173]

δ ·ω 2 Tree T n(n−1) Kn T

δ −χ 2−n Kn,n−1 T ⌊n/2⌋−2 K⌊n/2⌋,⌈n/2⌉ R

δ +χ 3 Tree T 2n−1 Kn T
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δ/χ 1/(n−1) Kin,n−1 T ⌊n/2⌋/2 K⌊n/2⌋,⌈n/2⌉ [10]

δ ·χ 2 Tree T n(n−1) Kn T

δ −µ 1−⌊n/2⌋ Pn T ⌈n/2⌉−1 Kn [10]

δ +µ 2 Sn T ⌊n/2⌋+n−1 Kn T

δ/µ 1/⌊n/2⌋ Pn T (n−1)/⌊n/2⌋ Kn [10]

δ ·µ 1 Sn T (n−1)⌊n/2⌋ Kn T

d− l (5−n)/3−2/n Pn T n−2 Kn T

d+ l 4−4/n Sn [31] n Kn [31]

d/l (6n−6)/(n2+n) Pn T n−1 Kn T

d · l 4(n−1)2/n2 Sn [31] PKn,x [31]

d−D 3−n−2/n Pn T n−2 Kn T

d+D 4−2/n Sn T n+1−2/n Pn T

d/D 2/n Pn T n−1 Kn T

d ·D 4−4/n Sn [10] Har [10]

d− r 2−2/n−⌊n/2⌋ Pn T n−2 Kn T

d+ r 3−2/n Sn T n Kn [10]

d/r (2−2/n)/⌊n/2⌋ Pn T n−1 Kn T

d · r 2−2/n Sn T SO

d−g 2−n Cn T n−4 Kn T

d+g 5 S+n T n+2 Kn [30]

d/g 2/n Cn T (n−1)/3 Kn T

d ·g 6 S+n T 3n−3 Kn [30]

d−ecc







2− 2
n − 3n+1

4
n−1

n if n odd,

2− 2
n − 3n−2

4 if n is even
Pn T n−2 Kn T

d+ecc 4− 3
n Sn [10] n Kn [10]

d/ecc







8
3n+1 if n odd,

8
3n−2

n−1
n if n is even

Pn T n−1 Kn T

d ·ecc 4−3/n Sn [10] PKn,x SO

d−π
{ 7−n

4 − 2
n for n odd

2− 2
n − n

4 − n
4n−4 for n even

Pn T n−2 Kn T

d+π 3−2/n Sn T n Kn [10]

d/π











8n−8
n(n+1) if n is odd,

8(n−1)2

n3 if n is even
Pn T n−1 Kn T

d ·π 2−2/n Sn T n−1 Kn O

d−ρ 2−2/n+2/n Pn T n−2 Kn T

d+ρ 4−1/(n−1)−2/n Sn [10] n Kn [10]

d/ρ 4(n−1)/n2 Pn T n−1 Kn T

d ·ρ 4−2/(n−1)−4/n+2/(n(n−1)) Sn [10] PKn,x SO

d−λ1 Pin,x SO 0 ReG K

d+λ1 2− 2
n +2cos π

n+1 Pn T 2n−2 Kn T

d/λ1
2
√

n−1
n Sn [35] 1 ReG K

d ·λ1
(

4− 4
n

)

·cos π
n+1 Pn T (n−1)2 Kn T

d−Ra 7−n−2
√

2
2 − 2

n Pn [36] (n−2)/2 Kn [36]

d+Ra 2−2/n+
√

n−1 Sn T (3n−2)/2 Kn T

d/Ra 4
n

n−1
n−3+2

√
2

Pn [36] 2n−2
n Kn [36]

d ·Ra (2−2/n)
√

n−1 Sn T n(n−1)/2 Kn T

d−a −1 Kn [10] n−4+4/n Kin,n−1 O

d+a 4− 2
n −2cosπ

n Pn T 2n−1 Kn T

d/a n−1
n Kn [10] Kin,x SO

d ·a
(

4− 4
n

)(

1−cosπ
n

)

Pn T n(n−1) Kn T

d−ν 0 Cn K n−4+4/n Kin,n−1 [10]

d+ν 3−2/n Tree T 2n−2 Kn T

d/ν 1 Cn K (n2−3n+4)/n Kin,n−1 [10]

d ·ν 2−2/n Tree T (n−1)2 Kn T

d−κ 0 Cn K n−4+4/n Kin,n−1 [10]
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d+κ 3−2/n Tree T 2n−2 Kn T

d/κ 1 Cn K (n2−3n+4)/n Kin,n−1 [10]

d ·κ 2−2/n Tree T (n−1)2 Kn T

d−α 3−n−2/n Sn T n−2 Kn T

d+α Clqs [195]







5n−2
4 + 1

4n if n is odd,

5n−2
4 if n is even

CSn,⌈ n
2 ⌉

[13]

d/α 2/n Sn T n−1 Kn T

d ·α Clqs SO











3(n+1)(n−1)2

8n if n is odd,

3n2−2n
8 if n is even

CSn,⌈ n
2 ⌉

R

d−β 2−2/n−⌊n/2⌋ Ctr T n−2 Kn T

d+β 3−2/n Sn T n Kn [10]

d/β (2−2/n)/⌊n/2⌋ Ctr T n−1 Kn T

d ·β 2−2/n Sn T NR

d−ω







2−n
4 − 9

4n if n is odd,

2−n
4 − 2

n if n is even
[173]

⌊

n
2

⌋⌈

n
2

⌉

−2 K⌊ n
2 ⌋,⌈ n

2 ⌉ AR

d+ω 4−2/n Tree T 2n−1 Kn T

d/ω t2−3t+2n
nt AR 1

2

⌊

n
2

⌋⌈

n
2

⌉

K⌊ n
2 ⌋,⌈ n

2 ⌉ [173]

wheret =
⌊

n+1
4

⌋

+2

d ·ω 4−4/n Tree T n(n−1) Kn T

d−χ







2−n
4 − 9

4n if n is odd,

2−n
4 − 2

n if n is even
[10]

⌊

n
2

⌋⌈

n
2

⌉

−2 K⌊ n
2 ⌋,⌈ n

2 ⌉ AR

d+χ 4−2/n Tree T 2n−1 Kn T

d/χ t2−3t+2n
nt AO 1

2

⌊

n
2

⌋⌈

n
2

⌉

K⌊ n
2 ⌋,⌈ n

2 ⌉ [10]

wheret =
⌊

n+1
4

⌋

+2

d ·χ 4−4/n Tree T n(n−1) Kn T

d−µ 2−2/n−⌊n/2⌋ Pn T ⌈n/2⌉−1 Kn [10]

d+µ 3−2/n Sn T n−1+ ⌊n/2⌋ Kn T

d/µ (2−2/n)/⌊n/2⌋ Pn T (n−1)/⌊n/2⌋ Kn [10]

d ·µ 2−2/n Sn T (n−1)⌊n/2⌋ Kn T

l −D (4−2n)/3 Pn [31] 0 TReG T

l +D 2 Kn T (4n−2)/3 Pn T

l/D Har [193] 1 TReG T

l ·D 1 Kn T (n2−1)/3 Pn T

l − r











8−(n−1)3

4n(n−1) if n is odd,

−n(n−2)
4(n−1) if n is even

Cn, Bag AO NR

l + r 2 Kn T







5n+2
6 if n is odd,

5n−1
6 if n is even

Pn T

l/r Bag [118] 2−2/n Sn [31]

l · r 1 Kn T











n2+n
6 if n is odd,

n2−1
6 if n is even

Pn T

l −g

n+1
4 −n if n is odd,

n2

4(n−1) −n if n is even
Cn [31] (n+1)(n2−10n+12)

3n(n−1) Kin,3 [31]

l +g 4 Kn T











5n+1
4 if n is odd,

n2

4(n−1) +n if n is even
Cn [31]

l/g







n+1
4n if n is odd,

n
4(n−1) if n is even

Cn R n3−7n+12
9n(n−1) Kin,3 [31]

l ·g 3 Kn T











n2+n
4 if n is odd,

n3

4(n−1) if n is even
Cn [19]

l −ecc







n+1
3 − 3n+1

4
n−1

n if n is odd,

10−5n
12 if n is even

Pn AO 0 Kn T
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l +ecc 2 Kn T







3n+1
4

n−1
n + n+1

3 if n is odd,

13n−2
12 if n is even

Pn T

l/ecc PKn,x SO 1 Kn T

l ·ecc 1 Kn T







3n+1
4

n−1
n

n+1
3 if n is odd,

(3n−2)(n+1)
12 if n is even

Pn T

l −π 0 TReG T 3×P [172]

l +π 2 Kn T







7n+7
12 if n is odd,

7n+7
12 + 1

4n−4 if n is even
Pn T

l/π 1 TReG T 2−2/n Sn O

l ·π 1 Kn T











(n+1)2

12 if n is odd,

(n+1)2

12 + n+1
12n−12 if n is even

Pn T

l −ρ 0 TReG T PKn,x SO

l +ρ 2 Kn T (5n+3)/6 Pn T

l/ρ 1 TReG T PKn,x SO

l ·ρ 1 Kn T n(n+1)/6 Pn T

l −λ1 2−n Kn T n+1
3 −2cos π

n+1 Pn T

l +λ1 NR n Kn [35]

l/λ1 1/(n−1) Kn T (n+1)/(6cos π
n+1 ) Pn T

l ·λ1 NR 1
2

(

n−3+
√

n2+2n−7
)

·
(

1+ 2
n(n−1)

)

Kn−e AR

l −Ra (2−n)/2 Kn T 2−2/n−
√

n−1 Sn O

l +Ra







n+2
2 if n≤ 5

2− 2
n +
√

n−1 if n≥ 6







Kn

Sn

AO 5n−7+6
√

2
6 Pn R

l/Ra 2/n Kn T NR

l ·Ra







n
2 if n≤ 12

(2−2/n)
√

n−1 if n≥ 13







Kn

Sn

AO n+1
3 · n−3+2

√
2

2 Pn [15]

l −a 1−n Kn T (n+1)/3−2(1−cosπ
n ) Pn T

l +a Kin,n−3 SO n+1 Kn [35]

l/a 1/n Kn T 6(1−cosπ
n )/(n+1) Pn T

l ·a TPT SO n Kn [35]

l −ν 2−n Kn T (n−2)/3 Pn T

l +ν (2n2−4)/(n(n−1)) Kin,n−1 [35] n Kn [35]

l/ν 1/(n−1) Kn T (n+1)/3 Pn T

l ·ν (n2+n−4)/(n(n−1)) Kin,n−1 [35] n−1 Kn [35]

l −κ 2−n Kn T (n−2)/3 Pn T

l +κ (2n2−4)/(n(n−1)) Kin,n−1 [35] n Kn [35]

l/κ 1/(n−1) Kn T (n+1)/3 Pn T

l ·κ (n2+n−4)/(n(n−1)) Kin,n−1 [35] n−1 Kn [35]

l −α 3−n−2/n Sn [13] 0 Kn K

l +α 2 Kn T n+1−2/n Sn [13]

l/α 2/n Sn [13] 1 Kn K

l ·α 1 Kn T NR

l −β Urn SO DCn,x,y SO

l +β 2 Kn T NR

l/β 2/(1+2⌈n/3⌉) Urn AO 2−2/n Sn O

l ·β 1 Kn T NR

l −ω 1−n Kn T (n−5)/3 Pn T

l +ω







7
2 − 1

2n if n is odd,

7
2 − 1

2n−2 if n is even
K⌊n/2⌋,⌈n/2⌉ [173] n+1 Kn [173]

l/ω 1/n Kn T (n+1)/6 Pn T

l ·ω







3−1/n if n is odd,

3−1/(n−1) if n is even
K⌊n/2⌋,⌈n/2⌉ [173] Kin,x SO

l −χ 1−n Kn T (n−5)/3 Pn T

l +χ







7
2 − 1

2n if n is odd,

7
2 − 1

2n−2 if n is even
K⌊n/2⌋,⌈n/2⌉ [10] n+1 Kn [10]
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l/χ 1/n Kn T (n+1)/6 Pn T

l ·χ







3−1/n if n is odd,

3−1/(n−1) if n is even
K⌊n/2⌋,⌈n/2⌉ [10] Kin,x SO

l −µ 1−⌊n/2⌋ Kn T 1−2/n Sn [10]

l +µ 3−2/n Sn [10] ⌊n/2⌋+(n+1)/3 Pn T

l/µ 1/⌊n/2⌋ Kn T 2−2/n Sn [10]

l ·µ 2−2/n Sn [10] ⌊n/2⌋(n+1)/3 Pn T

D− r 0 Cn T ⌊(n−1)/2⌋ Pn [10]

D+ r 2 Kn T n−1+ ⌊n/2⌋ Pn T

D/r 1 Cn T 2 Sn K

D · r 1 Kn T (n−1)⌊n/2⌋ Pn T

D−g −⌈n/2⌉ Cn [30] n−5 Kin,3 [30]

D+g 4 Kn T







3n−1
2 if n is odd,

3n
2 if n is even

Cn [30]

D/g 1/3 Kn [30] (n−2)/3 Kin,3 [30]

D ·g 3 Kn T











n2−1
2 if n is odd,

n2

2 if n is even







Lln,n−1

Cn

[30]

D−ecc 0 Cn T







n−1− (3n+1)(n−1)
4n if n is odd,

n−2
4 if n is even

Pn [10]

D+ecc 2 Kn T







n−1+ (3n+1)(n−1)
4n if n is odd,

7n−6
4 if n is even

Pn T

D/ecc 1 Cn T 2n/(n−2) Kn−e [10]

D ·ecc 1 Kn T











(3n+1)(n−1)2

4n if n is odd,

(3n−2)(n−1)
4 if n is even

Pn T

D−π 0 Kn T







3n−5
4 if n is odd,

3n−5
4 − 1

4(n−1) if n is even
Pn [25]

D+π 2 Kn T







5n−3
4 if n is odd,

5n−3
4 − 1

4(n−1) if n is even
Pn T

D/π 1 Kn T NR

D ·π 1 Kn T







(n2−1)/4 if n is odd,

n2/4 if n is even
Pn T

D−ρ 0 Kn T (n−2)/2 Pn [25]

D+ρ 2 Kn T (3n−2)/2 Pn T

D/ρ 1 Kn T 2−2/n Pn [10]

D ·ρ 1 Kn T n(n−1)/2 Pn T

D−λ1 2−n Kn T n−1−2cos π
n+1 Pn T

D+λ1 2+
√

n−1 Sn R n−1+2cos π
n+1 Pn O

D/λ1 1/(n−1) Kn T (n−1)/(2cos π
n+1 ) Pn T

D ·λ1 2
√

n−1 Sn R Bug SO

D−Ra (2−n)/2 Kn T (n+1)/2−
√

2 Pn [194]

D+Ra 2+
√

n−1 Sn T (3n−5+2
√

2)/2 Pn [36]

D/Ra 2/n Kn T (2n−2)/(n−3+2
√

2) Pn [194]

D ·Ra 2
√

n−1 Sn T (n−1)(n−3+2
√

2)/2 Pn [36]

D−a 1−n Kn T n−3+2cosπ
n Pn T

D+a 3 Sn O n+1 Kn [10]

D/a 1/n Kn T (n−1)/(2+2cosπ
n ) Pn T

D ·a SO 2n−4 Kn−M [174]

D−ν 2−n Kn T n−2 Pn T

D+ν 3 Sn T n Pn [10]

D/ν 1/(n−1) Kn T n−1 Pn T

D ·ν 2 Sn T 2n−4 Kn−M [174]

D−κ 2−n Kn T n−2 Pn T

D+κ 3 Sn T n P′n,Kn [10]
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D/κ 1/(n−1) Kn T n−1 Pn T

D ·κ 2 Sn T 2n−4 Kn−M R

D−α 3−n Sn T ⌊n/2⌋−1 Pn [13]

D+α 2 Kn T n−1+ ⌊n/2⌋ Pn [13]

D/α 2/(n−1) Sn T







2−2/(n−1) if n is odd,

2−2/n if n is even







Kin,3

Pn

[13]

D ·α 1 Kn T







(n2−1)/2 if n is odd,

(n2−4)/2 if n is even







Pn

Con,3

[13]

D−β 3−⌊n/2⌋ Urn O n−1−⌈n/3⌉ Pn [10]

D+β 2 Kn T n−1+ ⌈n/3⌉ Pn [10]

D/β 3/⌊n/2⌋ Urn [10] (n−1−n mod(3))/⌊n/3⌋ [10]

D ·β 1 Kn T

{

(n+3)(n−2)
3 if n≡ 0[3]

⌈

n
3

⌉

(n−1) if n 6≡ 0[3]
AR

D−ω 1−n Kn T n−3 Pn T

D+ω 4 Sn T n+1 Pn [173]

D/ω 1/n Kn T (n−1)/2 Pn T

D ·ω 4 Sn T ⌊(n+1)/2⌋⌈(n+1)/2⌉ Ki
n,⌊ n+1

2 ⌋ [173]

D−χ 1−n Kn T n−3 Pn T

D+χ 4 Sn T n+1 Pn [10]

D/χ 1/n Kn T (n−1)/2 Pn T

D ·χ 4 Sn T ⌊(n+1)/2⌋⌈(n+1)/2⌉ Ki
n,⌊ n+1

2 ⌋ [10]

D−µ 1−⌊n/2⌋ Kn T ⌈(n+1)/2⌉−1 Pn [10]

D+µ 3 Sn T n−1+ ⌊n/2⌋ Pn T

D/µ 1/⌊n/2⌋ Kn T 2 Sn [10]

D ·µ 2 Sn T (n−1)⌊n/2⌋ Pn T

r−g −⌈(n+1)/2⌉ Cn [30] ⌊(n−1)/2⌋−3 [30]

r +g 4 Kn T ⌊n/2⌋+n Cn T

r/g 1/3 Kn [30] ⌊(n−1)/2⌋/3 [30]

r ·g 3 Kn T n⌊n/2⌋ Cn T

r−ecc







1
4n − n

4 if n is odd

1
n − n

4 if n is even







Pn

Con,3

[10] 0 Cn T

r +ecc 2 Kn T







(3n+1)(n−1)
4n + n−1

2 if n is odd,

5n−2
4 if n is even

Pn T

r/ecc 2−1/n Sn [10] 1 Cn T

r ·ecc 1 Kn T











(3n+1)(n−1)2

8n if n is odd,

3n2−2n
8 if n is even

Pn T

r−π 0 Sn T











n−1
4 − 1

n−1 if n is odd,

n
2 − n2

4(n−1) if n is even
[25]

r +π 2 Sn T







3n−1
4 if n is odd,

3n+1
4 + 1

4(n−1) if n is even
Pn T

r/π 1 Sn T NR

r ·π 1 Kn T











n2−1
8 if n is odd,

n2+n
8 + 1

8(n−1) if n is even
Pn T

r−ρ 2t2−nt
n−1 Con,n−2t+1 [25]











n−3
4 if n is odd,

n
2 − n2

4(n−1) if n is even
[127]

wheret = ⌊ n+1
4 ⌋

r +ρ 2 Kn T n/2+ ⌊n/2⌋ Pn T

r/ρ (n−1)/(2n−3) Sn [10]











2− 4
n+1 if n is odd,

2− n
2 − n2

4(n−1) if n is even
O

r ·ρ 1 Kn T (n/2)⌊n/2⌋ Pn T

r−λ1 2−n Kn T ⌊n/2⌋−2cos π
n+1 Pn T

r +λ1 NR n Kn [35]
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r/λ1 1/(n−1) Kn T ⌊n/2⌋/(2cos π
n+1 ) Pn T

r ·λ1
√

n−1 Sn R Bag SO

r−Ra (2−n)/2 Kn T ⌊n/2⌋− (n−3+2
√

2)/2 Pn O

r +Ra 1+
√

n−1 Sn T ⌊n/2⌋+n/2 Cn T

r/Ra 2/n Kn T 2⌊n/2⌋/(n−3+2
√

2) Pn O

r ·Ra
√

n−1 Sn T (n/2)⌊n/2⌋ Cn T

r−a 1−n Kn T ⌊n/2⌋−2(1−cosπ
n ) Pn T

r +a 2 Sn [10] n+1 Kn [10]

r/a 1/n Kn T ⌊n/2⌋/(2−2cosπ
n ) Pn T

r ·a NR 4⌊n/2⌋−4 Kn−M [174]

r−ν 2−n Kn T ⌊n/2⌋−1 Pn T

r +ν 2 Sn T n Kn [10]

r/ν 1/(n−1) Kn T ⌊n/2⌋ Pn T

r ·ν 1 Sn T 4⌊n/2⌋−4 Kn−M [174]

r−κ 2−n Kn T ⌊n/2⌋−1 Pn T

r +κ 2 Sn T n Kn [10]

r/κ 1/(n−1) Kn T ⌊n/2⌋ Pn T

r ·κ 1 Sn T 4⌊n/2⌋−4 Kn−M O

r−α 2−n Sn T 0 Kn K

r +α 2 Kn T n Pn K

r/α 1/(n−1) Sn T 1 Kn K

r ·α 1 Kn T ⌊n/2⌋⌈n/2⌉ Pn [13]

r−β 2−⌊n/2⌋ Urn [10] ⌊n/6⌋ AO

r +β 2 Kn T ⌊(5n+4)/6⌋ AO

r/β 2/⌊n/2⌋ Urn [10] NR

r ·β 1 Kn T NR

r−ω 1−n Kn T ⌊n/2⌋−2 Pn T

r +ω 3 Sn T n+1 Kn [173]

r/ω 1/n Kn T ⌊n/2⌋/2 Pn T

r ·ω 2 Sn T (n−2⌊n/4⌋)(⌊n/4⌋+1) Kin,⌊n/2⌋ [173]

r−χ 1−n Kn T ⌊n/2⌋−2 Pn T

r +χ 3 Sn T n+1 Kn [10]

r/χ 1/n Kn T ⌊n/2⌋/2 Pn T

r ·χ 2 Sn T (n−2⌊n/4⌋)(⌊n/4⌋+1) Kin,⌊n/2⌋ [10]

r−µ 1−⌊n/2⌋ Kn T 0 Pn [10]

r +µ 2 Sn T 2⌊n/2⌋ Pn T

r/µ 1/⌊n/2⌋ Kn T 1 Pn [10]

r ·µ 1 Sn T ⌊n/2⌋2 Pn T

g−ecc







16−3n
4 + 3

4n if n is odd,

16−3n
4 + 1

n if n is even
Kin,3 [10] ⌈n/2⌉ Cn [10]

g+ecc 4 Kn T n+ ⌊n/2⌋ Cn T

g/ecc







12n
3n2−4n−3

if n is odd,

12n
3n2−4n−4

if n is even
Cn [10] 3 Kn [10]

g·ecc 3 Kn T n⌊n/2⌋ Cn T

g−π







11−n
4 + 1

n−1 if n is odd,

4−n2

4n−4 +3 if n is even
Kin,3 [22]







3n−1
4 if n is odd,

3n2−4n
4n−4 if n is even

Cn [22]

g+π 4 Kn T







5n+1
4 if n is odd,

5n2−4n
4n−4 if n is even

Cn [22]

g/π







12n−12
3n2−7

if n is odd,

12n−12
n2−4

if n is even
Kin,3 [22] (2⌊√n⌋+1)(n−1)

n−1+⌊√n⌋(⌊√n⌋−1) Trn,t+1; [22]

t = 2⌊√n⌋

g·π 3 Kn T











n2+n
4 if n is odd,

n3

4n−4 if n is even

Cn [22]
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g−ρ 3− (n+1)(n−2)
2n−2 Kin,3 [22]







3n−1
4 if n is odd,

3n2−4n
4n−4 if n is even

Cn [22]

g+ρ 4 Kn T







5n+1
4 if n is odd,

5n2−4n
4n−4 if n is even

Cn [22]

g/ρ 6n−6
(n+1)(n−2) Kin,3 [22]







4n
n+1 if n is odd,

4n−4
n if n is even

Cn O

g·ρ 3 Kn T NR

g−λ1 4−n Kn T 2−n Cn [30]

g+λ1 Kin,3 [19] n+2 Kn,Cn [30]

g/λ1
3

n−1 Kn T n/2 Cn [30]

g·λ1 Kin,3 [19] 3(n−1) Kn R

g−Ra 3−n/2 Kn T n/2 Cn [36]

g+Ra n−3+
√

2√
n−1

+ 7
2 S+n [19] 3n/2 Cn T

g/Ra 6/n Kn T 2 Cn [36]

g·Ra 3n−9+3
√

2√
n−1

+ 3
2 S+n [19] n2/2 Cn T

g−a 3−n Kn T n−2
(

1−cos2π
n

)

Cn [10]

g+a Kin,3 [79] n+3 Kn [10]

g/a 3/n Kn T Loln,⌊ n
2 ⌋ SO

g·a Kin,3 [79] 3n Kn [10]

g−ν 4−n Kn T n−2 Cn T

g+ν 4 S+n T n+2 Kn [10]

g/ν 3
n−1 Kn T n−1 Loln,n−1 [10]

g·ν 3 S+n T 3n−3 Kn [10]

g−κ 4−n Kn T n−2 Cn T

g+κ 4 S+n T n+2 Kn [10]

g/κ 3
n−1 Kn T n−1 Loln,n−1 [10]

g·κ 3 S+n T 3n−3 Kn [10]

g−α 5−n S+n [30] ⌈n/2⌉ Cn [30]

g+α 4 Kn T n+ ⌊n/2⌋ Cn [30]

g/α 3/(n−2) S+n [30] 3 Kn [30]

g·α 3 Kn T







(n2−1)/2 if n is odd,

n2/2 if n is even







Lln,n−1

Cn

[30]

g−β 3−⌊n/2⌋ Urn T ⌊3n/2⌋ Cn [19]

g+β 4 Kn T n+ ⌈n/3⌉ Cn [10]

g/β 3/⌊n/2⌋ Urn T 3 S+n [19]

g·β 3 Kn T n⌈n/3⌉ Cn [10]

g−ω 3−n Kn T n−2 Cn T

g+ω 6 S+n T n+3 Kn [10]

g/ω 3/n Kn T n/2 Cn T

g·ω 8 Ka,n−a with
a≥ 2

[10] 3n Kn [10]

g−χ 3−n Kn T







n−3 if n is odd,

n−2 if n is even







Lln,n−1

Cn

[10]

g+χ 6 S+n T n+3 Kn [10]

g/χ 3/n Kn T







(n−1)/2 if n is odd

n/2 if n is even







Lln,n−1

Cn

[10]

g·χ 8 Ka,n−a with
a≥ 2

[10] 3n Kn [10]

g−µ 3−⌊n/2⌋ Kn T ⌈n/2⌉ Cn [10]

g+µ 5 S+n [10] n+ ⌊n/2⌋ Cn T

g/µ 3/⌊n/2⌋ Kn T n/⌊n/2⌋ Cn [10]

g·µ 6 S+n [10] n⌊n/2⌋ Cn T

ecc−π 0 Kn T







3n+1
4

n−1
n − n+1

4 if n is odd,

n−1
2 − n

4n−4 if n is even
Pn [156]
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ecc+π 2 Kn T







3n+1
4

n−1
n + n+1

4 if n is odd,

2n−1
2 + n

4n−4 if n is even
Pn T

ecc/π 1 Kn T NR

ecc·π 1 Kn T











(n−1)(n+1)(3n+1)
16n if n is odd,

n2(3n−2)
16(n−1) if n is even

Pn T

ecc−ρ 0 Kn [25]







3n+1
4

n−1
n − n

2 if n is odd,

n−1
4 − 1

4n−4 if n is even
Pn O

ecc+ρ 2 Kn T







3n+1
4

n−1
n + n

2 if n is odd,

3n−2
4 + n

2 if n is even
Pn T

ecc/ρ 1 Kn T

{

Kn−M
Cn

SO

ecc·ρ 2 Kn T







3n+1
4

n−1
n

n
2 if n is odd,

3n−2
4

n
2 if n is even

Pn T

ecc−λ1 2−n Kn T







3n+1
4

n−1
n −2cos π

n+1 for n odd

3n−2
4 −2cos π

n+1 for n even
Pn T

ecc+λ1
√

n−1+2− 1
n Sn R Kn−E SO

ecc/λ1
1

n−1 Kn T



















3n+1
4

n−1
n

2cos π
n+1

if n is odd,

3n−2
4

2cos π
n+1

if n is even

Pn T

ecc·λ1
√

n−1· (2− 1
n ) Sn R PKn,x SO

ecc−Ra (2−n)/2 Kn T







3n+1
4

n−1
n − n−3+2

√
2

2 for n odd

3n−2
4 − n−3+2

√
2

2 for n even
Pn O

ecc+Ra
√

n−1+2− 1
n Sn O







3n+1
4

n−1
n + n−3+2

√
2

2 for n odd

3n−2
4 + n−3+2

√
2

2 for n even
Pn [148]

ecc/Ra 2/n Kn T











(3n+1)(n−1)
2n2−(6+4

√
2)n

for n odd

3n−2
2n−6+4

√
2

for n even
Pn AO

ecc·Ra







n
2 if n≤ 13,

(2− 1
n ) ·
√

n−1 if n≥ 14







Kn

Sn

AO







3n+1
4

n−1
n

n−3+2
√

2
2 if n is odd,

3n−2
4

n−3+2
√

2
2 if n is even

Pn [148]

ecc−a 1−n Kn T







3n+1
4

n−1
n −2+2cosπ

n for n odd

3n−2
4 −2+2cosπ

n for n even
Pn T

ecc+a 3− 1
n Sn [10] n+1 Kn [10]

ecc/a 1/n Kn T











(3n+1)(n−1)
8n(1−cosπ

n )
if n is odd,

3n−2
8(1−cosπ

n )
if n is even

Pn T

ecc·a DCn,x,y SO







2n−5+ 2
n if n is odd,

2n−4 if n is even
Kn−R [174]

ecc−ν 2−n Kn T







3n+1
4

n−1
n −1 if n is odd,

3n−6
4 if n is even

Pn T

ecc+ν 3− 1
n Sn [10] n Kn [10]

ecc/ν 1
n−1 Kn T







3n+1
4

n−1
n if n is odd,

3n−2
4 if n is even

Pn T

ecc·ν 2− 1
n Sn [10]







2n−5+ 2
n if n is odd,

2n−4 if n is even
Kn−R [174]

ecc−κ 2−n Kn T







3n+1
4

n−1
n −1 if n is odd,

3n−6
4 if n is even

Pn T

ecc+κ 3− 1
n Sn [10] n Kn [10]

ecc/κ 1
n−1 Kn T







3n+1
4

n−1
n if n is odd,

3n−2
4 if n is even

Pn T

ecc·κ 2− 1
n Sn [10]







2n−5+ 2
n if n is odd,

2n−4 if n is even
Kn−R R

ecc−α 3−n− 1
n Sn [10]







3n2−4n−3
4n − n−1

2 if n is odd

n−2
4 if n is even







Kin,3

Pn

O
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ecc+α 2 Kn T







3n+1
4

n−1
n + n+1

2 if n is odd,

(3n+2)(n−2)
4n + n+2

2 if n is even







Pn

Con,3

[131]

ecc/α 2n−1
n(n−1) Sn [10] CPC SO

ecc·α 1 Kn T NR

ecc−β







6−n
2 − 1

2n if n is odd,

5−n
2 if n is even

Urn O



































3n+1
4

n
n−1 −

⌊

n+1
3

⌋

ifn≡ 3,5[6]

5n−8
12 − 3

4n if n≡ 1[6]

3n−2
4 −

⌊

n+1
3

⌋

if n≡ 0,2[6]

5n−8
12 − 1

n if n≡ 4[6]



































Pn

Con,3

Pn

Con,3

AO

ecc+β 2 Kn T



































⌊

n+1
3

⌋

+ 3n+1
4

n
n−1 ifn≡ 3,5[6]

13n−16
12 − 3

4n if n≡ 1[6]

⌊

n+1
3

⌋

+ 3n−2
4 if n≡ 0,2[6]

13n−16
12 − 1

n if n≡ 4[6]



































Pn

Con,3

Pn

Con,3

AO

ecc/β







5n−1
n(n−1) if n is odd,

5
n if n is even

Urn AO NR

ecc·β 1 Kn T NR

ecc−ω 1−n Kn T







3n+1
4

n−1
n −2 if n is odd,

3n−10
4 if n is even

Pn T

ecc+ω 4− 1
n Sn [10] n+1 Kn [10]

ecc/ω 1/n Kn T







3n+1
8

n−1
n if n is odd,

3n−2
8 if n is even

Pn T

ecc·ω 4− 2
n Sn [10] Kin,x [131]

ecc−χ 1−n Kn T







3n+1
4

n−1
n −2 if n is odd,

3n−10
4 if n is even

Pn T

ecc+χ 4− 1
n Sn [10] n+1 Kn [10]

ecc/χ 1/n Kn T







3n+1
8

n−1
n if n is odd,

3n−2
8 if n is even

Pn T

ecc·χ 4− 2
n Sn [10] Kin,x SO

ecc−µ 1−⌊n/2⌋ Kn T











n2−1
4n if n is odd,

n2−4
4n if n is even







Pn

Con,3

[10]

ecc+µ 3−1/n Sn [10]







3n+1
4

n−1
n + n−1

2 if n is odd,

5n−2
4 if n is even

Pn T

ecc/µ 1/⌊n/2⌋ Kn T 2−1/n Sn [10]

ecc·µ 2−1/n Sn [10]











3n+1
8

(n−1)2

n if n is odd,

3n2−2n
8 if n is even

Pn T

π−ρ







1−n
4 if n is odd,

n
4n−4 − n

4 if n is even
Pn [25] 0 TReG T

π +ρ 2 Kn T







3n+1
4 if n is odd,

3n
4 − n

4n−4 if n is even
Pn T

π/ρ Con,x SO 1 TReG T

π ·ρ 1 Kn T











n(n+1)
8 if n is odd,

n2

8 + n
8n−8 if n is even

Pn T

π−λ1 2−n Kn T







n+1
4 −2cos π

n+1 for n odd

n2

4n−4 −2cos π
n+1 for n even

Pn T

π +λ1 NR n Kn [10]

π/λ1 1/(n−1) Kn T















n+1
8cos π

n+1
if n is odd,

n+1
4 + 1

4n−4
2cos π

n+1
if n is even

Pn T

π ·λ1
√

n−1 Sn O n−1 Kn O

π−Ra (2−n)/2 Kn T 1−
√

n−1 Sn O
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π +Ra 1+
√

n−1 Sn T











3n+1
4 if n is odd,

n2

4(n−1) +
n
2 if n is even

Cn T

π/Ra 2/n Kn T











s(s+4t−6)
√

t
2(n−1)((s−4)

√
t+4t+2

√
2−4)

for n odd

((s−1)(s−3)+(s+1)(4t−2)−4t)
√

t
2(n−1)((s−4)

√
t+4t+2

√
2−4)

for n even

DCn,t ,t AO

wheres= n−2t +3 and

t =







⌈n/5⌉ if n≡ 4[5],

⌊n/5⌋ if n 6≡ 4[5]

π ·Ra
√

n−1 Sn T











n(n+1)
8 if n is odd,

n3

8n−8 if n is even
Cn T

π−a 1−n Kn T







3n+1
4

n−1
n −2+2cosπ

n for n odd

3n−2
4 −2+2cosπ

n for n even
Pn T

π +a NR n+1 Kn [10]

π/a 1/n Kn T











(3n+1)(n−1)
8n(1−cosπ

n )
if n is odd,

3n−2
8(1−cos π

n )
if n is even

Pn T

π ·a







3n+1
2

n−1
n (1−cosπ

n ) if n is odd,

3n−2
2 (1−cosπ

n ) if n is even
Pn AO n Kn [10]

π−ν 2−n Kn T











n−3
4 if n is odd,

n2

4(n−1) −1 if n is even
Pn T

π +ν 2 Sn T n Kn [10]

π/ν 1/(n−1) Kn T











n+1
4 if n is odd,

n2

4(n−1) if n is even
Pn T

π ·ν 1 Kn T n−1 Kn [10]

π−κ 2−n Kn T











n−3
4 if n is odd,

n2

4(n−1) −1 if n is even
Pn T

π +κ 2 Sn T n Kn [10]

π/κ 1/(n−1) Kn T











n+1
4 if n is odd,

n2

4(n−1) if n is even
Pn T

π ·κ 1 Kn T n−1 Kn [10]

π−α 2−n Sn T 0 Kn [10]

π +α 2 Kn T n Sn [10]

π/α 1/(n−1) Sn T 1 Kn [10]

π ·α 1 Kn T 1
n−1

⌊

n+1
3

⌋⌊

2n+1
3

⌋2
DCn,s,t AO

s=

{ ⌊

n
6

⌋

+3 if n≡ 4[6]
⌊

n
6

⌋

+2 if n 6≡ 4[6]

t =

{

s−1 if n≡ 0[2]
s if n≡ 1[2]

π−β







4−n
2 − 1

n−1 if n is odd,

3−n
2 − 1

2n−2 if n is even
Urn O DCn,x,y SO

π +β 2 Kn T Ctr SO

π/β Urn SO Con,x SO

π ·β 1 Kn T NR

π−ω 1−n Kn T







n−7
4 if n is odd,

n−8
4 + n

4n−4 if n is even
Pn T

π +ω 3 Sn T n+1 Kn [10]

π/ω 1/n Kn T







n+1
8 if n is odd,

n
8 +

n
8n−8 if n is even

Pn T

π ·ω 2 Sn T PKn,x SO

π−χ 1−n Kn T







n−7
4 if n is odd,

n−8
4 + n

4n−4 if n is even
Pn T

π +χ 3 Sn T n+1 Kn [10]

π/χ 1/n Kn T







n+1
8 if n is odd,

n
8 +

n
8n−8 if n is even

Pn T
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π ·χ 2 Sn T PKn,x SO

π−µ 1−⌊n/2⌋ Kn T 0 Sn [10]

π +µ 2 Sn T







3n−1
4 if n is odd,

3n+1
4 + 1

4n−4 if n is even
Pn T

π/µ 1/⌊n/2⌋ Kn T 1 Sn [10]

π ·µ 1 Sn T











n2−1
8 if n is odd,

n2+n
4 + n

8n−8 if n is even

Pn T

ρ−λ1 2−n Kn T n
2 −2cos( π

n+1 ) Pn T

ρ +λ1 NR n Kn [10]

ρ/λ1 1/(n−1) Kn T n
4cos π

n+1
Pn T

ρ ·λ1 NR PKn,x SO

ρ−Ra (2−n)/2 Kn T Con,x SO

ρ +Ra







n+2
2 if n≤ 6,

2− 1
n−1 +

√
n−1 if n≥ 7







Kn

Sn

AO







n+
√

2− 3
2 if n≤ 56,

? if n≥ 57







Pn

PKn,x

SO

ρ/Ra 2/n Kn T







n−3+2
√

2
n if n≤ 7,

? if n≥ 8







Pn

Con,x

SO

ρ ·Ra







n
2 if n≤ 6,

2
√

n−1− 1√
n−1

if n≥ 7







Kn

Sn

AO







n+2
√

2−3
2

n
2 if n≤ 57,

? if n≥ 58







Pn

PKn,x

SO

ρ−a 1−n Kn T n
2 −2+2cosπ

n Pn T

ρ +a K

⌊

n+1
2

⌋

⌈

n+1
2

⌉ SO n+1 Kn [10]

ρ/a 1/n Kn T n
4(1−cosπ

n )
Pn T

ρ ·a CPC SO n Kn [174]

ρ−ν 2−n Kn T n−2
2 Pn T

ρ +ν







5
2 if n is odd,

5
2 +

1
2n−2 if n is even

K

⌊

n+1
2

⌋

⌈

n+1
2

⌉ [10] n Kn [10]

ρ/ν 1/(n−1) Kn T n/2 Pn T

ρ ·ν







3
2 +

1
2n−2 if n is odd,

3
2 if n is even

K

⌊

n+1
2

⌋

⌈

n+1
2

⌉ [10] n−1 Kn [174]

ρ−κ 2−n Kn T n−2
2 Pn T

ρ +κ







5
2 if n is odd,

5
2 +

1
2n−2 if n is even

Sn [10] n Kn [10]

ρ/κ 1/(n−1) Kn T n/2 Pn T

ρ ·κ







3
2 +

1
2n−2 if n is odd,

3
2 if n is even

Sn [10] n−1 Kn R

ρ−α 3−n−1/(n−1) Sn [25] PKn,x SO

ρ +α 2 Kn T
⌊

4n−1
5

⌋

+ 1
n−1

(

2n−2
⌊

n
5

⌋

−3
)⌊

n+5
5

⌋

Con,t AO

t = 2n−2
⌊

n
5 −1

⌋

ρ/α 2n−5
(n−1)2

Sn [10] PKn,x SO

ρ ·α 1 Kn T 2
n−1

⌈

n−1
3

⌉(

n−
⌈

n−1
3

⌉

− 1
2

)⌈

2n−1
3

⌉

Con,t AO

t = 2n−2
⌊

n+1
3

⌋

+1

ρ−β







6−n
2 − 2

n−1 if n is odd,

5−n
2 − 3

2n−2 if n is even
Urn AO Con,x SO

ρ +β 2 Kn T







5n+6
6 − 2

n−1 if n≡ 0[3],
5n+4

6 if n≡ 1[3],
5n+8

6 − 6
n−1 if n≡ 2[3].

Ctr AO

ρ/β











5n−9
(n−1)2

if n is odd,

5n−8
n(n−1) if n is even

Urn AO Con,x SO

ρ ·β 1 Kn T NR

ρ−ω 1−n Kn T (n−4)/2 Pn T

ρ +ω







7
2 if n is odd,

7
2 − 1

2n−2 if n is even
K⌊ n

2 ⌋,⌈
n
2 ⌉

[173] n+1 Kn [173]

ρ/ω 1/n Kn T n/4 Pn T
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ρ ·ω







3 if n is odd,

3− 1
n−1 if n is even

K⌊ n
2 ⌋,⌈

n
2 ⌉

[173] PKn,x [173]

ρ−χ 1−n Kn T (n−4)/2 Pn T

ρ +χ







7
2 if n is odd,

7
2 − 1

2n−2 if n is even
K⌊ n

2 ⌋,⌈
n
2 ⌉

[10] n+1 Kn [10]

ρ/χ 1/n Kn T n/4 Pn T

ρ ·χ







3 if n is odd,

3− 1
n−1 if n is even

K⌊ n
2 ⌋,⌈

n
2 ⌉

[10] PKn,x SO

ρ−µ 1−⌊n/2⌋ Kn T























n2

8n−8 if n≡ 0[4],

(n−2)(n+2)
8n−8 if n≡ 2[4],

n+1
8 otherwise

Con,n−t+1

t = 2
⌊

n+2
4

⌋ [25]

ρ +µ 3−1/(n−1) Sn [10] ⌊n/2⌋+n/2 Pn T

ρ/µ 1/⌊n/2⌋ Kn T 2−1/(n−1) Sn [10]

ρ ·µ 2−1/(n−1) Sn [10] (n/2)⌊n/2⌋ Pn T

λ1−Ra







2cos π
n+1 − n−3+2

√
2

2 if n≤ 9,

4−n
2 if n≥ 10

{

Pn

Cn
[37] (n−2)/2 Kn [37]

λ1+Ra 2
√

n−1 Sn [37] (3n−2)/2 Kn T

λ1/Ra











4cos π
n+1

n−3+2
√

2
if n≤ 26,

4
n if n≥ 27.

{

Pn

Cn
[37] 2−2/n Kn [37]

λ1 ·R n−1 Sn [37] n(n−1)/2 Kn T

λ1−a −1 Kn [10] n−3+ t Kin,n−1 AO

with 0< t < 1 and

t3+(2n−3)t2+(n2−3n+1)t = 1

λ1+a 2−2cosπ
n +2cos π

n+1 Pn T 2n−1 Kn T

λ1/a Kin,⌊ n
2 ⌋

SO n/(n−1) Kn [10]

λ1 ·a 4(1−cosπ
n )(cos π

n+1 ) Pn T n(n−1) Kn T

λ1−ν 0 Kn [10] n−3+ t Kin,n−1 [79]

with 0< t < 1 and

t3+(2n−3)t2+(n2−3n+1)t = 1

λ1+ν 1+2cos π
n+1 Pn T 2n−2 Kn T

λ1/ν 1 Kn [10] n−2+ t Kin,n−1 [79]

with 0< t < 1 and

t3+(2n−3)t2+(n2−3n+1)t = 1

λ1 ·ν 2cos π
n+1 Pn T (n−1)2 Kn T

λ1−κ 0 Kn [10] n−3+ t Kin,n−1 [79]

with 0< t < 1 and

t3+(2n−3)t2+(n2−3n+1)t = 1

λ1+κ 1+2cos π
n+1 Pn T 2n−2 Kn T

λ1/κ 1 Kn [10] n−2+ t Kin,n−1 [79]

with 0< t < 1 and

t3+(2n−3)t2+(n2−3n+1)t = 1

λ1 ·κ 2cos π
n+1 Pn T (n−1)2 Kn T

λ1−α n−1−
√

n−1 Sn O n−2 Kn T

λ1+α NR n+α′−1+
√

(n−α′−1)2+4α′(n−α′ )
2 ; CSn,α′ [35]

α ′ =



















⌈

n+1+
√

n2−n+1
3

⌉

if n≡ 1[3]

⌊

n+1+
√

n2−n+1
3

⌋

otherwise

λ1/α NR n−1 Kn T

λ1 ·α NR NR

λ1−β Ctr [35] n−2 Kn T

λ1+β DCn,x,y SO n Kn [35]

λ1/β Ctr SO n−1 Kn T
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λ1 ·β
√

n−1 Sn O Urn SO

λ1−ω −1 Kn [173] T⌊
√

n⌋
n [173]

λ1+ω 2+2cos π
n+1 Pn T 2n−1 Kn T

λ1/ω Kin,3 [173] 1
2

√

⌊

n
2

⌋

·
⌈

n
2

⌉

K⌊ n
2 ⌋,⌈ n

2⌉ [173]

λ1 ·ω 4cos π
n+1 Pn T n(n−1) Kn T

λ1−χ −1 Kn K T⌊
√

n⌋
n SO

λ1+χ 2+2cos π
n+1 Pn T 2n−1 Kn T

λ1/χ
{

Cn

Loln,n−1
[35] 1

2

√

⌊

n
2

⌋

·
⌈

n
2

⌉

K⌊ n
2 ⌋,⌈ n

2⌉ [35]

λ1 ·χ 4cos π
n+1 Pn T n(n−1) Kn T

λ1−µ 2cos π
n+1 −⌊n/2⌋ Pn T n−1−⌊n/2⌋ Kn [178]

λ1+µ
√

n−1+1 Sn R n−1+ ⌊n/2⌋ Kn T

λ1/µ
2cos π

n+1
⌊ n

2 ⌋
Pn T

√
n−1 Sn [178]

λ1 ·µ
√

n−1 Sn [10] (n−1)⌊n/2⌋ Kn T

Ra−a −n/2 Kn [36] NR

Ra+a Con,x SO 3n/2 Kn T

Ra/a 1/2 Kn [36] n−3+2
√

2
4(1−cosπ

n )
Pn AO

Ra·a DCn,x,y SO n2/2 Kn T

Ra−ν (2−n)/2 Kn [36] n−5+2
√

2
2 Pn R

Ra+ν 1+
√

n−1 Sn T (3n−2)/n Kn T

Ra/ν n/(2n−2) Kn [36] NR

Ra·ν
√

n−1 Sn T n(n−1)/2 Kn T

Ra−κ (2−n)/2 Kn [10] n−5+2
√

2
2 Pn R

Ra+κ 1+
√

n−1 Sn T (3n−2)/n Kn T

Ra/κ n/(2n−2) Kn [10] NR

Ra·κ
√

n−1 Sn T n(n−1)/2 Kn T

Ra−α
√

n−1− (n−1) Sn T (n−2)/2 Kn T

Ra+α (n+2)/2 Kn O
√

n−1+(n−1) Sn O

Ra/α 1/
√

n−1 Sn T n/2 Kn T

Ra·α n/2 Kn O
⌈

3n−2
4

⌉

√

⌈

3n−2
4

⌉⌊

n+2
4

⌋

K⌈

3n−2
4

⌉

,
⌊

n+2
4

⌋ AO

Ra−β



















n−3√
2n−2

+ (n−3)(n−5)
4n−4 + n−4√

n2−1

+ 2
√

2√
n+1
− n−1

2 if n is odd

√

n
2 − n−2

4 if n is even

Urn AO (n−2)/2 Kn T

Ra+β 1+
√

n−1 Sn T NR

Ra/β



























2
n−1

(

n−3√
2n−2

+ 2
√

2√
n+1

+ (n−3)(n−5)
4n−4

+ n−4√
n2−1

)

if n is odd

4
√

n/2
n−2 if n is even

Urn AO n/2 Kn T

Ra·β
√

n−1 Sn T NR

Ra−ω −n/2 Kn [119] n/2−2 Cn T

Ra+ω 2+
√

n−1 Sn T 3n/2 Kn T

Ra/ω 1/2 Kn [119] n/4 Cn T

Ra·ω 2
√

n−1 Sn T n2/2 Kn T

Ra−χ −n/2 Kn [119]
√

⌊n/2⌋⌈n/2⌉−2 K⌊n/2⌋,⌈n/2⌉ [119]

Ra+χ 2+
√

n−1 Sn T 3n/2 Kn T

Ra/χ 1/2 Kn [119] 1
2

√

⌊n/2⌋⌈n/2⌉ K⌊n/2⌋,⌈n/2⌉ [119]

Ra·χ 2
√

n−1 Sn T n2/2 Kn T

Ra−µ NR
√

⌊

n+4
7

⌋⌊

6n+2
7

⌋

−
⌊

n+4
7

⌋

Kn−t ,t, AO

t =
⌊

n+4
7

⌋

Ra+µ 1+
√

n−1 Sn T n
2 +

⌊

n
2

⌋

Kn T

Ra/µ NR
√

n−1 Sn [37]

Ra·µ
√

n−1 Sn T n
2

⌊

n
2

⌋

Kn T

a−ν NR 1 Kn K

a+ν 3−2cosπ
n Pn T 2n−1 Kn T
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a/ν 2−2cosπ
n Pn AO n/(n−1) Kn K

a·ν 2−2cosπ
n Pn T n(n−1) Kn T

a−κ NR 1 Kn K

a+κ 3−2cosπ
n Pn T 2n−1 Kn T

a/κ 2−2cosπ
n Pn AO n/(n−1) Kn K

a·κ 2−2cosπ
n Pn T n(n−1) Kn T

a−α 2−n Sn [10] n−1 Kn T

a+α Ke
⌊ n

2⌋
⌈ n

2⌉
SO n+1 Kn [10]

a/α DCn,x,y SO n Kn T

a·α CPC SO ⌊n/2⌋⌈n/2⌉ CSn,⌊n/2⌋ [10]

a−β Ctr SO n−1 Kn T

a+β 2 Sn [10] n+1 Kn [10]

a/β NR n Kn T

a·β 1 Sn [10]
⌊

n
2

⌋

−4 Kn−R O

a−ω 2−n Kin,n−1 [173]
⌊(

1− 1
⌊√n⌋

)

n
⌋

−⌊√n⌋ T⌊
√

n⌋
n [173]

a+ω 4−2cosπ
n Pn T 2n Kn T

a/ω PKn,⌊ n
2 ⌋ [173] 1

2

⌊

n
2

⌋

K⌊n/2⌋,⌈n/2⌉ [173]

a·ω 4−4cosπ
n Pn T n2 Kn T

a−χ 2−n Kin,n−1 [10]
⌊

(1− 1
⌊√n⌋ )n

⌋

−⌊√n⌋ T⌊
√

n⌋
n AO

a+χ 4−2cosπ
n Pn T 2n Kn T

a/χ PKn,⌊ n
2 ⌋ SO 1

2

⌊

n
2

⌋

K⌊n/2⌋,⌈n/2⌉ [10]

a·χ 4−4cosπ
n Pn T n2 Kn T

a−µ 2−2cosπ
n −⌊n/2⌋ Pn T ⌈n/2⌉ Kn [10]

a+µ 2 Sn [10] n+ ⌊n/2⌋ Kn T

a/µ 2−2cosπ
n

⌊ n
2 ⌋

Pn T n/⌊n/2⌋ Kn [10]

a·µ 1 Sn O n⌊n/2⌋ Kn T

ν−κ ⌊(3−n)/2⌋ K

⌈

n+1
2

⌉

⌊

n+1
2

⌋ [10] 0 Kn T

ν +κ 2 Pn T 2(n−1) Kn T

ν/κ
⌊

n−1
2

⌋−1
K

⌈

n+1
2

⌉

⌊

n+1
2

⌋ [10] 1 Kn T

ν ·κ 1 Pn T (n−1)2 Kn T

ν−α 2−n Sn T n−2 Kn T

ν +α 3 Kin,n−1 T n Kn [10]

ν/α 1/(n−1) Sn T n−1 Kn T

ν ·α 2 Kin,n−1 T ⌊n/2⌋⌈n/2⌉ K⌊n/2⌋,⌈n/2⌉ [10]

ν−β 1−⌊n/2⌋ Urn T n−2 Kn T

ν +β 2 Sn T n Kn [10]

ν/β 1/⌊n/2⌋ Urn T n−1 Kn T

ν ·β 1 Sn T 4⌊n/2⌋−4 Kn−R O

ν−ω 2−n Kin,n−1 [173]
⌊

(1− 1
⌊√n⌋ )n

⌋

−⌊√n⌋ T⌊
√

n⌋
n [173]

ν +ω 3 Sn T 2n−1 Kn T

ν/ω 1/(n−1) Kin,n−1 [173] ⌊n/2⌋/2 K⌊n/2⌋,⌈n/2⌉ [173]

ν ·ω 2 Sn T n(n−1) Kn T

ν−χ 2−n Kin,n−1 [10]
⌊

(1− 1
⌊√n⌋ )n

⌋

−⌊√n⌋ T⌊
√

n⌋
n [10]

ν +χ 3 Sn T 2n−1 Kn T

ν/χ 1/(n−1) Kin,n−1 [10] ⌊n/2⌋/2 K⌊n/2⌋,⌈n/2⌉ [10]

ν ·χ 2 Sn T n(n−1) Kn T

ν−µ 1−⌊n/2⌋ Pn T 1−⌈n/2⌉ Kn [10]

ν +µ 2 Sn T ⌊n/2⌋+n−1 Kn T

ν/µ 1/⌊n/2⌋ Pn T (n−1)/⌊n/2⌋ Kn [10]

ν ·µ 1 Sn T (n−1)⌊n/2⌋ Kn T

κ−α 2−n Sn T n−2 Kn T

κ +α 3 Kin,n−1 T n Kn [10]
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κ/α 1/(n−1) Sn T n−1 Kn T

κ ·α 2 Kin,n−1 T ⌊n/2⌋⌈n/2⌉ K⌊n/2⌋,⌈n/2⌉ [10]

κ−β 1−⌊n/2⌋ Urn T n−2 Kn T

κ +β 2 Sn T n Kn [10]

κ/β 1/⌊n/2⌋ Urn T n−1 Kn T

κ ·β 1 Sn T 4⌊n/2⌋−4 Kn−R O

κ−ω 2−n Kin,n−1 [173]
⌊

(1− 1
⌊√n⌋ )n

⌋

−⌊√n⌋ T⌊
√

n⌋
n [173]

κ +ω 3 Sn T 2n−1 Kn T

κ/ω 1/(n−1) Kin,n−1 [173] 1
2

⌊

n
2

⌋

K⌊ n
2 ⌋,⌈ n

2⌉ [173]

κ ·ω 2 Sn T n(n−1) Kn T

κ−χ 2−n Kin,n−1 [10]
⌊

(1− 1
⌊√n⌋ )n

⌋

−⌊√n⌋ T⌊
√

n⌋
n [10]

κ +χ 3 Sn T 2n−1 Kn T

κ/χ 1/(n−1) Kin,n−1 [10] ⌊n/2⌋/2 K⌊n/2⌋,⌈n/2⌉ [10]

κ ·χ 2 Sn T n(n−1) Kn T

κ−µ 1−⌊n/2⌋ Pn T 1−⌈n/2⌉ Kn [10]

κ +µ 2 Sn T ⌊n/2⌋+n−1 Kn T

κ/µ 1/⌊n/2⌋ Pn T (n−1)/⌊n/2⌋ Kn [10]

κ ·µ 1 Sn T (n−1)⌊n/2⌋ Kn T

α−β 0 Kn T n−2 Sn T

α +β 2 Kn T n Sn [10]

α/β 1 Kn T n−1 Sn T

α ·β 1 Kn T ⌊n/2⌋⌈n/2⌉ Urn [10]

α−ω 1−n Kn T n−3 Sn T

α +ω ⌈2√n⌉+1 Clqs [20] n+1 CSn,α K

α/ω 1/n Kn T (n−1)/2 Sn T

α ·ω NR
⌊

(n+1)2

4

⌋

CS
n,
⌊

n+1
2

⌋ [10]

α−χ 1−n Kn T n−3 Sn T

α +χ ⌈(n+1)/3⌉+1 R n+1 CSn,α [13]

α/χ 1/n Kn T n−1
2 Sn T

α ·χ n K
⌊

n+1
2

⌋⌈

n+1
2

⌉

CS
n,
⌊

n+1
2

⌋ [13]

α−µ 1−⌊n/2⌋ Kn T n−2 Sn T

α +µ 1+ ⌊n/2⌋ Kn [13] n Sn [13]

α/µ 1/⌊n/2⌋ Kn T n−1 Sn T

α ·µ ⌊n/2⌋ Kn [13]
⌊

n
2

⌋⌈

n
2

⌉

CS
n,
⌊

n+1
2

⌋ [13]

β −ω 1−n Kn T ⌊n/2⌋−2 K⌊n/2⌋,⌈n/2⌉ T

β +ω 3 Sn T n+1 Kn [10]

β/ω 1/n Kn T ⌊n/2⌋/2 K⌊n/2⌋,⌈n/2⌉ T

β ·ω 2 Sn T ⌊n/2⌋⌈n/2⌉ Urn [10]

β −χ 1−n Kn T ⌊n/2⌋−2 K⌊n/2⌋,⌈n/2⌉ T

β +χ 3 Sn T n+1 Kn [10]

β/χ 1/n Kn T ⌊n/2⌋/2 K⌊n/2⌋,⌈n/2⌉ T

β ·χ 2 Sn T ⌊n/2⌋⌈n/2⌉ Urn [10]

β −µ 0 Pn [10] ⌊n/2⌋−1 Kn T

β +µ 2 Sn T 2⌊n/2⌋ Pn T

β/µ 1 Pn [10] ⌊n/2⌋ Kn T

β ·µ 1 Sn T ⌊n/2⌋2 Pn T

ω−χ NR 0 Kn K

ω +χ 4 Bipartite T 2n Kn T

ω/χ NR 1 Kn K

ω ·χ 4 Bipartite T n2 Kn T

ω−µ 2−⌊n/2⌋ Pn T ⌈n/2⌉ Kn [10]

ω +µ 3 Sn T n+ ⌈n/2⌉ Kn T

ω/µ 2/⌊n/2⌋ Pn T n/⌊n/2⌋ Kn [10]
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ω ·µ 2 Sn T n⌈n/2⌉ Kn T

ω−µ 2−⌊n/2⌋ Pn T ⌈n/2⌉ Kn [10]

ω +µ 3 Sn T n+ ⌈n/2⌉ Kn T

ω/µ 2/⌊n/2⌋ Pn T n/⌊n/2⌋ Kn [10]

ω ·µ 2 Sn T n⌈n/2⌉ Kn T

The next table summarizes the results of AGX Form 1 obtained in [107]. We use the same notations as in Table8.

Table 9: List of AGX conjectures obtained in [107].

q1−δ 2 Cn [107] n− 5
2 +

√
4n2−20n+33

2 Kin,n−1 [107]

q1+δ 3+2cosπ
n Pn T 3n−3 Kn T

q1/δ 2 ReG K n− 3
2 +

√
4n2−20n+33

2 Kin,n−1 [107]

q1 ·δ 2+2cosπ
n Pn T 2(n−1)2 Kn T

q1−d 2 Cn [107] NR

q1+d 4+2cosπ
n − 2

n Pn T 3n−3 Kn T

q1/d 2 ReG K n2

2n−2 Sn [107]

q1 ·d 4
(

1− n

)(

cosπ
n

)

Pn T 2(n−1)2 Kn T

q1−∆ 1 Sn K n−1 Kn [107]

q1+∆ 4+2cosπ
n Pn T 3n−3 Kn T

q1/∆ n
n−1 Sn [107] 2 ReG K

q1 ·∆ 4+4cosπ
n Pn T 2(n−1)2 Kn T

q1− l 2+2cosπ
n − n+1

3 Pn T 2n−3 Kn T

q1+ l NR 2n−1 Kn [107]

q1/l
6+6cosπ

n
n+1 Pn T 2n−2 Kn T

q1 · l NR NR

q1−D 2+2cosπ
n − (n−1) Pn T 2n−3 Kn T

q1+D NR 3
2 n−1+

√
n2+4n−12

2 Kn−e [107]

q1/D
2+2cosπ

n
n−1 Pn T 2n−2 Kn T

q1 ·D ND Bug SO

q1− r 2+2cosπ
n −⌊ n

2 ⌋ Pn T 2n−3 Kn T

q1+ r NR 2n−1 Kn [107]

q1/r
2+2cosπ

n
⌊ n

2 ⌋
Pn T 2n−2 Kn T

q1 · r NR Bag SO

q1−ecc

{

2cosπ
n − 3n−10

4 if n is even

2cosπ
n − 3n2−10n−1

4n if n is odd
Pn T 2n−3 Kn T

q1+ecc NR 2n−1 Kn [107]

q1/ecc

{

8+8cos(π/n)
3n−2 if n is even

8n+8ncos(π/n)
(3n+1)(n−1) if n is odd

Pn T 2n−2 Kn T

q1 ·ecc NR NR

q1−g 4−n Cn [107] 2n−5 Kn T

q1+g q1(Kin,3)+3 Kin,3 [107] [107]

q1/g 4
n Cn [107] 2n−2

3 Kn T

q1 ·g 3q1(Kin,3) Kin,3 [107]

{

6n−6, 4≤ n≤ 15
q1(Tu

n,⌈ n+2
2 ⌉)(⌈

n+2
2 ⌉) n≥ 16 Tun,⌈ n

2 ⌉+1 [107]

q1−π

{

2cosπ
n − 3n2−10n−1

4n if n is odd
2cosπ

n − 3n−8
4 if n is even

Pn T 2n−3 Kn T

q1+π NR 2n−1 Kn [107]

q1/π

{

8n+8ncos(π/n)
(3n+1)(n−1) if n is odd

8+8cos(π/n)
3n−2 if n is even

Pn T 2n−2 Kn T

q1 ·π NR 2n−2 Kn O

q1−ρ

{

2+2cosπ
n − n+1

4 if n is odd

2+2cosπ
n − n2

4n−4 if n is even
Pn T 2n−3 Kn T

q1+ρ 4+

{

n+1
4 if n is odd
n2

4(n−1) if n is even
Cn O 2n−1 Kn [107]

q1/ρ

{

8+8cos(π/n)
n+1 if n is odd

8(n−1)(1+cos(π/n))
n2 if n is even

Pn T 2n−2 Kn T
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q1 ·ρ NR Ki
n,⌈ n+4

2 ⌉ SO

q1−ν 2 Cn [107] n− 5
2 +

√
4n2−20n+33

2 Kin,n−1 [107]

q1+ν 3+2cosπ
n Pn T 3n−3 Kn T

q1/ν 2 Cn [107] n− 3
2 +

√
4n2−20n+33

2 Kin,n−1 [107]

q1 ·ν 2+2cosπ
n Pn T 2(n−1)2 Kn T

q1−κ 2 Cn [107] n− 5
2 +

√
4n2−20n+33

2 Kin,n−1 [107]

q1+κ 3+2cosπ
n Pn T 3n−3 Kn T

q1/κ 2 Cn [107] n− 3
2 +

√
4n2−20n+33

2 Kin,n−1 [107]

q1 ·κ 2+2cosπ
n Pn T 2(n−1)2 Kn T

q1−a 2+2cos2π
n Cn O n− 5

2 +

√
4n2−20n+33

2 Kin,n−1 O

q1+a 4 Pn T 3n−2 Kn T

q1/a 2− 2
n Kn [107] Kin,⌈n/3⌉+1 SO

q1 ·a 4−4cos2 π
n Pn T 2n(n−1) Kn T

q1−α NR 2n−3 Kn T

q1+α 4+ ⌊ n
2⌋, if n is odd

Cn

DLoln,t ,t ;
t =

⌊

n+6
6

⌋

SO







3n−2
√

2n2−4n+4
2 if n is even

3n−2
√

2n2−6n+3
2 if n is odd

CSn,⌊ n
2 ⌋ [107]

q1/α NR 2n−2 Kn T

q1 ·α 2n−2 Kn O n(n−1) Sn [107]

q1−β NR 2n−3 Kn T

q1+β NR 2n−1 [107]

q1/β NR 2n−2 Kn T

q1 ·β n Sn [107] NR

q1−ω q1(Kin,3)−3 Kin,3 [107]
n
2 K2
n−3

2 K2∪K3
SO

q1+ω 4+2cosπ
n Pn T 3n−2 Kn T

q1/ω
q1(Kin,3)

3 Kin,3 [107] n
2 Kp,q O

q1 ·ω 4+4cosπ
n Pn T 2n(n−1) Kn T

q1−χ 1 if n is odd Cn [107]
3
2 n−4 if n is even

q1(
n−3

2 K2∪K3)−
⌊

n
2

⌋

if n is odd n−3
2 K2∪K3

SO

q1+χ 4+2cosπ
n Pn T 3n−2 Kn T

q1/χ 4
3 if n is odd Cn [107] n

2 Kp,q [107]

q1 ·χ 4+4cosπ
n Pn T 2n(n−1) Kn T

q1−µ 2+2cosπ
n −

⌊

n
2

⌋

Pn T 2(n−1)−
⌊

n
2

⌋

Kn [107]

q1+µ NR 2(n−1)+
⌊

n
2

⌋

Kn T

q1/µ 2+2cosπ
n

⌊ n
2 ⌋

Pn T n Sn [107]

q1 ·µ n Sn [107] 2(n−1)
⌊

n
2

⌋

Kn T

q1−Ra

{

7−2
√

2−n
2 +2cosπ

n if n≤ 10
4− n

2 if n≥ 11
Pn
Cn

[107] 3n−4
2 Kn O

q1+Ra 1
2 +2cosπ

n + n
2 +
√

2 Pn O 5
2n−2 Kn T

q1/Ra

{

4+4cos(π/n)
n−3+2

√
2

if n≤ 14
8
n if n≥ 15

Pn
Cn

[107]

{ 4n−4
n if 4 ≤ n≤ 12
n√
n−1

if n≥ 13
Kn
Sn

O

q1 ·Ra (1+cosπ
n )(n−3+2

√
2) Pn O n(n−1) Kn T

The next table summarizes AGX conjectures first studied in [69]. All the inequalities are formulated for a connected
graphG, except when we writeq1(T) andq1(U), which mean the signless Laplacian index os a treeT and that of a
unicyclic graphU , respectively. In addion to the notation used for Table8 and Table9, BpG denote any connected
bipartite graph. We also need to define the following two graphs Hn andH ′n on n vertices each. Ifn is even,Hn is
constructed as follows from two copies ofKn

2
. Delete an edgeuv from one copy and an edgeu′v′ from the other; then

add the two edgesuu′ andvv′. If n is odd,Hn is constructed as follows from two copies ofKn1
2

and an isolated vertex

w. Delete an edgeuv from one copy ofKn1
2

and an edgeu′v′ from the other; then add the four edgesuw, vw, u′w and

v′w. If n is even,H ′n is obtained from two copies ofKn
2

by adding a single edge connecting the two cliques. Ifn is odd,
H ′n is obtained from two copies ofKn−1

2
and an isolated vertexw by adding two edges betweenw and each cliqueKn−1

2
.
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Table 10: List of AGX conjectures obtained in [69].

Conjecture G st. Conjecture G st.

q1 ≥ 2+2cosπ
n Pn [69] q1(G)≤ 2n−2 Kn [69]

q1(T)≤ n Sn [69] q1(U)≥ 4 Cn [69]

q1(U)≤ q1(S+n ) S+n [69] q1 ≥ ∆+1 Sn [69]

q1 ≥ 2d≥ 2δ ReG [69] q1 ≤ 2∆ ReG [69]

q1−2d ≤ n−4+4/n Sn [90] q1−d ≥ 2 Cn [69]

q1−d ≤ n−1 Kn [90] q1−d−λ1 ≥ 0 ReG [69]

q1−d−λ1 ≤ n−
√

n−1−2+2/n Sn O µ1 +λ1−q1 ≥ 1 Kn [69]

µ1 +λ1−q1 ≤
√

p·q, with p=
⌊

n
2

⌋

, q=
⌈

n
2

⌉

Kp,q O q1−µ1 ≥ 0 BpG [69]

q1−µ1 ≤ n−2 Kn [90] q1−2λ1 ≥ 0 ReG [69]

q1−2λ1 ≤ n−2
√

n−1 Sn O q2 ≥ 1 Sn [69]

q2(T)≤ q2(DCn,p,p), with p=
⌊

n−1
2

⌋

DCn,p,p [69] q2−d ≥−1 Kn [80]

q2−d ≤ n−6+8/n Kn−2,2 O q2−δ ≥−1 Kn [80]

q2−δ ≤ n−3 Kin,n−1 [80] ∆−q2 ≤ n−2 Sn O

∆−q2 ≥
⌊

n−2
2

⌋

−q2(Hn) Hn O q2−λ1 ≥ 1−
√

n−1 Sn [78]

q2−λ1 ≤ n−2−
√

2n−4 Kn−2,2 O q2−a≥ −2 Kn [70]

If G 6∼= Kn, q2−a≥ 0 Sn [70] q2−a≤ q2(H ′n)−a(H ′n) H ′n O

q1−q2 ≤ n Kn [80] If G 6∼= Kn, q1−q2 ≤ n−1 Sn [80]

If G is not bipartite,qn ≥ qn(Kin,3) Kin,3 [59] q1−qn ≥ q1(Pn)−qn(Pn) Pn O

q1−qn ≤ q1(Kin,n−1)−qn(Kin,n−1) Kin,n−1 O q1+qn +2α ≤ 3n−2 CSn,n−α [150]

In addition to the bounds listed in the above table, here are four conjecture obtained with AGX, three of which are
proved in [69] and the last one is refuted in the same paper [69].

Conjecture 6.3 ([69]) Let e(Q) denote the number of distinct eigenvalues of the matrix Q andm(qi) the multiplicity
of the eigenvalue qi . Then e(Q) = 2⇐⇒m(q2) = n−1⇐⇒G∼= Kn.

Conjecture 6.4 ([69]) If G has k duplicate vertices (k> 1), with neighbourhood of size d, then d is an eigenvalue of
Q with m(d)≥ k−1.

Conjecture 6.5 ([69]) If G has k co–duplicate vertices (k> 1), with closed neighbourhood of size d, then d−1 is
an eigenvalue of Q with m(d−1)≥ k−1.

Conjecture 6.6 ([69]) If G is a connected graph of order n≥ 4 with at least two dominating vertices, then q2 =
∆−1= n−2 with multiplicity at most⌊n/2⌋−2.
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[112] P. Hansen, H. Mélot and I. Gutman,Variable neighborhood search for extremal graphs. 12. A note on the variance of bounded
degrees in graphs. MATCH Commun. Math. Comput. Chem. 54 (2005) 221–232.
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[142] X. Li and Y. Shi,On a relation between the Randić index and the chromatic number. Discrete Math. 310 (2010) 2448–2451.
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Mathematics Letters 24 (2011) 752–756.
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[183] D. Stevanović and P. hansen,The minimum spectral radius of graphs with a given clique number. Electronic J Linear Algebra
17 (2008) 110–117.
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