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Abstract: Introduced during the late nineties of the last centuryjalide Neighborhood Search (VNS) was first
designed for solving specific problems in combinatorial giabal optimization. Nowadays, VNS is widely used
as a general framework for solving many different scienfificblems and even in scientific discovery. Actually, it
is used for discovery in graph theory. The AutoGraphiX (AGXstem exploits different techniques from Variable
Neighborhood Search to find extremal graphs, with respeitigtonaximization or minimization of a graph invariant,
and then uses them for generating conjectures. AGX uses éipgroaches for conjecture—makiagalytic, algebraic
andgeometric.In this paper, we describe the AutoGraphiX system and the U in its optimization component.
We present a survey of the conjectures and results obtaiited@ X. Different forms of results that can be studied
by AGX, and future development in the system are also distlis®doreover, more than 150 open conjectures are
mentioned.

Key Words: Variable Neighborhood Search; AutoGraphiX; Extremal ¢igConjecture; Refutation; Automation;
Computer assisted; Open problems on graphs.

Résumé: Introduite durant les derniéres années du siecle pdadRecherche a Voisinage Variable (RVV), fut
d’abord concue pour résoudre approximativement deslémds spécifiques d’optimisation combinatoire ou glob-
ale. Aujourd’hui la RVV est un cadre largement utilisée ptaurésolution de problemes scientifiques nombreux et
divers et méme la découverte scientifique, en particeliethéorie des graphes. Le systeme AutoGraphiX (AGX)
exploite differentes techniques de la RVV pour trouver gephes extrémaux ou quasi—extrémaux maximisant ou
minimisant un invariant graphique, et les utilise pour&n des conjectures. AGX utilise trois approches pour ce
faire: analytique, géométrique et algébrique. Dansrisent article, nous décrivons le systeme AutoGraphiX e
I'utilisation de la RVV dans sa composante d’optimisatiblous passons en revue les conjectures et résultats obtenus
avec AGX. Nous discutons également de differentes formea€sultats qui pourraient étre étudiées avec AGXt le
futurs développements potentiels de ce systeme. Enfus mentionnons plus de 150 conjectures ouvertes.

Mots clés : Recherche a Voisinage Variable; AutoGraphiX; Graphegexaux; Conjectures; Réfutation; Automa-
tisation; Interactivité; Problemes ouverts sur les e
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1 Introduction

Metaheuristicare general frameworks to build heuristics for solving caratorial and global optimization problems.
They have been the subject of intensive research since #tiikg, Gellatt and Vecchil33 proposed Simulated
Annealing as a general scheme for building heuristics whethout of local minima. Several other metaheuristics
were soon proposed. For discussion of the best-known of themeader is referred to the books of surveys edited by
Reeves]71], Glover and Kochenberge®f] and Burke and Kendalk6]. Some of the many successful applications
of metaheuristics are also mentioned there.

Variable Neighborhood SeardvNS) [113 114, 115 116 159 is a metaheuristic which exploits systematically the
idea of neighborhood change, both in descent to local mimingkin escape from the valleys which contain them. VNS
exploits systematically the following observations:

e A local minimum with respect to one neighborhood structsnedt necessary so for another.
e A global minimum is a local minimum with respect to all podsiheighborhood structures.
e For many problems local minima with respect to one or seve@hborhoods are relatively close to each other.

Unlike many other metaheuristics, the basic schemes of VinGits extensions are simple and require few, and
sometimes no parameters. Therefore, in addition to progigery good solutions, often in simpler ways than other
methods, VNS gives insight into the reasons for such a pmdace, which, in turn, can lead to more efficient and
sophisticated implementations.

Function VNS(x, kmax, fmax):

1 repeat

2 k<1,

3 repeat

4 x' < Shake(x, k) /* Shaking */;

5 x" < FirstImprovement(x’) /* Local search */

6 NeighbourhoodChange(x, x", k) /* Change neighbourhood */;

until k£ = ko
7 [ < CpuTime()
until 7 > 7.4

Figure 1: Steps of the basic VNS.

The Basic VNS (BVNS) methodlp9 combines deterministic and stochastic changes of neigtttomd. Its steps are
given in Figurel. Often successive neighbourhoods will be nested. Obsbatepbintx’ is generated at random in
Step 4 in order to avoid cycling, which might occur if detenratic rules were applied. In Step 5, several neighborhoods
may be used. In this case, we speak aha@uiable neighborhood desce(WND), the scheme of which is given in
Figure2. For more details about VNS ans its applications in solvirabfems in different domains of sciences see the
recent surveyI17] as well as the references therein.

Function VND(x, k
1 repeat

2 k< 1;
3 repeat
4

5

max);

x' <« arg min.‘.e_wm f(x) /*# Find the best neighbor in NV (x) #/;
NeighbourhoodChange(x, x’, k) /* Change neighbourhood */;
until k =&/

until no improvement is obtained.

Figure 2: Steps of the basic VND.
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In all its applications, VNS is used as an optimization tddlese applications are mainly solving specific optimizatio
problems. However, VNS can also be usedliscovery scienge.e., help in the development of theories. The first
domain to be addressed in this way was graph theory. VNS isutmdamental tool exploited in the system Auto-
GraphiX (AGX, for short) 12, 54, 55], which is devoted to conjecture—making, and thereforecterdific discovery,

in graph theory. A long series of papers with the common ti¥ariable neighborhood search for extremal graphs
was published. The title are listed in TaldleSeveral of the papers which use VNS without being includidimvthis
series are listed in Tabl2 This system addresses the following problems:

e Find a graph satisfying given constraints;

e Find optimal or near optimal graphs for an invariant subjeconstraints;
e Refute a conjecture;

e Suggest a conjecture (or repair or sharpen one);

e Provide a proof (in simple cases) or suggest an idea of proof.

A basic idea is then to consider all of these problems as petramcombinatorial optimization problems on the infinite
set of all graphs (or in practice some smaller subset) soligda generic heuristic. This is done by applying VNS to
find extremal graphs, with a given numlyeof vertices (and possibly also a given number of edges). BhéND with
many neighbourhoods is used. Those neighborhoods are déijneodifications of the graphs such as the removal
or addition of an edge, rotation of an edge, and so forth. @rest of extremal graphs, parametrized by their order, is
found, their properties are explored with various data ngriechniques, leading to conjectures, refutations angdlsim
proofs or ideas of proof.

Table 1: List of papers in the series “VNS for extremal graphs”.

Ref.  Author(s) Title

1 [55] Caporossi, Hansen The AutoGraphiX System.

2 [49] Caporossi, Cvetkovi¢, Gutman, Hansen Finding graphs with extremal energy.

3 [74]  Cvetkovi€, Simi¢, Caporossi, Hansen On the Largest Eigenvalue of Color-Constrained Trees.

4 [51] Caporossi, Gutman, Hansen Chemical trees with extremal connectivity index.

5 [54] Caporossi, Hansen Three ways to automate finding conjectures.

6 [110 Hansen, Mélot Analysing Bounds for the Connectivity Index.

7 [93] Fowler, Hansen, Caporossi, Soncini Polyenes with maximum HOMO-LUMO gap.

8 [17]  Aouchiche, Caporossi, Hansen Variations on Graffiti 105.

9 [109 Hansen, Mélot Bounding the irregularity of a graph.
10 [98] Gutman, Hansen, Mélot Comparison of irregularity indices for chemical trees.
11 [39] Belhaiza, Abreu, Hansen, Oliveira Bounds on algebraic connectivity.
12 [11Z Hansen, Mélot, Gutman A note on the variance of bounded degrees in graphs.
13 [30] Aouchiche, Hansen A propos de la maille (French).
14 [12)  Aouchiche, Bonnefoy, Fidahoussen, CaporossiThe AutoGraphiX 2 system.

Hansen, Hiesse, Lacheré, Monhait
15 [118 Hansen, Stevanovict On Bags and Bugs.

16 [11]  Aouchiche, Bell, Cvetkovi¢, Hansen, Rowlinson, Some conjectures related to the largest eigenvalue of agrap
Simi¢, Stevanovic

17 [35] Aouchiche, Hansen, Stevanovic Further conjectures and results about the index.

18 [37]  Aouchiche, Hansen, Zheng Conjectures and results about the Randi¢ index.

19 [36] Aouchiche, Hansen, Zheng Further conjectures and results about the Randi¢ index.

20 [15]  Aouchiche, Caporossi, Hansen Automated comparison of graph invariants.

21 [13]  Aouchiche, Brinkmann, Hansen Conjectures and results about the independence number.
22 [20]  Aouchiche, Favaron, Hansen Extending bounds for independence to upper irredundance.
23 [119 Hansen, Vukicevict On the Randic index and the chromatic number.

24 [173  Sedlar, Vukitevit, Aouchiche, Hansen Conjectures and results about the clique number.

25 [174  Sedlar, Vukicevic, Aouchiche, Hansen Products of connectivity and distance measures.

26 [19]  Aouchiche, Favaron, Hansen Nouveaux résultats sur la maille (French).

27 [16]  Aouchiche, Caporossi, Hansen Families of extremal graphs.
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Table 2: A further list of papers on AGX and its conjectures.

Ref.  Author(s) Title
1 [1]  Abdo. Dimitrov, Gutman On the Zagreb indices equality.
2 [2] Abreu Old and new results on algebraic connectivity of graphs
3 [5] Andova, Bogoev,  Dimitrov, Pilipczuk, On the Zagreb index inequality of graphs with prescribedteseide-
Skrekovski grees.
4 [6] Andova, CohenSkrekovski A note on Zagreb indices inequality for trees and unicyctaps.
5 [71  Andova, CohenSkrekovski Graph classes (dis)satisfying the Zagreb indices inetyuali
6 [8] Andriantiana Unicyclic bipartite graphs with maximum energy.
7 [9] Andriantiana, Wagner Unicyclic graphs with large energy.
8 [10]  Aouchiche Comparaison automatisée d’invariants en théorie depbes
9 [14]  Aouchiche, Caporossi, Hansen Open problems on graph eigenvalues studied with AutoGxaphi
10 [18]  Aouchiche, Caporossi, Hansen, Laffay AutoGraphiX: A Survey.
11 [2]  Aouchiche, Hansen Two Laplacians for the distance matrix of a graph
12 [22]  Aouchiche, Hansen Proximity, remoteness and girth in graphs.
13 [24]  Aouchiche, Hansen The normalized revised Szeged index
14 [25]  Aouchiche, Hansen Proximity and remoteness in graphs: results and conjesture
15 [26]  Aouchiche, Hansen On a conjecture about the Szeged index
16 [27]  Aouchiche, Hansen Nordhaus-Gaddum Relations for Proximity and RemoteneSsaphs.
17 [28]  Aouchiche, Hansen A survey of automated conjectures in spectral graph theory
18 [29]  Aouchiche, Hansen Bounding Average Distance Using Minimum Degree.
19 [3] Aouchiche, Hansen Automated Results and Conjectures on Average DistanceaptGr
20 [32  Aouchiche, Hansen On a Conjecture about the Randic Index.
21 [33]  Aouchiche, Hansen, Lucas On the extremal values of the second largest Q—eigenvalue
22 [34]  Aouchiche, Hansen, Stevanovic A sharp upper bound on algebraic connectivity using donmmatum-
ber.
23 [38] Bekkai, Kouider On mean distance and girth
24 [42]  Bykoglu, Leydold Graphs of given order and size and minimum algebraic corvigct
25 [43 Bogoev A proof of an inequality related to variable Zagreb indices $§imple
connected graphs
26 [47]  Caporossi Découverte par Ordinateur en Théorie des Graphes.
27 [48] Caporossi, Chasset, Furtula Some conjectures and properties of distance energy
28 [60]  Caporossi, Dobrynin, Gutman, Hansen Trees with Palindromic Hosoya Polynomials.
29 [62]  Caporossi, Gutman, Hansen, Pavlovic Graphs with maximum connectivity index.
30 [63] Caporossi, Hansen A learning optimization algorithm in Graph Theory. VerégatSearch
for extremal graphs using a learning algorithm.
31 [66] Caporossi, Hansen, Finding relations in polynomial time
32 [67]  Caporossi, Hansen, VukiCevic Comparing Zagreb indices of cyclic graphs
33 [58]  Caporossi, Paiva, Vukicevit, Segatto Centrality and betweenness: vertex and edge decompogifiche
wiener index.
34 [69] Cardoso, Cvetkovit, Rowlinson, Simic A sharp lower bound for the least eigenvalue of the signlegsdcian
of a non-bipartite graph.
35 [61] Chang, Tam, Wu Theorems on partitioned matrices revisited and their agilons to
graph spectra
36 [62] Chen, Li, Liu The (revised) Szeged index and the Wiener index of a nonibgar
graph
37 [63] Chen, Li, Liu On a relation between the Szeged index and the Wiener indbipfo-
tite graphs
38 [69] Cvetkovit, Rowlinson, Simic Eigenvalue bounds for the signless Laplacian
39 [70]  Cvetkovit, Simit Towards a spectral theory of graphs based on the signlesktiap, |.
40 [71]  Cvetkovit, Simit Towards a spectral theory of graphs based on the signlestatiap,
Il.
41 [72]  Cvetkovit, Simit Towards a spectral theory of graphs based on the signlestatiap,
M.
42 [75] Cygan, Pilipczuk Skrekovski On the inequality between radius and Randi¢ index for gsaph
43 [76] Das Proof of conjectures on adjacency eigenvalues of graphs
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Li, Zhang, Wang
Liang, Liu

Liang, Liu

Lima, Oliveira, Abreu, Nikiforov
Liu

Liu, Gutman

Proof of conjectures involving the largest and the smalghless
Laplacian eigenvalues of graphs

Proof of conjecture involving the second largest signleaplacian
eigenvalue and the index of graphs.

Conjectures on index and algebraic connectivity of graphs

On conjectures involving second largest signless Laplaeigenvalue
of graphs.

On comparing Zagreb indices of graphs.
On a conjecture of Randict index and graph radius.

Proof of the first part of the conjecture of Aouchiche and Hemabout
the Randic index.

Randic index and the diameter of a graph.

On three conjectures involving the signless Laplacian spb@dius of
graphs.

Alkanes with small and large Randit connectivity indices.

How far is, should and could be conjecture-making in graptotly an
automated process?

Computers in Graph Theory.

AutoGraphiX: an automated system for finding conjecturegraph
theory.

Average distance and maximum induced forest.
Bounds and conjectures for the signless Laplacian indexayftts

Aninequality for the signless Laplacian index of a grapgghe chro-
matic number.

Computers and Discovery in Algebraic Graph Theory.
Comparing the Zagreb indices.

On comparing Zagreb indices of graphs.

Comparing Zagreb indices for connected graphs.

Unicyclic graphs with minimal energy

Unicyclic graphs with maximal energy.

Bipartite unicyclic graphs with large energy.

Proof of a conjecture involving remoteness and radius opgs
Solutions to unsolved problems on the minimal energies @ttasses
of graphs

Complete solution to a problem on the maximal energy of ehpi-
partite graphs.

Complete solution to a conjecture on the maximal energy afyalic
graphs.

On the extremal properties of the average eccentricity
On comparing Zagreb indices.
A survey of research in automated mathematical conjecineding

Notes on “A proof for a conjecture on the Randic index of gravith
diameter”.

Bicyclic graphs with maximal revised Szeged index.

A proof of a conjecture on the Randi¢ index of graphs witlegigirth
Complete solution to a conjecture on Randi¢ index.

On arelation between the Randi¢ index and the chromatichanm
Randic index, diameter and the average distance.

A survey on the Randi¢ index.

Corrections of proofs for Hansen and Mélot's two theorems.

On a relation between Randic index and algebraic conniggtiv

On bipartite graphs with minimal energy

A proof of two conjectures on the Randic index and the a\esagen-
tricity.

On the Randi¢ index and girth of graphs.

The smallest eigenvalue of the signless Laplacian.

On a conjecture about comparing Zagreb indices

On a conjecture on Randi¢ indices
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89 [153 Liu, Liang, Cheng, Liu A proof for a conjecture on the Randic index of graphs witimater.
90 [154 Liu, Pavlovic, Divni¢, Liu, Stojanovic On the conjecture of Aouchiche and Hansen about the Randéxi
91 [159 Liu, You A survey on comparing Zagreb indices.
92 [15 Ma, Wu, Zhang Proximity and average eccentricity of a graph.
93 [157 Majstorovic, Caporossi Bounds and relations involving adjusted centrality of tleetices of a
tree
94 [154 Meélot On Automated and Computer Aided Conjectures in Graph Theory
95 [163 Oliveira, Lima, Abreu, Kirkland Bounds on the Q-spread of a graph
96 [169 Pavlovic Comment on “Complete solution to a conjecture on Randiéxid
97 [169 Rada Lower bounds for the energy of digraphs
98 [177 Sedlar Remoteness, proximity and few other distance invariangsaphs
99 [179 Sedlar, Vukicevic, Hansen Using size for bounding expressions of graph invariants
100 [177  Stevanovict Comparing the Zagreb indices of the NEPS of graphs
101 [178  Stevanovic Resolution of AutoGraphiX conjectures relating the indest enatching
number of graphs
102 [179 Stevanovict Research problems from the Aveiro Workshop on Graph Spectra
103 [181]  Stevanovit On a relation between the Zagreb indices
104 [182  Stevanovit, Aouchiche, Hansen On the spectral radius of graphs with a given domination nemb
105 [183  Stevanovit, Hansen The minimum spectral radius of graphs with a given clique lbemm
106 [184  Stevanovic, llic Spectral properties of distance matrix of graphs.
107 [189  Stevanovic, Milani¢ Improved inequality between Zagreb indices of trees.
108 [186 Sun, Chen Comparing the Zagreb indices for graphs with small diffeebetween
the maximum and minimum degrees.
109 [187 Sun, Wei Comparing the Zagreb indices for connected bicyclic graphs
110 [189 Vukitevic, Caporossi Network descriptors based on betweenness centrality amstnission
and their extremal values
111  [190 Vukicevic, Graovac Comparing Zagreb M1 and M2 indices for acyclic molecules.
112 [191] VukiCevic, Gutman, Furtula, Andova, Dimitrov Some observations on comparing Zagreb indices.
113 [193 Wu, Liu, An, Yan, Liu A conjecture on average distance and diameter of a graph
114 [194 Yang, Lu The Randi¢ index and the diameter of graphs.
115 [195 Yang, Wu, Yan On the sum of independence number and average degree of la grap
116 [196 Ye, Fan, Wang Maximizing signless Laplacian or adjacency spectral radif graphs
subject to fixed connectivity
117  [197 You, Liu On a conjecture of the Randi¢ index
118 [19§ VYu, Lu, Tian New upper bounds for the energy of graphs.
119 [99 Zhang, Liu On a conjecture about the Randit index and diameter
120 200 Zuo About a conjecture on the Randi¢ index of graphs

The rest of the paper is organized as follows. In the nexi@meute describe the AutoGraphiX system, and how it uses
VNS. We also briefly report on the earliest results of AGX.t#er3 summarizes AutoGraphiX conjectures that are
bounds on single graph invariants. Sectbis a survey of results of the form callé@GX Form 1 These results were
obtained as the outcome of systematic comparison of monatttenty graph invariants. Other forms of AutoGraphiX
results such as bounds on a combination of more than twoiamtaror Nordhaus—Gaddum type relations, are over
viewed in Sectiorb. In Section6, we discuss different forms of results that can be studiéugusutoGraphiX. To
finish some conclusions are drawn, in terms of desirablegsti@s of conjectures and how much they are shared by
those found with AGX.

2 The AutoGraphiX system

Among the first application of VNS, a computer program, ahtleeAutoGraphiX systefAGX, for short) [12, 54, 55],

was built for conjecture—making in graph theory. This systeas been developed at GERAD, Montreal, since 1997.
Conjectures obtained with AGX were proved by the presemiastor by graph theorists from several countries, mainly
Serbia and China.



6 G-2013-12 Les Cahiers du GERAD

A graph invariant is a function of a grafghwhich does not depend on labeling®% vertices or edges. Examples of
graph invariants are the diameter, the radius, the aveliaggnde, the independence number and the index (definitions
will be given below). Graph theory is replete with theoremoiving graph invariants. They are eitha&ligebraic
i.e.,equalities or inequalities involving one or several ingats, orstructural i.e., characterizations of the families of
graphs for which an invariant takes an extremal value. Bgples of results can be conjectured by AGX, in a fully
automated way, or in some cases, to be carefully distingdish an assisted way.

Let ¢4, and¥, m denote respectively the sets of all graphs witvertices, and witn vertices anan edges. Two basic
ideas underlie the systems AGX:

e Most problems of extremal graph theory can be viewed as proslof parametric combinatorial optimization of

the form
i i(G i i(G 1
mln/gneggfl( ) or mm/ergs%nl( ) Q)

for some invariant(G) with parameters n and m, or the exploitation of their solotid¢in practice only moderate
values of n and m will be considered);

e All problems of the form1) can be solved approximately by a generic heuristic.

To obtain such a heuristic, the Variable Neighborhood Searetaheuristic (VNS) is specialized. VNS exploits sys-

tematically changes in neighborhoods used in the searth,ibh@ descent phase to obtain a locally extremal graph,
and in a "shaking” phase, to get out of the correspondingydlbr away from the corresponding mountain) in order

to find a better graph.

Rules of VNS applied in AGX are the following:

1. Select the set of neighborhood structursk = 1, ... kmax that will be used in the search for a better locally
optimal graph, and a stopping condition. Choose an initiabpG.

Repeat until the stopping condition is met:
2. Setk=1,
3. Until k = knay, repeat the following steps:

(a) (shaking generate a grap@ from thek™ neighborhood 06 (G’ € Nk(G));

(b) (descentapplyVariable Neighborhood Descent (VNR)th G’ as initial graph; denote wit&” the locally
optimal graph obtained;

(c) (improvement or continuatigif i(G") is better than(G), the best value dffor a previously visited graph,
move therej.e., replaceG by G”, and continue search withM; (G); otherwise, sek + k+ 1.

The stopping condition is usually a maximum computing tifi@e optimization routine of VNS is callechariable
neighborhood descentt exploits systematically larger and larger neighbord®of the current graph, and performs
a move whenever it is profitable (fast improvement) or is &lest within its neighborhood (best improvement). The
neighborhoods used initially in AGX are the following: remep add, move, detour, short cut, 2—opt, insert pending
vertex, add pending vertex, and remove vertex. They argiited in Figure.

In the most recent version of AGX, the VND routine is replatgd_earning Descen(LD), in order to keep track

of which transformations are the most fruitful and to rene®their use. The learning descent used in AGX was
described in$3]; it is an improvement of the optimization algorithm thatsdescribed in12]. The Learning Descent
(LD) is based upon a meta-transformations that could ewadgithe used within the VND frame. However, by itself,
the learning descent replaces most of the classical tranaf®ns as those available in the early version of AGX for
example. Each transformation is described as the replateshan induced subgrag of G by another subgrapt’.

In the current implementation, the ordergbfandg”) is 4, which implies at most 6 edges. There ate=264 possible
labelled subgraphs to be considered. Each induced subgrapt is identified and the substitution gfby any other
subgraphy” is considered. As enumerating and evaluating all the atesubgraphg” to replacey’ would be very
time consuming, replacing/ by g” will only be evaluated if there are good reasons to belieigitorthwhile.

The implementation of this method encodes each subgyaphg” as a label (number) based upon the 64 patterns
as follows. After relabeling its vertices from 1 to 4 by pneseg their order, each subgraphis characterized by a
unique label from 0 to 63 as follows:
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Figure 3: Neighborhoods initially implemented in AGX.

pattern O (vector = 000000): empty subgraph
pattern 1 (vector = 000001 = {(1,2)}
pattern 2 (vector = 000010 = {(1,3)}

pattern 13 (vector = 001101 = {(1,2),(1,4),(2,3)}

pattern 63 (vector = 111111): complete subgraph on 4 vertice

A 64 x 64 transformation matriX = {t;; } is used to store information on the performance of each plessiansfor-
mation from pattermto pattern;.

The LD algorithm on Figurd could be described by the following observations:

1. The pertinence of changinyjinto g” (replacing patterrp’ by patternp”) is memorized in a 64 64 matrixT
which is initially set toT = {t;; = 0}.

2. During the optimization, each induced subgraplis considered for replacement by any possible alternative
subgraphy” but this replacement will not necessarily be evaluated.

3. The probability to test the replacement of pattefyl) by j (g") is p = sig(ti;) = H—el,q The initial probability
to test a replacement is 50% according to point 1.

4. For any tested transformation, if changiigwith patternp’) to g” (with patternp”) improves the solution, the
entryty » of T is increased by (and reduced by~ otherwise), withd" > 6~ because it is more important
to use an improving transformation than to avoid a bad oneo A4 good transformation may fail, specially
if the graph already has a good performance (here, wedlise 1 andd~ = 0.1). The probability to test a
transformation increases when it succeeds, but decrdasdees not.

As it is often the case in neural networks, the sigmoid fuorcsig(x) is used to define the probability to test a transfor-
mation. Figureb represents the replacementpatttern 60by pattern 27on a given grapl® for the induced subgraph
¢ defined by vertices 1, 3, 5 and 6.

Note that if the algorithm were restricted to Step 2, it woigdd to reduce the probability to use any transformation
when good solutions are encountered since few transfoomatvould improve such solutions. To avoid this problem,
the matrixT is centered after each local search to an average vah

Once a set of (presumably) extremal graphs has been founggatores can be stated by one of the following 3
approachesg4):

(i) a numerical methodvhich applies the mathematics of Principle Component Asial{56] to determine, in
polynomial time, a basis of affine relations between invagasatisfied by the extremal graphs found.
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Step 1: Initialization
Load the last version of the matrix 7 for the problem under study if it exists
and initialize T = {t;; = 0} otherwise.
Step 2: Apply Local Search
set improved « true
while improved = true do:
set improved « false
For each subgraph g’ of G on n’ vertices do:
let p; be the corresponding pattern
For each alternative pattern p;
(corresponding to g”’):
let x be an uniform 0-Irandom number.
if x < sig(r;;) do:
if replacing g’ by g’ in &G improves the
solution:
apply the change
set improved « true
set tij = tij + ot
otherwise:
settyj =4 —0".
done
done
done
Step 3: Scale the matrix T
Let 7 be the average value of the terms r;; # 0.
For each 1;; # 0:
set i =ty — 1.
Step 4: Save the matrix T for future usage

Figure 4: Rules of the Learning Descent.

(ii) a geometric methoavhich views extremal graphs as points in invariants spaceagplies a “gift-wrapping”
algorithm to find their convex hull and linear inequalityatbns associated with its facets. Note that a similar
approach is used in the recent system GraPHeddn [

(iii ) analgebraic method10, 15, 12] which recognizes to which family (or families) of graphgtéextremal graphs
belong, then uses a database of formulae for invariantsiictiin of the order o6 to obtain conjectures.

3 Bounding invariants

The AutoGraphiX system was built for finding extremal graplith respect to a given invariant or an algebraic com-
bination of invariantsj.e. finding graphs that minimize or maximize a given invariamdtion. Once the extremal
graphs obtained, research is done for finding a lower bourttiei case of minimization, or an upper bound in case of
maximization, on the invariant function under study. Thuturally, the first AGX task is bounding one invariant at
time, i.e., without considering combinations of invariants.

The degreeof a vertexv in G, denoted byd(v) = dg(v) is the number of vertices adjacentitdn G. The minimum,
average andnaximum degreds G are denoted by, d andA respectively. The distanaiu,v) = dg(u, V) between
two verticesu andv in a graphG is thelength(number of edges) of a shortest path betweemdv. The average
distances denoted by.

The problem of upper bounding the average distance in tefroder and minimum degree was studied using Auto-
GraphiX in [29]. Six conjectures were obtained, one of which was provet,Rive state the proved result.

Theorem 3.1 ([29]) Let G= (V,E) be a connected graph ona 7 vertices with average distané@nd minimum
degreed > 2. Then

with equality if and only if G is composed of two triangleskéa by a path.
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Pattern 60 Pattern 27

Figure 5: lllustration of the transformation @ (left) to G’ (right).

After the above result, we progressively generalized opegrments according to the value of the minimum degree:
0 =3,6 =4 andd = 5. Then, the general case, with a given lower bound evas considered. Among the obtained
conjectures, we recall only the next two. Some graph defimstare needed.

(a) Letnandd be integers such that= q(d + 1) with g > 2 andd > 3. Consider the grap@ obtained from the

graph composed af copies ofKs, 1, sayK}, ; fori=1,2,...q, by removing an edge'v' from eachK} , for

i =2,...q—1, then adding the edge&' ™, u? andv4~1v whereu is any vertex fronk} ; andv any vertex

from Kgﬂ. If g=2, there are two copies &, 1, then we add only the edge. See Figur&for (n,0) = (25,4).

Figure 6: Presumably extremal graph for, &) = (25,4).

(b) Letn andd be integers such that= q(d+ 1) + 2 with g > 2 andd > 3. Consider the grap@ obtained from

the graph described in (a) by replacing each(éjrl and KgJrl by the grapiH obtained fromKs 5 on the set
of vertices{wi,wo,...Ws,,}, by deleting the edges;wy, wiws andw;wi; fori =4,6,---p+1, wherep =90
if disevenandp= 95+ 1if dis odd. The vertices andv from the graph described in (a) corresponavo
from each copy oH respectively. Again, ifj= 2, there are two copies &f, then we add only the edge. See

Figure7 for (n,0) = (22,4).

Figure 7: Presumably extremal graph far, &) = (22, 4).
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Conjecture 3.2 ([29]) Let G= (V,E) be a connected graph on n vertices with minimum deg@ree3 where n=
(6+1) -k for some integer k 2. Then the average distantef G satisfies

- n+1 45 46%°-6-2
<s—=-—4+ 5

0+1 n  (0+1)(n—-1)
with equality if and only if G is obtained as described in (a).

Note that Kouider and Winklerl34 gave the extremal graphs of Conject® as extremal cases, without a proof,
for the casen = (& + 1)k. However, the corresponding bound does not appear to beaizable for all integers and
d. If true, the next conjecture provides a global and sharguppund or in terms ofd.

Conjecture 3.3 ([29]) Let G= (V,E) be a connected graph on n vertices with minimum de@ree3. Then the
average distanckof G satisfies

[+l 262 — 145+36+ 1252 — 755 + 150
—0+1 n (64+1)(n—-1)
The bound is reachable only if=a (6 + 1) - k+ 2 for some integer k- 2, in which case the extremal graph G is the
graph obtained as described in (b).

Theadjacency matrix Af G is a 0—1n x n—matrix indexed by the vertices & and defined by = 1 if and only if

ij € E. Denote by(A1,As,...,An) theA—spectrum o6, i.e., the spectrum of the adjacency matrix&fand assume that
the eigenvalues are labeled such thgt A, > --- > An. Thespectral spreadf G is defined bys(G) = A1(G) — An(G).

The problem of finding the maximum value &fG) among the class of connected graphs of given ondsran open
problem. Experiments were done with the AutoGraphiX systerstudy the problem, and the extremal graphs were
found. Little can be found in the literature concerning thecral spread of a graph. All graphs whose spectral spread
does not exceed 4 are determined166|. The spectral spread of unicyclic graphs has been studi¢ti7ig. The
problem of maximizings(G) over the class of connected graphs was studied using Aupbtan [11] (see also
[14, 28]). A conjecture was obtained, but before its statemenglréee following definition. Acomplete split graph
with parameters, g (q < n), denoted byCS(n,q), is a graph om vertices consisting of a clique anvertices and an
independent set on the remaining- q vertices in which each vertex of the clique is adjacent tcheaatex of the
independent set. An example of a complete split graph isgiv&igure8.

Figure 8: The complete split grapbS10,4) and its complement.

The spectrum of a complete split grapg(n,q) is

-1 49n—3g%-2q+1 g-1 /4qn-3¢2—2g+1
Tt 2 0 -1 e
1 n—q-—1 q-1 1

Now, we can state the conjecture which seems to be very hanbie.

Conjecture 3.4 ([14]) Let G be a connected graph oren3 vertices. Then
s(G) < v/4qn— 32— 29+ 1

with equality if and only if G is the complete split graph(@s3)) with an independent set of size-gy = [g] and a
clique of size g= | 4.
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Note that the above conjecture did appeardg][in terms of extremal graphs only, where it has been verifigd
computer for graphs up to 9 vertices, but remained unsolved.

Theenergy EG) of a graphG, introduced by Gutmard[7] in 1978 (see 6] for a survey), is defined as the sum of the
absolute values of its eigenvaluées,

E(G) = iw«sn:z T M@ =23 (O
i= Ai>0 Ai<0

A lollipop Lolng, with n > g > 3, is a graph obtained from a cydliy and a patP,_g by adding an edge between
a vertex from the cycle and an endpoint from the path (seer€@tor Lolige). Lolyn—1 is called the short lollipop
while Lol 3 is the long lollipop and.ol, , is the cycleC,.

Figure 9: The lollipopLolige.

In order to find lower and upper bounds on the energy, Capip@gstkovi¢, Gutman and Hanse#d used the AGX
system. They found the following conjectures afterwardsed by hand.

SRORORY
ORGIORV/

Figure 10: Unicyclic graphs with largest energy o= 5,...,12.

Theorem 3.5 Let G be a simple graph on n vertices and m edges with energh&n T

1. E>4m/n;

2. E> 2,/m with equality if and only if G is a complete bipartite graphppossibly some isolated vertices;
3. if G is connected, B 2v/n— 1 with equality if and only if G is the star,S

4. E < 2m with equality if and only if G is composed of disjoint edged possibly isolated vertices.

In this study, the particular case of unicyclic graphs wassaered. Some unicyclic graphs that maximize the energy
are given in Figurd 0. The following conjecture was stated.

Conjecture 3.6 Among unicyclic graphs on n vertices the cycleh@s maximal energy if & 7and n=9,10,11,13
and15. For all other values of n the unicyclic graph with maximunegy is the lollipop Lal .

This conjecture was studied and partial results were foanfindriantiana 8], Andriantiana and Wagne®], Hua
[12€, Hou, Gutman and WoalRH, Huo, Li and Shi 129 130.

The problem of finding bicyclic graphs with maximum energysvedso widely studied. It was posed by Gutman and
Vidovi€ [100. In [14], the authors considered a more general form of the problEirst, we need the following
definitions. Letp,q,r be integers such that= p+ g. For an integen such than > 6r + 2, let P66 he the graph
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o-f G f

Figure 11: The tricyclicP?*6:1<6 and the quadricycli®?*%2<6 graphs.

obtained fronr copies ofCs and a path,_g with endpointsu andv, by adding an edge betweerand each ofp
copies 0fCs and an edge betweanand each of the| other copies oCs. See Figurell for P2*6:1x6 gndp2x6:2x6,
Now the general conjecture is the following.

Conjecture 3.7 Letr and n be positive integers such thatrér + 4. Then

E(G) < E(PP*®9x®),

where p= [r/2] and g= |r /2], with equality if and only if G= PP,

The Laplacianof a graphG is the matrix defined bf) = Deg— A, whereDegis the diagonal matrix whose diagonal
entries are the vertex degreesdrandA is the adjacency matrix @&. TheLaplacian spectrunof G is the spectrum of
Qand is denoted by, Uy, . .. Uy, whereuy > o > -+ > un_1 > Un = 0. The second smallest Laplacian eigenvalue of a
graphG is calledalgebraic connectivitpf G [91] and denotea = a(G). In [39], Belhaiza, Abreu, Hansen and Oliveira
performed experiments using AGX and obtained lower and uppends on the algebraic connectivity. Among their
results the following upper bound.

Theorem 3.8 ([39]) Let G be a connected graph on n vertices and m edges with @gstonnectivity a. If G2 K,

then
a< {—1+ \/MJ .

Moreover, the bound is sharp for all g 2.

Thesignless Laplaciamf a graphG is the matrix defined by = Deg+ A, whereDegis the diagonal matrix whose
diagonal entries are the vertex degree§iandA is the adjacency matrix @b. Thesignless Laplacian spectruaf G

is the spectrum o and is denoted bgj1, 0y, . . . gn, Whereqy > g2 > - - - 0. For more details abo@ and its spectrum,
see [r0, 71, 72,69]. The paper$9], by Cvetkovi¢, Rowlinson and Simit, reports on AutoGnafconjectures obtained

at GERAD and related to the signless Laplacian spectrum cdjahg Some examples of these results are given below
and a complete list is given in Tabl® in the Appendix. Hansen and Lucd<®f used AutoGraphiX for studying the
problem of upper bounding the largest signless Laplacigensialuey; in terms of orden and chromatic numbey of

G (the minimum number of colors that can be assigned to thé&esrdf a graph such that two adjacent vertices are not
assigned the same color), and also in therms of order angeatigmberw (the maximum number of pairwise adjacent
vertices in a graph). The bounds obtained using AGX and theveg are gathered in the next theorem.

Theorem 3.9 ([108]) Let G be a graph on n vertices with largest signless Laplacjgrchromatic numbe and
cligue number. Then
2n(x—1)
X
with equality if and only if G is is a complete regulgrpartite graph; and

01 <

2n(w—1)

<
gL < o

with equality if and only if G is is a complete regulaxpartite graph.
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TheAlbertson irregularity Al= Al(G) of a graphG = (V,E), introduced by Albertsor3] in 1997, is defined as the of
the absolute values of the differences between the degfétes end-vertices of the edges@fi.e.,

Al = Al(G) = 2E|d(u) —d(v)|.

Note that the differencgl(u) — d(v)|, for an edgeuvis called by Albertson3] the imbalanceof uv.

Hansen and MélotlJ09 used AutoGraphiX to find an upper bound on the Albertsorgistarity in terms of order
n and sizem. Their experiments did not only conjecture a bound but aisosdggest a clear idea for proving it.
Some of the extremal graphs suggested by AutoGraphiX amepted in Figurdd2. These graphs belong to the
well-known family offanned complete split graphé fanned complete split graphith parameters,q,t(n > q>t),
denoted byrCS(n,q,t), is a graph (om vertices) obtained from a complete split grap®n, q) by connecting a vertex
from the stable set by edgesttmther vertices of the stable set. The curves of the irredgyltor 9 <n < 12 and
n—1<m<n(n—1)/2are givenin Figurd3.

Al=30 Al =28 Al =28 Al =30 Al=34
Al =40 Al =36 Al =34 Al =34
Al =30 Al =26 Al =24 Al =16

250

200

150 |

Irregularity

=]
53

Number of edges

Figure 13: The curves oAl for9 < n< 12.

The extremal graphs were obtained by AutoGraphiX usingglesimove:the rotation of an edgéf uve E anduw¢ E,

the rotation of thaivto uwis the suppression afv and the addition ofiw). From where the proof idea: show that for
any non-optimal graph, there exists an edge rotation tlta¢ases the irregularity. This proof works and the result is
the following:



14 G-2013-12 Les Cahiers du GERAD

Theorem 3.10 ([109]) If G is a graph on n vertices and m edges, then
Al(G) <s(n—s)(n—s+1)+t(t—2s—1)

where

1 1\2 s(s—1)
S=n—5-— (n—é) —2m andt_m—s(n—s)—T.

Moreover, the bound is attained if and only if G is fanned clatepsplit graph.

4 AGX Form1

In this section, we report on a particular form of resultsaited using AGX. More precisely, in our experiments, we
considered a set of invariants (20 at first and then few othiers added) and sought expressions of the following form
(called AGX Form 1):

b(n) <iz @iz <b(n) )

wherei; andi, are invariants of a grap® from the chosen set; denotes one of the 4 operatiofs—, / and x, b(n)
andb(n) are, respectively, lower and upper bounding functions deipg on theorder n, or number of vertices, db
which arebest possibld.e., such that for each value of(except possibly very small ones, due to border effectsethe

is a graphG for which the bound is tight. The order of invariamtsandi, in (2) is arbitrary. Ford equal to+ or

x, changing this order has no effect; ferequal to— or /, such a change permutes lower and upper bounds (bounds
being multiplied by—1 in the former case and ratios in the bounds inverted aldoditetter one). Note that the form

(2) is reminiscent of the well-known Nordhaus-Gaddum refaifi 61]; however, it generalizes this last form in two
ways:

(i) the operations- and/ are considered in addition te and x;

(ii) the invariantsi; andi, are independent instead of haviagG) = i1(G), whereG denotes the complementary
graph ofG, in which an edge joins verticasandyv; if and only if there is no such edge &

In the thesis 10] expressions of AGX Form 1 were systematically studied flpairs of invariants among a list of 20,
given in Table3. This amounts to 1520 cases. Results are summarized in §aien in the Appendix. For each
case, we give the formulae for the lower and upper boundshegwith the status of the conjecture: known (K), trivial
(T), open (O), assisted open (AO), structural open (SOlteef (R). For a proved automated, assisted or structural
conjecture, we refer to the paper where it is proved, and dieate that no result is obtained (NR) whenever it is the
case. Statistics on the numbers of cases which fall in thesgories are given in Tabde It appears that:

(i) cases in which no result was obtained (because the gaijghged by AGX do not present sufficient regularity)
are rare ( 3.62%);

(i) known results rediscovered by AGX are also rare (2.43%)

(iii) complete resultsi.e., algebraic formulae and extremal graphs, are frequen8¢82). They comprise obvious
results, usually proved automatically by AGX (55.59%), and trivial results proved by hand either at GERAD
or by graph theorists of various countries (23.75%), in stages references to the proofs are given;

(iv) in some other cases only structural conjectures,only families of extremal graphs are obtained (11.06%), in
some cases formulas are obtained by hand (5.67%);

(v) cases where AGX conjectures were refuted are rare (3,;62%
(vi) there remains a consequent number of open conject842%). This is due to the fact that our systematic effort

done to prove some families of conjectures was not enougabisbme invariants appearing there are hard to
handle or that some conjectures appear to be hard.

Results for a pair of invariants can bempletei.e., consist of both conjectured best possible functiofrg andb(n)
and the corresponding characterizations of the extrenagigy, orstructural i.e., consist of the characterizations of
extremal graphs only. This last case occurs when algebxairessions fob(n) andb(n) are too difficult for AGX to
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Table 3: The 20 invariants considered ib(] for the AGX Form 1.

A The maximum degree.

1) The minimum degree.

d The average degree.

T The average distance between all pairs of vertices.
D  The diameter.

r The radius.

g The girth, the length of the smallest cycle in a graph.
ecc The average eccentricity.

71 The proximity or minimum normalized transmission.
P The remoteness is maximum normalized transmission.
A1 The index or spectral radius.

Ra The Randi¢ index.

a The algebraic connectivity or second smallest Laplacigeraialue.

% The vertex connectivity.

K The edge connectivity.

a The independence number.

B The domination number.

w  The cligue number.

X The chromatic number.

U The matching number.

Table 4: Summary of results.

Known results reproduced 37 (2.43 %)
Obvious results 845  (55.59 %)
Complete results proved by hand 361 (23.75 %)
Proved structural results and formulae by hand 46 (3.03 %)
Proved structural results only 21 (1.38 %)
Open complete results 33 (2.17 %)
Open structural results and formulae by hand 34 (2.24 %)
Open structural results only 61 (4.01 %)
Refuted complete results 21 (1.38 %)
Refuted structural results and formulae by hand 6 (0.40 %)
Refuted structural results only 0 (0.00 %)
No results 55 (3.62 %)
Total 1520 (100 %)

obtain, or when such expressions do not exgi, because they correspond to solutions of an equation of eé&goe
more.

In some fairly frequent cases, complete results are simmdecan be proved by AGX in a fully automated way; we
then refer to them asbservations|f results are structural, algebraic expressionsfoy) andb(n) can sometimes be
deduced, in an assisted way, from the characterizationtcfraal graphs. In some fairly rare cases the graphs obtained
by AGX and conjectured to be extremal present very little@regularity and no results are obtained.

In each casei.e., each bound, graphs with 5 to 20 vertices were considereanp@bng time on Intel Xeon with
2.66 GHz and 2 Gb RAM, at that moment, varied from less tharcarsgin the frequent case in which a bound could
be obtained automatically, without using VNS, up to 75 selsguer graph in the most complex cases, whether results
were obtained or not. Trying longer computing times did rie¢ dpetter results.

Among all bounds conjectured ia(], 128 remain open, and among all possible cases, AGX failédd a conjecture
or a false conjecture in 82 cases. Under the assumptiortibse bpen conjectures are difficult to prove and that AGX
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failed when the cases are difficult to handle, we tried to Bguut the reasons of these difficulties and we gathered the
statistics summarized in Tabferegarding the invariants, TabGregarding the operations and Ta@leegarding the
bounds. In these tables, we use O, AO and SO for open, ass{s&dand structural open conjecture, respectively, and
R and AR for refuted conjecture and refuted assisted camjectNR is used to say that no result is obtained in the
corresponding case. T-O and T-R are used for the total owr ognjectures and cases with no result or with refuted
conjectures, respectively. Total indicates the sum of TROB-R.

In Table5, the invariants are sorted in a decreasing way accordirfigiototal occurrences in the cases considered as
difficult (open or refuted conjecture or no result is obtdimethe corresponding case). According to these statjstics
the most difficult invariant to handle is the domination nenB with a total of 46 occurrences over 420 (10.95 %).
The second most difficult invariant seems to be the Randi&iRawith 39 occurrences (9.51 %). Then comes a set of
three invariants with 35 occurrences each (8.33 %). Twoeddtthree invariants are eigenvalues, the indeand the
algebraic connectivity, and the third is a metric invariant, namely, the remotepegster that, we can find three sets
each containing two invariants with almost the same ocoggs: the average eccentriatgcand the average distance

I with 30 and 29 occurrences (7.14 % and 6.91 %), respectivayproximity 7T and the independence numizewith

25 occurrences each (5.95 %), and the radiasd the maximum degreé®ewith 20 and 19 occurrences, respectively.
The remaining nine invariants can be split into three seth @édth three invariants with almost the same number of
occurrences: the average degdeehe diameteD (the maximum distance in a graph) and the chromatic nurgber
with 14, 13 and 13 occurrences, respectively, form the fastthe minimum degreg, the edge connectivity and the
cligue numberw, with 9, 9 and 8 occurrences, respectively, form anotheraset finally, the set of the less frequent
invariants is composed of the matching numpethe girthg and the vertex connectivity with 6, 5 and 5 occurrences,
respectively.

Table 5: Difficulties regarding the invariants.

Invariant || O | AO | SO | T-O || NR | R | AR | T-R || Total
B 9 11 12 32 12| O 2 14 46
Ra 9 12 6 27 8| 4 0 12 39
A1 5 1 11 17 10 | 7 1 18 35
a 4 6 | 19 29 6|0 0 6 35
p 3 8 | 17 28 6|1 0 7 35

ecc 5 6 9 20 6| 4 0 10 30
I 3 5 9 17 9 2 1 12 29
s 6 3 8 17 8| 0 0 8 25
a 5 4 7 16 7 2 0 9 25
r 5 4 2 11 8|1 0 9 20
A 0 2 3 5 12 | 1 1 14 19
d 2 1 6 9 1 1 3 5 14
D 3 0 2 5 31| 4 1 8 13
X 0 2 6 8 2|2 1 5 13
o 2 0 2 4 1] 4 0 5 9
K 2 1 0 3 2| 4 0 6 9
w 0 0 2 2 3 1 2 6 8
u 1 1 0 2 3 1 0 4 6
g 1 0 1 2 1 2 0 3 5
Y 1 1 0 2 2|11 0 3 5

If we consider the difficulty with respect to the operatioiisis easy to see that the product is the most difficult
combination to handle. It occurs 79 times over 210 (37.62Phg other three operations appear to present the same
degree of difficulty: 41 occurrences (19.52 %) for the additi43 occurrences (20.48 %) for the subtraction and 47
occurrences (22.38 %) for the division.
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Table 6: Difficulties regarding the operations.

Operation|| O | AO | SO | T-O || NR R | AR | T-R || Total
- 11 9| 11 31 6 4 2 12 43
+ 5 7 8 20 14 6 1 21 41
/ 5 10 | 18 33 12 1 1 14 47
X 12 8| 24 44 23 | 10 2 35 79

If we distinguish between lower and upper bound, it is alntibstsame degree of difficulty in both cases even if the
upper bounds seems to be slightly more difficult than the tdweeind with 117 (55.71 %) cases among 210.

Table 7: Difficulties regarding the bounds.

Bound O | AO | SO | T-O NR R | AR | T-R || Total
Lower 11 18 22 51 31 9 2 42 93
Upper || 22 | 16 | 39 77 || 24| 12 4| 40 117

Among the bounds considered in the thedig|[ some were already known in graph theory literature. Amthege
results, we can cite

d<d<a<A [68]
I<a [64];
X<Ai+1 [197;
a< o [91];

whered, d andA respectively denote the minimum, average and maximum dedrés the average distancg,the
chromatic numbery denotes the independence number (the maximum number efipainon adjacent vertices);

is the spectral radius of (the adjacency matrix of) a graptigalenotes the algebraic connectivity (the second smallest
eigenvalue of the Laplacian matrix of a graph).

Note that some of the above listed inequalities were obtitiwece. For instance, the inequality < A was obtained
asA;—A<0andA;/A <1

Some of the bounds are naturally easy to obtain. When bo#riants considered come from the same vector or
matrix, sayS, by taking its minimumih = minS), averag& = % Y sesS) or maximum valueNl = max9), it is obvious
that

m<s<M

with equality if and only if the entries @ are equal. Immediate consequences of this double inegaadit

M-5>0, 5-m>0, M—m>0, Y>1 351 ang M5y
5 m m
For example, for all connected grapBswith n > 2 vertices, diametdd (the maximum among all the distanceGh
and average distante

D-1>0 andlg >1
with the equalities if and only i6 is a complete graph.

There exists another kind of bounds easy to obtain. Actualhen the relevant families of extremal graphs for the
invariantsi; andi, are considered and if they have a non-empty intersectiorogegrand best possible bounding
function is obtained. For our next example, we need theviotig definitions. Theeccentricity ectv) of a vertexv

in G is the maximum among the distances froro all other vertices irG. Theradius r=r(G) of a graphG is the
maximum over the eccentricities of its vertices. Rendt index R&G) of a graphG = (V,E), introduced in 170, is
defined by

1
Ra=RaG) = § ———,
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whered, andd, denote the degree of the vertiaesindv, respectively. It is well known that, on the one hand, the
Randi¢ indexRais minimum for the staf,, which is among the graphs that minimize the radiuand on the other
hand,Rais maximum for any regular graph, and among the regular gitepbycleC, maximizes. Thus the following
bounds are immediately obtained.

1+vi—1<Ra+r<Z+|7] and vi-i<Rar<?.|7]

with equality in both lower (resp. upper) bounds if and offléiis the staiS, (resp. cycleC,).

Another example: the average distarhde minimum (resp. maximum) for the complete gragh (resp. patHP,)
with 1(Kq) = 1 (resp.I(Pn) = (n+1)/3, while the maximum degre®is maximum forKp, with A(Kn) =n— 1, and
minimum forP,, with A(P,) = 2. Thus
- n->5 1 I n+1
<l-A<—= — << —=
<I-A< 3 and 13576
with equality in both lower (resp. upper) bounds if and offléiis the complete grapK, (resp. patt?,).

The other results were obtained as conjectures and can lgedinto three types. A common step for all the three
types is the VNS optimization. At that step, the optimizattwmponent of AutoGraphiX is executed and presumably
extremal graphs are obtained. Then, a component, aimechébngj (linear) relations (see Sectighbetween selected
invariants, is executed. In case of success, we obtain aufaana lower bound for a minimizing problem or an upper
bound for a maximizing problem. Thus, we get a conjecturegainimg a bound with corresponding extremal graphs
and we speak aboubmplete conjectureshat constitute the first type of results. Among such resuite cite the
following theorems and conjectures.

Theorem 4.1 ([35]) Let G be a connected graph oren3 vertices with inded; and average distande Then
A +1<n
with equality if and only if G is the complete graph.K

Conjecture 4.2 ([107]) Let G be a connected graph on>n6 vertices with signless Laplacian spectral radius q
and chromatic numbex. Then
3n—8
2
with equality if and only if G is thén/2|—partite graph K5 > . >, where p=2+nmod?2).

g —X<

A relation between the signless Laplacian index and the mmaxi degree, obtained by AGX, is proved by Cvetkovic,
Rowlinson and Simicg9].

Theorem 4.3 ([69]) Let G be a connected graph on>nvertices with signless Laplacian index gnd maximum
degreeA. Then
q-A>1

with equality if and only if G is the star,S
Thegirth g = g(G) of a connected grapB® onn > 3 vertices with at least edges, is the length (number of edges)

of its smallest cycle. The following theorem, proved indegently by Bekkai and KouideBB] and in [19], was first
conjectured by AGX.

Theorem 4.4 ([19, 38]) Let G be a connected graph oren3 vertices and nxX n edges with girth g and average
distancd. Then

45;‘ ?fn fs even, and EZ{ —ﬁg]rlll) ifn is even,
In if nis odd g o= if nis odd.

Moreover, both bounds are reached for cycles.
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Thematching numbep = u(G) of a graph is the maximum number of independent (pairwiseinoident) edges in
G. The following result was conjectured using AGX and thenvprbby Stevanovic]7§.

Theorem 4.5 ([178]) Let G be a connected graph,%Ks, on n> 3 vertices with adjacency indey and matching
numbery. Then

homen-a[]]

with equality if and only if G is the complete graph.KAlso,
ﬂ <+vn-1
u

with equalities if and only if G is the stapS

Note that Stevanovic[7g constructed an infinite family of counterexamples for telationA; + y > v/n— 1+ 1 first
conjectured by AGX.

When AGX could not provide a complete conjecture, an intéragrocedure for recognizing the extremal graphs
was launched. If the extremal graph are recognized and tiresponding formulas of the invariants under study
are available in the database, substitutions are done andtbunds are obtained. The results so obtained are called
assisted conjecturesirst, recall that theertex(resp.edgg connectivityy = v(G) (resp.k = k(G)) of a connected
graphG is the minimum number of vertices (resp. edges) whose rehd@@nnects.

Theorem 4.6 ([79, 196]) Let G be a connected graph or>n3 vertices with indexX\1, vertex connectivity and
edge connectiviti. Then

A A
M—v<n—3+t: Vlgn—2+t; M—K<n—3+t; fgn—Z—i—t,

where t is such thad < t < 1 and £+ (2n— 3)t?>+ (n> — 3n+ 1)t — 1 = 0. Moreover, equalities hold if and only if G
is the kite Kjn_1.

Finding the bound in the above theorem in an automated waynagossible since it contains a factor that uses an
implicit solution of a difficult to solve equation.

Another example with a complicated bound is the followingatem proved inZ0].

Theorem 4.7 ([20]) Let G= (V,E) be a connected graph of order n with independence nurab@nd maximum
degreeA. Then

o-asma iy 7 L

The bound is reached for every n.

For the above theorem, the difficulty is in the fact that tharmbis an integer that implies a combination of fractions
and square roots of integers. A similar difficulty is enceawatl in the next bound.

Theorem 4.8 ([35]) Let G be a connected graph orpn2 vertices with index; and independence number Then

n+a' —1+/(n—a' —1)2+4a’(n—a’)
2 3
with equality if and only if G is the complete split graph@s — o), wherea’ is given by

a+A1 <

{M%MJ forn=3korn=3k+2,
I

a =
[”*1%”2”*1] forn=3k+1.
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Finally, when the recognition of the extremal graphs sudedebut no formulae were found, we state a conjecture
about the structure of the extremal graphs. In this casepaaksaboustructural conjectures

The well-known result, in spectral graph theoty(G) > d(G) with equality if and only ifG is a regular graph, was
proved by Collatz and Sinogowitg¥] in 1957. Then, they proposed to consider the differenceben the index and
the average degree as a measure ofirlegularity of a graph (other definitions of irregularity in graphs haezi
proposed, see3[ 40], and for a comparison between them sB8]). Thus the irregularity of a grap® is defined

by Irr (G) = A1(G) — d(G). The problem of finding an upper bound on the irregularity ahdracterizing the most
irregular graphs remains open. The following conjectutateel to the irregularity of a graph have been formulated
after some experiments with the system AGX. First, we needdhowing definition. Apineapplewith parameters
n,g (g < n), denoted byA(n, g), is a graph om vertices consisting of a clique (a set of pairwise adjacertices) org
vertices and an independent set (a set of pairwise nonatjaertices) on the remainimg- q vertices in which each
vertex of the independent set is adjacent to a unique andithe gertex of the clique. Some pineapples are illustrated

Figure 14: Presumably most irregular graphs foe 7,8,9, 10.

Conjecture 4.9 ([11, 14]) The most irregular connected graph on(m> 10) vertices is a pineapple RA,q) in
which the clique size q is equal {§] + 1.

The issue in the above theorem, as well as in the next, is theudtly to get an explicit formulae of the index for some
classes of graphs.

Theorem 4.10 ([19]) Over all connected graphs orcn4 vertices and > n edges with girth g and inde¥, g+ A3
is maximum for the kite iKg (see Figurel5 for Kig 3). Moreover, for each t> 0, there exists an integer; such that
foralln > ny, 345 -t < g(Kinz) +A1(Kinz) < 3+ /5.

b
Figure 15: Kig 3: an extremal graph in Theorefn1Q

A study similar to that of 10] was done by Hansen and Lucd9[] where the signless Laplacian spectral radjuss
compared to 19 other graph invariants. The results, to witbngs Conjecturé.2, are summarized in Tabf

In [179, Sedlar, Vukictevi¢ and Hansen introduced a first geimatbn of AGX Form 1 to AGX Form 2:
b(m) <ip @iz <b(m) )

in which the lower and upper bounding functiomgn) andb(m) depend on the size (or number of edges) of the
graph instead of its order. Otherwise the symbols have time saeaning and assumptions are the same. Among the
AGX Form 2 results, we give the following theorem.
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Theorem 4.11 ([175]) Let G be a connected graph with sizend, radius r and minimum degre® Let k and | be
integers such that m: k(k—1)/2—1, where0 <| <k—1. Then

ifl =0, 2—k
ifo<Il <k/2 3—k}<r—5§{m—+1—1J; (4)

ifk/2<l<k-1, 4-k | 2
ifl =0, 1/(1-k)
ifo<l <k/2, 1/(2-k b<L< {EJ (5)
ifk/2<1<k-1, 1/3-k | 9 2
2<r+o< |7 +2 (6)
1§r+6§L%‘J. (7)

The lower bounds for4) and 6) are attained by the complete graph K| = 0, by K\ M;, where M is a matching
containing | edges, i <1 <k/2 and by K\ C, , where Gis a cycle containing | edges, ifR < | < k—1. The lower
bounds for 6) and (7) are attained by the star,$ 1.

The upper bounds fodj and () are attained by the path,R1. The upper bounds fo6) and (7) are attained by the
cycle Gy.

5 Other forms

Besides bounding invariants and bounds of AGX Form 1, sévesalts of different forms were studied using Auto-
GraphiX. In this section, we report on relations that do redohg to those described in the two previous sections. As a
first example, we give relations involving more than two drapvariants, in addition to the ordar Such relationships
are rare in the graph theory literature. A second exampleresalt about one invariant, in which we consider the
behavior of the invariant instead of its minimum or maximuaiues. Other examples are given below and more can be
found in Aouchiche, Bell, Cvetkovit, Hansen, Rowlinsomi, Stevanovic 11], Aouchiche, Caporossi and Hansen
[14], Aouchiche and Hanser27], Caporossi and HanseB4], Cvetkovi¢, Rowlinson and Simi@p], Cvetkovit and
Simi€ [70, 71, 72], Cvetkovi¢, Simi€, Caporossi and Hanséd], Hansen and Mélotl[09,

Any tree is a bipartite graph and therefore its vertex setb@partitioned into two independent subsets. d be the
number of vertices in one subset anih the other. In this case, we speak aboufab)—partition. Assume, without
loss of generality thad > b and let.7; , be the class of all trees that can be partitioned int¢eah)—partition. In [74],
the authors considered the problem of finding extremal ffees7, ;, with respect to the adjacency ind&x(T), i.e,,
solving the problems

min A¢(T and maxA1(T
Teé,b 1(T) Teya,)b( 1(T)

for givena andb. Among their results, we recall the following two theorems @onjecture.

Theorem 5.1 ([47, 74]) For fixed order n=a+b and for Te 7, , the minimal value oA, (T) increases monoto-
nously with a— b.

Conjecture 5.2 ([47, 74]) A vertex from the subset with a vertices in a minimal tree tiveclass7, , with respect
to A1, has degred or 2.

For the statement of the next conjecture, we need the fatigwiefinition. Acomet Cq, is the tree obtained from a
starS, by insertingn — A vertices (of degree 2) into the same edge.

Theorem 5.3 ([47, 74]) Fora=b+2andn=a+b> 6, trees T € .7, , with minimalA; are comets Cgs. More-
over
lim A (T*) =2
nN—+-oc0
In [54], after experiments using AutoGraphiX on treesdhy, with fixed a andb, the authors obtained the following
unexpected conjecture involving five invariants.
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Conjecture 5.4 ([47, 54]) For fixed integers a and b, let & .7, , with size m, independence numilserdiameter
D, radius r and n pendent edges. Then
20 —m—nmn+2r—D=0.

The above conjecture is not valid for the class of trees iregnExperiments done id§, 54] with AutoGraphiX led
to the following theorem, first obtained as a conjecture.

Theorem 5.5 ([47, 54]) Let T be atree on n vertices and m edges with independencesmambiameter D, radius
r and iy pendent edges. Then

m+n;+D—2r — {%ZJ <2a<m+n+D-2r

In 1956, Nordhaus and Gadduitf1] proved that

2/A<X(@+x(G) <n+l and n<x(G)-x(G)< “Z”Za

wherey is the chromatic number of a graph. Fin@] showed that these bounds were sharp (taking floors andgsili
if necessary) and characterized extremal graphs. Sindlandls were obtained for a large number of graph invariants
by a variety of authors. LetG) denote a graph invariant. Classical Nordhaus-Gadduniorfaare of the following
form:

l1(n) <i(G)+i(G) <uy(n)  and  Ix(n) <i(G)-i(G) < ux(n).
In more general form, the lower and upper bounding functimay depend on several variables. For an extensive
survey of such relations se23 and over 350 references therein. Here, we are interesté&bidhaus—Gaddum
relations only for the index. Nosal$Z and Amin and Hakimi4] independently proved that

nN—1<A1(G)+A1(G) < V2(n—1).

The lower bound (attained if and only if the graph is regufa$ been proved independently by Nod#q in 1970
and Amin and Hakimi4] in 1972, and has been improved in 2007 by Nikifor@8({] to

A(G)+A(G)>n—1+ \/édivrzée),

wherediv(G) = ¥ ey g) |d(u) — Z|.
The best bound known up to now is proved by Csikvér in 2009:

M(G) +M(C) < 1+2\/§n 1

The problem of finding an upper bound for the index of the Nardh-Gaddum type was studied using AGX4,[14].
The AutoGraphiX conjecture about the upper bound is asviallo

Conjecture 5.6 ([11, 23]) For any simple graph G, with compleme®indexA;(G) and n vertices we have

fa(n) if nmod3)=1
0 if nmod3)=2
{ fo(n) if nmod3)=0

M(G)+M(G) < 303 -

Wl

)

where f(n) = 3122V ANZ 5 g () — 301V Gnid

This bound is sharp and attained if and only if G®iis a complete split graph with an independent setdhvertices
(and also on[ 3] vertices if n mo¢3) = 2).
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We shall describe in some detail the use of AGX in formulatugjectures.6.

Additional experiments have shown that maximal graphs\for A for givenn andm are complete split graphs or
fanned complete split graphs with a few exceptions.

When looking for extremal graphs with the system AGX, usiragigble Neighborhood Search metaheuristic, we
defined the objective function ag(G) + A1(G) to be maximized over the class of all graphs of order from 440 2
To be coherent in our investigations, we required the g@pbut not necessarily its compleme®tto be connected.
This constraint is without loss of generality because offéfog that at least one of the complementary gra@lasdG

is connected.

For a fixed orden, the extremal grapfs is composed of a clique aipvertices and an independent set vsthertices
in which every vertex is connected to all vertices of theuwdigWhen we observed the valuesgadnds for different
graphs, we found the following:

|9 if nmod3)=1 (27 if nmod3) =1
q:{ T if nmodg-0 2 s:{ 2 it nmod3) =0,

While the experiments show regularity for the casanod3) = 0 andn mod3) = 1, it was not the case when
nmod3) = 2. Sometimes we havg= ]| ands= [Z"] and at other times, we haee= [§] ands= |Z']. We
decided to examine the two cases interactive A@X for everyn up to 24, and we observed that the objective func-
tion has the same value in both casgs-(|§] orq= [3]).

AGX did not find any conjecture on the relation between thedldje functiom 1 (G) + A1(G) and the order when using

all the presumably extremal graphs obtained by AGX. But whierseparated the set of graphs into three subsets, with
n mod3) = 0 for the first subsefhy mod3) = 1 for the second one andmod3) = 2 for the third one, AGX did not
find anything about the two first subsets but suggested tl@nfiolg linear relation for the third onex(mod3) = 2)

— 4 5
AM(G)+A1(G) = =n—=.
1(G)+A1(G) = zn—7
The difficulty in proving Conjecturé.6 is that we have almost no lemmas on the behavior of the canekpg
invariant under local graph transformations. Experimevita GRAPH [73], newGRAPH [L8( and AGX could be
useful in producing conjectures for such lemmas (e.g. apalinedge, rotating an edge etc.). Some partial results about
that conjecture can be found ih1, 14].

The problem of finding Nordhaus—Gaddum inequalities was atmisidered with AutoGraphiX for the two other
invariants.

Thetransmission ¢v) of a vertexv in a connected grap8, is the sum of the distances fromto all other vertices in
G. Itis said to benormalized and then denotefdv), when divided byn — 1. Theproximity 71 = 11(G) andremoteness
p = p(G) [10, 15 of G are, respectively, the minimum and the maximum normaliegasimission irG. That is

m= (/T;I\I/TE(V) and p= Ql?/)d(v)'

Some properties of proximity and remoteness are studietidn1, 25, 22, 177. In [27], the authors derived and
proved Nordhaus—Gaddum type inequalitiesri@nd forp. The results are stated below.

Theorem 5.7 ([27]) For any connected graph G onxn5 vertices for whiclG is connected

2n { iy ol if n is odd,
n
7

—— <+ T< . .
trs + gty + ot if n is even.

n-1- 4n-1) ' n—

The lower bound is attained if and onlyAfG) = A(G) = n— 2. The upper bound is attained if and only if either G or
G is the cycle G.

Theorem 5.8 ([27]) For any connected graph G onxn5 vertices for whiclG is connected

nt1)2 e
n? P ﬁ if n is odd,
(n—1)2 - ZEEB + f((rﬁll))z if nis even.
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The lower bound is attained if and onlyAfG) = A(G) = n— 2. The upper bound is attained if and only if either G or
Gisthe cycle .

Theorem 5.9 ([27]) For any connected graph G onn6 vertices for whictG is connected

_ _n+2 2
< < — 4+ —.
3spHPs— 4

The lower bound is attained if and only itn8, G is regular and D= D = 2. The upper bound is attained if and only

if G or G is the path R, the comet Cgs or the path-complete graph RK when n> 7, and if and only if G oiG is the
path R, the comet Cgs, the path-complete graph RI§ or one of the graphs in Figur&6.

BNE e e

Figure 16: Graphs wittD = 3 that maximizep + p for n= 6.

Theorem 5.10 ([27]) For any connected graph G on>a7 vertices for whiclG is connected

161120 9(n871) + 27(n{1)2 if n= 0(mod3),
p.p<{ 18i20, 3(n2—l) if n= 1(mod3),
160120 9(n871) + 27(n571)2 if n= 2(mod3).

The upper bound is the best possible as shown by the com@}séﬁq, and C(?lfﬂ if n= 1(mod3).

Recall that thd_aplacianof a graph is the matrix defined hy= Deg— A, whereDegis the diagonal matrix whose
diagonal entries are the vertex degreeS imndA is the adjacency matrix @. TheLaplacian eigenvaluesf a graphG
are those of its Laplacian matrix. The are usually denotedibyo, ..., un and indexed such tha > o > --- > Up.

Among the relations obtained using AutoGraphiX and whergentban two invariants were involved, we cite the
following three conjectures.

Conjecture 5.11 ([69]) Let G be a connected graph orend vertices with signless Laplacian index, @djacency
indexA; and average degreg. Then

qu—A1—d< n—2—\/n—1+§
with equality if and only if G is the star,S

Conjecture 5.12 ([69]) Let G be a connected graph orend vertices with signless Laplacian index, d.aplacian
indexu; and adjacency index;. Then

ny rn
Hi+A1—01 < EJ : [51
with equality if and only if G is the complete bipartite graﬁ{'gj,[g] .

Conjecture 5.13 ([69]) Let G be a connected graph on>n4 vertices with signless Laplacian index, smallest
signless Laplacian eigenvalug gnd independence number Then

q1—|—qn—|—201 §3n—2

with equality if and only if G is the complete split graph@3 — a).
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All the results discussed above deal, besides the boundirgibns, also with the characterizations of the corredpon
ing extremal graphs. AGX can also be used for finding charaeti#ons of a given class of graphs. For instance, in
[69], a characterization of the complete graph is obtainedgusimoGraphiX.

Theorem 5.14 ([69]) Let gQ) be the number of distinct eigenvalues of the signless Lapiaxf a graph and r(g;)
the multiplicity of the eigenvalug qf Q. Then

eQ) =2 <= mgp)=n-1 — G=K,

In this case g=n— 2.

6 Extensions

In the previous sections, we discussed several forms ofectnjs obtained using the AutoGraphiX system, and
therefore exploiting variable neighborhood search temis. In this section we discuss forms of conjectures that ca
potentially be explored with the help of AGX. 1104, the authors addressed the following questigvhat makes

a mathematical result interestingRespite its obvious interest, this question of mathembgibdosophy is scarcely
discussed. Views of several famous scientists on this tapgcinterspersed with discussions of graph theoretical
conjectures in the largé/ritten on the wallffile of Fajtlowicz [86]. Colton [66] and Larson 137], also address this
question in detail. Some criteria of interestingness of theraatical result were set in(4:

e Simplicity. simple formulae are the most used ones, and thus the mebt tikhave many consequences. They
also have the most potential falsifiers, as explained by 8dpgis famous bookhe Logic of scientific discovery
[167. However, it may be hard to find many simple, new and true fda®. Moreover, some of them may be
trivial, e.g., that the clique number of a graph is not lattpan its chromatic number.

e Centrality. conjectures should preferably involve the most centrakepts of graph theory as e.g. connected-
ness, stability, colorability, and so forth. To illustrag®me new concepts proved to be interesting and lead to
numerous results, as e.g. pancyclicity or having elemgmtaries of all possible lengths, introduced by Bondy
[44], which is close to the basic concept of cycle. This is fanfrioeing always the case for the numerous new
concepts which nowadays proliferate and, to some extergtin the unity of graph theory.

e Problem solvinginstead of considering centrality in terms of concept® wray examine it in terms of problems
posed by scientists in a given field. This leads to anothégr@sn, again stated by Popper ibg7: Only if it
is the answer to a problem a difficult, a fertile problem, algeom of some depth does a truth, or a conjecture
about the truth, become relevant to science. This is so ia puathematics, and it is so in the natural sciences

e SurprisingnessConways answer to the questiowhat makes a good conjectufe@according to B6|, was “It
should be outrageolisThis means a trained mathematician finds something contbavhat suggests his well-
educated intuition, and so gets a new insight. Of coursenitains to be examined whether some explanation
may be found, together with new results, or the conjectulle@main an isolated curiosity.

e Distance between concepts conjecture will be the more interesting the farther thecepts involved are one
from another. This implies an operational notion of disgrther in the conjecture-making program or possibly
in a lattice of graph-theoretical concepts.

¢ Information-contentelative to databases of conjectures and graphs. A comngeistunteresting if it tells more,
for at least one graph than the conjunction of all other atnjes. It also means the conjecture should not be
redundant. This criterion is discussed 10[l].

e Sharpnessthe conjecture should be best possible in the weak seassharp for some values of the parameters,
or in the strong sensee., sharp for all values of the parameters compatible with #igtence of a graphl01].

In addition to such abstract criteria one might take a pragnvéew and say that a conjecture is interesting if it has
attracted the attention of mathematicians, whoever they loea This is fairly tautological. Note, moreover, that
popularity of a result depends not only on its intrinsic rteebut also on its visibility (Journal where it was published
computer systems which mention it or give access to it, asagaklations and aptitude for marketing of its authors).

The following observations on AutoGraphiX behavior can kadmin view of the results discussed above: simplicity,
the AGX Form 1 and 2 are quite simple. Other simple forms ctel@éxplored also, as suggestedifd]; centrality,
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the invariants are chosen by the user of AGX who may focus atraleones; problem solving, AGX has been used
to find conjectures in subfields of graph theory which are opicts, the main example being the study of the signless
Laplacian of graphs33, 69, 70, 71, 72, 107; surprisingness, the generalization of Chung’s theoreine i, | < a to

I < a,/2[106, wherea, denotes the maximum cardinality of an induced bipartitegsaph. The generalization was
done with the help of AGX and is surprising, particularly assimilar generalization holds fers, the cardinality of the
maximum cardinality of an induced tripartite subgraphtatise between concepts has not been systematically studied
yet. It could be a good guide for invariant selection; infation-content, the concept of proximity and remoteness of
a graph are easily derived from the concept of transmis3ibay have the advantage of being of orders are several
other distance based invariants, e.g., the radius and dmeetiér; sharpness, most of AGX conjectures are sharp. Itis
the case each time complete results are obtained.

Let us also mention that AGX results can suggest ideas offpfogood example is the proof of the upper bound on
the irregularity done ingQ] (see the discussion on Theor&10in the present paper).

Another task for which AGX is proven to be useful is extendbmunds about an invariants to another (but close)
invariant. Actually, AutoGraphiX was successfully usedAnuchiche, Favaron and Hans&{] to extend a series of
bounds on the independence number, proved®3, 30], to bounds on thepper irredundanceFor more details on
upper irredundance se&7, 88, 121.

All conjectures obtained using AutoGraphiX are algebraiations between graph invariants. The forms of the con-
jectures are of different types. Conjectures of AGX Formde(Sectiord) were systematically generated for more
than 20 graph invariant. Conjectures of AGX Form 2 type wgstesnatically generated for few invariants (s&@é9).
Thus AGX Form 2 type relations remain to be explored for mamgiiants.

A well-known relation on thehromatic indexy’ of a graph (the minimum number of colors to assign to the edige o
graph such that any two incident edge are assigned diffecdnits) is the double inequalify < x’ < A+ 1 proved by
Vizing [188 and whereA denote the maximum degree. The Vizing double inequalitytimageneralized in a natural
way. Leti; andi, be two graph invariants and consider the problem of findirgftinctionL (i) andU (i) such that

L(i2) <i1 <U(ip)

for all graphs or at least for a given class of graphs. A badation of this type is that, well-known, between the order
n and sizem among the class of connected graphs:

n(n—1)

2
with equality for the lower bound if and only if the graph isred, and for the upper bound if and only if the graph is
complete. Contrary to the double inequality, the case afiglsiinequality (lower or upper bounding of a graph invari-
ant) is widely studied in graph theory. This generalizedrf@ould be studied systematically using the AutoGraphiX
system.

n-1<m<

Another kind of results that can be studied with the help ofXAiGthe behavior of an invarian with respect to
another invarianiy, i.e., qualitative relationsbetween graph invariants. Results of this type are rareaplgtheory,
but quite frequent in other domains of sciences. Qualiatlations betweein andi, can be expressed by

invariant i; increases when invariang increases,
or

invariant i; increases when invariang decreases,
or using the usual differentiation notation:
oi di
oo )

alz dlz

Theorenb.1illustrates well such type of results.

The statement of sufficient conditions for a grapho belong to a given class of graphs is a kind of results widely
studied in graph theory. A few examples and well-known itssefl this type are gathered in the following theorem.
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Theorem 6.1 A graph G of order n> 3with degree sequence ¢ d, < --- < dy is Hamiltonian if one of the following
conditions holds:

d >n/2forallk =1,2,...n (Dirac [83]);

dy + dy > n for all pairs of non adjacent vertices u and v (OfE6{);
dy > k for all k with1 < k < n/2 (Pbsa [168);

e di+d; >nforalli,jwith di <iandd; <j—1(Bondy §9]).

The above conditions are expressed in terms of graph pagesn#étus the use of AutoGraphiX in investigating then
could be fruitful. Such investigations may be extended ® ¢hse of necessary conditions or both necessary and
sufficient conditions in which case we speak about charizeténs of classes of graphs.

Among the earliest results in graph theory the followirgtree is a connected graph without cycld$ one wants

to express this result in terms of graph class, it couldhmeclass of trees is the intersection between the class of
connected graphs and that of graphs without cyclBse question that generalizes such a result couldtieh class

of graphs is an intersection of two or more clasaésstead of speaking aboequals an intersectigiwe may consider
only inclusioni.e., all graphs in classs; belong to clas$?. A well-known result of this typeall trees are bipartite
graphs In the case of double inclusion, of course, we speak abaugliyg such as in the Kuratowski theorem.

Theorem 6.2 ([135]) A graph G is planar if and only if it does not contain an indusedbgraph homeomorphic to
Ks or to Ka 3.

In the graph theory literature, it is quite frequent to findtth relatiorR; can be deduced, immediately or by means of
some algebraic manipulations, from another relaRanin such a case, we speak abomplication between relations
R> = R;. In some cases there is a double implication, and theredaefjuivalenceR, < R;. For instance, The lower
bound, proved by Bergell], on the independence numlzeiof a graphG on n vertices andn edges,

n2

a>
— 2m+n

is implied by that proved by Favaron, Mahéo and Sa88, [

'2n—T2_mzm—]
o > . nl
kAR

which is equivalent to the lower bound proved by Hanskif],

" {”‘ 1+2L”%“ﬂ : Z+ 2] |

and is best possible.

The use of the computer in the study of all these kinds of teswluld be fruitful and remains to be done.

Appendix

In the next table, we summarize the results of AGX Form 1 tyjtaioed and studied id[]. The invariants involved in
that table are defined in TabB The first column of Tabl& contains the different combinations of pairs of invariants
Columns 1, 2 and 3 contain, when available, the lower boumdx&remal graph corresponding to the bound and its the
status, respectively. The three last columns contain, \akiaitable, the lower bound, an extremal graph correspandin
to the bound and its the status, respectively. We use thenfislfy notation for the status of the bound: K for a known
result, T when the bound is trivial, O for an open conjectuith\a formulae and extremal graphs, SO for an open
structural conjecture and NR to indicate that no resultsevedatain in that case. Finally, when a result is proved, we
refer to the paper containing the proof by its number in thdidigraphy.
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For the extremal graphs, in addition to the notations defaleye, we the following one®eGfor an arbitrary (degree)
regular graphT ReGfor an arbitrary transmission regular graph (all verticagihg the same transmissiof)u g for
aturnip, i.e., the graph obtained from a cydl® by addingn — g pending edges incident to the same vertex from the
cycle; TX for a balanced complete-partite graphi,e., a completek-partite graph in which the cardinalities of any two
independent sets differ by at mostT Pfor the graph obtained from a pafh_g by attaching a triangle at each of its
endpointsCtr for a caterpillarj.e., the tree obtained from a path by attaching pending edgés mtérnal vertices;
Ury, for an urchin graphi.e., the graph obtained from a cliqie,, 2 by attaching a pending edge at eact wf2] of

its vertices;Treefor an arbitrary treek, — e for the graph obtained froid, by the deletion of an edg&;, — M for the
graph obtained frorK, be the deletion ofn/2] disjoint edgesK, — R for the graph obtained frofd, be the deletion

of n/2 disjoint edges i is even, or the deletion ¢h— 3)/2 disjoint edges and a path on the three vertices that are
not incident to the deleted edg€dgsfor a graph composed of a set of disjoint cliques of almosaésjiae connected
with at most one edge between two cliques such that there isyote that is not entirely included in a cliquBagp q

for a graph obtained from a complete graghby replacing an edge with a paky; Bugp g, g, for a graph obtained
from a complete grapKp by deleting an edgev and attaching patt,, andP,, atu andyv, respectiverKg the graph

on p+q— 1 vertices obtained from two cliqués, andKq by the coalescence of two vertices, one from each cliques;
Ke% the graph orp+ q vertices obtained from two cliqués, andKy by adding an edge between the cliquB€h p g

for adouble comebn n vertices maximum and second maximum deggeasdgq, i.e., the tree obtained from two stars
So+1 andSy41 and a path,_ g2 by adding an edge between an endpoint of the path to a peneigexyromS,,
another edge between the other endpoint of the path to a peveltex fromS; 1.

When a family of graphs is recognized but there is not enoaghlarity to derive its parameters, we us® denote
the missing parameter, such askiix corresponding to the extremal graphs for the upper bound/an or x and
y whenever there are two parameters such d@3Ghyy corresponding to the extremal graphs for the upper bound on

I-B.
Table 8 bellow reads as follows. Consider the bloc correspondiegctimparison of the average degrewith the
algebraic connectivity, i.e.,

d—a -1 Kn [10] n—4+4/n Kinn-1 [¢)
d+a || 4—2—2cost P T n-1 Kn T
d/a n-l Kn [10] Kinx SO
d-a (4—2) (1-cost) Pa T n(n—1) Kn T

The lower and upper bounds dn-a andd - a are trivial (T), so they can be stated as observations only:

Observation: Let G be a graph on n vertices with average degtesnd algebraic connectivity a. Then

4—2—2cosgga+a§ 2n—1 and (4—‘—1) (1—cos7—T) <d-a<n(n-1).
n n n n

Moreover, the bounds are the best possible as shown by, thoe Both lower bounds and by the complete graptfét
both upper bounds.

The lower bounds od — aandd/a are not trivial and are proved id(), so they can be stated as a theorem:
Theorem: Let G be a graph on n vertices with average degteand algebraic connectivity a. Then
d-a>-1 and d/a> n%l

Moreover, the bounds are the best possible as shown by thelengraph K.

The upper bounds ath— a andd/a are stated as conjectures:

Conjecture: Let G be a graph on n vertices with average degtesnd algebraic connectivity a. Then
— 4
d—a<n—-4+ e

and the bound is the best possible as shown by the short kjte Kiand d/ais maximum for some kite.
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Table 8: List of AGX conjectures obtained irL(].
| i1Diy || lower bound | G | st. || upper bound G st. |
A-9d 0 ReG T n-2 S T
A+O 3 P, T n—2 Kn T
0/d 1 ReG T n—-1 S T
AS 2 P T (n—1)2 Kn T
A—d 0 ReG T (n—=1)(n—-2)/n S T
A+d 4-2/n P, T n-2 Kn T
A/d 1 ReG T n/2 S, T
Ad 4-4/n P T (n—1)2 Kn T
AT (5-n)/3 P, T n-2 Kn T
A+T NR n+1-2/n S 31
AT 6/(n+1) Py T n—1 Kn T
AT NR PKnm [31]
A-D 3-n P, T n-2 Kn T
A+D NR n+1 S [10]
A/D 2/(n—1) P T n—1 Kn T
A-D NR l(n+1)/2| COH[%1J [10
At 2- 1] P, T n-2 Kn T
A+t NR n Kn [10]
AJr 2/[3] Pa T n-1 Kn T
[%%]-1"#]  ifn=204),
At NR { T €Oy o[ ny7 AO
24| [m2] oz,
A—g 2—n Ch T n—4 Kn T
A+g 6 Kins [30 n+2 Cy [30]
A/g 2/n Ch T (n—1)/3 Kn T
A-g 9 Kins [30] |52 ] [2] Tun[nﬁ}zJ [30]
{ 2— IITif nis odd
A—ecc P, T n-2 Kn T
2- -2 if nis even
A+ecc NR n+1-% S [10]
AJecc { %Fl w1 fnisold P T n-1 Kn T
s if nis even
A-ecc NR PKnx o)
0 if nis odd
A-m P T n-2 S T
{ 80—, ifniseven
At NR n S [10]
L if nis odd,
AT { oy P, T n-1 S T
- if nis even.
ATt NR PKnx SO
A—p (4—ny/2 P, T n-2 Kn T
49 if nis odd,
Atp Cn AO ("2 —=2)/(n—1) S [10]
{ 2+4r”1—f4 if nis even
Ap 4/n P T n-1 Kn T
A-p NR PKnx [10]
A-A || O ReG K n—1-vn—1 S [35]
A+ Ay 2+42cos( %) Py T 2n-2 Kn T
MM 1 ReG K vn—1 S [35]
A-Ay 4cos( ) P, T (n—1)? Ky T
A—Ra (4—ny)/2 Ch T n-1-vn-1 S T
A+Ra || (n+142v2)/2 P R (3n-2)/2 Kn T
A/Ra 4/n Cn T n—1 S T
A-Ra n—3+2v2 Pn [36] nin—1)/2 Kn T
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A-a -1 Kn [10] n-2 S [10]
A+a 4—2cog %) Pa T 2n—1 Kn T
AJa (n—1)/n Kn [10] ConigJ SO
A-a 4—4cog L) P T n(n—1) Kn T
A—v 0 Cn K n-2 S T
A+v 3 Py T 2n—-2 Kn T
AJv 1 Cn K n-1 S T
A-v 2 P, T (n—1)2 Kn T
A—K 0 Cn K n-2 S T
A+ 3 P, T n-2 Kn T
AJK 1 Cn K n-1 S T
A-K 2 P, T (n—1)2 Kn T
A—a [2y/n=1] —n [20] n-2 Kn T
A+a ﬁ—'ﬂﬂﬁkl 20 || 2n-2 S T
ba § R, orC, [13] n-1 Kn T
A-a n—1 Kn [13] (n—1)2 S, T
A-B 3—[n/2] Ctr [10] n-2 S T
A+ [n/3]+2 P AR n S K
A/B 2/[n/3] P [10] n-1 Kn T
A-B 2[n/3] P, [10] e Urn [10]
A—w -1 Kn K n-3 S T
At w 4 Py T 2n—1 Kn T
Aw (n—1)/n Kn [173 (n—-1)/2 S T
A-w 4 = T n(n—1) Kn T
A—x -1 Kn K n-3 S T
A+ X 4 P, T n—1 Kn T

{ 3/2 if nis odd, { C,
A/x (10 || (n-1)/2 S T
n/(n—1) if nis even Kn
A-x 4 = T n(n—1) Kn T
A—p [(n—4)/2] P T n-2 S T
Atp NR In/2) +n—1 Kn T
A 2/|n/2| Py T n—1 S T
A-p n-1 S [10] In/2|(n—1) Kn T
5—d —(n=2)2/n Kinn 1 [10] 0 ReG T
5+d 3-2/n Tree T 2n—2 Kn T
5/d n/(n? —3n+4) Kinn-1 [10] 1 ReG T
5-d 2-2/n Tree T (n—1)? Kn T
5T (2—n)/3 P T n-2 Kn T
5+1 (2n?—4)/(n(n—1)) Kinn-1 [31] n Kn [31]
3T 3/(n+1) P T n—1 Kn T
5T (P +n-4)/(n(n—1)) Kinn-1 [31 n-1 Kn [31]
6-D 2—-n Py T n-2 Kn T
3+D 3 S T n Kn [10]
5/D 1/(n—1) Py T n-1 Kn T
5-D 2 [ T 2n—4 Ky—e R
o—r 1-|n/2] P T n-2 Kn T
S+r 2 S T n Kn [10]
d/r 1/|n/2| P T n-1 Kn T
{ 2n—6 ifnisodd,
o-r 1 S T Kh—R (0]
2n—4  ifniseven
d—g -n Ch T n—4 Kn T
3+g Kins T n+2 Kn [30]
5/9 1/(n-1) Tlina T (n-1)/3 Kn T
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5.9 3 Kina T 3n-3 K-n [30]
s || { Do fheoe | T “ T
d+ecc || 3—1/n S [10] n Kn [10
5/ecc { W if nis odd, P, T n—1 Kn T
o] if nis even
il el s fee J{ERE GRS [ow e
EL if nis odd,
51 Py T n-2 Kn T
{ Ln_no o ifniseven
d+m 2 S T n Kn [10]
4/(n+1) if nis odd,
3/m P, T n-1 Kn T
{ (4n—4)/r?  if nis even
o-m 1 S T n—-1 Kn [10]
d-p (2—ny/2 P T n-2 Kn T
o+p 3-1/(n—-1) S [10 n Kn [10]
d/p 2/n P T n-1 Kn T
d5-p (2n—3)/(n—-1) S [10 NR
d—A1 0 ReG K 3—n—t,where O<t < 1 and Kinn-1 [35
B+ (2n-3)t2+ (M -3+ 1t=1
0+A 1+2cos7 Py T 2n—-2 Kn T
/M 1 ReG K 1/(n—2+t), where 0<t < 1and Kinn_1 [35]
B+ (2n-3)t2+ (M —3n+1)t=1
5-A1 2c0s;%; P T (n—1)? Kn T
5-Ra || —3n-13t/6:3v2 [36] (n—2)/2 Kn [36]
d+Ra || 1+vn—1 S T (3n-2)/2 Kn T
d/Ra 6/(3n—7+V6+3V2) [36] (2n—-2)/n Kn [36]
d-Ra n-1 S T n(n—1)/2 Kn T
5-a -1 K, [10] |<H}lJ [Sle)
" 3]
o+a 3-2cosh P T 2n—1 Kn T
5/a (n—1)/n Ky K TPT e}
d-a 2—2cosy P, T n(n—1) Kn T
5-v 0 Cn K l(n—3)/2] [10
5+v 2 P, T n-2 Kn T
d/v 1 Cy K [(n—=1)/2] [10]
v 1 P T (n-1)? Kn T
-k 0 Cn K [(n—4)/2 [10
S+kK 2 P, T n-2 Kn T
d/k 1 Cy K [(n=2)/2] [10]
5K 1 Py T (n—1)2 Kn T
d—a 2—n S T n-2 Kn T
o+a 3 Kinn-1 [13 n S [13
o/a 1/(n—-1) S T n-1 Kn T
5a 2 Kinn 1 (13 [n/2][n/2] Kozt n/2) (13
5-pB 1-|n/2] Ur, T n-2 Kn T
o0+ 2 S T n Kn [10
o/B 1/|n/2] Ury, T n-1 Kn T
2n—6 if nis odd,
5B 1 [ T o)
{ 2n—4 ifniseven
5-w —n Knn-1 173 || [n/2)-2 Kin/2),in/2) R
o+ w Tree T 2n—1 Kn T
5/w 1/(n—1) Kinn-1 173 In/2]/2 Kin/2). /2] [173
0w 2 Tree T nin—1) Kn T
o-x 2-n Knn-1 T [n/2] -2 Kin/2).m/2) R
o+X Tree T 2n—1 Kn T
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o/x 1/(n—1) Kinn-1 T Ln/2]/2 Kinj2).fy2] (10
d-x 2 Tree T nin—1) Kn T
5—p 1-|n/2] Py T n/2] -1 Kn [10]
S+p 2 S T /2] +n—1 Kn T
s/u || in/2 P T (n=1)/[n/2| Kn [10
o-u 1 S T (n=1)|n/2] Kn T
a-T (5—n)/3—2/n P T n-2 Kn T
d+T 4-4/n S [31] n Kn [31]
d/s (6n—6)/(n?+n) P, T n-1 Kn T
a1 4(n—1)2/n? S [31] PKny [31
d-D 3-n-2/n Pn T n-2 Kn T
d+D 4-2/n S T n+1-2/n P, T
d/D 2/n P, T n-1 Kn T
d-D 4—4/n S [10] Har [10]
d—r 2-2/n—n/2| P, T n-2 Kn T
d+r 3-2/n S T n Kn [10
d/r (2—2/n)/|n/2] P, T n-1 Kn T
d-r 2-2/n S T SO
d-g 2-n C T n-4 Kn T
d+g 5 S T n+2 Kn [30]
d/g 2/n Cn T (n-1)/3 Kn T
d.g 6 St T 3n-3 Kn [30]

{ 2—Z2-3IIif nodd,
d—ecc P, T n-2 Kn T
2-2-32 if nis even
d+ecc || 4-2 S [10] n Kn [10]
3,131 if nodd,
d/ecc P, T n-1 Kn T
{ 5L if niseven
d-ecc 4-3/n S [10 PKnx SO
d-m { ;Tfnglzrm for neven P T n-2 Kn T
d+m 3-2/n S T n Kn [10]
g ifnisodd,
d/m P, T n-1 Kn T
{ 8(%”’&2 if nis even
d-m 2-2/n S T n-1 Kn o)
d-p 2-2/n+2/n P T n-2 Kn T
d+p 4-1/(n—1)—2/n S [10] n Kn [10]
d/p 4(n—1)/n? P, T n-1 Kn T
dp 4-2/(n—1)—4/n+2/(n(n—1)) S, [10] PKnx o)
d—2A; Pinx SO 0 ReG K
d+A; 2-242cos Py T n-2 Kn T
d/M 2/t S [35] 1 ReG K
d-n (4—%)-cossy P T (n-1)? Kn T
d-Ra || Tn;2v2_2 Py [36] (n—2)/2 Kn [36]
d+Ra || 2-2/n+yn—1 S, T (3n—2)/2 Kn T
d/Ra ‘ﬁ‘ﬁ;ﬁ P, [36] -2 Kn [36]
d-Ra (2-2/n)y/n—1 S T n(n—1)/2 Kn T
d-a -1 Kn [10] n—4+4/n Kinn 1 o)
d+a 4— 2 —2cosk P T 2n—1 Kn T
d/a ol Kn [10] Kinx SO
d-a (4— %) (1—cosk) P T n(n—1) Kn T
d-v 0 Cn K n—4-+4/n Kinn 1 [10
d+v 3-2/n Tree T 2n-2 Kn T
d/v 1 Ch K (" —3n+4)/n Kinn_1 [10]
d-v 2-2/n Tree T (n—1)2 Kn T
d—« 0 Ch K n—4+4/n Kinn_1 [10]
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d+k 3-2/n Tree T 2n—2 Kn T
d/k 1 C K (n?—3n+4)/n Kinn-1 [10]
d-k 2-2/n Tree T (n—1)? Kn T
d—a 3-n-2/n S T n-2 Kn T
a Sz L if nisodd,
d+a Clgs [199 CSMEW [13

n-2 if nis even
d/a 2/n S T n-1 Kn T
sneyin-1? it s odd
_ o )
da Clgs SO CSMEW R
ng" if nis even
d-p 2-2/n—|n/2| Ctr T n-2 Kn T
d+B 3-2/n S, T n Kn [10]

d/B (2—2/n)/|n/2] Ctr T n-1 Kn T

da-B 2-2/n S T NR
Zh_ 3 ifnis odd,
20 -2 if nis even 20z

d+w 4-2/n Tree T 2n—1 Kn T
_ 2
d/w = AR || 315131 SETREY (173

wheret = 22| +2

dw 4—4/n Tree T n(n—1) Kn T

Zh_ 3 ifnis odd,
H—X [10] I_gJ [g}—z KL“J (n" AR
20— 2 if nis even 2z

d+x 4-2/n Tree T 2n—1 Kn T
_ 2
d/x = A0 | 5[5 3] SETEY (10

wheret = | 22| +2

d-x 4—4/n Tree T n(n—1) Kn T
d—u 2-2/n—[n/2] P T Mm/2] -1 Kn [10
d+u 3-2/n S T n—1+[n/2| Kn T
d/u (2—-2/n)/[n/2] Py T (n—1)/[n/2] Kn [10]
d-u 2-2/n S T (n—1)|n/2] Kn T
T-D (4—2n)/3 P [31] 0 TReG T
T+D 2 Kn T (4n—2)/3 P, T
/D Har 193 || 1 TReG T
() 1 Kn T (n?—1)/3 P, T

s02% itnisodd,
I—r Cn, Bag AO NR
;’;ﬁ":ﬁ) if nis even

B 042 jf nis odd,

I+r 2 Kn T P, T
01l if nis even

T/r Bag [118 2-2/n S [31]

inif nis odd,

Tor 1 Kn T P, T

”25’1 if nis even
olon if nis odd, ,
-g , Gy (87 || " King (31
ﬁ —n if niseven
sl if nis odd,
T+g 4 Kn T , Cn [31]
o th ifniseven
) W if nis odd, 5
/9 . Cn R P Kins (31]
o=} if nis even ,
o if nis odd,
I_»g 3 Kn T Cn [19
4(:}3” if nis even

B L3I if nis odd,

| —ecc P, AO 0 Kn T
10-n if nis even
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) snedncl il ifnis odd,
I +ecc 2 Kn T P, T
12 if nis even
I/ecc PKnx SO 1 Kn T
sndndntl o jf pis odd,
T-ecc 1 Kn T P, T
w if nis even
T—m 0 TReG T 3xP (172
o if nis odd,
I+m 2 Kn T P, T
T+ 4t ifniseven
i/ 1 TReG T 2-2/n S o
(412 if nis odd,
T 1 Kn T P, T
2
(D%, 2l ifniseven
T—p 0 TReG T PKnx SO
T+p 2 Kn T (5n+3)/6 P, T
T/p 1 TReG T PKn.x SO
Tp 1 Kn T n(n+1)/6 P, T
T-M || 2-n K T it —2cosgy P T
T+ NR n Kn [35]
T/A 1/(n—1) Kn T (n+1)/(6cosqiy ) Pn T
TA NR %(n73+\/n2+2n—7)»(1+ﬁ) Kn—e AR
I—Ra (2-n)/2 Kn T 2-2/n—yn-1 S 0
02 ifn<s Kn
T+Ra AO n-T46v2 P, R
2-24+yn=1 ifn>6 S
T/Ra 2/n Kn T NR
n if n< 12 K
I'Ra AO || gt P [15]
(2-2/n)yn-1 ifn>13 S
T-a 1-n Kn T (n+1)/3—2(1—cosk) P, T
T+a Kinn_3 SO n+1 Kn [35]
I/a 1/n Kn T 6(1—cos?)/(n+1) P T
Ta TPT so n Kn [35]
T-v 2-n Kn T (n—2)/3 P, T
T+v (2?2 —4)/(n(n—1)) Kinn 1 [35] n Kn [35]
/v 1/(n—1) Kn T (n+1)/3 Py T
Tv (P +n—4)/(n(n—1)) Kinn_1 [35] n—-1 Kn [35)
T« 2-n Kn T (n—2)/3 P, T
T+k (2n?—4)/(n(n—1)) Kinn-1 [39] n Kn [39]
T/k 1/(n—1) Kn T (n+1)/3 Py T
Tk (M +n—-4)/(n(n—1)) Kinn 1 [35] n—-1 Kn [35)
T-a 3-n-2/n S [13 0 Kn K
T+a 2 Kn T n+1-2/n S [13]
Ta 2/n S (13 1 Kn K
Ta 1 Kn T NR
I-B Urn SO DChxy SO
T+8 2 Kn T NR
/B 2/(1+2[n/3]) Urn AO 2-2/n S o
;] 1 Kn T NR
I-w 1-n Kn T (n—5)/3 P, T
. -2 if nis odd,
I+w Kin/2).[n/21 [173 n+1 Kn [173
-2 ifniseven
T/w 1/n Kn T (n+1)/6 Py T
- 3-1/n if nis odd,
Iw K»n/z”n/zl [173 Kinx SO
3-1/(n—1) ifniseven
I-x 1-n Kn T (n-5)/3 P, T
) -2 if nis odd,
| +X K,ﬂ/ijn/Z} [10] n+1 Kn [10]
-2 ifniseven
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1/x 1/n Kn T (n+1)/6 P, T
3-1/n if nis odd,
I-x o Kin/2).in/2] [10] Kinx SO
3-1/(n—1) ifniseven
T—u —n/2] Kn T 1-2/n S, [10]
T+u 3-2/n S, [10] [n/2] +(n+1)/3 P, T
T/u 1/[n/2] Kn T 2-2/n S [10]
T-u 2-2/n S [10] In/2](n+1)/3 P T
D—r 0 Ch T [(n—1)/2] Pn [10
D+r 2 Kn T n—1+|n/2| Pn T
D/r 1 C, T 2 S K
D-r 1 Kn T (n—1)|n/2] P T
D-g —[n/2] Ch [30] n-5 Kins [30
301 if nis odd,
D+g 4 Kn T Cn [30
3 ifniseven
D/g 1/3 Kn (30 (n-2)/3 Kina [30]
21 ifnis odd, Llnn 1
D.g 3 Kn T [30
72 if nis even Cn
—1- 8Dt nis odd,
D—ecc || O Cy T Py [10]
"T if nis even
w if nis odd,
D+ecc 2 Kn T P T
if nis even
D/ecc 1 C, T 2n/(n Kn—e [10]
M if nis odd
D-ecc 1 Kn T Py T
G201 i nis even
if nis odd,
D-m 0 Kn T P [25]
—4n T if nis even
if nis odd,
D+m 2 Kn T P T
- n Fos if nis even
D/m 1 Kn T NR
if nis odd,
D-m 1 Kn T Py T
n2/4 if nis even
D-p 0 Kn T (n-2)/ =3 [25]
D+p 2 Kn T (3n— /2 Pn T
D/p 1 Kn T 2-2/n = [10]
D-p 1 Kn T n(n—-1)/2 Pn T
D-A 2-n Kn T n—1-2cos;% Pn T
D+ 2++v/n—-1 S, R n— 1+2cosW1 P, (e}
D/A1 1/(n—-1) Kn T (n—1)/(2cosz}y) P T
D-A 2y/n—1 [ R Bug SO
D-Ra || (2—n)/2 Kn T (n+1)/2-v2 Pa [194
D+Ra || 2+vn—1 S T (3n—5+2v2)/2 Py [36]
D/Ra 2/n Kn T (2n—2)/(n—3+2v?2) P, [194
D-Ra 2y/n—1 S T (n—1)(n—3+2v2)/2 2 [36]
D-a 1-n Kn T n—3+2cosy P, T
D+a 3 S o) n+1 Kn [10]
D/a 1/n Kn T (n—1)/(2+2cosk) P T
D-a SO n—4 Kh—M [174
D-v -n Kn T n-2 P T
D+v 3 S T n P [10]
D/v 1/(n—1) Ky T n-1 = T
D-v 2 [ T 2n—4 Kn—M [174
D—k -n Kn T n-2 P T
D+« 3 S T n P'n.Kn [10
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D/K 1/(n—1) Kn T n-1 P, T
D-k S T 2n—4 Kn—M R
D-a -n S, T In/2) -1 P, [13)
D+a Kn T n—1+[n/2| P, (13

2-2/(n—1) if nis odd, Kins
D/a 2/(n—1) S, T [13)
2-2/n if nis even P,
("?—1)/2 ifnisodd, P,
D-a 1 Kn T [13)
(P —4)/2 ifniseven Cons
D-pB 3-[n/2] Ury, O n—1-[n/3] P [10]
D+ Kn T n—1+[n/3] P [10]
D/B 3/[n/2] Ury (10 (n—1-nmod3))/[n/3] [10]
(32 it n=0[3]
. 5 =
D-B ! K ' { [81(n—1) ifn#0[3 AR
D-w 1-n Kn T n-3 P, T
D+w || 4 S T n+1 P, (173
D/w 1/n Kn T (n—1)/2 P, T
D-w 4 S, T L(n+1)/2|[(n+1)/2] Kiy ng1 [173
D-x -n Kn T n—3 P, T
D+x 4 S T n+1 P, [10
D/x 1/n Kn T (n—1)/2 P T
D-x 4 S, T L(n+1)/2|[(n+1)/2] Kiy ng1 [10]
D-u || 1-|n/2 Kn T [(n+1)/2] -1 P, (10]
D+u 3 S T n—1+(n/2| P, T
D/u 1/[n/2] Kn T 2 S [10]
D-u 2 S, T (n—1)[n/2] P, T
r-g —[(n+1)/2] Cn [30] [(n-1)/2]-3 [30]
r+g 4 Kn T [n/2]+n Cn T
r/g 1/3 Kn (30 L[(n-1)/2|/3 (30
r-g 3 Kn T nin/2| Cq T
& — % ifnisodd P,
r—ecc [10 0 Ch T
1_2  ifniseven Congs
Gribnl) 4 01 if nis odd,
r+ecc 2 Kn T P, T
sn-2 if nis even
r/ecc 2—1/n S [10] 1 Cq T
Breyn? it nig odd,
r-ecc 1 Kn T P, T
@ if nis even
i1 ifnisodd,
r—m 0 S, T [25]
2 ifniseven
27 AT
31 if nis odd,
r+m 2 S T P, T
Bt g ffniseven
r/m 1 S, T NR
w1 if nis odd,
r-m 1 Kn T P, T
Lg" +gag fniseven
, o3 if nis odd,
r-p % Conn-2t1 [25] ) [127
5- h if nis even
wheret = | 21
r+p 2 Kn T n/2+n/2| P, T
2— F“l if nis odd,
t/p (n-1)/(2n-3) s [10 , o
2— 50—~ ifniseven
27 A1)
r-p 1 Kn T (n/2)|n/2] Pn T
r—A1 2-n Kn T n/2| —2coszly P, T
r+A; NR n Kn [39]
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T

Kn T [n/2]/(2cosTy) P, L

r/A 1/(n—-1) ; ! o
(o]

-~ - K, T [n/2] — (n—3+2V2)/2 P °
r—Ra (2—ny/2 Sr ! AT i O
NN A K T 2[n/2)/(n—3+2v2) P, °
e . S T (n/2)[n/2] Cn .
r.Ra n—1 K T In/2| —2(1—cosZ) Pn -
a - S (10 n+1 En :
r+a 2 K, T [n/2]/(2—2cosT) Kn » g
" o NR 4ln/2) -4 n :

P
r-a . n

Kn T In/2) -1 § i
r—v —-n ! ! n
o . [n/2] P T

Kn T n -
i [ T 4ln/2) -4 Kn—M [174
- : . 1 P, T

Kn T In/2) — ; iy
r—K 2-n ! ! n

. . [n/2] Pn T
r

K, T n
o [ n T 4ln/2) -4 Kn—M o

. K K
r-K 1 j : n

a 2—n S - )
- Kn T n . ‘
r+a X

. ; [13]

1/(n—1) N
:/Z 1 Kn T In/2)[n/2] =
A Urn [10 [n/6] o
L ;T K T |(5n+4)/6] o
r+p 2 n

Ur [10

/B 2/n/2] : n : -
A 3 : P, T

~ Kn T In/2) -2 " i

r—w 1-n ! " n

o \ . T In/2) /2 = T

A inin/ 17

i . Sr T (n—2[n/4])(In/4] +1) Kin |n/2) 2— 3
0] 2 . .

: Kn T [n/2| -2 ) o

o - T n+1 "

. R T
o X T [n/2}/2 h

N Kin n/2) [10
o . T (n—2[n/4])([n/4] +1) nln/

: - P [10]
- K, T 0 :
o , n T 2|n/2) P,

. R [10
ru 2 ) j 1 n :
r/u 1/[n/2] Sr : L ;

r-u 1
o Cn [10]
T3 2 ifnisodd, i 0 w2
g—ecc o T
1 ifniseven ) ) e
n
g+ecc || 4 o K i
{ ﬁ%m if nis odd, . - , n
g/ecc - T
EZ% if nis even ) ] e
— . - 3t if nis odd, 2
Lo+ ifnisodd, _ o
o e % if nis even
iﬁfi +3 if nis even Ei i ever ) .
o ’ “ ! —Szi:j” if nis even
o12 - if nis odd, A _ o
o King (22 || S
o/m 212 it nis even -
. 2 if nis odd, . o
o ’ “ % if nis even
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= if nis odd,
g-p || 3-epn2 Kins 22 { ’ c 22
% if nis even
s if nis odd,
4 K. T 22]
ore ! { % if nis even “ =
) ‘ { A if nis odd,
g/p AT Kina (22 G o
-4 if nis even
g-p 3 K T NR
g-M 4-n Kn T 2-n Cn [30]
g+ Kins [19 n+2 Kn,Cn [30]
a/M 2 Kn T n/2 Cn (30
g-A1 Kins [19 3(n—-1) Kn R
g—Ra 3-n/2 Kn T n/2 Cn [36]
g+Ra %%‘{2 +32 S (19 3n/2 Cn T
g/Ra 6/n Kn T 2 Ch [36]
g-Ra 94342 1 3 S (19 /2 Cn T
g-a 3-n Kn T n—2(1-cos?") Cn (10
g+a Kins 79 n+3 Kn [10]
g/a 3/n K, T Lol, 3] o)
ga Kina (79 3n Kn [10]
g-v 4-n Kn T n-2 Ch T
g+v 4 s T n+2 Kn (10
a/v 2 Kn T n-1 Loln-1 (10
g-v 3 Sy T 3n-3 Kn [10]
g—k 4-n Ky T n-2 Ch T
g+k 4 s T n+2 Kn (10
/K 2 K T n—1 Lo 1 [10]
g-K 3 St T 3n-3 Kn [10]
g—a || 5-n S (30 | [n/2] Cn [30]
g+a 4 Kn T n+[n/2| Ca (30]
o/a 3/(n-2) St (30] 3 Kn [30]
(?—1)/2 ifnis odd, Llnn-1
o s o ! { n?/2 if nis even { Cn 0
9-B 3—[n/2] ury T [3n/2] Cn (19
g+ B 4 Kn T n+[n/3] Cn (10
o/B 3/[n/2| ury T 3 S 19
g-B 3 Kn T n[n/3] Cn (10
g-w 3-n Kn T n-2 Cn T
g+ 6 St T n+3 Kn [10]
g/w 3/n Kn T n/2 Cn T
gw 8 Kan-a  with | [10 3n Kn [10]
a>2
n—3 ifnisodd, Llnn-1
9x 8o o T { n—2 ifniseven { Cn 1
g+ x 6 St T n+3 Kn (10]
(n—1)/2 ifnisodd Llnn-1
a/x 3/n Kn T { o2 s even { c. [10]
9-X 8 Kana  With | [10] 3n Kn [10]
a>2
o-n || 3-In/2) K T /2] Ca [10]
gru || 5 st [0 || n+in2) c T
a/u 3/|n/2] Kn T n/[n/2 Cn (10
g-H 6 St (10 nn/2| Cy T
{ Sand_ I if nis odd,
ecc—m || O Kn T P (156
= if nis even
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snedncl g il ifnis odd,
ecc+m || 2 Kn T P, T
oy if nis even
ecq/ 1 Kn T NR
(n=1)(n+1)(3n+1) i i
T if nis odd,
ecc T 1 Kn T , P, T
"16(51'1’12)) if nis even
DAL T ifnis odd,
ecc—p 0 Kn [25] Pn (@]
-1 1 frae
! if nis even
sndnd 8 if nis odd,
ecc+p || 2 Kn T P, T
241 if nis even
ecgp 1 Kn T { é:— M S0
il n L
sndnlaif nis odd,
ecc p 2 Kn T P, T
21 if nis even
;AT _2cos.T for nodd
ecc—A; 2—-n Kn T P, T
M2 _2cosZ; forneven
ecct Ay n—142-1 S R Kn—E SO
3n+1 n—1
zl?f— if nis odd,
cosm
ecg/Ay = Kn T P T
Foos Ty if nis even
ecc Ay n—1.(2-1%) S R PKnx SO
Y ——
ool n=3t272 for nodd
ecc-Ra || (2—n)/2 Kn T P, (e}
a2 _ =322 forneven
sndnd —”*352‘/5 for nodd
ecctRa || vn—1+2-1 S o P [148
2 0322 forpeven
(3n+1)(n—1)
2 (ravan for n odd
ecgRa 2/n Kn T Pa AO
3n-2
) for neven
0 if n< 13, Kn Il 0l n=32V2 it nis odd,
ecc-Ra AO P [148
(2-%)vn=1 ifn>14 S -2 n-342/2 if nis even
A0l _2+2cost fornodd
ecc—a 1-n Kn T Pn T
32 _2+2cos? forneven
ecc+a || 3-1 S [10] n+1 Kn [10]
(3n+1)(n—-1) B f
Ba(TcosT) if nis odd,
ecc/a 1/n Kn T Pa T
S(ﬁ*"&ég if nis even
n—5+2 if nisodd,
ecc-a DChxy SO Kn—R [174
2n—4 if nis even
DII 1 ifnisodd,
ecc—v 2-n Kn T Pa T
36 if nis even
ecctv 3-1 S [10 n Kn [10
3ndnd o if nis odd,
ecc/v = K T P, T
-2 if nis even
2n—-5+2 ifnis odd,
ecc v 2-1 S [10] Kn—R [174
2n—4 if nis even
AL 1 ifnis odd,
ecc— K 2-n Kn T Pa T
36 if nis even
ecc+k || 3-1 S [10] n Kn [10]
310l if nis odd,
ecc/k = K T P, T
-2 if nis even
2n—5+2 if nisodd,
ecc K 2-1 S [10] Kn—R R
2n—4 if nis even
a3 _n 1 ifnisodd King
ecc—a || 3—n-12 S [10] o]
02 if nis even Pn
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e if nis odd, P,
eccta || 2 Kn T (131
3n+2)(n-2 -
(ni2n-2) 4 nt2  if nis even Cons
eca || 2=k S (10 CcPC so
ecc a 1 Ky T NR
BT (5] ifn=350) P
en_ L1 ifnisodd, ne_2 if n=1[6] Cons
ecc—f Ur, (e} AO
sn if nis even 302 | if n=0,2[6] Pn
me_1 if n= 4[] Conz
|DEL] 3t onjfn = 3,56 P,
e 2 if n=1[6] Cons
ecc+ 2 Kn T AO
|ogt ]+ 22 if n=0,2[6] P
13161 if n=4[6] Cong
n?ﬂj) if nis odd,
ecd/pB Ury, AO NR
2 if nis even
ecc B 1 Kn T NR
L2 ifnis odd,
ecc—w 1-n Kn T P, T
Sn-10 if nis even
ecctw || 4-1 S [10] n+1 Kn [10]
s3dnlf nis odd,
ecdw 1/n Kn T P T
-2 if nis even
eccw 4-2 S [10] Kinx [131]
DAL 2 ifnisodd,
ecc—x || 1-n Kn T P T
30-10 if nis even
ecctx || 4-1 S [10] n+1 Kn [10]
Selncl o if nis odd,
eco/x 1/n Kn T Pa T
-2 if nis even
ecc x 4-2 S [10] Kinx SO
"1 if nis odd, P
ecc—u || 1—|n/2 Kn T [10]
24 .
=d ifnis even Cons
snedncl g ol ifnis odd,
ecc+ 3—-1/n S [10] - P, T
o L
e if nis even
ecq/u 1/|n/2] Kn T 2—1/n S [10]
2
IA (D ifnis odd,
ecc U 2—1/n S [10 R Py T
= if nis even
o if nis odd,
m—p Py [25] 0 TReG T
w2 — 4% ifniseven
il if nis odd,
m+p 2 Kn T P, T
3_ L. ifniseven
/p Conyx SO 1 TReG T
n(rt1) if nis odd,
mp 1 Kn T P T
% + g ifniseven
1 _2cosy%;  fornodd
m—M || 2-n Ky T , Py T
an—a —2cosgly  forneven
T+ A NR n Kn [10]
ﬁ;iﬂ if nis odd,
/M 1/(n-1) Kn T N1, 1 P T
%TP,IG if nis even
A n-1 S n-1 Kn (e}
m—Ra (2—ny/2 Kn T 1-vn-1 S (e}
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i if nis odd,
m+Ra 1+v/n—1 S ; 2 . T
ﬁ +5 ifniseven
S(s+4t—-6) vt
A D(s 4)viaravaa ornodd
T[/Ra 2/n Kn T be o
((5-1)(s=3)+(s+1)(4t—2)—4t) Vi
2(n—1)((s-8) V14t 2v/2-4) for neven
wheres=n— 2t + 3 and
[n/5] ifn=4[5],
t=
[n/s| ifn#4[5)
M it nis odd,
T-Ra n—1 s . . T
55  ifniseven
AL _2+2cosZ fornodd
N a “ T P, T
32 _2+42cos? forneven
m+a NR n+1 K, g
bt if nis odd,
i v Kn T Py T
s(finc;zr) if nis even
- n
Sdnd(1_cosZ) if nis odd,
T-a Py AO n K, [101
¥2 (1 cosf) if nis even
2 if nis odd,
- o a T 2 Pn T
ﬁ -1 ifniseven
T+ v 2 S T n Kn [10
ol if nis odd,
i Y/(n-1) Kn T > P T
mog  ifniseven
mv 1 Kn T n—-1 K, 0
3 if nis odd,
b o “ T 2 Pn T
anp —1 ifniseven
T+ K 2 S T n Kn [10]
ol if nis odd,
/K 1/(n-1) K, . 2 . T
am  ifniseven
MK 1 K T n—-1 K, 0
e e . e ke 10
m+a 2 Kn T n S [10
i Yin-1) S T 1 Kn (10
0 " T Al o | R0
o/ [8]+3ifn=4[
T\ [E]+2ifnz 46
(| s-—1ifn=02]
sif n=12]
-5 if nis odd,
- Urn o oo, -
3;2" - T{z if nis even
m+ B 2 Kn T Ctr so
/B ur, S0 - >
B 1 . : o
o’ T nis odd,
T “ T P, T
84 L ifniseven
T+ W 3 S T n+1 K g
ot if nis odd,
e v Kn T Pa T
0+ 4L ifniseven
T W 2 s . . .
o if nis odd,
m—X 1-n K, . . T
8, ifniseven
T+ X 3 S T n+1 K, 19
ol if nis odd,
/X 1/n K, ; ) T

n n . .
8 tgg Iifniseven
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m X 2 S T PKnx SO
m—p 1-|n/2 Kn T 0 S, [10]

-1 if nis odd,
T+ U 2 S T Py T
sl Lo ifniseven
wu || /2] Kn T 1 s [10
L) if nis odd,
mu 1 S T P, T
”24*” + gy ifniseven
pP—A 2-n Kn T 5 —2cog ) P T
p+M NR n Kn [10]
o/M 1/(n—1) Kn T T P, T
Ay NR PKnx SO
p—Ra (2—n)/2 Kn T Conyx SO
o2 if n<6, Kn n+v2-3% ifn<56, )
p+Ra AO o)
2- L +vn=1 ifn>7 S ? ifn>57 PKax
N2 i<y, Pn
p/Ra 2/n Kn T SO
? ifn>8 Conx
u ifn<s, Kn M2Z30 ifn<57, Py
p-Ra AO SO
2yn—1-—- ifn>7 S ? ifn>58 PKnx
p-a 1-n Kn T 8 —2+2cosk P T
{n+1J
p+a Ko e} n+1 Kn [10]
4]
p/a 1/n Kn T chosﬁﬁ P T
p-a CcPC SO n Kn [174
p—Vv 2—-n Kn T n%z P, T
3 if nis odd, ["*”
p+v Kt [10] n Kn [10]
3+ 55 ifniseven (75t
p/v 1/(n—-1) Kn T n/2 P T
5+m> ifnisodd, ntl
p-v K}n:‘:wj [10] n-1 Kn (174
3 if nis even z
pP—K 2-n Kn T n%z P T
3 if nis odd,
p+K S [10 n Kn [10]
54555 ifniseven
p/K 1/(n—1) Kn T n/2 P T
3+ 55 ifnisodd,
p-K S [10 n-1 Kn R
3 if nis even
p—a 3-n-1/(n—-1) S [25] PKinx SO
p+a 2 Kn T 2=t + 5 (2n—2| 2] -3) | 23] Cong AO
t=2n-2[2-1]
p/a o S (10 PKnx SO
p-a 1 Kn T w15 (=[] - 2) [ 25 Cont AO
t=2n-2|"1] 41
&2 ifnisodd,
p—B Ury AO COnx SO
5n_ 3 jfniseven
2 2n-2
062 ifn=0[3],
p+B 2 Ky T S04 if n=1[3], Ctr AO
o 8 _ & ifn=2[3
e -
2 if nis odd,
p/B Ury AO Conx SO
-8 jf nis even
n(n—1)
B 1 Kn T NR
p—w 1-n Kn T (n—4)/2 P T
: if nis odd,
p+w SEREY 173 || n+1 Kn (173
72—t ifniseven ’
p/w 1/n Kn T n/4 P T




Les Cahiers du GERAD G-2013-12 43
3 if nis odd,
prw { L K397 (173 PKnx [173
3— L ifniseven
pP—X 1-n Kn T (n—4)/2 P T
: if nis odd,
p+X { L, Kinprg [10] n+1 Kn [10
5~ I niseven
p/X 1/n Kn T n/4 P T
3 if nis odd,
X { 3- L ifniseven Mg 1 Pl S0
= if n=0[4],
p—p || 1-1[n/2 Kn T (2042 it = 24, fj;fn;z | |
ol otherwise
pP+H 3-1/(n—-1) S [10 [n/2|+n/2 Pn T
p/u 1/[n/2] Kn T 2-1/(n-1) S (10
p-H 2-1/(n-1) S (10 (n/2)[n/2] P T
m n—3+2v2 R
M -Ra { 2oossly — 2% <o, { E: 37 || (n-2)2 Ko (37
4n if n>10
A1+Ra 2y/n—-1 S [37 (3n—-2)/2 Kn T
A0SR i < 26
A1/Ra n-3+2/2 - { E: 31 || 2-2/n Kn 137
4 if n>27.
AR n-1 S [37] n(n—-1)/2 Kn T
A—a -1 Kn [10 n—3+t Kinn-1 AO
with 0 <t < 1and
B4+ (2n-3)t2+ (M -3n+1t=1
Ai+a 2—2cosy +2¢0sqy Py T 2n—1 Kn T
Ar/a Kin_gJ SO n/(n—1) Kn [10]
Ar-a 4(1—cos’ﬁ‘)(cosF"1) P, T n(n—1) Kn T
A—vV 0 Kn [10] n—3+t Kinn-1 [79
withO <t <1and
B+ (2n-3)t2+ (M -3+ 1t=1
A4V 1+2cos7 Py T 2n—-2 Kn T
MV 1 Kn [10] n—2+t Kinn_1 [79
with 0 <t < 1and
B+ (2n-3)t2+ (M -3+ 1t=1
AV 2cos;™; = T (n—1)2 Kn T
M—K 0 Kn [10] n—3+t Kinn_1 [79
withO <t < 1and
B+ (2n-3)t2+ (M -3+ 1t=1
A4k 1+ 2(:05;"1 P T 2n—-2 Kn T
/K 1 Kn [10] n—2+t Kinn_1 [79
with 0 <t < 1and
B4 @2n-3)t?+ (P -3+t =1
ALK 2cosiy = T (n—1)2 K, T
Ai—a n-1-vn-1 S n-2 Kn T
Mta NR n+nt’—1+\/(n—n;—1)§+411’(n—n’); CS\u [35]
[7"“*\/3@} ifn=1[3)
a' =
{”*”73”2’”*% otherwise
A/a NR n-1 Kn T
A-a NR NR
AM—-B Ctr [35 n-2 Kn T
A+B DCrxy SO n Kn [35]
M/B Ctr o) n-1 Kn T
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A-B n-1 S e} Ur, SO
Mo || -1 Kn [173 T [173
AM+w 2+ 2cosTy Py T 2n—1 Kn T
Ao Kin nr3 || /130781 NENES [173
AL 4cosiy P, T n(n—1) Kn T
M-x || -1 Kn K T SO
A+X 2+ 2(:05%1 P, T 2n—-1 Kn T
M/x { G |9 || 3/11TE Kigprgr | (89
AL-X 4cosiy P, T n(n—1) Kn T
A—H 2cosiTy — [n/2] P T n—1-—|n/2| Kn [178
A+H Vn—1+1 S n—1+[n/2] Kn T
M || S P, o1 S (178
AL i n—1 S (10 (n—1)[n/2] Kn T
Ra—a -n/2 Kn [36] NR
Ra+a Conx SO 3n/2 Kn T
Ra/a 1/2 Kn (36 || fRE Pa AO
Ra-a DChxy SO /2 Kn T
Ra—v || (2-n)/2 Kn [36] n-542y2 Py
Ra+ v 1+vn—1 S T (3n—2)/n Kn T
Ra/v n/(2n—-2) Kn [36] NR
Ra-v n—-1 S T n(n—1)/2 Kn T
Ra—k || (2-n)/2 Kn [10] n-542/2 Py
Ra+ k 1+vn-1 S T (3n—2)/n Kn T
Ra/K n/(2n-2) Kn [10] NR
Ra: k n—-1 S T n(n—1)/2 Kn T
Ra—a Vn=1I-(n-1) S T (n-2)/2 Kn T
Ra+a (n+2)/2 Kn o] Vn=1+(n-1) S
Ra/a 1/v/n—1 S, T n/2 Kn T
Raa || n/2 Kn 0o eI Klanz2] ng2| | A0
Ra- B +52 ot if nis odd Ur, 0 || (n-2)/2 Kn T

V- if nis even
Ra+ 1+vn-1 S T NR
Ra/B + \;%) if nis odd Ur, AO n/2 K, T

4@ if nis even
Ra A1 S T NR
Ra—w || —n/2 Kn 119 || n2-2 Ch T
Ra+ w 2+vn—1 S T 3n/2 Kn T
Ra/w || 1/2 Kn 119 || n/4 Cn T
Ra-w 2v/n—1 S T n?/2 Kn T
Ra—x -n/2 Kn 119 || In/2fn/2]-2 Kins2). 121 [119
Ratyx || 2+vn—1 S T 3n/2 Kn T
Ra/x 1/2 Kn 119 || 3v/[n/2]n/2] Kin/2),im/2] [119
Ra x 2v/n—1 S T n?/2 Kn T
R O T e %0

t=(o)

Ra+u || 1+vn—1 S T 5+13] Kn T
Ra/u NR n-1 S [37]
Ra- u n—1 S T 213 Kn T
a—v NR 1 Kn K
a+v 3-2cosh Py T 2n—1 Kn
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a/v 2—2cosy P AO n/(n—1) Kn K
a-v 2—2cosy P, T n(n—1) Kn T
a—kK NR 1 Kn K
a+kK 3-2cosy P T 2n—-1 Kn T
a/k 2—2cosy P AO n/(n—1) Kn K
a-K 2—2cosy P, T n(n—1) Kn T
a—-a 2—-n S, [10 n-1 Kn

n
a+a Ke%{ SO n+1 Kn [10
a/a DChxy SO n Kn T
a-a CcPC e} [n/2|[n/2] CSin2) [10
a—-f Ctr SO n-1 Kn T
a+p 2 S, [10 nt1 Kn [10]
a/B NR n Kn T
ap 1 S [10] [2]-4 Ko —R o
a-w 2-n Kinn_1 (173 Kk ﬁ)nJ — Al AN (173
a+w 4—2cos] Pn T 2n Kn T
a/w PK g (173 || 313 Kin/2), 2 (173
a-w 4—4cos? = T n? Kn T
a—x || 2-n Kinn 1 1a || [@-Zpn]-1vAl T A0
a+x 4—2cosy P T 2n Kn T
a/x PK, 3] so | 313 Kin/2) fo/2] (10
a-x 4—4cosk P, T ? Kn T
a—p 2—-2cosy —[n/2] P T [n/2] Kn [10]
a+u 2 S [10] n+[n/2| Kn T
2-2cosg R T 2 K 10
a/u 7 h n/[n/2] n [10]
a-u 1 S o nin/2| Kn T
{%1} 1 0 K T
V—K [(3—n)/2] K{nﬂj [10] n
z
V+K 2 Py T 2(n—1) Kn T
nt+l
v/K i K[MTIJ g || 1 Ky T
=z
VK 1 P T (n—1)2 Kn T
v—a 2—n S T n-2 Kn T
vV+a 3 Kinn-1 T n Kn [10]
v/a 1/(n—1) S T n-1 Kn T
v-a 2 Kin_n,1 T Ln/ZJ (n/ZW KLn/ZJ.’n/’ﬂ [10]
v— 1-|n/2] Ur, T n-2 Kn T
v+ 2 S T n Kn [10]
v/B 1/|n/2| Ur, T n-1 Kn T
v-B 1 S T 4n/2) -4 Kn—R o
v-w |l 2-n Kinn-1 (173 || [@- Zyn| - LAl e [173
V4w 3 S T n—1 Kn T
vV/w 1/(n—1) Kinn-1 [173 [n/2|/2 Kin/2).fn/2] [173
V- 2 S T n(n—1) Kn T
v-x || 2-n Kinn-1 ma || |@-Zon|- 1Al e [10]
V+X 3 S T 2n—-1 Kn T
V/X 1/(n - 1) Kinn-1 [10] Ln/ZJ /2 KLn/zj_’n/a [10]
vV-X 2 S T n(n—1) Kn T
v—u 1-[n/2) Py T 1-[n/2] Kn [10
v 2 S T In/2) +n—1 Kn T
v/u 1/n/2| P T (n—1)/[n/2) Kn [10]
v 1 S T (n—1)|n/2| Kn T
K—a 2—n S T n-2 Kn T
K+a 3 Kinn-1 T n Kn [10
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K/a 1/(n—-1) S T n-1 Kn T
K-a 2 Kinn-1 T [n/2|[n/2] Kin/2).im/2) [10]
K— 1-|n/2] Ur, T n-2 Kn T
K+B 2 S, T n Kn [10]
K/B 1/|n/2] Ury, T n-1 Kn T
K-B 1 S T 4n/2) -4 Kn—R o
k—w || 2-n Kinn 1 (173 || |a-Zon| -1l T [173
K+ w 3 S T 2n—1 Kn T
K/w 1/(n-1) Kinn 1 (173 || 315 Kig).[3] [173
K- 2 S T n(n—1) Kn T
k-x || 2-n Kinn_1 aa || [@-Zpn|- 1Al T [10]
K+X 3 S T 2n—1 Kn T
K/X 1/(n-1) Kinn-1 (10 [n/2J/2 Kin/21.m/2) [10]
K-X 2 S T nin—1) Kn T
K—u 1-|n/2 P, T 1-[n/2 Kn [10]
K+u 2 S T In/2]+n—1 Kn T
K/u 1/n/2| P T (n—1)/[n/2) Kn [10]
K-H 1 S T (n—=1)|n/2] Kn T
a-p 0 Kn T n-2 S T
a+p 2 Kn T n S [10]
a/B 1 Kn T n-1 S, T
a-p 1 Kn T [n/2|[n/2] Urn [10]
a-w 1-n Kn T n-3 S T
o+ w [2yn]+1 Clgs [20] n+1 CSia K
a/w 1/n Kn T (n—-1)/2 S T
a- NR L%J CS,jog1| (10
a—x 1-n Kn T n-3 S T
a+x [(n+1)/3] +1 R n+1 CSua [13]
a/x 1/n Kn T ot S T
ax |n S RESIES CSnp| |13
a—p 1-|n/2] Kn T n-2 S T
a+u 1+|n/2] Kn [13] n S [13]
a/u 1/|n/2| Kn T n-1 S T
a-p [n/2] Kn [13 [3][5] CSH{%J (13
B-w || 1-n Kn T [n/2] -2 Kiny2), /21 T
B+w 3 S T n+1 Kn [10
B/w 1/n Kn T [n/2|/2 Kinzz).m/2) T
B-w 2 S T [n/2|[n/2] Urn [10]
B—x 1-n Kn T [n/2] -2 Kin/2).m/2) T
B+Xx 3 S T n+1 Kn [10]
B/x 1/n Kn T [n/2]/2 Kin/2).1y2] T
B-x 2 S T Ln/2J[n/2] Urn (10
B—u 0 Pn [10 [n/2| -1 Kn T
B+u 2 S T 2[n/2| Pn T
B/u 1 P [10 ln/2] Kn T
B-u 1 S T In/2J? Pn T
w—x NR 0 Kn K
w+ X 4 Bipartite T 2n Kn T
w/X NR 1 Kn K
w-x Bipartite T " Kn T
w-pu 2—[n/2] P, T [n/2] Kn [10]
AR 3 S T n+[n/2] Kn T
w/u || 2/n/2) P T n/[n/2) Kn [10]
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EYE Y T | iz Kn T
w-p 2—|n/2) Py T In/2] Kn [10]
W+l 3 S T n+[n/2] Kn T
w/H 2/|n/2] P T n/[n/2] Kn (10
WY 2 S T nin/2] Kn T

The next table summarizes the results of AGX Form 1 obtaing¢tid7]. We use the same notations as in Tahle

Table 9: List of AGX conjectures obtained iriQ7.

2_ .
a5 | 2 Cn [107 || n- g4 Vi 203 Kinn-1 [107
qi+90 3+2cosh Py T 3n-3 Kn T
Qu/s 2 ReG K n— 34 Vand 20153 Kinn 1 [107
Q-6 2+2cosZ P T 2(n—1)? Kn T
w-d || 2 Cn (107 NR
+d 4+ 2cos! — 2 Py T 3n-3 Kn T
qu/d 2 ReG K L S [107
qu-d 4(1-3) (cosE) P T 2(n—1)? Kn T
w-A |1 s, K n-1 Kn (107
g +4A 4+ 2cosy P, T 3n-3 Kn T
qu/A o S, 107 || 2 ReG K
A 4-+4cost P T 2(n—1)? Kn T
-1 2+2cosZ — it P T 2n—-3 Kn T
qu+T NR 2n-1 Kn [107
— T
/T Stocoen P, T n-2 Kn T
Q-7 NR NR
q—-D 242cosf —(n—1) P, T 2n-3 Kn T
G +D NR 3o Vetin12 Ko—e [107
g
/D Z2cosy P, T n-2 Kn T
q.-D ND Bug )
qu—r 242cost — | 3] P, T 2n-3 Kn T
QT NR 2n-1 Kn (107
g
Qu/r —n—z*f;‘fﬁ P, T n-2 Ky T
- r NR Bag SO
ece 2cos? — 3010 if nis even b T on_ 3 K T
o 2cost — 311 if pis odd " "
g +ecc NR 2n—1 Kn [107]
Jecc ey [Tniseven P T n-2 K T
@ ST if s odd " "
qu-ecc NR NR
-9 4—n Cn [107 2n—-5 Kn T
th+9 G (Kingz) +3 Kina [107 [107
/9 4 Cn (107 || 32 Kn T
. i 6n—6, 4<n<15
-9 3 (King) Kin3 [107 ql(T“nj"ﬁ}Zw)((&zZD n>16 T 0141 [107)
2c0sT — 3-1M-1  if s odd
- T an R T 2n-3 K T
o { 2cost — 3-8 if nis even " "
G+ NR 2n-1 Kn [107
8n+8ncogrt/n) if nis odd
T CoiG R T n-2 K T
@/ { ErBcosm/n) if nis even " "
Q- NR n-2 Kn o
2+2cosf— ™1 ifnisodd R T 3 K T
P 2+ 2cosk — % if nis even n "
4 %1 fnis odd C (e} 2n—1 K 10
a+p + 4(2_:) if nis even n n-— n [107
8+8cogm/n) . .
_— if nis odd
a/p { s(n,"ﬁé:wwn)) if nis oven P T n-2 Kn T
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qi-p NR Kiﬂ%;1 SO
a-v |2 Cn [107 || n—§4 Vi 2m:% Kinn-1 [107
qr+v 3+2cosh Py T 3n-3 Kn T
/v 2 Cn [107 || n— 34 Y2 20ni33 Kinp_1 (107
-V 2+2cosZ P T 2(n—1)? Kn T
w-k || 2 Cn [107 || n— §+ Vén—2mis3 Kinn 1 (107
1 +K 3+2cosy P, T 3n-3 Kn T
a/k || 2 Cr [107 || n— g Vi zoness Kinn-1 [107]
G-k 2+2cos? P T 2(n—1)? Kn T
h—a 2+ 2cosZ Cn o] n—%+‘/4”2+2°”+33 Kinn-1 o)
Gta | 4 P T 3n-2 K, T
a/a 2-2 Kn [107 Kin /3141 SO
oh-a 4—4cog I P T 2n(n—1) Kn T
QL —o NR 2n—3 Kn T
n PR (o an-2v2n2 anta
qta 4+|3], ifnisodd DLl (: S0 722 if nis even C%L”J [107
t=|25¢] S-2VACE i nis odd 2
qi/a NR 2n—2 Kn T
q-a 2n-2 Kn (0] nin—1) S [107]
q-B NR n-3 Ko T
h+B NR 2n-1 [107]
qu/B NR 2n—-2 Kn T
B n S [107 NR
m
w-o || akin)-3 Kins [107 22 |so
TKZUK:;
q+w || 4+2cos? Py T 3n-2 Kn T
Ki .
Q/w 313 Kina (107 || & Kpq o
- 4+4cos? Pn T 2n(n—1) Kn T
Sn—4 ifniseven
— 1if nis odd C 10 2 —y SO
X rhise " [0\ ("7 KaKs) — 3] if nis odd 5 3KoUKs
o+ X 4+ 2cos? P T 3n-2 Kn T
/X 4if nisodd Cn [107 g Kpg [107
- X 4+4cos? Pn T 2n(n—1) Kn T
qu—H 2+2cos? — [ §] P T 2(n-1)—|§] Kn [107
i+ NR 2(n-1)+ 3] Kn T
Y P T n s [107
O U n S (107 || 2(n-1)|5] Kn T
7-2y2-n g R
B L=2y2n 4 2cos? ifn< 10 Pn 34
¢ —Ra { - NS e [107 z Kn o)
qu+Ra || 1+2cosT+0+v2 = o] Sn-2 Kn T
ddoodmn) it < 14 R 44 jf4<n<12 K
R -s+2v2 N " 10 N o Saa " o
o /Ra { %n -+ it n> 15 Co [107 \/nnTl if n>13 S
o -Ra (1+cosZ)(n—3+2v?2) P, o] n(n—1) Kn T

The next table summarizes AGX conjectures first studie®@h [All the inequalities are formulated for a connected
graphG, except when we write;; (T) andgs(U), which mean the signless Laplacian index os a Treend that of a
unicyclic graphU, respectively. In addion to the notation used for Tadknd Table9, BpG denote any connected
bipartite graph. We also need to define the following two e, andH,, on n vertices each. Ihis even,Hy is
constructed as follows from two copieslég. Delete an edgav from one copy and an edgé/ from the other; then
add the two edgesu’ andvv. If nis odd,Hp is constructed as follows from two copiesl()@ and an isolated vertex

w. Delete an edgav from one copy oK%l and an edge’V from the other; then add the four edges, vw, u'w and

v'w. If nis evenH), is obtained from two copies dﬁg by adding a single edge connecting the two cliquen.isfodd,
H,, is obtained from two copies M”—E—l and an isolated vertex by adding two edges betwearand each cquuKn_E_l.
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Table 10: List of AGX conjectures obtained i69).

Conjecture G st. Conjecture G st.
a1 > 2+2cosy P [69] q1(G) <2n-2 Kn [69]
qu(T)<n S [69] quU) =4 Cn (691
a(U) <au(S)) St [69] G >A+1 S [69]
o >2d>26 ReG [69] q <20 ReG [69]
i —2d <n-4+4/n S [90] qu-d>2 Cn (69
qp-d<n-1 Kn [90] g —-d—A; >0 ReG [69
g—-d-A<n—yn—1-2+2/n S (e} W+A—p>1 Kn [69
Hi+Ar—qu < /PG withp=[ 3], q=[3] Kpg 0 Q—H1 >0 BpG [69]
Oi— 1 <n-—2 Kn [90] q1—2A1 >0 ReG [69]
h—2M <n-2y/n—1 S (¢} Q=>1 S [69]
Q2(T) < A2(DCn.p,p), With p= [n%lj DCipp [69] —d>-1 Kn [80]
—-d<n-6+8/n Kn_22 (¢} Pp-0>-1 Kn [80]
G@-5<n-3 Kinn_1 | [80] A—p<n-2 S o)
B—0 > | "% —do(Hn) Ho 0 Q—A>1-vn 1 S [78)
—A<n—-2—2n—4 Kn-22 o -a> -2 Kn (70
If GZKn, g —a>0 S [70] q2 —a < go(Hy) —a(Hy) H; S
Gi—%<n Kn [80] IfG2Kyu—G<n-1 S (80
If Gis not bipartite gy > 0n(King) Kina [59 G —Gn > Go(P) — On(Pn) P ]
A1 — 0 < Ga(Kinn-1) = n(Kinn-1) Kinn-1 o Q1 +0n+2a <3n-2 CSna [150

In addition to the bounds listed in the above table, here @ue ¢onjecture obtained with AGX, three of which are
proved in B9 and the last one is refuted in the same papé. [

Conjecture 6.3 ([69]) Let Q) denote the number of distinct eigenvalues of the matrix Qnafag) the multiplicity
of the eigenvaluejqThen éQ) =2 <= m(qz) = n—1<= G =K.

Conjecture 6.4 ([69]) If G has k duplicate vertices (k 1), with neighbourhood of size d, then d is an eigenvalue of
Q with m(d) > k— 1.

Conjecture 6.5 ([69]) If G has k co—duplicate vertices ¢k 1), with closed neighbourhood of size d, ther d is
an eigenvalue of Q with f(d—1) > k— 1.

Conjecture 6.6 ([69]) If G is a connected graph of ordern 4 with at least two dominating vertices, thep g
A —1=n-—2with multiplicity at most n/2] — 2.
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