
Les Cahiers du GERAD ISSN: 0711–2440

A Repeated Sequential Elimination
Algorithm for Finding an Upper
Bound on the Clique Number

L. Curzi, A. Hertz,
I. Lari

G–2012–80

December 2012

Les textes publiés dans la série des rapports de recherche HEC n’engagent que la responsabilité de leurs auteurs. La publication

de ces rapports de recherche bénéficie d’une subvention du Fonds de recherche du Québec – Nature et technologies.

A Repeated Sequential Elimination Algorithm for

Finding an Upper Bound on the Clique Number

Luigi Curzi

Dipartimento di Scienze Statistiche
“Sapienza” Università di Roma

Piazzale Aldo Moro 5
00185 Rome, Italy

Alain Hertz

GERAD & Département de mathématiques et de génie industriel
Polytechnique Montréal

C.P. 6079, Succ. Centre-ville
Montréal (Québec) Canada, H3C 3A7

alain.hertz@gerad.ca

Isabella Lari

Dipartimento di Scienze Statistiche
“Sapienza” Università di Roma

Piazzale Aldo Moro 5
00185 Rome, Italy

isabella.lari@uniroma1.it

December 2012

Les Cahiers du GERAD

G–2012–80

Copyright c© 2012 GERAD

Les Cahiers du GERAD G–2012–80 v

Abstract

In this paper a new procedure for finding an upper bound on the clique number of a given graph
is described. Gendron, Hertz and St-Louis (2008) proposed a sequential elimination algorithm which,
given any method that computes an upper bound on the clique number, improves upon that bound by
iteratively reducing the graph. The idea of the new algorithm is to apply the sequential elimination
algorithm to the given graph and then apply it again to some subgraphs in order to further improve the
obtained bound. A preliminary set of computational results shows that if the new algorithm is associated
with a simple but sufficiently accurate method for computing an upper bound on the clique number it
can substantially improve the bounds obtained with the Gendron, Hertz and St-Louis algorithm within
reasonable execution times.

Key Words: Clique number; Upper bounds.

Les Cahiers du GERAD G–2012–80 1

1 Introduction

A clique of a graph G = (V,E) is a complete subgraph of G. The maximum clique problem is the problem of

finding a clique of G having maximum number of vertices and the clique number ω(G) of G is the cardinality

of a maximum clique of G. It is well known that the maximum clique problem is NP-hard [6] and that also

the problem of finding an approximation of the clique number is hard [9]. Therefore tight upper bounds of

the clique number are useful for any exact or heuristic algorithm.

The problem of finding an upper bound on the clique number has been studied by several authors. A

simple upper bound has been proposed by Amin and Hakimi [1], who proved that (3 +
√

9− 8(n−m)/2

is an upper bound of ω(G), where n = |V | and m = |E|. An upper bound can be also found by solving

a continuous relaxation of an Integer Linear Program (see e.g.[8] and [1]). Another upper bound can be

obtained by formulating the maximum clique problem as an unconstrained 0-1 quadratic program [8] and

finding the roof dual of this problem [5]. In [2] Boros et al. proposed a generalization of the roof duality

theory and applied it to the maximum clique problem showing that the obtained upper bounds strongly

improve those provided by the roof dual.

A coloring of a graph is an assignment of labels or colors to the vertices of the graph in such a way that

adjacent vertices have different colors. The number of colors in any graph coloring of G is an upper bound

on the clique number of G. The best of such upper bounds is the chromatic number of G, i.e. the minimum

number of colors in a coloring of G. The problem of finding or approximating the chromatic number of a

graph is NP-hard [9], but any heuristic for the graph coloring problem provides an upper bound on the clique

number. Lovász [7] introduced the function θ(G) and proved that ω(G) ≤ θ(G) ≤ χ(G). The θ function can

be defined in many different ways and can be found in polynomial time by Semidefinite Programming.

Gendron, Hertz and St-Louis [4] proposed a sequential elimination algorithm for finding an upper bound

on the clique number which, given an arbitrary function providing an upper bound on the clique number,

iteratively reduces the graph for improving the bound. In this paper we propose a repeated sequential

elimination algorithm in which the graph reducing procedure is applied in two stages in order to further

improve the bound obtained at the end of the sequential elimination algorithm The paper is organized as

follows: in Section 2 the Gendron, Hertz and St-Louis procedure is briefly described; in Section 3 the repeated

sequential elimination procedure is proposed and in Section 4 the computational results on a set of DIMACS

benchmarks are presented.

2 The sequential elimination algorithm

Given a graph G we indicate the vertex set of G as V (G). Given a vertex v ∈ V (G), the closed neighborhood

NG(v) of v in G is the subgraph of G induced by v and the vertices of G adjacent to v. Let h(G) be a

function providing an upper bound on the clique number of G. The sequential elimination algorithm (SEA)

proposed by Gendron et al. [4] is based on the following ideas.

• Decomposition of the graph: for each vertex v of the graph, the function h is computed on the closed

neighborhood NG(v) of v and the maximum among the obtained upper bounds is an upper bound on

the clique number of G.

• Reduction of the graph: the graph is iteratively reduced by deleting at each iteration the vertex whose

closed neighborhood has the minimum value of the function h.

At each iteration of the algorithm an upper bound on the clique number is available and the algorithm

terminates when it is not possible to improve the bound.

2 G–2012–80 Les Cahiers du GERAD

A pseudocode of the algorithm follows.
——————————————————————————————
algorithm Sequential Elimination (SEA)

input: An undirected graph G = (V,E).
output: An upper bound h′(G) on the clique number of G.

begin
let G′ := G and h′(G) := 0;
while h′(G) < maxv∈V (G′)h(NG′(v)) do

choose in G′ a vertex s such that h(NG′(s)) = minv∈V (G′)h(NG′(v));
if h(NG′(s)) > h′(G) then let h′(G) := h(NG′(s));
update G′ by removing s and all the edges incident to s;

return h′(G);
end
——————————————————————————————

At the beginning of each iteration h′(G) is an upper bound on the cardinality of any clique containing

one of the removed vertices and maxv∈V (G′)h(NG′(v)) is an upper bound on the clique number of the current

graph G′; if this value is greater than or equal to h′(G), it is also an upper bound on the clique number of

G. Otherwise, if h′(G) > maxv∈V (G′)h(NG′(v)), h′(G) is an upper bound on the clique number of G. In this

case it is no longer possible to decrease this bound by further reducing the graph and the algorithm stops.

Gendron, Hertz and St-Louis proved the following theorem which ensures that, under a reasonable as-

sumption on the function h, the bound provided by SEA is no worse than h(G).

Theorem 2.1 If h is decreasing, i.e. if h(G) ≥ h(G′) for any induced subgraph G′ of G, then h′(G) ≤ h(G)

[4] .

3 The repeated sequential elimination algorithm

The repeated sequential elimination algorithm (R-SEA) which is presented in this paper is a variant of SEA

and it has been created to improve its performance. Unlike the original algorithm, it is divided into two

distinct parts: in the first part SEA is applied to the given graph, while, in the second one, SEA is applied

again to some of the generated subgraphs. In the first part the algorithm behaves as the original one but

it iterates until the remaining subgraph is a clique. The cardinality of this clique is a lower bound on the

clique number. In addition, at each iteration of the first part, two pieces of information are stored: the

subgraph induced by the closed neighborhood of the removed vertex and the upper bound for this subgraph.

These stored data are compared in the second part, trying to improve at each iteration the upper bound; in

particular, the algorithm iteratively apply SEA on a stored subgraph having maximum upper bound until it

is possible to improve the bound.

Les Cahiers du GERAD G–2012–80 3

A pseudo-code of the algorithm follows.
——————————————————————————————
algorithm Repeated Sequential Elimination (R-SEA)

input: An undirected graph G = (V,E).
output: An upper bound h′′(G) on the clique number of G.

begin
(first part)
let G′ := G, h′(G) := 0 and k := 1;
while G′ is not a clique do

choose in G′ a vertex s such that h(NG′(s)) = minv∈V (G′)h(NG′(v));
if h(NG′(s)) > h′(G) then h′(G) := h(NG′(s));
let Gk := NG′(s) and Uk := h(NG′(s));
update G′ by removing s and all the edges incident to s;
let k := k + 1;

let Gk := G′ and Uk := V (G′);
(second part)
order the upper bounds U1, ..., Uk in non increasing order
and let i1, ..., ik such that Ui1 ≥ . . . ≥ Uik ;
let h′′(G) := 0 and j := 1;
while Uij > h′′(G) and j ≤ k do

apply SEA to Gij and let h′(Gij) be the obtained upper bound;
let h′′(G) := max{h′′(G), h′(Gij)};
let j := j + 1;

return h′′(G);
end
——————————————————————————————

The first part of the algorithm has the same computational complexity of SEA, i.e. O(n2T (n,m)), where

T (n,m) is the computational complexity of the procedure providing the upper bound h. The second part

has complexity O(n3T (n,m)), thus the computational complexity of the overall procedure is O(n3T (n,m)).

The following results show that R-SEA correctly finds an upper bound on the clique number and, similarly

to the original algorithm, if h is decreasing (see theorem 2.1) the obtained bound is no worse than h′(G).

Theorem 3.1 At the end of R-SEA, h′′(G) is an upper bound on the clique number of G.

Proof. Let s1, . . . , sk be the vertices deleted from G during the first part of the algorithm for obtaining

G1, . . . , Gk, respectively.

The subgraphs G1, . . . , Gk are generated in such a way that:

• all cliques of G containing s1 are induced subgraph of G1,

• for each j = 2, , k − 1, all cliques of G containing sj but not s1, . . . , sj−1 are induced subgraphs of

Gj ,

• the last subgraph Gk is a clique of G containing all vertices of G but s1, . . . , sk−1.

Therefore a maximum clique of G is a maximum clique of one of the subgraphs G1, . . . , Gk. It follows that,

since Uj is an upper bound on ω(Gj) for each j, at the end of the first part h′(G) = max{U1, . . . , Uk} is an

upper bound on ω(G).

4 G–2012–80 Les Cahiers du GERAD

At iteration j of the second part, SEA is applied to the subgraph having the largest upper bound and

h′′(G) is the maximum among the updated bounds. Hence max{h′′(G), Uij} is an upper bound on the clique

number of G. The algorithm stops when Uij ≤ h′′(G) and then h′′(G) is an upper bound on the clique

number and it is impossible to further improve it. 2

Theorem 3.2 If h is decreasing then at the end of R-SEA h′′(G) ≤ h′(G).

Proof. At the first iteration of the second part, h′′(G) = 0 and SEA is applied to the subgraph Gi1 . Since

h is decreasing

h′(Gi1) ≤ Ui1 = h′(G).

Therefore at the end of the first iteration

h′′(G) = max{0, h′(Gi1)} = h′(Gi1) ≤ h′(G).

At iteration j of the second part

h′(Gij) ≤ Uij ≤ Ui1 = h′(G).

Suppose by induction that at the beginning of this iteration h′′(G) ≤ h′(G). It follows that the updated

value of h′′(G), i.e. max{h′′(G), h′(Gij)}, is still less than or equal to h′(G). 2

4 Experimental results

The repeated sequential elimination algorithm has been compared to the original sequential elimination

algorithm on a set of DIMACS benchmarks for the maximum clique problem. In our experiments we used

three methods for finding the upper bound in the induced subgraphs: a Linear Coloring coloring algorithm

and DSATUR [3] that are well-known heuristics for the coloring problem, and a procedure based on the

degree sequence of the vertices of the given graph. For each test problem we considered two performance

indicators:

• the error, i.e. the difference between the upper bound and the clique number divided by the clique

number;

• the execution time of the algorithm.

We chose to run the algorithms on graphs having at most 200 vertices in order to perform a larger number

of tests, maintaining the execution times within certain limits. All the experiments were performed on a PC

equipped with an AMD Turion 64 X2 dual-core 1.80 Ghz, with 2 GB of RAM and the operating system

Debian GNU/Linux and the algorithms have been implemented in Python.

The experimental results are shown in Tables 1 and 2 where R-SEA is compared to SEA. In Table 1 we

show the errors and in Table 2 the execution times of the two procedures. We have not included the results

for the executions that have breached the time limit of 14000 seconds.

In all the considered cases the bound obtained with the new algorithm is closer to the optimum than

the bound produced by the original algorithm and for all three cases (Degree Sequence, Linear Coloring,

DSATUR) the average error of R-SEA is about half the error of SEA. Even using a function quite simple and

not very accurate as the one based on the degree sequence, on low density graphs, as for example In200-40-13

having density 40%, or on graphs with sufficiently high optimum, as for example In200-60-35, the error of

R-SEA is exactly 0; this does not happen with SEA. Using the Linear Coloring algorithm things get even

better and the average error is less than half the error achieved by the execution of SEA (0,10 against 0,23).

Also using DSATUR, the results are very good (0.04 against 0.14), but for some graphs, in particular for

Les Cahiers du GERAD G–2012–80 5

very dense ones, we were not able to find the upper bound since the execution time exceeded the maximum

time of 14000 seconds.

As shown in Table 2, regarding the execution times there is no match, SEA is much faster than R-SEA:

about 9 times with Degree Sequence, 6 times with Linear Coloring and 1,5 with DSATUR. In the latter case

we counted only graphs for which the execution of R-SEA terminated within the time limit.

At this point you might think that the game not worth the effort due to the excessive increase of the

execution times of R-SEA with respect to SEA. But giving a closer look at the tables we can see that the

average error obtained using R-SEA with the Linear Coloring function is slightly more than half the error

obtained running SEA with DSATUR (0.10 against 0.18); comparing these two cases, the time spent by

R-SEA is less than the one spent by SEA: the new algorithm spent on average 303 seconds as opposed to

3176 seconds of the sequential elimination algorithm.

Table 1: in this table the errors obtained by the execution of SEA and R-SEA are compared. In the last two
columns some values are missing because the algorithm in those cases took more than 14000 seconds.The
last bracketed value of column DSATUR/SEA shows the average error of the cases with execution times less
than 14000.

Degree Sequence Linear Coloring DSATUR
Graph SEA R-SEA SEA R-SEA SEA R-SEA

In200-40-13 1.29 0.00 0.08 0.00 0.00 0.00
In200-40-22 0.35 0.00 0.00 0.00 0.00 0.00
In200-40-33 0.00 0.00 0.00 0.00 0.00 0.00
In200-40-40 0.00 0.00 0.00 0.00 0.00 0.00
In200-40-55 0.00 0.00 0.00 0.00 0.00 0.00
In200-60-15 3.36 1.37 0.73 0.24 0.53 0.13
In200-60-35 0.85 0.00 0.00 0.00 0.00 0.00
In200-60-40 0.61 0.00 0.00 0.00 0.00 0.00
In200-60-50 0.26 0.00 0.00 0.00 0.00 0.00
In200-60-75 0.00 0.00 0.00 0.00 0.00 0.00
In200-80-25 3.73 2.55 0.85 0.58 0.62 -
In200-80-40 1.94 1.19 0.25 0.04 0.16 -
In200-80-55 1.13 0.59 0.00 0.00 0.00 0.00
In200-80-70 0.63 0.20 0.00 0.00 0.00 0.00
In200-80-80 0.42 0.04 0.00 0.00 0.00 0.00

MANN-a9.clq 1.31 1.06 0.13 0.13 0.19 0.13
brock200-1.clq 3.71 2.19 1.00 0.52 0.86 -
brock200-2.clq 2.58 0.67 0.58 0.08 0.42 0.00
brock200-3.clq 3.27 1.40 0.80 0.27 0.67 0.20
brock200-4.clq 3.53 1.71 0.88 0.41 0.76 0.24
c-fat200-1.clq 0.00 0.00 0.00 0.00 0.00 0.00
c-fat200-2.clq 0.00 0.00 0.00 0.00 0.00 0.00
c-fat200-5.clq 0.00 0.00 0.00 0.00 0.00 0.00

hamming6-2.clq 0.63 0.44 0.00 0.00 0.00 0.00
hamming6-4.clq 1.00 0.00 0.25 0.00 0.25 0.00

johnson16-2-4.clq 7.50 5.00 0.63 0.50 0.63 0.50
johnson8-2-4.clq 1.00 0.00 0.25 0.00 0.25 0.00
johnson8-4-4.clq 1.71 0.86 0.07 0.00 0.07 0.00
san200-0.7-1.clq 2.10 1.90 0.07 0.00 0.00 0.00
san200-0.7-2.clq 5.22 4.67 0.28 0.00 0.06 -
san200-0.9-1.clq 1.03 0.70 0.10 0.00 0.00 0.00
san200-0.9-2.clq 1.47 1.10 0.22 0.08 0.13 -
san200-0.9-3.clq 2.39 1.91 0.55 0.41 0.32 -

AVG: 1.61 0.90 0.23 0.10 0.18 0.04
(0.14)

6 G–2012–80 Les Cahiers du GERAD

Table 2: in this table the execution times in seconds obtained by SEA and R-SEA are compared. In the last
column some values are missing because the algorithm in those cases took more than 14000 seconds. The
last bracketed value on column DSATUR/SEA shows the average execution time of the cases with execution
times less than 14000. Notice that in some cases in which the error is equal to zero, the execution times of
R-SEA and SEA are very similar.

Degree Sequence Linear Coloring DSATUR
Graph SEA R-SEA SEA R-SEA SEA R-SEA

In200-40-13 11.08 29.94 21.19 23.40 497.72 508.22
In200-40-22 12.38 27.10 21.70 21.88 538.21 528.31
In200-40-33 13.70 13.58 22.94 23.01 597.81 590.95
In200-40-40 14.12 13.97 24.14 23.99 667.19 659.90
In200-40-55 15.68 15.43 28.50 28.26 942.39 948.10
In200-60-15 19.96 153.57 46.17 275.57 1886.07 8316.71
In200-60-35 24.20 152.67 57.64 59.87 2348.68 2448.99
In200-60-40 24.81 148.96 57.98 60.24 2386.39 2486.10
In200-60-50 26.77 129.98 60.15 62.16 2548.47 2653.98
In200-60-75 35.18 35.69 67.46 69.35 3293.86 3425.54
In200-80-25 24.21 475.70 76.44 957.23 5844.98 -
In200-80-40 28.70 487.57 77.33 1010.35 5776.70 -
In200-80-55 30.96 473.43 114.58 119.37 7726.06 7989.33
In200-80-70 34.26 490.63 115.60 120.41 7931.74 8325.59
In200-80-80 33.60 472.57 116.17 121.12 8129.43 8541.14

MANN-a9.clq 0.04 0.34 0.24 1.26 4.65 16.62
brock200-1.clq 33.17 445.52 70.63 936.48 4862.42 -
brock200-2.clq 18.80 67.85 33.42 120.74 1047.01 2918.16
brock200-3.clq 25.13 160.05 50.58 304.87 2098.92 9356.67
brock200-4.clq 25.31 243.01 58.06 445.21 2753.77 17256.72
c-fat200-1.clq 1.08 1.28 2.31 2.70 33.17 38.64
c-fat200-2.clq 3.64 3.62 7.88 7.84 179.94 182.22
c-fat200-5.clq 16.33 20.93 34.35 44.91 1513.69 2076.96

hamming6-2.clq 0.03 1.05 0.46 1.34 3.22 49.44
hamming6-4.clq 0.01 0.22 0.25 0.31 3.02 3.66

johnson16-2-4.clq 0.19 20.52 10.45 43.63 405.64 2248.35
johnson8-2-4.clq 0.00 0.03 0.02 0.04 0.18 0.41
johnson8-4-4.clq 0.03 2.67 1.22 3.77 31.79 76.31
san200-0.7-1.clq 44.62 70.73 77.20 468.64 4560.25 4872.75
san200-0.7-2.clq 42.46 71.44 81.60 1085.66 4218.99 -
san200-0.9-1.clq 38.77 511.93 81.10 1016.20 13425.85 13412.87
san200-0.9-2.clq 33.30 512.97 90.62 1231.59 8502.28 -
san200-0.9-3.clq 30.04 495.80 96.46 1318.26 10056.08 -

AVG: 20.08 174.27 48.63 303.32 3176.26 3701.21
(2427.97)

5 Conclusions and future works

The experimental results show that R-SEA is a valid procedure to improve the upper bound on the clique

number given by SEA, mainly if it is associated with simple but sufficiently accurate upper bound functions

for the maximum clique problem. However the running times are very high and the efficiency of the procedure

and its implementation must be improved.

Les Cahiers du GERAD G–2012–80 7

References

[1] Amin A.T. , Hakimi S.L. (1972), Upper bounds of the order of a clique of a graph, SIAM J. Appl. Math., vol. 22,
pp. 569–573.

[2] Boros E., Lari I., Simeone B. (2004), Block linear majorants in quadratic 0-1 optimization, Discrete Applied
Mathematics, vol. 145, pp. 52–71.

[3] Brélaz, D. (1979), New methods to color the vertices of a graph, Communications of the Assoc. of Comput.
Machinery 22, pp. 251–256.

[4] Gendron B., Hertz A., St-Louis P. (2008), A sequential elimination algorithm for computing bounds on the clique
number of a graph, Discrete Optimization, vol. 5, pp. 615–628.

[5] Hammer P. L., P. Hansen, Simeone B. (1984), Roof duality, complementation and persistency in quadratic 0-1
optimization, Mathematical Programming, vol. 28, pp. 121–155.

[6] Karp R. M., (1972), Reducibility among combinatorial problems, in Complexity of Computer Computations:
Proc. of a Symp. on the Complexity of Computer Computations, R. E. Miller and J. W. Thatcher, Eds., The
IBM Research Symposia Series, New York, NY: Plenum Press, pp. 85–103.

[7] Lovász L. (1979), On the Shannon capacity of a graph, IEEE Transactions on Information Theory, vol. 25,
pp. 1–7.

[8] Pardalos P. M., Xue J. (1992), The Maximum Clique Problem, Journal of Global Optimization, vol. 4, pp. 301-
328.

[9] Zuckerman, D. (2007), Linear degree extractors and the inapproximability of Max Clique and Chromatic Number,
Theory of Computing, vol. 3, pp. 103–128.

	Introduction
	The sequential elimination algorithm
	The repeated sequential elimination algorithm
	 Experimental results
	 Conclusions and future works

