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Abstract: Scheduling often plays an important role in vehicle routing. This paper describes several appli-
cations in which the author has been involved in recent years. These arise in the dial-a-ride problem, speed
optimization in routing problems, pollution-routing problem, long-haul vehicle routing and scheduling with
working hour rules, and synchronization in arc routing.
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1 Introduction

The aim of this paper is to describe several classes of routing problems in which time and scheduling play

an important role. There exist numerous occurrences of such problems. Our intention is not to provide

an exhaustive survey or classification of all conceivable cases, but rather to describe examples of interesting

problems on which the author and some of his colleagues and students have worked in recent years.

Most research in vehicle routing is rooted in the study of the classical Vehicle Routing Problem (VRP)

which consists of determining vehicle routes through a set of geographically scattered customers, subject

to various side constraints. The standard objective is distance (or cost) minimization. The problem was

introduced by Dantzig and Ramser (1959) and its study has since evolved into a rich research area (see, e.g.,

Toth and Vigo 2002; Golden, Raghavan and Wasil 2008; Laporte 2009). The most common objective in the

VRP is distance minimization. When an upper limit is imposed on route duration, it is common to equate

distance with travel times. There exist, however, several situations where distance and time must be treated

separately. For example, in the Vehicle Routing with Time Windows (VRPTW), an interval is imposed on

the time at which service must start at any given location. If the vehicle reaches a location before the opening

of its time window, it must then wait. In such a context, traveled distance and route duration are clearly

not equivalent.

The VRPTW can now be solved efficiently for relatively large instances. For example, Baldacci, Mingozzi

and Roberti (2012) have developed an exact algorithm based on a set partitioning formulation of the problem,

combined with the generation of valid inequalities, and capable of solving all but one of the Solomon (1987)

instances involving 50 and 100 customers; Nagata, Bräysy and Dullaert (2010) have designed a highly efficient

memetic algorithm which outperforms all known heuristics on the Solomon instances. It has improved 184

best-known solutions out of 356 instances comprising 56 Solomon instances and 300 instances introduced by

Gehring and Homberger (1999).

The remainder of this paper is organized as follows. Sections 2 to 6 are respectively devoted to the

following topics: the dial-a-ride problem, speed optimization, in routing problems, the pollution-routing

problem, long-haul vehicle routing and scheduling with working hour rules, synchronization in arc routing.

Conclusions follow in Section 7.

2 The dial-a-ride problem

With the aging of the population, an increasing number of cities are organizing and managing dial-a-ride

services for elderly and handicapped people. In the dial-a-ride problem (DARP), n users specify transporta-

tion requests (vi, vi+n) between origins vi and destinations vi+1. These requests are fulfilled by a fleet of

capacitated vehicles based at a depot v0. A travel cost cij and a travel time tij are associated with each

arc (vi, vj). Vehicle routes have maximal durations, and the time a user can spend in the vehicle is subject

to a so-called ride time constraint. Users frequently make two trips during the same day: an outbound trip

from home to a destination (e.g., a hospital), and an inbound trip back home. Users typically specify a time

window on their desired arrival time at the destination and another time window on their desired pickup time

from the destination. Depending on the context, the aim is either to satisfy all requests at least cost, using

the required number of vehicles, or to maximize the number of satisfied requests with a given vehicle fleet.

For surveys of DARP applications, models and algorithms, see Cordeau and Laporte (2007) and Parragh,

Doerner and Hartl (2008a,b).

2.1 A tabu search algorithm for the DARP

The tabu search algorithm of Cordeau and Laporte (2003) exploits the scheduling issues encountered in the

DARP. These are related to route duration, time windows and ride time.

As in the VRPTW, minimizing travel cost (or distance) or travel time may yield different results because

waiting at the vertices is allowed. To illustrate this difference, consider the three-vertex example depicted in

Figure 1. All arcs have unit costs and travel times, and there are no service times. Time windows are shown
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Figure 1: Single-request instance showing the effect of scheduling in the dial-a-ride problem

above the vertices. If the vehicle leaves the depot at 8h, it will arrive at vertex 1 at 9h, at vertex 2 at 10h

and will be back at the depot at 12h. If it leaves the depot at 9h, it will arrive at vertex 1 at 10h but will

still be back at the depot at 12h, which yields a one-hour trip reduction. This illustrates that arriving at a

vertex as early as possible may lead to missing some feasible solutions (for example, if the maximum route

duration is three hours, like here). The time Fi by which service at vertex vi can be delayed without causing

any time window violation is called the forward time slack. As shown by Savelsbergh (1992), given a route

(v0, . . . , vq) it is computed as

Fi = min
i≤j≤q

 ∑
i<p≤j

max{0, ap −Ap}+ (bj −Bj)

 , (1)

where [ai, bi] is the time window at vertex vi, Ai is the vehicle arrival time at vi and Bi ≥ max{ai, Ai} is the

time at which service starts.

Cordeau and Laporte (2003) have solved the DARP by means of a tabu search algorithm which itera-

tively removes a request from a vehicle route and inserts it into another one. Reinserting the request in its

original route is tabu for a certain number of iterations. As is common in tabu search, the algorithm allows

intermediate infeasible solutions. It does so by minimizing the function

f(s) = c(s) + αq(s) + βd(s) + γw(s) + τt(s), (2)

where c(s) is the routing cost of solution s, q(s), d(s), w(s), and t(s) denote the total violations of load,

duration, time window and ride time constraints in solution s, and α, β, γ, and τ are self-adjusting positive

coefficients Because of this feature, the authors modify formula (1) in order not to increase violations of time

window and ride time constraints when seeking a neighbour solution. The computation of the forward time

slack then becomes

Fi = min
i≤j≤q

 ∑
i<p≤j

Wp + (min{bj −Bj , L− Pj})+
 , (3)

where Wi = Bi − Ai is the waiting time at vertex vi, L is the maximum ride time, (x)+ = max{0, x}, and

Pi is the ride time of the user whose destination is vi if n + 1 ≤ i ≤ 2n, and Pi = 0 otherwise. It is also

possible to show that the minimal route duration that does not increase constraints violations is given by

Aq − (a0 + min{F0,
∑

0<p<q
wp}).

Using these formulas, the authors have designed three versions of their algorithm, with increasingly

complex neighbourhood exploration mechanisms:

V1: minimize time window violations;

V2: minimize route duration without increasing time window violations;

V3: minimize ride times by delaying the beginning of service at each origin vertex as much as possible

without increasing route duration, time window or ride time violations.
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The three versions of the algorithm were tested on 20 artificial instances and on six real instances from

Denmark. Going from V1 to V3 gradually improves solution quality but also increases execution time. It

was found that V2 offers the best compromise between computation time and solution quality.

2.2 Solution cost vs quality of service

A survey conducted by Paquette (2010) and also described in Paquette et al. (2012a) shows that users are

highly sensitive to scheduling issues in DARP operations. Questionnaires were sent to 857 users of dial-a-ride

services in Longueuil, a suburb of Montreal. The overall response rate was 38.6%. This survey helped identify

three quality indicators reflecting some of the main concerns of the service users:

Q1: the inconvenience related to the arrival time at the destination of an outbound trip;

Q2: the waiting time at the beginning of an inbound trip;

Q3: the ratio between the actual time of a ride and the time corresponding to that of the most direct trip.

Using the survey responses, these indicators were modeled empirically as follows:

Q1 = ((bi − ai)/2−Bi)
2

Q2 = (Bi − ai)2

Q3 = (Li/ti,i+n)
2
,

where ai, bi, Bi, tij have already been defined, and Li is the ride time of a trip originating at vi. The

first indicator reflects the fact that users prefer to arrive around the middle of the time interval associated

with the destination of an outbound trip. Variations around this mid-point are penalized quadratically. In

contrast, for an inbound trip, users prefer to leave the origin as early as possible. Any delay is also penalized

quadratically. Finally, the third penalty squares the ratio of the actual travel time between an origin and the

destination to the travel time corresponding to a direct trip.

These three indicators were incorporated by Paquette (2010) and by Paquette et al. (2012b) within a

multi-objective tabu search algorithm partly based on that of Cordeau and Laporte (2003). Solution quality

was assessed by means of the hypervolume and the multiplicative unary epsilon indicators (Zitzler et al.,

2003; Zitzler, Thiele and Bader, 2010). The algorithm was tested on 10 of the random instances of Cordeau

and Laporte (2003) and on 12 real instances corresponding to data observed in Longueuil. Computational

results showed that several non-dominated solutions could be generated within reasonable computing times.

They also enabled an analysis of the possible trade-offs between solution cost and each of the three quality

indicators Q1, Q2, and Q3. For example, it was found that if the three quality indicators were merged into a

single one, an increase of one unit in user inconvenience yielded a cost saving of $0.31; similarly, a one dollar

cost increase yielded a decrease of 2.28 units in user inconvenience.

2.3 The dynamic dial-a-ride problem

Two versions of the DARP can be defined according to the time at which requests are logged in. In the

static version, which is the most common in practice, all requests are known at the time of planning; in

the dynamic version, they are made in real-time, while vehicles operate. In practice, these two versions of

the problem rarely exist in their pure form: static instances contain a certain degree of dynamism since

last-minute cancellations often occur, and dynamic instances typically contain a certain number of known

requests at the start of the day. An algorithm for the dynamic DARP must first decide whether or not

to accept a new request. When a request is rejected, it cannot be reconsidered at a later time; when it is

accepted it must be inserted in the best possible position in the current partial solution. The problem studied

by Berbeglia, Pesant and Rousseau (2011, 2012) and by Berbeglia, Cordeau and Laporte (2012) concerns

the real-time insertion of requests in partial routes. The latter study describes a hybrid heuristic combining

tabu search (TS) and constraint programming (CP). Tabu search is rather good at optimally inserting a new

request in a partial solution that is not too constrained. In contrast, constraint programming can quickly

determine whether there exists a feasible solution capable of incorporating an incoming request. In the

proposed implementation, TS and CP run in parallel from the moment the request is lodged. The request
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is accepted only when either algorithm identifies a feasible solution; it is rejected whenever CP proves the

infeasibility of the request or after a preset computing time.

This study also defines and compares three strategies for inserting a new request in a partial solution,

called basic scheduling, lazy scheduling and eager scheduling. The basic scheduling algorithm always serves

a vertex as soon as possible. As shown by Cordeau and Laporte (2003), and as illustrated in Figure 1, this

policy may cause the algorithm to miss some feasible solutions. The lazy algorithm transforms a solution into

another one which minimizes the ride time violation of every request without increasing any time window

violation. It does so by delaying the start of service at each vertex without increasing constraint violations.

The eager scheduling algorithm transforms a solution into another one that minimizes the start of service

at each vertex without increasing the time window violation of any vertex or the ride time violation of any

request. In each of these three algorithms, it is preferable to delay as much as possible the departure of the

vehicle from every vertex in order to create empty time periods that may be later used to feasibly insert

future requests.

The algorithms just described were tested on a set of 28 static instances of Ropke, Cordeau and Laporte

(2007) and on a set of 20 static instances of Cordeau and Laporte (2003). These were then transformed into

dynamic instances. Results show the superiority of the eager algorithm over the lazy algorithm in that it

usually accepts more requests. (The basic algorithm which is clearly dominated by the other two was not

tested.) They also show that CP is sometimes able to accept or reject incoming requests, but TS tends to

accept feasible requests faster. This shows that the hybrid algorithm is superior to either CP or TS executed

alone. The capability of CP to prove infeasibility is highly related to the tightness of an instance.

3 Speed optimization in routing problems

Speed rarely appears as a decision variable in routing and scheduling problems. In problems like the DARP,

driving at a higher speed can of course make it easier to identify feasible solutions. However, we are not

aware of any vehicle routing study in which speed control is used to this end. The recent studies related to

speed control have rather advocated speed reductions as a means of reducing costs and CO2 emissions. This

is particularly important in today’s economic and environmental context.

Sea shipping is a transportation activity for which speed reduction can generate substantial savings. To

illustrate this impact, it is estimated that with a fuel price of 450 USD/tonne, a one percent worldwide

reduction in fuel consumption would yield a cost reduction of more than 1.2 billion USD, and a reduction of

CO2 emissions of 10.5 million tonnes (Hvattum et al., 2013). A computational study performed by Norstad,

Fagerholt and Laporte (2011) has shown that under reasonable assumptions, optimizing speed on a ship

route can reduce fuel consumption by as much as 14%.

The paper by Fagerholt, Laporte and Norstad (2010) proposes some speed control models and algorithms

for sea transport. Put simply, CO2 emissions are proportional to fuel consumption, which is a convex and

increasing function of speed over some domain. Because of cost convexity, on a route with time windows it

is suboptimal to sail at high speed if this means arriving at a vertex before the opening of its time window.

It is always better to sail slower and not have to wait. The paper considers a fixed route (v0, . . . , vn) where

a time window [ai, bi] is imposed on the start of service time at each vertex vi. The total route duration is

given, i.e., a0 = b0 and an = bn. Using a discretization of time, this problem can readily be cast as a shortest

path problem on a directed acyclic graph.

In a follow-up study, Hvattum et al. (2013) have proposed an exact O(n2) algorithm for this problem. It

is valid as long as travel cost is a convex function of speed, and it applies to sea or ground transportation.

Initially, the algorithm computes the speed necessary to reach vn at time an. It then identifies the largest

time window violation on the path (v0, . . . , vn). For example, suppose this maximum violation corresponds

to a late arrival at vertex vi (ti > bi). Then the algorithm recomputes a higher speed on the subpath

(v0, . . . , vi) with an arrival time of bi and a slower speed on the subpath (vi, . . . , vn) with a departure time

of bi. It reiterates in a similar way on each subpath until no time window violations remain. To illustrate,

consider the graph of Figure 2 depicting a ship route between vertex 0 and vertex 4. The distances (in
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[0,0] [100,150] [180,190] [320,350] [500,500]

Figure 2: Ship route with time windows

nautical miles) are shown on the edges and the time windows (in hours) are shown on the vertices. To travel

the total distance at constant speed, the ship must cruise at 15 knots (nautical miles/hour). At this speed,

the arrival times at the vertices 1, 2, 3, and 4 are 133.33, 200, 300 and 500, respectively. The largest time

window violation is at vertex 3. At the next iteration, the speed is decreased to 14.0625 knots on (0,1,2,3)

and increased to 16.67 knots on (3,4). These speeds yield arrival times of 142.22, 213.33, 320 and 500 at the

vertices. The only time window violation now occurs at vertex 2. The speed is then increased to 15.79 knots

on (0,1,2) and decreased to 11.538 knots on (2,3). This yields a feasible and optimal solution with arrival

times 126.66, 190, 320 and 500 at the four vertices.

In Section 4, we show how speed optimization can be used as a tool to reduce CO2 emissions in freight

transportation by truck.

4 The pollution-routing problem

Freight transportation accounts for much of the CO2 emissions in most countries. To illustrate, it is estimated

that in the United Kingdom, freight transportation produces 21% of the emissions from the transportation

sector, and 6% of the total emissions (McKinnon, 2007). The paper by Bektas and Laporte (2011) is one of

the first to study CO2 emissions in the context of vehicle routing. According to Barth, Younglove and Scora

(2005) and Barth and Boriboonsomsin (2009), the energy consumed by a vehicle of a given type on a flat

road segment can be approximated by the formula

Energy = A (load × distance) +B (speed2 × distance) , (4)

where A and B are positive constants. These two constants include technological factors which allow both

terms to be measured in energy units (kWh). Speed is assumed to be above a certain threshold of about 40

km/h since it usually becomes less efficient to drive a commercial vehicle below this speed (see Bektas and

Laporte 2011). The amount of CO2 emissions produced by a vehicle in motion is more or less proportional

to the amount of energy it consumes.

Through the development of a mathematical model and various examples, Bektas and Laporte (2011)

illustrate various interactions between vehicle routing solutions. Consider first a three-ton vehicle traveling at

a constant speed of 40 km/h on one of the graph depicted in Figures 3(a) or 3(b), showing edge lengths and

delivery quantities in tons at the vertices. It is clear that traversing these graphs in the direction (0,1,2,3,0)

or (0,3,2,1,0) yields the same traveled distance of 600 km. However, in graph 3(a), the first solution will yield

a total weighted load of 2800 kmt, whereas the second solution will yield a smaller weighted load of 2600

1

23

0

q  =11
200 km

100 km

q  =12q  =13

(a) Equal delivery quantities

1

23

0

q  = 0.251
200 km

100 km

q  = 3.252q  = 0.253

(b) Unequal delivery quantities

1

23

0

q  = 0.251
200 km

100 km

q  = 3.252q  = 0.253

[0,6]

[0,5]

[0,3]

[0,3]

(c) Unequal delivery quantities and
time windows

Figure 3: Graphs illustrating the effect of distance and weighted load on a solution
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kmt. This is so because smaller loads are now carried on the longer edges. The latter solution is also optimal

with respect to weighted load. On the graph of Figure 3(b), one can readily check that the first distance

minimizing solution (0,1,2,3,0) yields a weighted load of 2950 kmt, whereas the longer solution (0,2,1,3,0)

yields a smaller weighted load of 2886.07 kmt.

These examples were constructed with constant speed and without time windows. When time windows

are imposed on arrival times at the vertices, it is easy to optimize speed on a given route by applying the

Hvattum et al. (2013) algorithm described in Section 3. For example consider the time windows (in hours)

shown in Figure 3(c). In Equation (4), we use the two realistic coefficient values A = 0.05 and B = 0.00007.

On the optimal weighted load solution (0,2,1,3,0), the optimal speeds are 109.44 km/h on (0,2,1,3) and 100

km/h on (3,0). This yields an energy consumption of 673.08 kWh, which is not optimal since the distance

minimizing solution (0,1,2,3,0) has a smaller energy consumption of 567.5 kWh, obtained by always traveling

at 100 km/h.

The latter example clearly illustrates the effect of speed and scheduling on the minimization of CO2

emissions in freight transportation. It is relatively straightforward to design mathematical models that will

minimize energy consumption for one or several vehicles, with an objective function such as (4), and under

the presence of time windows (Bektas and Laporte, 2011). However, such models cannot be solved exactly for

medium size instances, even for a single vehicle. Demir, Bektas and Laporte (2012) have recently designed and

tested and adaptive large neighbourhood search heuristic (Pisinger and Ropke, 2007) applicable to instances

of realistic sizes.

In practice, it may be difficult to convince carriers to design routes under an energy minimization objective

if this yields solutions more costly than those obtained under a cost minimization objective. As a rule, fuel

consumption is minimized by driving slowly, which has an adverse effect on driving times and wages. Bektas

and Laporte (2011) have shown through some computational experiments that this conclusion still holds

when CO2 costs and fuel costs are taken into account (and are even increased sharply) since drivers’ costs

tend to dominate the total solution cost. It is possible to minimize a global function combining operating

costs and CO2 emissions by means of an adaptive large neighbourhood search algorithm, for example (Demir,

Bektas and Laporte, 2012).

5 Long-haul vehicle routing and scheduling with working hour rules

A complex routing and scheduling problem with multiple time windows arises in long-haul vehicle routing

with work hour rules. The precise rules are different in settings like the European Union (e.g., Goel 2009;

Kok et al. 2010; Kok, Hans and Schutten 2011; Prescott-Gagnon, Drexl and Rousseau 2010), Canada (Goel

and Rousseau, 2011), Australia (Goel, Archetti and Savelsbergh, 2012), and the United States (Archetti and

Savelsbergh 2009; Ceselli, Righini and Salani 2009; Goel and Kok 2012; Rancourt, Cordeau and Laporte

2013). The following description is based on the latter study.

The problem consists of optimally designing vehicle routes for a set of customers dispersed over a large

territory. The routes may last several days and each customer must be visited once within one of several

time windows. For example, each may have one time window per day. Standard vehicle routing constraints

such as vehicle capacity and maximum route duration also apply, and the vehicle fleet is often heterogeneous.

When visiting customers, drivers are subject to various rules on driving time, on-duty time (performing a

task for the employer, including driving), off-duty time (free time) and sleeper berth time (time spent sleeping

in the vehicle). Table 1, which combines Tables 2 and 3 of Rancourt, Cordeau and Laporte (2013), illustrates

the intricacies of the working hour rules. It provides examples of five rules relative to driving time, on-duty

time and sleeper berth time.

This problem was solved by Rancourt, Cordeau and Laporte (2013) by means of a tabu search heuristic

in which the objective is the minimization of a linear combination of vehicle fixed costs and routing costs. At

each iteration the heuristic moves a customer to a different route. It allows intermediate infeasible solutions

with respect to vehicle capacity, the on-duty 70-hour limit, and time windows. As in Cordeau and Laporte

(2003), constraint violations are multiplied by self-adjusting positive weights. Two versions of the algorithm
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Table 1: Working hour rules in the United States

60/70-hour on-duty limit A driver cannot drive after 70 hours on-duty in seven/eight consecutive days.
He may restart an eight consecutive day period after 34 or more consecutive
hours off-duty.

11-hour driving limit A driver may only drive a maximum of 11 hours after 10 consecutive hours
off-duty.

14-hour limit A driver cannot drive beyond the 14th consecutive hour after coming on-duty,
following 10 consecutive hours off-duty. Off-duty time does not expand the
14-hour period.

Sleeper berth partial rest periods Drivers using the sleeper berth provision must spend: 1) at least eight con-
secutive hours (but less than 10 consecutive hours) in the sleeper berth; 2) a
separate period of at least two consecutive hours (but less than 10 consecu-
tive hours) either in the sleeper berth, off-duty, or in any combination of the
two.

Driving and duty limits with partial
rest periods

After the second required rest period is completed, a new calculation point
for the 14-hour limit, starting at the end of the previous rest period, will have
to be considered to determine the available on-duty and driving hours. In
this calculation, only the period spent in the sleeper berth of at least eight
consecutive hours will not be counted as part of the 14-hour limit; a period of
less than eight hours will. The sleeper berth provision can be used continually
until 10 consecutive hours off-duty are taken. After 10 consecutive hours off-
duty, a driver has 11 hours of driving time and 14 hours of duty time available
again.

were tested. In the first, only complete rest periods were considered whereas in the second, breaking rest

periods was also allowed.

Both versions of the algorithm were tested on a set of modified Solomon instances (Solomon, 1987) and

on a real instance from Groupe Robert, a Quebec-based company. On the Solomon instances, allowing split

rest periods proved to be beneficial in terms of number of vehicles used, total distance traveled and total

route duration. On the Groupe Robert instances, both versions of the algorithm yielded reductions in the

number of vehicles and in the distance traveled with respect to the Groupe Robert solution. Allowing split

rests also reduced the routing cost.

6 Synchronization in arc routing

In vehicle routing it is sometimes necessary to synchronize the schedules of several vehicles because these

must operate at the same time or because their operations must follow a predetermined sequence. Drexl

(2012) provides an exhaustive survey of applications of this class of problems. Here we describe two arc

routing problems in which synchronization between vehicles is required.

The first arc routing synchronization problem studied by Salazar-Aguilar, Langevin and Laporte (2012) is

related to snow plowing operations. The problem arises in contexts where some street or road segments have

multiple lanes that must be plowed simultaneously by several vehicles, typically one per lane. Because not

all segments have the same number of lanes, this requires some synchronization between the snow plowing

vehicles and may generate waiting times in the solution. To illustrate, consider the graph depicted in Figure 4

showing travel times on the edges. In this example, two vehicles are used to plow five segments, only one of

which, (3,0), requires two vehicles. The first vehicle will leave the depot at time 0 and return at time 8 after

plowing arcs (0,1), (1,3) and (3,0). The second vehicle can leave the depot at time 2, and plow arcs (0,2),

(2,3) and (3,0) before returning to the depot at time 8. The two vehicles are synchronized to meet at vertex

3 at time 4.

This problem is considerably more complicated to model and solve than standard arc routing problems

such as the Rural Postman Problem or the Capacitated Arc Routing Problem. The authors have solved it
by means of an adaptive large neighbourhood search heuristic which was applied to the street network of the
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Depot
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30 0 Depot
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Figure 4: Arc routing problem with vehicle synchronization. : vehicle 1, : vehicle 2

City of Dieppe in New Brunswick, Canada. This city has 144 km of streets to plow, all having one or two

lanes, and representing a total of 363 lane-km.

A second problem considered by Salazar-Aguilar, Langevin and Laporte (2013) concerns the marking

of rural roads by painting vehicles. Because of wear and erosion, white and yellow lines on road have to

be repainted on a regular basis by means of capacitated specialized painting vehicles. This often means

dispatching vehicles over a wide area, often far from the depot. When a painting vehicle runs out of paint, it

can drive back to the depot to replenish before resuming its painting work, which can generate a fair amount

of deadheading. Alternatively, one can make use of one or several replenishment vehicles which will supply

the painting vehicles whenever they run out of paint. This gives rise to a combined arc and node routing

problem with route synchronization: the arc routing problem is that of the painting vehicles whereas the

node routing problem is that of the replenishment vehicles.

This problem is also very difficult to model and to solve. Salazar-Aguilar, Langevin and Laporte (2013)

have devised a heuristic combining GRASP (greedy randomized adaptive search procedure – see Feo and

Resende (1995)) and adaptive large neighbourhood search (Pisinger and Ropke, 2007) for this problem.

They have applied it to the solution of instances involving between 60 and 400 vertices, between three and

seven painting vehicles, and one replenishment vehicle. Three replenishment policies were implemented and

compared over a set of randomly generated instances. Under the first policy (R), all replenishments are

performed by the replenishment vehicle; under the second policy (D), the painting vehicle always returns to

the depot to replenish. The third policy (RD) combines the first two: whenever a replenishment is needed, it

implements policy R or D, depending on which one is the best. It was observed that D is usually preferable

to R, except on the smaller instances of size 60, and the RD policy is always superior to the other two.

7 Conclusions

We have described several routing problems in which scheduling plays an important role. The need for

scheduling often arises from the presence of time windows, like in the dial-a-ride problem and in the long-

haul vehicle routing and scheduling problem with working hour rules. Scheduling is also associated with

speed control which is often used as a means to reduce CO2 emissions. We have provided two examples of

speed control, one arising in ocean shipping and one in vehicle routing. Finally some problems require the

synchronization of several vehicles, like in the two arc routing problems we have described.

The examples provided in this paper reflect the recent research interests of the author. They clearly

do not represent the full range of problems in which scheduling plays an important role. The number of

potential applications is very large and these will hopefully attract the interest of other researchers. There

exist several promising avenues of research in the area of combined routing and scheduling. A first challenge

is the inclusion of traffic congestion and speed variability in the computation of optimal vehicle routes and
schedules. A second interesting research topic is the synchronization of vehicles operating at different levels of

a supply chain, for example in the case of transshipment and cross-docking operations. Finally, the increased
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availability of real-time information, regarding congestion for example, calls for the development of algorithms

capable of efficiently processing on-line information and of updating solutions dynamically.
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