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Abstract

We study the optimisation of a biomass waste to energy conversion system using an adapted Tabu
Search heuristic. It corresponds to a non-linear and non-convex optimisation problem whose solution
involves several optimisation sub-problems, including three with differential equations. In solving this
complex optimisation problem, four contributions have been made to the adaptation of Tabu Search for
use in the optimisation of biomass energy conversion systems. These are: multi-period and diversification
strategies that lead to an effective search of the solution space, handling of constraints by development
of different strategies for searching feasible regions, with some incursions into infeasible regions to find a
shortcut towards feasible regions, and evaluation of a multi-objective function exploiting an approxima-
tion of the Pareto front. The results of the experiments show that the resulting Tabu Search heuristic,
gives better solutions for this type of optimisation problem, compared to the basic Tabu Search. The
developed Tabu Search was used to maximize revenue from biomass waste to energy conversion systems
for two types of livestock (cows and swines). The Tabu Search was also used to identify the minimum
herd size required for commercial viability of a biomass waste to energy conversion system. Experiments
show that the adapted Tabu Search corresponds to a very useful tool for determination of commercial
viability of biomass waste to energy conversion systems.

Key Words: Tabu Search, Pareto, infeasibility, constraints satisfaction, multi-period, diversification.
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1 Introduction

A biomass waste to energy conversion system (BWECS) produces heat and electricity from organic waste.
The heat and electricity can be used by rural farms and remote communities to meet their needs. The
schematic of the BWECS optimised in this paper is shown in Figure 1. In this system, biogas is generated
from the anaerobic digestion of biomass waste and combusted in an internal combustion engine and boiler.
The internal combustion engine generates a torque that is used by an induction machine to generate electricity.
Exhaust heat from the internal combustion engine is captured by a heat exchanger. Heat from the system
is also used to maintain the digester’s temperature at its operating point. There is a backup propane supply
to supplement biogas combusted in the boiler. There is a connection to an electricity grid. Electricity from
the grid is used to supply the farm if the electricity generated by the BWECS cannot meet the demand. The
capital expenditure on BWECS is high, making it desirable to maximise revenue from these systems. Revenue
is obtained by sale of electricity generated to utility companies and from renewable energy incentives. Revenue
is maximised by the minimisation of the system’s costs. In order to maximise revenue from a BWECS, the
system must be optimised.

This paper presents an adaptation of the Tabu Search that is used to optimise the BWECS. A multi-
period optimisation strategy has been developed and a method of handling infeasible solutions suited to this
application has been developed. The cost components of the objective function are evaluated separately
resulting in a multi-objective function. The function is also multi-period in nature. The multi-objective and
multi-period solutions are evaluated on a Pareto incumbent front. A diversification strategy suited to the
multiperiod problem, that allows the solution to move to new regions has been developed. Experiments using
different parameters to tune the Tabu Search optimisation are presented and the results are discussed.

The paper is organised as follows: Section 2 is on the statement of the optimisation problem, Section 3
is on the literature review carried out, Section 4 describes the optimisation problem, Section 5 reviews the
aspects of the Tabu Search that were developed to suit the problem being solved and Section 6 describes
the Tabu Search algorithm. The experiments carried out and results obtained are described and discussed
in Section 7, and the conclusion is given in Section 8.

2 Statement of the Optimisation of BWECS

2.1 Outline of the Problem

The optimisation problem consists in dimensioning the BWECS for a given manure input in a given time
period m € M. M is a set of the number of months in the multi-period dimensioning problem. The BWECS
under study is shown in Figure 1, for a farm with npeq livestock (cows and swines in the experimental
results). Dimensioning is carried out with an adapted monthly setup, for: the backup propane flow rate,
a7, the split of biogas between the internal combustion engine (ICE) and the boiler, 23" and the volume
flow rate of manure from the lagoon, z4*. This is subject to the constraint of operating the BWECS such
that the electricity and heating demands of the farm and the digester are met, while maximising revenue
from the system. Manure from the livestock at a volume flow rate vj]' goes into a lagoon, where it is stored.
The manure from the lagoon is fed to a digester at a volume flow rate, 25*. In the digester, the manure
undergoes anaerobic digestion to produce biogas at a mass flow rate, Miogas» air-fuel ratio, AF™ and lower
heating value, LH Vbﬁgas. The biogas produced is to be shared between an internal combustion engine and
a boiler, at a ratio determined by the variable z5'. The mass flow rate of biogas going into the internal
combustion engine is (1 — x&”)mbiogas and that going into the boiler is mpiogas®h’. The biogas is combusted in
the internal combustion engine generating a torque 77". The torque 77" is applied to an induction machine
(IM) to generate electricity, output y7*. The electricity is used by the farm to meet the electricity load dZ*.
If excess electricity is produced by the BWECS it is sent to the electricity grid. The electricity sent to the
grid is designated by d* — y7*. If the electricity generated by the BWECS is insufficient to meet the demand
of the farm, electricity is obtained from the grid and is designated by y7* — dZ*. Combustion of biogas in the
internal combustion engine produces exhaust gases at a mass flow rate and temperature denoted by m[., and
™ respectively. Heat from the exhaust gases is captured by the heat exchanger (HEX) and forms the heat

exh
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Figure 1: Biomass Waste to Energy Conversion System Model

output ays®. The biogas that goes into the boiler is combusted to generate heat, denoted by (1 — a)y3*. The
total heat output y5* has to meet the heating demand of both the digester bd}* and the farm (1 —b)d]*. When
the boiler does not generate enough heat to meet the total heating load, propane will also be combusted in
the boiler. The propane is supplied as a backup fuel from a propane tank, at a mass flow rate 2" and
lower heating value LHVjropane. The optimisation of the BWECS described is done with the objective of
maximising revenue. The optimisation problem is expressed as a cost minimisation problem by:

1
subject to: Cewrcs (2], 25", x5') < 0 for m € M, E2;

such that : 2™ € {0,0.0001, 0.0002, 0.0003, ...,0.0036} for m € M, (3)
2 € {0, 0.01, 0.02, 0.03,...,0.99} for m € M, (4)

(5)

(6)

min f 5 (27", 25", 2%") for a given manure input v, ,

x5 € {1, 2, 3,...,59} for m € M, 5

x = (z},rd, 23, 23, 22 23, ...,:v'lm‘,x‘zm|,:v|3m‘) for m € M, 6
where 27", 23" and x5 are the variables: backup propane mass flow rate, biogas sharing ratio and volume
flow rate of manure going into the digester respectively. Cpwgcs denotes a set of global constraints, some of
which are linear and others non-linear. The set of global constraints will be described in Section 4.2. Using
the variables, z1*, z3* and z%*, the outputs y{* and y5* can be obtained as described in Algorithm 1. x denotes
the solution of the optimisation problem as described in the Tabu Search (see Algorithm 2). The outputs y{"*
and 5" will be used in Section 4.1 to describe the components of the objective function.
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2.2 Optimisation Process Flow

Algorithm 1 describes the process flow of the optimisation. The inputs of the BWECS are: herd size nyerd,
electricity demand d’, heating demand d}' and volume flow rate of manure from the livestock v{). These
inputs are specified for each time period, m € M. The parameters of the optimisation are initialised, i.e.,
Vlggoon, volume of manure in the lagoon, a, ratio of heating output, b, ratio of heating demand, nggx, efficiency
of the heat exchanger, npoiler, efficiency of the boiler, Tiyater, water temperature and LH Vpropane, lower heating
value of propane. An initial solution (z7*,z5",25") is built for each of the time periods m € M. This is done
by calculating the outputs of the manure storage and the energy conversion processes in each component of
the BWECS, using the functions: LAGOON, DIGESTER, ICE, IM, and the linear equations of the heat
exchanger and the boiler (see Section 4.2). The function LAGOON is linear and calculates the storage of
manure from the livestock, for each of the time periods m € M. The functions DIGESTER, ICE and IM
include complex non-linear differential equations and are represented as component models in the BWECS
optimisation problem. References for these component models are given in Section 4. Each of the component
models of the functions DIGESTER, ICE and IM model a difficult non-linear optimisation problem. A
variable that determines the output of the energy conversion processes in each of these component models is
selected to define the solution (x7*, 23, §"), as shown in Algorithm 1. As such the non-linear optimisation
problems of the component models are solved by optimisation of the BWECS, with the solution (a7, 25", z5").
The inputs and outputs of the component models and equations are defined in Table 1. The electricity and
heat outputs, y* and y3* respectively, are obtained and used in computation of the objective function. Once
an initial solution has been found and the objective function computed, the Tabu Search optimisation is
carried out to determine the near optimal solutions. The Tabu Search algorithm is described in Section 5.

Algorithm 1 Optimisation of a BWECS

Initialization
1: Inputs: npera, dg*, dp*, vin for me M
2: Initialize parameterS: Viggoonu a, b, HEX, Tlboiler; Twatera LHVpropane
3: for m € M do
4:  Build an initial solution (z7*, 25", 2%") for m e M
5. Calculate the outputs of the BWECS model components
(%%oon’ ‘/I‘.gl) = LAGOON(U:E’ K;%;ju’ nherd)
(AF™, LHV gas: m{gogas) = DIGESTER(z%", bd}")
(TF’ mgch7T£Zh’ Cpg:(h) = ICE(mg}ogay (1 - x;n), AFm’ LHVbri?:L)gas)
yi" = IM(TY")
ayén = TJHEX mZ;L(h Cpg;b(h (ngh - Twatcr)
(1 —a)yy' = (LHVpropane o+ mﬁogas LHVqu,gas T5") Mboiler
6: end for

7. Evaluate the objective function fcost

Tabu Search Optimisation
8: iter < 0
9: while iter < max_iter do
10:  Perform Tabu search which includes evaluation of each of the BWECS model components
11:  Evaluate iterative solutions and update the incumbent solutions accordingly (see Section 4.1 on for-
mation of Pareto incumbent solutions from the objective function)
12: end while
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Table 1: Inputs and Outputs of the Model Components

Input/Output Description

Nherd herd size
dgt electrical demand of the farm
ar heat demand
UHU volume flow rate of the manure from the livestock
Vl:éoon volume of the manure in the lagoon
M ogas mass flow rate of the biogas from the digester
m, mass flow rate of the exhaust gases

o temperature of the exhaust gases
CPexh specific heat capacity of the exhaust gases
AF™ air-fuel ratio of the biogas
LHVgi’ggas Lower Heating Value of the biogas
r output torque of the internal combustion engine
Y1t electricity output
Y5 heat output

3 Literature Review on BWECS Related Systems

This section discusses previous work done on optimisation of biomass waste to energy conversion systems.
There have been studies on optimisation of biomass waste to energy conversion systems. These studies
however did not use the Tabu Search technique and used simplified linear equations with linear constraints
to model the optimisation problem. The optimisation problem of the BWECS in this paper is modeled
differently, and it has non-linear and non-convex constraints. Two of the studies that used simplified linear
equations, Rentizelas et al. [1], and Bruglieri and Liberti [2], are discussed in this section.

The optimisation in Rentizelas et al. [1] and that of the research in this paper have the same objective,
maximisation of revenue, but are not solving the problem in the same manner. The variables used in
Rentizelas et al. [1] were obtained from the biomass supply chain, processing and storage capacities, whereas
the variables used in the research being carried out are obtained from the energy conversion processes. The
problem being solved in Rentizelas et al. [1] is based on the biomass supply chain, processing and storage,
whereas that being solved in the research being carried out is based on the energy conversion processes.
Another difference is that Rentizelas et al. [1] used genetic algorithms and sequential quadratic programming
to solve the optimisation problem.

Bruglieri and Liberti [2] optimised the energy production process for a biomass based energy production
system. The objective of the optimisation was to minimise the total operational costs. This is similar
to the objective of the optimisation in the research being carried out in this paper, however again, the
problem is solved differently. The system model in Bruglieri and Liberti [2] comprised of process sites. The
optimisation was based on a material balance of the inputs and outputs of the sites. This is different from the
optimisation problem in the research being carried out whose system model comprises of energy conversion
process components, and the optimisation is based on the energy conversion processes. The optimisation
problem in Bruglieri and Liberti [2] was solved using CPLEX (ILOG [3]) and a spatial branch-and-bound
solver.

Both Rentizelas et al. [1] and Bruglieri and Liberti [2] used techniques suited to supply chain or production
process models and greatly simplified the optimisation problem. This is different from the optimisation of
BWECS of this paper, in that the latter is modeled based on the energy conversion processes in the system
components, which is solved by a Tabu Search algorithm. The following section describes the formulation of
the BWECS optimisation problem.

4 Description of the Optimisation of BWECS

The optimisation problem involves evaluation of the biogas production and electricity and heat production
from the volume flow rate of manure, v!' for m € M. Starting with v]]!, the inputs and outputs of the

mn’

BWECS components are calculated in turn using the functions, LAGOON, DIGESTER, ICE, IM and the
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linear equations of the boiler and the heat exchanger. The functions of the respective BWECS components
are indicated in Figure 1, together with the inputs and outputs. This section describes the objective function
and the constraints of the optimisation, followed by an outline of the process flow of the optimisation problem.

4.1 Objective Function

The formulation of the optimisation problem maximises revenue from a BWECS subject to meeting the
heating demand of the farm and the digester. The objective function has four components; the cost of

capital, CZ ita1, the cost of propane, Clo,ane, the cost of incentives, Cill ., ives and the cost of grid electricity,
Carid_electricity 10T ™ € M. The following is a description of the components of the objective function.

4.1.1 Cost of Capital

The cost of capital CZ ;. is calculated from the capital expenditure on the digester, lagoon, boiler and

engine-generator set. The capital expenditure on these items is dependent on their sizes, which in turn
depends on the herd size. The size of the digester and the lagoon are dependent on the volume flow rate of
manure from the livestock, v{]'. The cost of the boiler and engine-generator set are dependent on the ratings
of the respective equipment. This capital expenditure is amortized monthly to obtain the cost of capital
crn The cost of capital is calculated using the non-linear function (7), details of which can be found in

capital®

Namuli et al. [4].

m .
capital = CAPITAL (HRT, Cdigesters Clagoon) Prated, Cengine; Cboiler; Ccap_incentiveu lrate,
m m m
Nperiods Vip > Viagoon_storageu dh y Yo )7 for m € M, (7)

where CAPITAL is the function for calculation of the cost of capital, v]}! is the volume flow rate of manure
from the livestock, HRT is the hydraulic retention time, cajgester is the cost of the digester, Viagoon_storage is
the storage capacity of the lagoon, Clagoon is the unit cost of the lagoon, Piaea is the power rating of the
induction machine, cengine is the cost of the engine-generator set, dj’ is the heating load, a is the ratio of
heat output from the heat exchanger, y5* is the heat output, cpoiler is the cost of the boiler, Ccap_incentive 18
the capacity incentive, iratc is the interest rate and nperioa is the number of periods over which the interest
is charged.

4.1.2 Cost of Propane

The monthly cost of propane, CFl, ... is a linear function of the backup propane mass flow rate, x7" and is

given by (8). For the details of the function see Namuli et al. [4].

(038 = PROPANE(¢propane; Z7") for m € M, (8)

propane

where PROPANE is the function for calculating the cost of propane, cpropane is the unit cost of propane and
27" is the backup propane mass flow rate.

4.1.3 Cost of Incentives

A performance incentive is given for generation of renewable energy. This incentive is included in the objective
function and is calculated by a linear function (9), details of which can be found in Namuli et al. [4].

irr?ccntivcs = INCENTIVES(CinCCDtivcsv yin) for m € M, (9)
where CJI' . iives 1 the cost of incentives, INCENTIVES is the function for calculating the cost of incentives,

y1" is the electricity output and cincentives 1S the unit cost of incentives.
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4.1.4 Cost of Grid Electricity

The cost of grid electricity, Cg;id_electricity is a non-linear function of the electricity output, yi™ (10), the details

of which can be found in Namuli et al. [4].

cr = GRID_ELECTRICITY (canir, d, y")  for m € M, (10)

grid_electricity

The four cost components of the objective function form a multi-objective optimisation problem. With the
Tabu Search method used, sampling of the neighbourhood results in many solutions. Each of these solutions
is to be evaluated using the multi-objective function. The incumbent solution is to be selected as the one
with the minimum overall cost. In determination of a solution that will minimise the overall objective, an
easy way is to compute the overall cost as:

M
z = (Cgpital + Og;opane - irr?centives + Cgid_electricity) for m € M. (11)
m=1
The drawback of (11) is the different ranges of the values of the cost components. This means that the overall
objective will largely be minimising the cost components with the highest value. This can be overcome by
the use of weights, but it is difficult to find the proper weights. A better method is to express the objective
function as a cost vector of the components, resulting in a cost vector for each of the solutions. Let

" M M M M

— COS

fk - Ccapital’ Cpropanm - Cinccntivcs7 Cgrid_clcctricity for k € K and m € M7 (12)
m=1 m=1 m=1 m=1

be the set of solutions. The individual cost components of the solution vectors are compared for dominance.
The vectors with the non-dominant cost components form a Pareto incumbent front. The solutions on the
Pareto incumbent front are selected as the incumbent solutions. There are several incumbent solutions, all
of which are retained, as shown in Figure 2 for the comparison of the cost of propane and the cost of grid
electricity.

2
El .
= )‘ fl cost
| —
] f cost
|
\
' - Zoost
cost
X3 h%
—
— M f.cost
S e - fg(c ost f6 £ Cost
Cpropane

Figure 2: Illustration of Pareto Incumbent Front

4.2 Global Constraints

This section describes the global constraints, Cswgcs, and how they are derived from the optimisation
problem. The initial solution described in Algorithm 1 satisfies the global constraints. In the Tabu Search
optimisation that follows, the solution (7, 25", 25") has to be checked for satisfaction of the global constraints.

These constraints are defined as:
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0 < (Uzgn:inays + Viz;;oln_manurc - ng;ys‘rgn) < Viagoon_storage UZZ’ (13)
(Vb — HRTz%") > 0, (14)
(Prated/wmech - ICE(LHVb%gay Wmech; (1 - x?)mg}ogas)) 2 07 (15)
d;]n S <77HEX mg}(h Cpcxh(Terzh - Twatcr)+ (16)

(LHVPFOPaHe J‘Jln + mﬁogas LHVb%gas :C72n) 77b0i1er> < (d;nn + 511)7

(br - dhm + TTHEX mg(h CPexh (T:)Zh - Twater)) < 07 (17)

for m € M,
where v{]’ is the volume flow rate of manure from the livestock, Nays T€ the number of days, ‘Ggégjn_manure
is the volume of manure in the lagoon, 5" is the volume flow rate of manure from the lagoon, Viagoon_storage
is the storage capacity of the lagoon, Vp is the volume of the digester, HRT is the hydraulic retention time of
the digester, Prateq is the power rating of the induction machine, wyecn is the speed of the internal combustion
engine, LH Vb’ﬁ)gas is the lower heating value of biogas, z3" is the biogas sharing ratio, Miogas 19 the mass flow
rate of biogas, di* is the heating demand, 7urx is the efficiency of the heat exchanger, m[,, is the mass flow
rate of the exhaust gases, cpexn is the specific heat capacity of the exhaust gases, Ty, is the temperature of
the exhaust gases, Tyater is the temperature of water, 2" is the mass flow rate of backup propane, LH V...
is the lower heating value of propane, npeier is the efficiency of the boiler, ¢y, is an allowance for the heating
constraint and b, is the boiler rating. The manure from the livestock is stored in a lagoon with a storage
capacity of Vagoon_storage days. The volume flow rate of manure from the lagoon into the digester, x5" is
varied to minimise the cost of the system. Constraint (13) is set to ensure that the net volume of manure
in the lagoon is not negative. In a given month m, the volume of manure that goes into the lagoon ng, 5",
should not be greater than the sum of the volume of the manure that was in the lagoon the previous month
m-l and the volume of manure from the livestock in month m. Constraint (13) also ensures that

lagoon_manure’
the volume of manure in the lagoon is not greater than the storage capacity of the lagoon.

Constraint (14) is set to ensure that the volume of manure in the digester, HRTz%", is not greater than
the volume of the digester Vp. The digester is modeled using non-linear differential equations. The digester
model is treated as a black box for purposes of optimisation. The differential equations in the black box,
DIGESTER, used to calculate the mass flow rate, M ogas the air-fuel ratio, AF™ and the LHV (Lower
Heating Value) of biogas, LHV{ .. can be found in 7 [5]. The output torque of the internal combustion
engine is determined by applying the Newton-Raphson method to a two dimensional linear interpolation
function. The linear interpolation function is multiplied by the available torque. The available torque is
calculated from the mass flow rate of biogas to the internal combustion engine, the lower heating value of
biogas, and the speed of the internal combustion engine. The internal combustion engine model is also treated
as a black box of these functions (ICE). The details of the modeling of the internal combustion engine can
be found in National Renewable Energy Laboratory [6]. The internal combustion engine is coupled to an
induction machine of rating, P ated, that generates electric power. The induction machine is modeled using
non-linear differential equations detailed in Mohan [7]. The induction machine is also treated as a black box,
IM, with the input as torque and the output as electricity, y*. The electricity generated is a function of
the torque, which in turn is a function of the mass flow rate of biogas to the internal combustion engine.
Constraint (15) is therefore set to limit the mass flow rate of biogas to not more than what is required to
generate rated power, Prateq in the induction machine.

Sometimes the biogas generated by the digester may be insufficient for sharing between the internal
combustion engine and the boiler. Priority is then given to the combustion of biogas in the internal combustion
engine, and propane is combusted in the boiler. A propane tank that supplies propane at a mass flow rate,
27" is included in the BWECS. The heat produced by the boiler is calculated from the mass flow rate of
biogas to the boiler, Mtogas £25 the mass flow rate of propane, «7*, the lower heating value of propane and
the lower heating value of biogas. Exhaust heat is also produced as a result of the combustion process in
the internal combustion engine. This exhaust heat is captured by the heat exchanger. Constraint (16) is
set to ensure that the heat output of the BWECS meets the heating demand of the farm and the digester.
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Constraint (17) is set to ensure that the heat to be generated by the boiler is not greater than the boiler
rating, b,. The contribution of the heat captured by the heat exchanger is subtracted from the heat output
of the boiler in formulation of Constraint (17). The boiler rating is calculated by a non-linear equation given
in Namuli et al. [4].

Infeasible solutions arise if the constraints are not met. The measure of infeasibility of the solution is
calculated as:

M

infeas __ m m m m m
f - E (Slagoon_volume + Sdigester_size + mbiogas + Sheating_demand + Sboiler_rating) for m € M7 (18)
m=1
infeas ; : hils m m m m
where f is the total measure of infeasibility, Slagoon_volumc, Sdigcsmuizc, mbiogas? Shcating_dcmand and

S{)’giler_mting are the measures of infeasibility of the volume of manure in the lagoon, the digester size, the
mass flow rate of biogas to the engine-generator set, the total heat output and the boiler rating, respectively.
The measures of infeasibility are derived from the respective Constraints (13), (14), (15), (16) and (17).
Using the measure of infeasibility of the volume of manure in the lagoon as an example we have:
-1
ng':xysxgl + Slrggoon_volume = ‘/lzxyéoon_manure - ‘/lagoon_storagcvinr} + v?r}anZys for m € M7 (19)
>0,

the solution is feasible for Si},oon volume

m mo3 m
where n, . are the number of days, %" is the volume flow rate of manure from the lagoon, Si7.on volume:

is the measure of infeasibility of the volume of manure in the lagoon, Vi::;;oln_manurc is the volume of manure
in the lagoon, Viagoon_storage is the storage capacity of the lagoon and v{} is the volume flow rate of manure
from the livestock. The other measures of infeasibility are defined similarly. The handling of infeasibility is

discussed in Section 6.2.2.

5 Tabu Search

This section reviews the Tabu Search and the aspects that have been developed to adapt the Tabu Search
to the optimisation of a BWECS.

5.1 Introduction

The motivation for using the Tabu Search heuristic is the discrete variables of the optimisation problem,
the non-convexity of the constraints and non-linearity of the functions used to model the components of the
BWECS. This makes the optimisation problem computationally complex with a number of local optima. A
deterministic metaheuristic, i.e., Tabu Search is preferred in order to better take advantage of the charac-
teristics of the BWECS. A deterministic metaheuristic moves aggressively to a local optimum, which would
shorten the computational time, compared to random search metaheuristics like simulated annealing and ge-
netic algorithms. Before going into the description of the Tabu Search, a literature review of the Tabu Search
and the features that have been developed for solving the BWECS optimisation problem are discussed.

5.2 Basic Tabu Search

The Tabu Search is applicable to highly combinatorial problems (Glover [8]) which can be formulated as
optimisation problems: minimise f(x):x € X where f(z) is the objective function, and x is selected from a
set of constraints X. In Tabu Search, a move n leads from one solution to the next. The move is defined as
n: X(n) = X. The set of moves that can be applied to x is defined as N'(z) and is termed the neighbourhood
of = (Glover [8]). A characteristic of the Tabu Search is to constrain the search by restricting moves (Glover
[8]). This leads to creation of an element of memory, that is managed using a Tabu list. Moves that result in
a good solution are used to update the current solution and are stored in the Tabu list. The reverse moves
are also stored in the Tabu list. Use of memory in the form of a Tabu list prevents cycling, which occurs
if a solution is stuck in a local optimal. In the basic Tabu Search, moves that are in the Tabu list are not
allowed during the optimisation process, during a given number of iterations (Glover [8]). The Tabu list is
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updated by removing older entries and adding new entries with every move. The length of the Tabu list or
the number of iterations for which a move is Tabu, is dependent on the optimisation strategy. This paper
has developed strategies for application of the Tabu Search to the optimisation of a BWECS. The strategies
developed are:

(i) evaluation of a multi-objective function using a Pareto front that incorporates the multi-period nature
of the problem,

(ii) constraint handling using different strategies for exploring feasible regions with some incursions into
infeasible regions,
(iii) multi-period optimisation and

(iv) diversification using some consecutive restarts.

Since many papers have been published on Tabu Search, we next review the most recent or relevant papers
with respect to multi-objective optimisation, constraint handling, multi-period planning and diversification.

5.3 Multi-objective Optimisation

There are various methods used to evaluate multi-objective functions in an optimisation problem, some of
which are: (i) the objectives can be combined into a normalised weighted function, (ii) one of the objectives
can be evaluated at each iteration of the optimisation, or (iii) Pareto optimal solutions can be determined.

In Choobineh et al. [9] a single-machine scheduling problem was solved using a multi-objective Tabu
Search and a weighted objective function.

In Kulturel-Konak et al. [10] a different objective was evaluated at each iteration of the optimisation. A
multinomial probability mass function was used to select the objective to be evaluated at each iteration.

Baykasoglu [11] solved a mechanical component design problem using a multi-objective Tabu Search
optimisation. The Pareto optimal method was used to evaluate the multi-objective function. The solution
to proceed with the iteration was selected randomly from a set of Pareto solutions.

The method used to evaluate the objective functions in the research being carried out is the Pareto front
method, where a set of Pareto incumbent solutions is kept. The selection of the solution to proceed with the
iteration is done differently in the research being carried out. Baykasoglu [11] randomly selected a solution to
proceed with the iteration, the research being carried out in this paper, selects the best solution by weighting
and summing the components of the objective function. The details of the method developed are given in
Section 6.2.1. Selection of the best solution is done to allow the search to proceed with the minimised value
instead of a randomly selected value. In addition, the weighting of the cost components of the objective
function is aimed at ensuring that their sum is not dominated by the cost component with the largest value.

5.4 Constraint Handling

In the handling of constraints, it is good to allow infeasibility for non-convex constraints. When dealing with
non-convex constraints, allowing feasible solutions only, results in the solution taking a longer path towards
an optimum. This is because the solution path is limited to feasible regions only. This path can be shortened
by allowing infeasible solutions during the optimisation.

There are different ways of handling infeasibility. In Korsvik and Fagerholt [12], a ship routing and
scheduling problem was solved using Tabu Search. The problem was divided into a main and a sub-problem.
Tabu Search was used to solve the main problem for optimising the shipping route. The sub-problem which
optimised the quantity of cargo being shipped, was formulated as a linear programming problem. Infeasible
solutions were generated in the sub-program. A fast heuristic was used to obtain feasible solutions for the
sub-problem. In the research being carried out in this paper, the problem is not split into a main and a
sub-problem. The entire problem is solved using Tabu Search while allowing both infeasible and feasible
solutions.
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In Lim et al. [13] infeasible solutions were handled by incorporating a random move sub-routine into a
Tabu Search algorithm for a freight allocation problem. The optimisation problem encountered infeasible
solutions, which were allowed.

The method of constraint handling developed in the research being carried out in this paper is different
from that in Korsvik and Fagerholt [12] and Lim et al. [13]. The difference with the constraint handling in
the research being carried out in this paper, is in the strategy developed to handle the infeasibility within the
multi-period optimisation. A second objective function that minimises infeasibility is introduced. At each
iteration the optimisation is carried out for the period with the most infeasible solution. This is described
further in Section 6.2.2.

5.5 Multi-period Planning

The Tabu Search optimisation in this paper is a multi-period one. Different strategies are used for Tabu
Search multi-period optimisation.

In Mantawy et al. [14] a long term hydro scheduling problem was studied. The period for which the
optimisation was to be carried out was selected at random. In Nayak and Rajan [15] a Tabu Search was used
to minimise the cost of turning on and off generating units in a hydro-thermal power system. The period for
which the optimisation was to be carried out, was also randomly selected.

A different strategy was used in Tippayachai et al. [16], where an enhanced Tabu Search algorithm was
used for solving an economic dispatch problem for power generating units. Selection of generating units for
optimisation was done using a round robin method. A different generating unit was selected at each iteration.

Another strategy for handling multi-period Tabu Search optimisation is to treat the period as a variable.
This was done in Bolduc et al. [17]. Treating the period as a variable results in the neighbourhood consisting
of Tabu moves from one period to another.

In a multi-period optimisation one has to worry about the difficulty of smoothing the transition from
one period to another during the optimisation. The drawback of the multi-period optimisation strategy of
the studies cited, with the exception of Bolduc et al. [17], is that the selection of the period to be optimised
was being done at random. The result is that there is no smooth transition from one period to another.
The strategy developed in the research being carried out in this paper is different from those reviewed. In
selection of the period for which the optimisation is to be carried out, there is a balance between use of the
round robin method and selection of the period with the most infeasible solution. Details of how this is done
are given in Section 6.2.3.

5.6 Diversification Strategy

Diversification drives the Tabu Search into new regions. Diversification is applied if the incumbent solution
does not improve after a given number of iterations. Three methods of diversification are: (i) performing
random moves, (ii) performing a restart with the incumbent solution and (iii) generating a random solution
as the current solution.

In Driouch et al. [18], random moves were made in order to diversify the Tabu Search in the optimal
scheduling of a multiuser MIMO (Multiple Input Multiple Output) CDMA (Code Division Multiple Access)
system.

Diversification by performing a restart with the incumbent solution was done in Brandao [19], where a
Tabu Search algorithm was applied to a heterogeneous fixed fleet vehicle routing problem.

Scheduling of trucks in cross-docking systems was done in Vahdani and Zandieh [20] using different
meta-heuristics, that included the Tabu Search. In the Tabu Search heuristic of Vahdani and Zandieh [20],
diversification was applied by generating a random solution and using it as the current solution.

We develop a diversification strategy that ensures that each of the variables being optimised contributes
to the move to a new region. In our diversification strategy three consecutive restarts are performed with the
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incumbent solution, if the incumbent solution does not improve for max_iter_div iterations. If the incumbent
solution improves after a restart is performed, the Tabu Search exits the diversification loop and proceeds
with the optimisation. This is different from what is being done in Brandao [19], and allows the solution to
test three different regions during the diversification. The diversification strategy will be discussed further
in Section 6.2.4.

6 Description of the Tabu Search Algorithm

This section describes the adaptations of the Tabu Search algorithm developed for optimisation of a biomass
waste to energy conversion system. The Tabu Search is described in Algorithm 2. The notation and the
parameters of the Tabu Search are given in Tables 2 and 3 respectively.

Algorithm 2 Tabu Search

10:
11:

12:

13:
14:

15:

16:
17:
18:
19:
20:

21:
22:

23:

24:
25:
26:
27:

Initialization o

Build a feasible initial solution :1:;”’““t

Set a* + x;n’i"it, Shest ¢ {:C;n’init, meM, i=1,2,3}
Initialize the Tabu list: T + 0

Set the bounds

rFeost Finfeas
Evaluate fS3°,  fane

Tabu Search
iter < 0
while iter < max_iter do
while iter < max_iter_div do
Phase 1: Minimize Cost
iter_opt < 0

while iter_opt < max_iter_opt /*Attempt at finding a solution with a smaller cost regardless of

the infeasibility*/ do

Perform a round robin search on the months : For a given month m € M, select one variable with

index i(m) : i(m) =i(m —1) + 1 (mod 3)
Update the neighbourhood of the selected variable

. N . ry = e . .
Evaluate all solutions 2™ in A/(z) with respect to fc95t,  finfeas (only for storage with solution)
«  FCOS m m m
Seurrent ¢ aremin 95t (2’)  for z = (x%,x%,xé,x%,x%,x%,...,:17'1 ‘,x‘Q l,xg ‘) and mée M
‘/E/
end while

iter_feas < 0
Phase 2: Minimize Infeasibility
while iter_feas < max_iter_feas /* Reducing infeasibility*/ do
Select the month m € M for which the search is to be carried out : m < argmaxfl‘j‘fifjas(x')
"y

Update the neighbourhood of the selected variable
Evaluate all solutions 27" in N (z7") with respect to finfeas — fcost

. minf m m m
Geurrent ¢ aromin finfeas(p/y - for x = (x%,x%,xé,x%,:c%,:c%,...,:17'1 ‘,:c‘Q I,xlg ‘) and me M
’
end while
end while
Apply diversification
end while

(only for storage of solution)
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Table 2: Tabu Search Notation
Notation Description
;n’ it initial solution
" current solution
Ghbest set of the Pareto incumbent solutions
Geurrent set of the Pareto current solutions
N(z) neighbourhood of variable x™
LBy lower bound of neighbourhood
UB, upper bound of neighbourhood
T Tabu list
XMODEL set of constraints to be satisfied by the BWECS black box models
XGLOBAL  get of global constraints to be satisfied by the optimisation
Table 3: Parameters of the Tabu Search
Parameter Description Value
Viagoon_storage ~ Storage capacity of the lagoon (days) 35
HRT hydraulic retention time (days) 20

Nherd number of livestock 500 cows, 8000 swines
ng;y number of days in a month varies
Prated rating of the induction machine (hp) 150
LHVpropane lower heating value of propane (kJ/kg) 46300 [21]
Twater water temperature (°C) 35
NHEX heat exchanger efficiency (%) 70
Nrated boiler efficiency (%) 70
Clagoon unit cost of lagoon ($/m?) 2.47 [22]
Cpropane unit cost of propane ($/m?) 1.98[23]
Cincentives unit cost of incentives ($/kWh) 0.07 [24]
prand-div number of consecutive random moves for diversification Strat- 5

egy D1
pronimprovdiv. pumber of consecutive non-improving moves after which to 5

apply diversification
prestart_div number of restarts with incumbent solution for diversification 3

Strategy D2
max_iter_div number of iterations for application of diversification 100
On allowance for heat demand constraint (kW) 10
max_iter number of iterations for the stopping condition 150
max_iter_opt number of iterations for the minimisation of cost 50
max_iter_feas number of iterations for the minimisation of infeasibility 25

max_iter_div
Sinfcas

infeas
SO

number of iterations for the application of diversification
threshold of infeasibility
initial threshold of infeasibility

100 (cows data), 50 (swines data)

varies
varies

6.1 Basic Tabu Search Algorithm

As described in Section 5.2, the basic Tabu Search defines a neighbourhood of moves that can be applied to
the solution, keeps a list of the forbidden moves (Tabu list) and incorporates a stopping condition. These
aspects of the basic Tabu Search included in the optimisation of the BWECS are discussed in this section.

6.1.1 Definition of the Neighbourhood

The neighbourhood of z}" is defined as:

viv=a"+9;
v=a" — 0

i=1,2,3

méeM
1 € XMODEL | yGLOBAL

N (@) =

LB, <v<UB,:veN(@m),

where z7 is the optimisation variable, XMODEL iy the set of constraints to be satisfied by the BWECS
black box models, X SFOBAL is the set of global constraints to be satisfied by the optimisation, LB, is the
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lower bound of the neighbourhood and U B, is the upper bound of the neighbourhood. The move from z}" to
xf* £ 6, is selected within the specific limits and step sizes for the different variables, specified in Section 2.1.

6.1.2 Tabu List

A Tabu list is formulated from moves that result in the current solution. Each entry of the Tabu list is a
vector of the move from z* to x* £ d;, and its associated month. Reverse moves are also included in the
Tabu list. The Tabu list includes a random number nTH-1"8th  selected within a given interval, that decides
for how many iterations a Tabu condition persists.

6.1.3 Stopping Condition

The stopping condition of the Tabu Search algorithm is set to termination of the optimisation if no im-
provement in the incumbent solution has been observed after max_iter iterations, following the application
of diversification.

6.2 Adaptations of the Tabu Search

Four aspects of the Tabu Search have been developed for adaptation to the problem being solved. These are:
use of the Pareto optimal front method to evaluate the multi-period and multi-objective function, constraints
handling, the multi-period optimisation strategy and the diversification strategy. This section describes the
adaptations developed.

6.2.1 Pareto Incumbent Solutions

During the Tabu Search optimisation a different variable is optimised for each time period, m € M, for as
long as the current solution is improving. This implies that only the cost components of the period for which
the optimisation is carried out are modified, each time the objective function is evaluated. In order not to
lose the benefit of the modified cost components, they are summed separately for all the periods to form the
cost vector (12). The cost vectors are then checked for non-dominance and the non-dominated solutions form
a Pareto incumbent front, as described in Section 4.1. Summing the cost components separately over all the
periods, M, incorporates the multi-period nature of the optimisation into the minimisation of the objective
function. This is different from the references cited in the literature review in that although the optimisation
is carried out for one period, the Pareto incumbent front is formed by summing the cost components over all
the periods. The Pareto front method of evaluating multi-objective functions has therefore been modified to
incorporate the multi-period nature of the optimisation problem.

6.2.2 Method of Handling Constraints

There are two sets of constraints in the optimisation problem of the BWECS. X MOPEL g the set of constraints
to be satisfied by the models of the BWECS and X GFOBAL ig the set of global constraints to be satisfied by
the solution of the optimisation problem, i.e., Cewrcs (2}, 25", 25") (2). The global constraints are defined
in Section 4.2. The set of constraints to be satisfied by the models of the BWECS, XMOPEL ig not defined in
this paper because the BWECS models are treated as black boxes in the optimisation problem. The method
of handling constraints discussed in this paper applies to the set of global constraints, X S“OBAL  Infeasible
solutions result if the global constraints are not satisfied. Infeasible solutions are allowed in the Tabu Search
optimisation in order to allow the search to move to low cost regions during the minimisation of cost. To
ensure that the search goes back to a feasible region, a second objective function is introduced. The second
objective function minimises infeasibility (18). The Tabu Search optimisation alternates between minimising
cost (Phase 1) and minimising infeasibility (Phase 2). Thresholds are set for the extent to which infeasibility
is allowed. These thresholds are progressively reduced during the course of the optimisation.
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6.2.3 Multi-period Optimisation Strategy

A multi-period optimisation strategy is developed to ensure a smooth transition from one period to the
next during optimisation. Different strategies are used for the phase for minimisation of cost (Phase 1) and
minimisation of infeasibility (Phase 2). The period in this paper is measured in months. The variables
are optimised for each month. During the phase for minimisation of cost, optimisation is done based on a
round robin strategy of the months, starting with the month of January. If a solution is encountered that
is worse than the current solution, another variable is selected for optimisation, in the same month. If all
three variables do not result in an improved solution, the current solution is not updated. This is repeated
for the twelve months period. If the current solution does not improve over this 12 months period, it is
updated with the least non-improving solution. The optimisation strategy during the phase for minimisation
of infeasibility is such that the month with the most infeasible solution is selected for optimisation. This is in
contrast to the phase of minimisation of cost, where the round robin method is used. Once a feasible solution
is encountered during the phase of minimisation of infeasibility, the strategy reverts to minimisation of cost.

6.2.4 Diversification

If the incumbent solution does not improve for max_iter_div iterations, diversification is applied. Diversifica-
tion is applied by performing three consecutive restarts with the incumbent solution. For each restart per-
formed, a different variable is selected for optimisation. Diversification is only applied if after the max_iter_div

iteration, the current solution does not improve for nhorimprov-div congecutive iterations. The Tabu list is

emptied on performing each of the restarts.

Experiments were carried out to test the Tabu Search aspects developed in this paper. The following
section describes the experiments and discusses the results.

7 Experiments

This section begins with descriptions of the data instances and definitions of the experiments.

7.1 Data Instances

Two data instances are used in the experiments. One of the data instance is obtained from a dairy farm of
herd size 500 cows (NYSERDA [25]) and the other is obtained from a swine farm of herd size 8000 swines
Khakbazan [26].

7.2 Descriptions of the Strategies of the Tabu Search Experiments

The experiments carried out are grouped into strategies. Many strategies were tested and we report the
most successful ones. The strategies correspond to the aspects of the Tabu Search developed and discussed
in Section 6.2 and are defined below:

(i) Strategy C1, the threshold of infeasibility is adjusted to handle constraints;

(ii) Strategy C2, the number of iterations for minimisation of cost and minimisation of infeasibility are
varied to handle constraints;

(iii) Strategy C3, feasible and infeasible solutions are allowed during the phase for minimisation of infeasi-

bility;

Strategy D1, diversification by consecutive random moves;

Strategy D2, diversification by consecutive restarts with the incumbent solution;

Strategy MOBJ2, summing cost components of the objective function;

)
)

(vi) Strategy MOBJ1, evaluation of Pareto incumbent solutions;
)
) Strategy MP1, round robin and updating current solution;
)

Strategy MP2, round robin and updating solution with improving solution only;
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(x) Strategy MP3, round robin and updating solution with improving solution only, and sampling all
variables in one month if required;

(xi) Strategy MP4, round robin during the phase for minimisation of infeasibility;

Experiments with Strategies C1, C2 and C3 were developed to investigate the handling of constraints. Two
diversification strategies D1 and D2 were experimented with. Experiments with Strategies MOBJ1 and
MOBJ2 were developed to investigate the formation of Pareto incumbent solutions in the multi-objective
and multi-period optimisation problem. Handling of the multi-period nature of the problem was investigated
in Strategies MP1, MP2, MP3 and MP4. Each of these strategies is explained in detail in the following
sections. The summary of the experimental results is given in Tables 4 and 5, for the cows and swines data
instances, respectively.

7.2.1 Constraints Handling Strategy

The aim of the experiments for constraint handling carried out in Strategies C1, C2 and C3, is to show that
allowing infeasibility for a given set of parameters aids in moving towards an optimal solution faster. Two
parameters are experimented with: (i) thresholds of infeasibility and (ii) number of iterations for which the
cost or the infeasibility is minimised. The threshold is a value that limits the extent of infeasibility. This
is required to prevent the solution from becoming too infeasible and therefore unable to return to a feasible
region. In Strategy C1 the threshold of infeasibility is fixed. Three fixed thresholds are experimented with,

for each of the data instances. These are Si*feas = —500, —200 and —100 for the cows data instance and
Ginfeas — _500, —205 and —100 for the swines data instance. The results of fixing the threshold of infeasibility
to Sinfeas — 200 for the cows data instance and to S™¢a = —205 for the swines data instance, are shown

in Figures 3(a) and 4(a), respectively. When the threshold is fixed to S8 = —500, the cost reaches low
values. However these low values are in the infeasible regions. This is seen in Tables 4 and 5. The costs of grid
electricity for the current solutions are —18,278, —18,197, —19,091 and —19,949 at the 50**, 100", 200"
iterations and at termination, respectively for the cows data instance. The costs of grid electricity for the
current solutions are —4327, —4131, —3844 and —3534 at the 50", 100*", 200*" iterations and at termination,
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respectively for the swines data instance. The resulting incumbent solutions have higher values of —16, 854
for the cost of grid electricity of the cows data instance, and —4064 for the swines data instance. Fixing the
threshold of infeasibility to a lower value of S"fe2 = —200, for the cows data instance and S™fe* = —205,
for the swines data instance, gives better incumbent solutions. Table 4 for the cows data instance shows that
iterations 100, 200 and the termination condition have costs of grid electricity for the incumbent solutions of
—16,130, —16,525, —16,627, —16, 730 and —16,834. The current solution also reaches relatively low values
of costs of grid electricity of —17,071 and —18,302 at the 50" and 100*" iterations respectively. Better
incumbent solutions are also obtained from the swines data instance at S = —205. This is shown in
Table 5, where with Sfeas — _205, the incumbent solution has a cost of grid electricity of —4064 by the
50" iteration, and at termination the incumbent solution has a cost of grid electricity of —4630. Fixing the

threshold of infeasibility to a lower value of S8 = —_100 does not result in significantly better incumbent
solutions. At Sfeas — _100, the cost of grid electricity of the incumbent solution is —16,130, for the cows
data instance, and —4209, for the swines data instance. This is because S = —100 is so low that it

restricts the search to a local region. This is evidenced by the high values of the costs of grid electricity of the
current solutions of —15,410, —13,739 and —13,022 at the 100*" and 200" iterations, and at termination
respectively, for the cows data instance (Table 4). The respective values of infeasibility are —155, —99 and
—139. The costs of grid electricity are higher than those at S8 — —500 and —200, at the same number
of iterations. With the swine data instance, the cost of grid electricity of the incumbent solution improves
slightly from —4064 to —4209 (Table 5). This implies that the search remains in a local region. From these
experiments, a good starting point for the threshold of infeasibility is identified as S™f¢as = —200 for the
cows data instance and S¢% = —205 for the swines data instance.

Further investigation was required on the effect of varying the threshold of infeasibility, before a conclusion
could be arrived at on the suitability of the strategy of fixing the threshold. Strategy C1 therefore also included
experiments where the threshold of infeasibility was varied. The initial thresholds of infeasibility were set to
Ginfeas — 500, —300, —200 and —100 for the cows data instance and Si*feas = —500, —250, —205 and —100
for the swines data instance. The thresholds of infeasibility were varied as follows:

for Sinfeas — _ 500, Sinfeas ¢ £_500, —400, —300, —200, —100, —50, —40, —30, —20, —10}, (20)
for Sinfeas — _ 30, Sinfeas ¢ £_300, —200, —100, —50, —40, —30, —20, —10}, (21)
for Sinfeas — 950, Ginfeas ¢ £ 950, —245, —240, —235, —230, —225, —220, ..., 165}, (22)
for Sinfeas — 905, Ginfeas ¢ £ 905, —200, —195, —190, —185, —180, —175, ..., 120}, (23)
for ginfeas — _900; Sinfeas = £_900, —150, —100, —90, —80, —70, —60, —50, ..., —10}, (24)
for Sinfeas — _100; Sinfeas ¢ £_100, —90, —80, —70, —60, —50, —40, —30, —20, —10}, (25)

where Si7fe3s is the initial threshold of infeasibility and S is the varying threshold of infeasibility. The
results of these experiments are shown in Figures 3(b) and 3(c) for the cows data instance, and Figures 4(b)
and 4(c) for the swines data instance. These results are summarised in Tables 4 and 5. Table 4 for the cows
data instance shows that with Strategy C1 and with S35 = —500, the cost of grid electricity of the current
solution reaches very low values. However these occur in the infeasible regions. With the same strategy
and Sinrfeas — 500, the incumbent solution of the swines data instance does not improve from the 50"
iteration onwards (Table 5). For both data instances, the current solutions have high values of infeasibility
with Sinfeas — 500, compared to the other experiments with the other values of Sirfeas  ginfeas — 50 ig
therefore too large a threshold to keep the solution in a feasible region. With Sirfeas — —300, the incumbent
solution obtained for the cows data instance is worse than with Sirfeas = —500. The incumbent solution is
the same for Sinfeas = —500 and Si*feas = —300 for the swines data instance. These results can be explained
as Sinfeas — 300 being a large threshold of infeasibility, that keeps the solution in infeasible regions. With
S(")“fcas = —100, there is no improvement in the incumbent solution for the swines data instance, whereas there
is a slight improvement in the incumbent solution for the cows data instance. This is because Sirfeas = —100
is too low for the search to move away from a local region. Si*feas = —200 and Sirfeas — —205 for the cows
and swines data instances, respectively, give the best results.

With regard to Strategy C1, a cost of grid electricity of —16,884 for the incumbent solution, is obtained,
at Sinfeas — 200, for the cows data instance (Table 4). S™feas = —200 also gave the best incumbent solution
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for the cows data instance, for the experiments of fixing the threshold of infeasibility. Varying the threshold
of infeasibility gives a better incumbent solution compared to fixing the threshold of infeasibility. For the
swines data instance the incumbent solution is the same with Sinfeas — ginfeas — 905 (Table 5), however
this is the best incumbent solution from experiments of Strategy C1.

Figures 3(b) and 4(b), show a move towards lower costs at the beginning of the iterations, for Sinfeas —
—200, for the cows data instance and Si*feas = —205, for the swines data instance. As the iterations progress,
the costs tend to increase. This is because of the progressive decrease in the threshold of infeasibility, leading
to large decreases in infeasibility. Decreasing infeasibility has the reverse effect of increasing cost. The
increasing cost means the solution is moving away from the optimal. Diversification Strategy D1 which
involves making 5 consecutive random moves was being applied after 100 iterations, to move the search to
a new region. This however did not impact the optimisation significantly and the incumbent solution was
obtained before the 100" iteration (Figures 3(b) and 4(b)). In order to obtain improving incumbent solutions
after the 100" iteration, diversification Strategy D2 was developed and used for subsequent experiments of
Strategies C2, C3, MOBJ1, MOBJ2, MP1, MP2, MP3 and MP4. In Strategy D2, a restart was made with
the incumbent solution, if there was no improvement in the incumbent solution after max_iter_div iterations.
The discussion on the experiments of the diversification strategies is done in Section 7.2.2.

In Strategy C2, the number of iterations for the minimisation of cost and minimisation of infeasibility
were varied. In the first experiment done, the same number of iterations were allowed for minimisation of cost
and minimisation of infeasibility, i.e., max_iter_opt=max_iter_feas = 50. The results are shown in Tables 4
and 5 for the cows and swines data instances respectively. These results are compared to those of Strategy C1
at Sinfeas — 200 for the cows data instance (Figure 3(b)), and Si*3 = —205 for the swines data instance
(Figure 4(b)), where max_iter_opt = 50 and max_iter_feas = 25. For both data instances, the incumbent so-
lutions are better with max_iter_opt = 50 and max_iter_feas = 25 than with max_iter_opt=max_iter_feas
= 50. The experiments were repeated with: (i) max.iter.opt = 75 and max_iter_feas = 50, and (ii)
max_iter_opt=max_iter_feas = 75. For the cows data instance the best parameters for Strategy C2 were found
to be max_iter_opt = 75 and max_iter_feas = 50 (Figure 5(a)). The cost of grid electricity of the incumbent
solution for max_iter_opt = 75 and max_iter_feas = 50 was —20, 545 whereas that with max_iter_opt = 50
and max_iter_feas = 25 was —19, 504, for the cows data instance (Table 4). The best parameters for Strategy
C2 with the swines data instance were found to be max_iter_opt = 50 and max_iter_feas = 25 (Figure 7(b)).
The cost of grid electricity of the incumbent solution with max_iter_opt = 50 and max_iter_feas = 25 for the
swines data instance was —5425, whereas that with max_iter_opt = 75 and max_iter_feas = 50 was —4123
(Table 5). These comparisons show that varying the number of iterations for which the minimisation of cost
and the minimisation of infeasibility are carried out, impacts the incumbent solution.
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Figure 6: Strategy C3: Allowing All Solutions Within Threshold During Minimisation of Infeasibility

The handling of feasible solutions that arise during the phase of minimisation of infeasibility is investigated
in Strategy C3. In this strategy, both feasible and infeasible solutions (within the threshold of infeasibility)
are allowed during the phase of minimisation of infeasibility. This is compared to what is done in Strategy
C2. Although Strategy C2 investigated the number of iterations for minimisation of cost and minimisation
of infeasibility, it uses a different method from Strategy C3 for handling feasible solutions that arise during
minimisation of infeasibility. A comparison can therefore be made between Strategy C3 and C2. In Strategy
C2 only feasible solutions are allowed during the phase of minimisation of infeasibility as a first priority. If
there are no feasible solutions, then infeasible solutions within the threshold of infeasibility are allowed. The
results of the experiment for Strategy C3 are compared with those of Strategy C2 (Tables 4 and 5). From
Table 4, of the cows data instance, the cost of grid electricity of the incumbent solution for Strategy C3
is —18, 308, whereas that of Strategy C2 with max_iter_opt = 75 and max_iter_feas = 50 is —20, 545. For
the swines data instance, the cost of grid electricity of the incumbent solution for Strategy C3 is —4870,
whereas that of Strategy C2 with max_iter_opt = 50 and max_iter_feas = 25 is —5425 (Table 5). It can be
deduced that the strategy of allowing only feasible solutions as a first priority, during the minimisation of
infeasibility (Strategy C3) is better than allowing both feasible and infeasible solutions during minimisation
of infeasibility.

7.2.2 Diversification Strategy

Two strategies were applied to test diversification. In the experiments of Figures 3 and 4, diversification
Strategy D1 was applied. In Strategy D1, diversification was applied if the incumbent solution did not
improve for 100 iterations. The diversification was also subject to the current solution not improving for
5 consecutive iterations. Diversification was applied by making 5 consecutive random moves. The results for
Strategy D1 (Figures 3 and 4 and Tables 4 and 5), show that this type of diversification does not result in an
improvement in the incumbent solution, except in one case (Figure 4(c)). Experiments were performed with
Strategy D2, where three consecutive restarts with the incumbent solution were performed, if the solution did
not improve for 100 iterations, for the cows data instance and for 50 iterations, for the swines data instance.
A different number of iterations for application of diversification was used for the cows and swines because
the the data instances had different ranges. This meant the Tabu Search progressed at different rates for
the two data instances. Strategy D2 is described by Pseudocode 1. Figure 7 shows that use of Strategy D2
for diversification results in an improvement in the incumbent solution. For the cows data instance, the cost
of grid electricity of the incumbent solution is —16,884 with Strategy D1 and —19,504 with Strategy D2
(Table 4). For the swines data instance, the cost of grid electricity of the incumbent solution is —4630 with
Strategy D1 and —5222 with Strategy D2 (Table 5).
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Pseudocode 1: Strategy D2
while iter < max_iter do

while iter < max_iter_div do
Perform Tabu Search
Evaluate iterative solution

end while

iter_div_current < 0

while (iter_div_count < prorimprovdivy gpnq  (geurrent’ o Geurrent) o
Perform Tabu Search
Evaluate iterative solution

end while

iter_restart <— 0
while (iter_restart S nrcstart_div) and (Sincumbcnt S Scurrcnt ) do

Replace the current solution with the incumbent solution Geurrent’ ,_ gincumbent
Clear Tabu list T < 0
Perform Tabu Search
Evaluate iterative solution
end while
end while

Scurrent/

Scurrcnt’

Scurrent/

7.2.3 Multi-objective Optimisation Strategy

The experiments in this section are to investigate Strategy MOBJ1, developed to evaluate the multi-objective
function, on a Pareto incumbent front, while taking into consideration its multi-period nature. Strategy
MOBJ1 is compared to Strategy MOBJ2. In Strategy MOBJ2, the sum of the cost components of the
objective function is calculated and the solution with the least sum is selected as the current solution. In
Strategy MOBJ1 the multi-period cost components of the objective function are evaluated for non-dominance
and form a Pareto incumbent front. Figure 8 shows the improvement in the incumbent solution using Strategy
MOBJ1. From Table 4 of the cows data instance, the cost of grid electricity of the incumbent solution for
Strategy MOBJ1 is —20, 545, whereas there is no improvement in the incumbent solution with Strategy
MOBJ2. Table 5 for the swines data instance shows a cost of grid electricity of —5425 for the incumbent
solution, with Strategy MOBJ1, and —5255 with Strategy MOBJ2. As such, Strategy MOBJ1 where a Pareto
incumbent front is used to evaluate the objective function is better than Strategy MOBJ2 which sums the

cost components of the objective function.
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Figure 8: Strategy MOBJ1: Multi-Objective Optimisation using Pareto Incumbent Front

7.2.4 Multi-Period Optimisation Strategy

The aim of the experiments in this section is to investigate the strategies for handling the multi-period nature
of the optimisation problem, in a manner that will ensure continuity from one period to the next. The Tabu
Search has two phases: (i) minimisation of cost and (ii) minimisation of infeasibility. Different strategies
for handling multi-periodicity are applied to the different phases. Each of these strategies is discussed next
under the appropriate phase of the Tabu Search.

Round Robin in Phase 1 of Minimisation of Cost

In Strategy MP1 round robin of the months is carried out while updating the current solution, whether it
is improving or not as described in Pseudocode 2. The results of the experiments using Strategy MP1 are
shown in Tables 4 and 5, for the cows and swines data instances respectively.

Pseudocode 2: Strategy MP1

for iter =1:12 do

Select a variable x}* for optimisation

Perform Tabu Search

Evaluate iterative solution Seurrent’

Update the current solution Seurrent ¢ Geurrent’

Select the next month for which to carry out the optimisation m < m +1

Select the index of the next variable to be optimised ¢ <— ¢ + 1(mod 3)
end for

In Strategy MP2, round robin of the months is carried out while updating the current solution with an
improved solution only (Pseudocode 3). The results of experiments using Strategy MP2 are shown in Figure 9
for both the cows and swines data instances.

The third multi-period strategy investigated is MP3, where round robin of the months is carried out and
more than one variable is sampled in a given month, in order to obtain an improving solution. Strategy MP3
is described by Pseudocode 4. For the cows data instance, Strategy MP3 was investigated together with the
Strategy C2 with max_iter_opt = 75 and max_iter_feas = 50. Similarly, for the swines data instance, Strategy
MP3 was investigated together with the Strategy C2 with max_iter_opt = 50 and max_iter_feas = 25.
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Figure 9: Strategy MP2: Round Robin & Updating Current Solution with an Improving Solution Only

Pseudocode 3: Strategy MP2
for iter =1:12 do
iterm <+ 0
Select a variable z}" for optimisation
Perform Tabu Search
Evaluate iterative solution
while Seurrent’ -, gewrrent 414 jter m < 12 do
Select the next month for which to carry out the optimisation m < m + 1
Select the index of the next variable to be optimised ¢ < ¢ + 1(mod 3)
Select a variable x}" for optimisation
Perform Tabu Search
Evaluate iterative solution Se¢urrent’
iter_m < iterm + 1
end while
Update the current solution Sewrrent ( Geurrent’
Select the next month for which to carry out the optimisation m < m + 1
Select the index of the next variable to be optimised i < ¢ + 1(mod 3)
end for

Scurrent'

Strategies MP1 and MP2 are compared to Strategy MP3. Table 4 shows that Strategy MP3 gives the
best cost of grid electricity of —20,545 for the incumbent solution, for the cows data instance. Strategies
MP1 and MP2 give costs of grid electricity of —17,169 and —17, 534, respectively, for the same data instance.
For the swines data instance (Table 5), the cost of grid electricity of the incumbent solution is —5425 with
Strategy MP3. With Strategy MP2, the cost of grid electricity of the incumbent solution is —5160. Of the
three strategies, Strategy MP1 gives the worst value of the cost of grid electricity of the incumbent solution,
i.e., —4064. Strategy MP1 is not good because the search constantly updates the current solution with a
poorer solution. The best strategy with regard to round robin, during the phase of minimisation of cost is
MP3, where the current solution is updated with improving solutions only. This is done while trying out
all the variables in turn in the same month, until the current solution improves or until after 12 iterations.
A non improving solution is allowed only after the current solution has not been updated for 12 iterations.
This strategy ensures that there is an attempt to find an improving solution in every month, and tries to
build continuity from one month to the next during the optimisation.
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Round Robin in Phase 2 of Minimisation of Infeasibility

Round robin is also investigated in Phase 2 where infeasibility is being minimised (Strategy MP4). The results
are compared with those of Strategy MP3 (Tables 4 and 5). Strategy MP3 also investigated the selection
of the month for which to carry out the optimisation, during the phase for minimisation of infeasibility.
In Strategy MP3 the month with the least infeasible solution is selected for optimisation. The incumbent
solution with Strategy MP3, is better than with Strategy MP4 for both data instances. —20, 545 is obtained
as the cost of grid electricity with Strategy MP3 and —16, 691 with Strategy MP4, for the cows data instance.
For the swines data instance, —5425 is obtained as the cost of grid electricity of the incumbent solution, with
Strategy MP3 and —5263 with Strategy MP4. During the minimisation of infeasibility, selection of the month
with the most infeasible solution for optimisation (Strategy MP3) is therefore better than round robin of the
months (Strategy MP4).

Pseudocode 4: Strategy MP3

for iter =1:12 do
iter-m « 0
Select a variable x}* for optimisation
Perform Tabu Search
Evaluate iterative solution Securrent’
while geurrent’ -, gewrrent 414 jter m < 12 do
while i < 3 and Geuwrrent’ » Geurrent o
Select a variable z}" for optimisation
Perform Tabu Search
Evaluate iterative solution Seurrent’
Select the index of the next variable to be optimised i < ¢ + 1(mod 3)
end while
Select the next month for which to carry out the optimisation m < m + 1
Select the index of the next variable to be optimised i <+ ¢ + 1(mod 3)
Select a variable z]" for optimisation
Perform Tabu Search
Evaluate iterative solution Seurrent’
iter_m < iterm + 1
end while
Update the current solution Seurrent ¢ Geurrent’
Select the next month for which to carry out the optimisation m < m + 1
Select the index of the next variable to be optimised ¢ < ¢ + 1(mod 3)
end for

This section has explained experiments carried out to investigate the Tabu Search optimisation strategies
developed. The best strategies are highlighted in bold text in Tables 4 and 5. This is where; the threshold
of infeasibility is varied, with the initial threshold set to Si*e3 = —200, for the cows data instance and
Ginfeas — 905, for the swines data instance, the objective function is evaluated by forming pareto incumbent
solutions, as a first priority only feasible solutions are allowed during the phase for minimisation of cost,
round robin of the months is done after sampling all the variables for a given month during the phase for
minimisation of cost, and the month with the most infeasible solution is selected for optimisation during the
phase for minimisation of infeasibility.
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8 Conclusion

Adaptations to the basic Tabu Search, for application to the optimisation of BWECS have been developed
in this paper. These adaptations have been developed to handle constraints, multi-objectives, multi-periods
and to perform diversification. The following is a highlight of the conclusions arrived at from the experiments
undertaken, and the applications of the Tabu Search Algorithm developed.

8.1 Conclusions from the Experiments

Experiments were done to test the adaptations developed. It was found out that for optimisation of BWECS,
constraints are best handled by alternating between allowing feasible and infeasible solutions. The algorithm
was split into two phases. In Phase 1, cost was minimised whereas in Phase 2 infeasibility was minimised.
Thresholds for minimisation of infeasibility and the number of iterations for which each phase is applied
were experimented with. The best strategy is to set an initial threshold of infeasibility of Sirfeas = —200 for
the cows data instance and Si*feas = —205 for the swines data instance, and reduce these gradually as the
optimisation proceeds. In addition minimisation of cost and infeasibility should be carried out alternately
for a different number of iterations. The optimum number of iterations for which each phase is to be applied
is dependent on the data instance. Only feasible solutions should be allowed during the optimisation, as
a first priority. Diversification should be applied by performing 3 consecutive restarts with the incumbent
solution, if the incumbent solution does not improve for a given number of iterations, to be determined for
each data instance. Evaluation of the multi-period cost components of the objective function on a Pareto
incumbent front, is better than summing the cost components of the objective function. Different multi-
period optimisation strategies should be applied for the two different phases of the Tabu Search algorithm.
During the phase of minimisation of cost, round robin of the months should be carried out, however the best
strategy is to update the current solution with improving solutions only. If there are no improving solutions,
another variable is optimised for the same period, until all the variables have been optimised for that period.
If the current solution does not improve for 12 periods, then it can be updated with a non-improving solution.
During the phase of minimisation of infeasibility, the optimisation should be carried out for the period with
the most infeasible solution.

8.2 Applications of the Tabu Search Adaptation Developed

The Tabu Search algorithm developed in this paper has been applied to the dimensioning of a BWECS
to determine the maximum revenue that can be obtained for a given herd size Namuli et al. [4]. The
adapted Tabu Search was also used as a tool to determine the threshold herd size at which BWECS become
commercially viable Namuli et al. [27]. A tool for the analysis of the commercial viability of BWECS is
currently unavailable. This is therefore an important contribution to the planning of programs for promotion
of installation of BWECS on rural farms.

The Tabu Search algorithm developed can also be applied to multi-period scheduling problems with the
objective of minimising cost. A work shift scheduling problem where the objective is to minimise the cost
of overtime is an example. Infeasible solutions will be generated due to constraints like the number of hours
one can work for in a week, and thus the constraint handling technique can be applied. This scheduling
problem is also a multi-objective one as the objective function can be split into cost components namely:cost
of overtime, cost of payment in lieu of leave and cost of temporary staffing.

Appendix

This section summarises the results of the experiments described in Section 7. Table 4 gives results of the
experiments for the cows data instance whereas Table 5 gives results of the experiments for the swines data
instance.
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Table 4: Experiments for Adapted Tabu Search Optimisation - Cows Data Instance

iter=50 iter=100 iter=200 Stopping Condition
gcurrent ginfeas Sinc geurrent ginfeas Sinc geurrent ginfeas Sinc gcurrent ginfeas o Sinc

C1 14 -18278 -873 0-16130 |16 -18197  -492 0-16130 |0 -19091 -500 0 -16130 |25 -19949 -465 274 0 -16130
ginfeas __500 23 -16854 23 -16854 23 -16854

Cc1 11 -17071 -128 0-16130 |19 -18302  -201 0-16130 |110 -16410 -4213 0 -16130 |52 -14318 -245 344 0 -16130
ginfeas_ 500 17 -16525 17 -16525 17 -16525
18 -16627 18 -16627 18 -16627

19 -16730 19 -16730 19 -16730

21 -16834 21 -16834 21 -16834

Cc1 13 -17099 -90 0-16130 |13 -15410 -155 0-16130 |45 -13739  -99 0-16130 |65 -13022 -139 262 0 -16130

Sinfeas —=-100

C1 14 -18278 -873 0-16130 |16 -18197  -492 0-16130 |35 -19081  -395 0-16130 |27 -19209 -390 274 0 -16130
S‘O“feasz—fwoo 23 -16854 23 -16854 23 -16854

C1 12 -17193  -279 0-16130 |16 -17883  -188 0-16130 |38 -16682  -200 0-16130 |51 -12937 -219 265 0 -16130
sinfeas __300 18 -16618 18 -16618 18 -16618

Cc1 13 -17099 -90 0-16130 (24 -15786  -134 0-16130 |45 -12428  -92 0-16130 |49 -13764 -32 262 0 -16130

ginfeas __10q
o

C1+4D1 11 -17071 -128 0 -16130 (19 -18199 -201 0 -16130 |113 -13591 -343 0 -16130 |57 -14713 -101 347 0 -16130
sinfeas 17 -16525 17 -16525 17 -16525
=-200 18 -16627 18 -16627 18 -16627
20 -16678 20 -16678 20 -16678
21 -16884 21 -16884 21 -16884

C2+4D2 11 -17071 -128 0 -16130 (19 -18199 -201 0 -16130 |18 -20087 -127 0 -16130 |42 -17631 0 445 0 -16130
max_iter_opt 17 -16525 17 -16525 17 -16525
=50 18 -16627 18 -16627 18 -16627
max_iter_feas 20 -16678 20 -16678 20 -16678
=25 21 -16884 21 -16884 21 -16884
33 -19369
38 -19407
39 -19504

c2 11 -17071 -128 0-16130 |29 -14412  -16 0-16130 |58 -16244  -14 0-16130 |35 -18934 -265 230 0 -16130
max_iter_opt 17 -16525 17 -16525 17 -16525
=50 18 -16627 18 -16627 18 -16627
max_iter_feas 19 -16730 19 -16730 19 -16730
=50 20 -16782 20 -16782 20 -16782
C24+MP3+4 11 -17071 -128 0 -16130 | 36 -14708 -17 0 -16130 |19 -20050 -184 0 -16130 |50 -18374 -96 400 0 -16130
MOBJ1 25 -17183 25 -17183 25 -17183
max_iter_opt 26 -17285 26 -17285 26 -17285
=75 27 -19651
max_iter_feas 33 -20022
=50 35 -20230
37 -20335
38 -20439
39 -20545

c2 11 -17071 -128 0-16130 |36 -14708  -17 0-16130 |32 -19070  -201 0-16130 |40 -17416 -15 300 0 -16130
max_iter_opt 25 -17183 25 -17183 25 -17183
=75 26 -17285 26 -17285 26 -17285
max_iter_feas 37 -17913 34 -17323
=75 39 -17918 35 -18048
40 -18162 40 -18162

41 -18212 41 -18212

C3 11 -17071 -128 0-16130 |41 -14096  -23 0-16130 |47 -18865  -174 0-16130 |43 -18565 -152 515 0 -16130
25 -17183 25 -17183 25 -17183

39 -18208 39 -18208

41 -18308 41 -18308

MOBJ2 18 -16754 -237 0-16130 |36 -13912  -141 0-16130 |20 -17332  -267 0-16130 |29 -17289 -153 273 0 -16130
MP1 17 -18329 -174 0-16130 |52 -14409 -125 0-16130 |31 -18500  -226 0-16130 |54 -17438 -103 380 21 -17169

MP2 13 -16634 -385 0-16130 |35 -12305 -3 0-16130 |20 -19530  -200 0-16130 |22 -18142 -726 344 0 -16130

6 -17302

7 -17534

9 -17404

MP4 13 -17285 -192 0-16130 |28 -16564 -7 0-16130 |23 -17986  -182 0-16130 |44 -16320 -806 399 0 -16130
10 -16157

12 -16519

13 -16691
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Table 5: Experiments for Adapted Tabu Search Optimisation - Swines Data Instance

iter=50 iter=100 iter=200 Stopping Condition
geurrent ginfeas Sinc gcurrent Sinfeas Sinc gcurrent ginfeas ginc gcurrent ginfeas o Sinc
C1 1021 -4327 -500 1071 -4064 | 1037 -4131 -576 1051 -3372 | 973 -3844  -502 1051 -3372 | 990 -3534  -500 263 1051 -3372
ginfeas 1071 -4064 1071 -4064 1071 -4064
=-500
Cc1 1065 -4866 -6 1071 -4064 |1044 -5515 -316 1066 -4630 |1018 -3253 -2023 1066 -4630 |1047 -1664 -214 335 1066 -4630
ginfeas
=-205
Cc1 1051 -4928 -542 1071 -4064 | 1049 -4926 -101 1062 -4209 |1034 -4266 -148 1061 -4016 |1006 -1347 -442 365 1061 -4016
ginfeas 1062 -4209 1062 -4209
=-100
Cc1 1021 -4327 -500 1071 -4064 |927 -1572  -576 1051 -3372 |927 -1572  -421 1051 -3372 |926 -1699  -411 263 1051 -3372
sinfeas 1071 -4064 1071 -4064 1071 -4064
=-500
Cc1 1019 -5308 -225 1071 -4064 | 1048 -3897 -291 1071 -4064 | 1079 -4795 -273 1071 -4064 [1044 -2731 -1 479 1044 -3069
sinfeas 1059 -3799 1059 -3799 1056 -4348
=-250
Cc1 1051 -4928 -542 1071 -4064 | 1040 -4679 -253 1062 -4209 |970 -5087  -5235 1058 -3959 [983 -1272  -494 262 1058 -3959
sinfeas 1062 -4209 1062 -4209
=-100
C14D1 |1065 -4866 -6 1071 -4064 1045 -4844 -401 1066 -4630|1018 -4511 -191 1061 -4240 |1035 -2130 -10 362 1042 -2062
sinfeas 1066 -4630 1061 -4240
=-205 1066 -4630
C24D2 |1065 -4866 -6 1071 -4064 1045 -4844 -401 1066 -4630 1032 -4529 -32 1044 -4472|1037 -4437 -270 349 1041 -4873
MOBJ2 1045 -4763 1049 -5425
+MP3
max_iter_
opt=50
max_iter_
feas=25
(e} 1065 -4866 -6 1071 -4064 | 1066 -4488 0 1066 -4630 |1024 -4299 0 1024 -4375 [1063 -3873 0 277 1024 -4375
max_iter_ 1066 -4630 1024 -4729
opt=>50
max_iter_
feas=50
c2 1065 -4866 -6 1071 -4064 |1059 -3522 0 1059 -3922 | 1013 -4739 -193 1059 -3922 |1029 -3905 0 211 1029 -4123
max_iter_ 1071 -4064 1071 -4064
opt=75
max_iter_
feas=50
(e} 1065 -4866 -6 1071 -4064 |1059 -3522 0 1059 -3922 n/a 1028 -4363 -279 167 1059 -3922
max_iter_ 1071 -4064 1071 -4064
opt=T75
max_iter_
feas=75
cs3 1001 -6006 -230 1071 -4064 |1029 -6030 -112 1054 -3599 n/a 1011 -6018 -161 198 1035 -4870
MOBJ2 1001 -5914 -198 1071 -4064 |1031 -5258 -132 1056 -4739 n/a 1028 -4225 -34 195 1041 -5255
MP1 1038 -2710 -329 1071 -4064 |1017 -3385 -222 1062 -3553 | 1036 -1504 -321 1062 -3553 [1054 -2499 0 218 1062 -2499
1071 -4064 1071 -4064 1062 -3553
1071 -4064
MP2 1003 -5924 -205 1071 -4064 |1019 -4749 -118 1029 -4551 | 977 -4275  -182 1016 -5160 |999 -4047 0 203 999 -4047
1016 -5160
MP4 1001 -5914 -198 1071 -4064 |1026 -5393 -136 1021 -2806 |1073 -2752 -81 1021 -2806 [1071 -555 0 214 1021 -2806
1055 -3614 1049 -3254 1049 -3254
1064 -3975 1055 -3614 1055 -3614
1065 -4870 1064 -3975 1064 -3975
1067 -4983 1065 -4870 1065 -4870
1069 -5020 1067 -4983 1067 -4983
1069 -5020 1069 -5020
1070 -5263 1071 -5263
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