
Les Cahiers du GERAD ISSN: 0711–2440

A Fast and Accurate Algorithm for
Stochastic Integer Programming,
Applied to Stochastic Shift Scheduling

R. Pacqueau, F. Soumis,
L.-N. Hoang

G–2012–29

May 2012

Les textes publiés dans la série des rapports de recherche HEC n’engagent que la responsabilité de leurs auteurs. La publication

de ces rapports de recherche bénéficie d’une subvention du Fonds québécois de la recherche sur la nature et les technologies.

A Fast and Accurate Algorithm for Stochastic Integer

Programming, Applied to Stochastic Shift Scheduling

Rémi Pacqueau

François Soumis

Le-Nguyen Hoang

GERAD & Département de mathématiques et de génie industriel

École Polytechnique de Montréal
C.P. 6079, Succ. Centre-ville

Montréal (Québec) Canada, H3C 3A7

remi.pacqueau@polymtl.ca
francois.soumis@polymtl.ca
le-nguyen.hoang@polymtl.ca

May 2012

Les Cahiers du GERAD

G–2012–29

Copyright c© 2012 GERAD

Les Cahiers du GERAD G–2012–29 v

Abstract

Stochastic programming can yield significant savings over deterministic approaches. For example, the
stochastic approach for the shift scheduling problem solved in [6] yields more than 15% savings on some
instances. However, stochastic approaches always lead to very large problems (around 10 million IP vari-
ables in [6]), since a recourse must be computed for every scenario. There is no fast and exact method for
solving such problems. In this article, the algorithm presented in [6] is improved in two ways: a Benders
cuts dynamic management algorithm for the master problem and a multithreaded implementation to
solve the subproblems. Those two improvements yield a heuristic able to solve a 10 million variables IP
problem in less than 5 minutes, with a very good accuracy, and enables the resolution of larger instances.
This algorithm uses general ideas that can easily be adapted to every problem that, in order to be solved,
is split into a master problem and several subproblems: L-shaped method, column generation. . .

Les Cahiers du GERAD G–2012–29 1

1 Introduction

Decomposition procedures, such as Benders decomposition [2], the L-shaped method [7], and Dantzig-Wolfe

decomposition, have all been subject to recent developments and promising applications (shift scheduling,

aircrafts and crew scheduling. . .). Although quite fast in LP, those decomposition methods are not able to

solve to optimality very large MIP problems.

In order to solve a 10 million IP variables stochastic shift scheduling problem in [6], we developed an

algorithm based on the L-Shaped method [7], a classical method for linear stochastic programming. The L-

Shaped method could be considered an adaptation of Benders decomposition [2] with one recourse function

for each random event (in the case of a finite probability space). This method is both accurate (0.01% from

the optimal value in the studied toy-model and less than 0.2% from the optimal on larger instances) and fast

(at most 3,200 seconds and down to 15 minutes, depending on the instances). CPLEX [4] used alone could

only solve a 500,000 IP variable instance (25 scenarios) with a 0.2% optimality gap in 7,000 seconds (for the

instance needing 3,200 seconds with our 500-scenario algorithm).

In this article, improvements on both the master problem and the subproblems are added to the heuristic

process, so that it gets even faster. The implementation we used for our numerical experiments are certainly

not the most efficient that could be used, but this work should be considered more a proof of concept, showing

that it is possible to improve very quickly the most common decomposition methods.

This paper is organized as follows. In Section 2 the problem addressed in [6] and the heuristic procedure

used to solve it are described. In Section 3, the improvements added to the heuristic are presented and the

speed-up is measured over 10 different instances. The results are discussed in Section 4.

2 Problem presentation and heuristic description

The problem consists in scheduling shifts when the demand for employees is stochastic. A first-stage decision,

the scheduling of full-time shifts, has to be taken before the demand is known (only the stochastic distribution

of this demand is known). Once the demand is known, the company is allowed a second-stage decision (or

recourse) to match the cover in employees to the actual demand. The possible recourses decisions are: hiring

part-timers, changing the breaks schedules, asking full-timers for over-time and paying a penalty fee for not

matching the demand.

A simple way to deal with a stochastic demand is to schedule full-time shifts according to the forecast
demand and then to adapt the cover in employees thanks to the recourse decision. This is called the determin-

istic approach (see [3] for terminology). The problem studies another way of scheduling these shifts. Instead

of minimizing the cost of the full-time shifts using only the forecast demand, the objective to minimize is the

cost of the full-time shifts and the expected cost of the recourse associated to this full-time shifts assignment.

This is called the stochastic approach. If the probability space is finite, the expected value can be written as

a finite sum and the problem becomes a (very large) IP program.

2.1 Problem description

2.1.1 Notations

The sets used in this problem are described below:

P: set of periods
J: set of full-time shifts

JP: set of part-time shifts
H: set of overtime shifts
K: set of breaks
Ω: finite set of random events (scenarios)

2 G–2012–29 Les Cahiers du GERAD

The problem parameters are the following:

cj : cost of full-time shift j ∈ P
cpj : cost of part-time shift j ∈ JP
csh: cost of overtime shift h ∈ H
cscp: cost of not covering demand in period p ∈ P
pω: probability of random event ω ∈ Ω
dωp : demand for employees in period p ∈ P if random event ω ∈ Ω occurs
Ajp: equals 1 if full-time shift j ∈ J matches period p ∈ P ; 0 otherwise
APjp: equals 1 if part-time shift j ∈ JP matches period p ∈ P ; 0 otherwise
AKkp: equals 1 if break k ∈ K matches period p ∈ P ; 0 otherwise
AHhp: equals 1 if overtime shift h ∈ H matches period p ∈ P ; 0 otherwise
Qjk: equals 1 if break k ∈ K is within break window of full-time shift j ∈ J ; 0 otherwise
Rjh: equals 1 if overtime shift h ∈ H can be added to full-time shift j ∈ J ; 0 otherwise

The decision variables are:

Sj : number of full-timers assigned to full-time shift j ∈ J
SPω

j : number of part-time employees assigned to part-time shift j ∈ JP if event ω ∈ Ω occurs
SHω

h : number of employees assigned to overtime shift h ∈ H if event ω ∈ Ω occurs
Bω

k : number of full-timers assigned to break k ∈ K if event ω ∈ Ω occurs
Xω

jk: number of full-timers assigned to full-time shift j ∈ J and assigned to break k ∈ K if event
ω ∈ Ω occurs

SCω
p : demand not covered in period p ∈ P if event ω ∈ Ω occurs

2.1.2 Formulation

The problem can then be formulated as follows (this is a stochastic adaptation of Aykin’s formulation [1]):

min
∑
j∈J

cjSj +
∑
ω∈Ω

pω

 ∑
j∈JP

cpjSP
ω
j +

∑
h∈H

cshSH
ω
h +

∑
p∈P

cscp SC
ω
p

 (1)

s.t.
∑
j∈J

AjpSj +
∑
j∈JP

APjpSP
ω
j −

∑
k∈K

AKkpB
ω
k (2)

+
∑
h∈H

AHhpSH
ω
h + SCω

p ≥ dωp , ∀(ω, p)∑
k∈K

QjkX
ω
jk − Sj = 0, ∀(ω, j) (3)∑

j∈J
QjkX

ω
jk −Bω

k = 0, ∀(ω, k) (4)

∑
h∈H

RjhX
ω
jh ≤ Sj , ∀(ω, j) (5)∑

j∈J
RjhXH

ω
jh − SHω

h = 0, ∀(ω, h) (6)

Sj , SP
ω
j , SH

ω
h , B

ω
k , X

ω
jk, (7)

XHω
jh ∈ Z+, SCω

p ∈ R+, ∀(j, ω, h, k)

The sum over Ω in the objective function is precisely the expected cost of the recourse. Constraint (2)

ensures that the demand for employees is met in every period of each scenario. Constraints (3)–(4) ensure

that every full-time shift is allocated a break and that every allocated break is within the time window of its

associated shift. Constraints (5)–(6) ensure this for the overtime shifts.

Les Cahiers du GERAD G–2012–29 3

2.1.3 Problem size

The studied period is one day, divided into 96 periods of 15 minutes. There are 65 possible shifts, 94 possible

breaks, 166 part-time shifts. The state space is made of a finite number of scenarios, each corresponding

to a possible demand on one day (therefore 96 demands: one for each 15-minute period). Every decision

variable is integer, excepted the sub-cover. Table 1 shows the problem size for different number of scenarios

considered. The more the scenarios, the more precise is the approximation of the stochastic distribution, but

the harder to solve is the problem.

Table 1: Problem’s size.

Scenarios # Variables # Constraints
25 462 012 12 800
100 1 847 865 51 200
200 3 695 995 102 400
500 9 239 065 256 000

1 000 18 478 065 512 000

For reasons detailed in [6], the number of scenarios have been fixed to 500, thus making this shift-scheduling

problem a 10-million IP variable program. Solving the LP relaxation of this problem with CPLEX used as

a standalone solver takes already 4h45: a simple branch and bound algorithm is impossible.

2.2 The L-Shaped method

The heuristic is based on the L-shaped method, which is a classical method for solving stochastic linear

programs. For a detailed presentation, see for example Birge and Louveaux [3].

The L-shaped method, like Benders decomposition, consists in splitting the problem into a master prob-

lem, containing the first-stage variables x (full-time shifts in this case) and a subproblem, containing the

second-stage variables y (or recourse). Since the optimal values of the recourse variables depend only on x,

the problem can be formulated as follows:

min
x∈X

c · x+
∑
ω∈Ω

pωQ
ω(x) (8)

Where X is the feasible space for the primary decision x and Qω(x) is the cost of the optimal recourse

decision if first-stage decision x is taken and event ω occurs (with probability pω).

When there is no integrity constraint on the second-stage variables, every function Qω is a convex,

piecewise linear function regarding to the first-stage decision x. These functions can therefore be expressed

in problem (8) as a set of inequality constraints, to define problem (9)–(11):

min
x∈X

c · x+
∑
ω∈Ω

pωθ
ω (9)

θω ≥ fωk (x), ∀k = 1, . . . ,Kω, ∀ω ∈ Ω (10)

θ ∈ R (11)

The principle of the L-shaped method is to start from an unconstrained master problem and to iteratively

add these inequality constraints (also called Benders cuts) by solving the dual problems of the subproblems

associated to the current first-stage solution (one subproblem for each scenario). Even if the number of

Benders cut needed to exactly define the Qω functions is extremely large, only a few number of these cuts is

actually needed to compute an optimum, since not all the regions of the first-stage feasible space need to be

precisely described.

4 G–2012–29 Les Cahiers du GERAD

2.3 Heuristic description

The heuristic algorithm used to solve this problem in IP is described in Figure 1.

Figure 1: Algorithm description. New Benders cuts are iteratively generated as some first-stage variables are
fixed. The processed is ended by a classical branch and bound scheme.

First, the LP relaxation is solved thanks to the L-shaped method. Then, every variable with a fractional

part greater than 0.8 is fixed at the upper integer, and the problem is solved again thanks to the L-shaped

method (the subproblems staying LP at all time). This operation is repeated as long as there are variables

with fractional parts larger than 0.8. Even if the computation of the first LP relaxation can be quite long,

fixing some variables and solving again is fast, since the Benders cuts are kept during all this process. Once

the recourse function are well approximated, it is very fast to find a new optimum. The aim of fixing those

variables to the upper integer is to accumulate as most Benders cuts as possible.

When there is no more first-stage variable to fix, the L-shaped method stops. At this points, the master

problem contains less than 65 first-stage variables, 500 recourse variables (one for each scenario) and a large

number of Benders cuts, that approximate the recourse function. This problem can be solved by CPLEX [4]

using a simple branch and bound algorithm. This leads to an integer first-stage solution. The second-stage

solution is not really important: it just has to be computed when the random event occurs. This algorithm is

accurate when the cost of the recourse is small compared to the cost of the first-stage decision (the integrality

gap in the subproblems can then be neglected), which is often the case in real-life applications.

This algorithm is accurate. On a 800,000-variable toy-model, 0.01% from the optimum. On the 500-

scenario instances, the recourse cost (that is around 10% of the total cost) is underestimated by less than

0.2%. It is also fast, since it takes between 15 minutes and 1 hour depending on the stochastic distribution
of the demand.

3 Improvements to the heuristic procedure

Figure 2 shows how the computational time is distributed into master problems and subproblems for different

instances differing from their stochastic distribution only (same number of scenarios). See [6] for a more

precise description of the instances.

Globally, computational time is a little more spent on solving the subproblems, however the master

problem solving takes a non negligible amount of time. To speed-up our algorithm, we shall therefore

introduce two improvements: the first one will speed-up the subproblems resolutions by dispatching them

over several execution threads on multiprocessor machines, and the second one will speed-up the master

problem resolutions by dynamically managing Benders cuts.

3.1 Reducing computational time for the subproblems using multithreading

Since every computer now comes with 2 or 4 cores, multithreading the subproblems resolution is a first way to

quickly improve the computational time. This is possible since every subproblem for each scenario is totally

independent of the others: on a 4-core computer, 125 subproblems can be assigned to each of the 4 cores.
The number of Benders iterations might differ from the number of iterations needed when using one thread,

Les Cahiers du GERAD G–2012–29 5

Figure 2: Repartition of the computational time between master problem and suproblems (single-threaded
computations).

because of different re-optimizations (for example, to solve subproblem 126, CPLEX starts from problem 125

basis with one thread, and from a null basis with 4 threads). However, the procedure is still deterministic.

3.1.1 Procedure

The implementation is done with CPLEX 12.2 (see [4]) and Java 1.6, using the native Java thread class

and the runnable interface to implement multithreading (see [5] for documentation). All the computations

are made on AMD Opteron 275 (2.2 GHz) servers, 8 GB RAM, running Linux. It should be noticed that,

in order to be consistent, the single-thread computations has been done using the same class and data

structure as the multithreaded ones. However, another single-threaded implementation we developed yields

better computational time, since some redundancies are eliminated (10-15% improvements compared to the

single-threaded implementation we used in this paper).

3.1.2 Results

The results are presented in Figure 3. Numerical results can be found in Appendix A. It can be noticed

that the absolute and relative new computational time greatly depends on the instance (55 to 71%). This is

explained by the fact that the computational time is not used in the same way for every instance (Figure 2).

Since only the subproblems can be multithreaded, the instances with computational time mainly spent

on the subproblems, like M3, benefit the most of this improvement. In instances whith computational time

half split between the master problem and the subproblems, like M1 or M10, the improvements is sensible

but not as interesting as in the M3 case.

However, the improvement compared to the only subproblem computational time with 4 cores is between

45% for M7 (581 seconds instead of 1,308) and 63% for M5 (607 instead of 983). The other instances are

showing an around 50% relative subproblems computation time. This is more than the 25% that could

theoretically be obtained since 4 cores are used instead of one, but a lot of other different factors affect the

computational time (accessing memory, threads managing. . .).

6 G–2012–29 Les Cahiers du GERAD

(a) Computational time using 1 or 4 threads

(b) Relative computational time using 4 threads

Figure 3: Improvements in terms of computational time provided by the use of multithreading. Figure (a)
shows the computational time in seconds, and Figure (b) shows the multithread computational time as a
percentage of the single-thread computational time.

Les Cahiers du GERAD G–2012–29 7

3.2 Reducing computational time for the master problems using a dynamic
cut management algorithm

Now that the computational time of the subproblem has been divided by around two, the focus has to be

made on improving the master problem computational time. To better understand why the master problem

takes sometimes a long time to be solved, Table 2 shows the number of L-shaped iterations needed to solve

the problem.

Table 2: L-shaped method iterations needed to solve the problem (LP relaxation and branching process).

Instance M1 DP M3 M4 M5 M6 M7 M8 M9 M10
Iterations 118 33 30 59 50 50 64 39 57 64

It can be noticed that in the longest to solve instances, like M1 and M10, the number of needed iterations

is far larger than the number needed to solve fastest instances like M3.

The main issue is that 500 Benders cut are added to the master problem at each iteration, meaning that

in M1, the master problem has accumulated 44,000 Benders cut, making it large and long to solve. Thus,

although the master problem is fast to solve at the beginning, it gets quite large after 50 iterations, making

every extra iteration a little longer than the previous one. The size of the master problem when the number

of iterations increases dramatically slows down the resolution process.

Although all the cuts are theoretically needed, a lot of them are useless, since they might describe regions

of the functions that are not needed anymore. Deleting those useless cuts in order to make the master

problem smaller will have sensible effects on the resolution time.

Remark 1 In our algorithm, the problems we solve are LP at all times, even if some variables are fixed

to the upper integer during the branching process. Each problem resulting from the branching process is

solved with our improved algorithm. Therefore, we shall detail here only how to improve the linear L-Shaped

method, keeping this method is used along our whole resolution procedure.

3.2.1 Procedure

The first idea that could come to mind to make the problem smaller would be to delete every inactive cut at

each iteration. This approach is very likely to make the algorithm cycle. During the L-Shaped method, the

current first-stage solution generally oscillates between several regions of the functions. If we simply delete

the inactive cuts at each iteration, the algorithm will constantly go to a region, build the cuts, go to another

region, build the cuts and delete the one of the first region, go back to the first region. . . A similar idea would

be to delete every cut that has been inactive for more than K iterations. This does not solve the cycling

problem: the algorithm could still enter into cycles longer than K. We chose a different approach.

The main idea of our approach is to try to impose a maximum number M of Benders cuts for the master

problem, and not to delete any cut before this limit is reached. When M is reached, all the cuts that have

been inactive for more than K iterations are deleted. If M is too low, it is multiplied by 1.5 (M-factor). We

consider M too low when the algorithm has to delete cuts during 3 consecutive iterations (meaning that the

number of cuts stays very close to M even after deletion).

Each Benders cut is stored onto an ArrayList (see [5] for documentation) and is associated to an inactivity

counter. Every time a Benders cut is inactive (it would be considered inactive if its associated slack variable

is larger than a given ε, typically 10−10), this counter increases. It is set to 0 at an iteration if the Benders

cut is active in the current solution. Algorithm 1 describes the procedure.

Algorithm 1 also includes a safety that checks if, after having deleted some cuts, the value of the new

problem is actually greater than the old one (this should be the case in a classical L-shaped method). If this

is not the case, the algorithm goes on without deleting any cut until the current value gets bigger than the

previous solution value (which is the largest computed value since the L-Shaped method for a minimization

problem yields a series of non-decreasing values, up to the problem optimal value).

8 G–2012–29 Les Cahiers du GERAD

Algorithm 1 Dynamic cut management algorithm

Solve the master problem, get its value zk

if zk = zk−1 then
Stop: optimal solution found

else if zk > zk−1 then
Update the inactivity counter of each cut
if # Benders cuts > M then
if # Consecutive removals ≤ 3 then

Remove all cuts that have been inactive for K or more iterations
Reload master problem

else
M ← 1.5×M

end if
end if

else
Do not try to delete any cut
Run standard L-Shaped method until zk > zk−1

end if
Solve the slave subproblems
Add the generated Benders cut to the master problem
Go to line 1

Theorem 1 The dynamic cut management algorithm applied to the LP relaxation of the problem converges

in a finite time to an optimum.

Proof. The number of optima of the master problem can have is finite, since the power set of the set of

Benders cuts is also finite (because there is a finite set of Benders cuts, see [3]). Now, we always move from

an optimum to a strictly better one (except if global optimum is reached) in a finite time: if the optimum

does not increase because of a cut removal, the L-shaped method, which is proven to converge in a finite

time, is used until so. Hence, strictly improving an optimum is done in a finite time. As the number of these

optima is finite, we have proven the result.

The value returned by the algorithm is still optimal (for the LP relaxation), since the stopping criterion

is the same. If some useful cuts are deleted, they will just be regenerated by the L-shaped method during a

further iteration. What could happen at worth with this algorithm is that extra iterations will be needed if

some useful cuts are deleted.

Corollary 1 The improved algorithm (branching procedure, multithreading, dynamic cut management) con-

verges in a finite time.

3.2.2 Results

All the numerical results can be found in Appendix A. Figure 4 shows that the algorithm, in instance M1,

manages to keep a small number of cuts during the whole resolution process: up to 15,000 when K = 10,

but no more than 8,000 during the first LP resolution (iterations 1 to 88). The standard L-Shaped method

would yield a 44,000-cut problem after 88 iterations, and 109,000 at the end of the algorithm.

Other values of K (the minimum inactivity counter before deleting a cut) and ε (the minimum slack to

consider a constraint as inactive1) were tested. The results are presented in Tables 3 and 4. Original time

was 4,251 seconds with 1 thread, 2,991 seconds with 4 threads.

It can be seen in Tables 3 and 4 that computational time is not very sensitive to the values of K and ε.

The M-factor has been tested on instance M1 and does not have a sensible effect also. The parameters will

1For instance M1, the difference in the objective between the last and penultimate iterations of the LP relaxation is 2.10−12.

Les Cahiers du GERAD G–2012–29 9

Figure 4: Number of cuts during the resolution process for several values of K. Instance: M1.

Table 3: Incidence of K on the resolution time and the total number of iterations (L-shaped and heuristic).
M = 5, 000, ε = 10−10.

K 15 10 8 6 4
Iterations 116 120 123 122 125
Time (sec) 1,873 1,639 1,832 1,782 1,783

Table 4: Incidence of ε on the resolution time and the total number of iterations (L-shaped and heuristic).
M = 5, 000, K = 10.

ε 10−6 10−10 10−13

Iterations 124 120 123
Time (sec) 1,760 1,639 1,732

be fixed arbitrarily: K to 10, M to 5,000, M-factor to 1.5 and and ε to 10−10. M has a minor role: since the

minimal inactivity counter is 10, 10 iterations must have been achieved to remove some cuts. Since there are

500 scenarios, there are already 5,000 cuts after 10 iterations.

We chose those parameters since they tend to be “reasonable”, thus might work well on other instances

or other problems.

Every instance from [6] was solved with the new improved algorithm (multithreading and dynamic cut

management) and the previously fixed parameters. Results are presented Figure 5. For every instance,

the algorithm safety is triggered no more than 2 or 3 times, which has a quite negligible inpact on the

computational time since it takes generally more than 100 iterations to compute a solution to the problem.

To evaluate the influence of dynamic cut management in the master resolution process, Figure 6 shows

the relative master problem computation time using dynamic cut management regarding to the classical

L-Shaped procedure computational time.

On the originally longest instances, M1 and M10, the master problem computational time is divided by

4 and 3.

10 G–2012–29 Les Cahiers du GERAD

(a) Computational time for the 3 algorithms

(b) Relative computational time for the two improved algorithms

Figure 5: Computational times (absolute and relative) for all the instances using the original algorithm, the
multithreaded version and the multithreaded + dynamic cut management version. For this last one, K = 10,
ε = 10−10, M = 5, 000.

Les Cahiers du GERAD G–2012–29 11

Figure 6: Master problem computational time using dynamic cut management relatively to master problem
computational using the standard L-shaped procedure.

4 Discussion and larger instances

The results are conclusive. Using 4 threads to solve the subproblems yields significant reductions of the

computational times (up to 45% overall, 56% for the subproblem computational time). However, speeding

up the subproblems solutions does have a less sensible effect on the overall computational time for the longest

instances, since a large part of the computational time is spent on solving the master problem, that gets larger

at each further iteration.

The dynamic cut management algorithm tackles this problem at its source: the size of the master problem.

By deleting “old” cuts, it manages to keep a reasonable size for the master problem, especially during the

first LP resolution. For example, in instance 1 (Figure 4), the number of cuts at the end of the LP resolution

(88 iterations, the further iterations corresponding to the branching procedure) is around 7,500, whereas 88

iterations yield a master problem containing 44,000 cuts with the standard L-Shaped method. Figure 6 shows

that this algorithm needs up to 4 times less computational time on the master problem than the standard

L-Shaped procedure. Tables 3 and 4 show that the parameters M , K and ε do not have a significant influence

on the speed of our algorithm.

Globally, our approach divides by around 2 the overall computational time (savings from 40 to 60%) for

the 500-scenario instances. The gap is slightly bigger on the originally slow to solve instances, like M1, M7

or M10. This is explained by the fact that the cut management algorithm yields better improvements to the

master problem (gap up to 75% for M1) than the use of multithreading on the subproblems (up to 57%).

Logically, instances with longer to solve master problems benefit the most from our approach.

We also solved a 1,000-scenario instance (near 20 million IP variables, same stochastic distribution as

M1). Results are presented Table 5. Computational time of master problems (MP), subproblems (SP) and

total time are in second. “Ratio” corresponds to the improved algorithm computational time expressed as

a percentage of the standard L-Shaped computational time (with our branching procedure). CPLEX solved

only the LP relaxation, whereas the two L-Shaped algorithm solved the problem with IP first-stage variables.

12 G–2012–29 Les Cahiers du GERAD

Table 5: Computational time for a 1000-scenario instance (20 million IP variable, same stochastic distribution
as M1).

Iterations Benders Cuts MP Time SP Time Total
CPLEX LP / / / / 107,693
L-Shaped 104 104,000 9,068 4289 13,357
Improved 109 30,825 1,218 2,006 3,227
Ratio (%) 105 30 13 47 24

The improvements divide the total computational time by more than 4 compared to the standard L-

Shaped method combined with our branching strategy (54 minutes instead of 3h42). The master problem

time is divided by around 10. CPLEX alone needs 30 hours to solve the LP relaxation only. This shows

that the method we propose enables solving larger problems keeping a reasonable computational time, and

that the relative gap between our method and the standard L-Shaped algorithm increases with the number

of scenarios.

The reduction of both master and subproblems computational times also makes this approach stable:

computational time is always divided by around 2 in the 500-scenario instances. However the gap repartition

between master and subproblems depends on the instance. For fast to solve instances, most of the gap lies in

the subproblem resolution, whereas for longer to solve instances, most of the gap lies in the master problem

resolution.

5 Conclusion

The main contribution of this paper is to present a fast and accurate algorithm for stochastic integer pro-

gramming. This algorithm features 3 enhancements to the linear L-Shaped method:

1. A branching strategy that uses Benders cuts as an approximation of the recourse function

2. The use of multithreading for solving the subproblems

3. A dynamic cut management algorithm to speed up the master problem resolutions

This algorithm solved a 10 million IP variables in 1,639 seconds (27 minutes, instance: M1), whereas

the L-Shaped method with only the branching strategy needs 4,251 seconds (1h10) and CPLEX alone needs

17,085 seconds (4h45) to solve the LP relaxation only (which is also computed at the beginning of our

algorithm). The overall time gap for all the 500-scenario instances tested is around 50% (from 35.7% to 61.5
%), compared to the algorithm using only the branching strategy. The precision of the algorithm is discussed

in [6].

Our method also works well with larger instances: the 1000-scenario instance we tried, based on the same

stochastic distribution as M1, was solved in 4 times less time than using the standard L-Shaped method

(with our branching strategy).

Moreover, both the use of multithreading and the dynamic management algorithm can be used to improved

the standard linear L-Shaped method (without any branching process). The solution is still optimal. The

dynamic cut management is built so that the algorithm will also end in a finite time. This is a simple

way to speed up the resolution process. Dynamic cut management can also be applied to simple Benders

decomposition [2].

Les Cahiers du GERAD G–2012–29 13

Appendix

A Computational time: Numerical results

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10
T1 4,251 794 684 1,717 1,294 1,317 1,845 944 1,441 1,963
T2 2,991 491 379 1,105 925 860 1,031 632 962 1,294
T3 1,639 422 342 967 793 740 834 607 794 856
R2 70.2 61.8 55.4 64.4 71.5 65.3 55.9 67.0 66.8 65.9
R3 38.5 53.2 50.0 56.3 61.3 56.2 45.3 64.3 55.1 43.6

Figure 7: Computational time (in seconds) for the IP solution using the algorithm from [6] without any
improvement (T1), using 4 threads for the subproblems (T2) and using both multithreading and the dynamic
cut management algorithm (T3). R2 is the ratio between T2 and T1 (in %) and R3 is the ratio between T3
and T1 (in %). Relative improvements in % are 100−R2 and 100−R3.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10
T4 2,202 639 598 1,215 962 983 1,308 729 1,024 1,216
T5 1,122 309 282 618 607 565 581 447 579 598
R 51.0 48.4 47.2 50.8 63.1 57.5 44.4 61.3 56.5 49.2

Figure 8: Computational time (in seconds) of the subproblems (LP relaxation and branching) using one
thread (T4) and 4 threads (T5), and ratio in % (R). Relative improvement in % is 100−R.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10
T6 2,058 155 86 502 332 334 537 215 417 747
T7 517 113 60 349 186 175 253 160 215 258
R 25.1 72.9 69.8 69.5 56.0 52.4 47.1 74.4 51.6 34.5

Figure 9: Computational time (in seconds) of the master problems (LP relaxation and branching) using
the standard L-Shaped algorithm (T6) and the dynamic cut management algorithm (T7), and ratio in %
(R).Relative improvement in % is 100−R.

References

[1] Aykin, T. Optimal shift scheduling with multiple break windows. Management Science 1996;42:591–602.

[2] Benders, J.F. Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik
1962;4:238–252.

[3] Birge, J.R., Louveaux, F. Introduction to Stochastic Programming. Springer, 1997.

[4] IBM Ilog. CPLEX Optimizer.

[5] Oracle. Java SE 6 documentation. 2011.

[6] Pacqueau, R., Soumis, F. Shift scheduling under stochastic demand. European Journal of Operations Research
2011.

[7] Van Slyke, R., Wets, R. L-shaped linear programs with applications to optimal control and stochastic program-
ming. SIAM J Appl Math 1969;17(4):638–663.

	Introduction
	Problem presentation and heuristic description
	Problem description
	Notations
	Formulation
	Problem size

	The L-Shaped method
	Heuristic description

	Improvements to the heuristic procedure
	Reducing computational time for the subproblems using multithreading
	Procedure
	Results

	Reducing computational time for the master problems using a dynamic cut management algorithm
	Procedure
	Results

	Discussion and larger instances
	Conclusion
	Computational time: Numerical results

