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Les textes publiés dans la série des rapports de recherche HEC n’engagent que la responsabilité de leurs auteurs. La publication
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Abstract

Implementations of the Simplex method differ only in very specific aspects such as the pivot rule.
Similarly, most relaxation methods for mixed-integer programming differ only in the type of cuts and
the exploration of the search tree. Implementing instances of those frameworks would therefore be more
efficient if linear and mixed-integer programming solvers let users customize such aspects easily. We pro-
vide a scripting mechanism to easily implement and experiment with pivot rules for the Simplex method
by building upon COIN-OR’s open-source linear programming package CLP. Our mechanism enables
users to implement pivot rules in the Python scripting language without explicitly interacting with the
underlying C++ layers of CLP. In the same manner, it allows users to customize the solution process
while solving mixed-integer linear programs using the CBC and CGL COIN-OR packages. The Cython
programming language ensures communication between Python and COIN-OR libraries and activates
user-defined customizations as callbacks. For illustration, we provide an implementation of a well-known
pivot rule as well as the positive edge rule—a new rule that is particularly efficient on degenerate prob-
lems, and demonstrate how to customize branch-and-cut node selection in the solution of a mixed-integer
program.

Key Words: Linear Programming, Mixed-Integer Linear Programming, Python, Cython, COIN-OR,
CLP, Simplex Pivot.
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1 Introduction

The Simplex algorithm created by Dantzig is considered by many to be among the top ten algorithms of

the twentieth century in terms of its scientific and practical impact (Cipra, 2000; Dongarra and Sullivan,

2000). Simplex is a graceful way of solving linear programs (LP). Although it is efficient in many situations,

it has always struggled in the face of degeneracy, whose effects range from causing cycling to significantly

impacting the performance. In order to ensure convergence theoretically one needs to modify an essential

component of the algorithm—the pivot selection (e.g. Bland (1977)). Identifying a pivot selection rule that

is efficient across many degenerate LP instances is still an open subject after more than 60 years of research.

The Improved Primal Simplex (IPS) of Raymond et al. (2010b) and the positive edge pivot rule of Raymond

et al. (2010a) are recent efforts in that direction.

Commercial implementations of Simplex typically do not allow users to plug in customized pivot rules.

Raymond et al. (2010a) work around this limitation by solving auxiliary dynamically-generated LPs at each

step—a substantial overhead. A promising alternative is to modify an open-source Simplex implementation,

such as Makhorin’s GLPK or COIN-OR’s CLP, typically written in a low-level programming language such

as C or C++ . Delving into large-scale open projects in such languages can be a daunting task even for a

seasoned programmer. It does appear however that open-source implementations of Simplex are the ideal

platform to implement and experiment with pivot rules.

In this paper we propose a user-friendly alternative that emphasizes flexibility and ease of use, and

promotes fast development and productivity. CyLP is a tool for researchers to implement pivot rules in

the dynamic high-level Python programming language1. CyLP builds upon CLP and provides flexible and

easy to use mechanisms to substitute CLP’s built-in pivot rules with a user-defined pivot rule written in

Python. Aside from LP, effective pivot rules are also crucial in mixed-integer linear programming (MIP).

CyLP provides facilities to customize the solution of MIPs using Python, by allowing users to inject cuts of

their own design. In particular, we interface COIN-OR’s CBC2 which provides tools to solve MIPs using

branch-and-cut (Hoffman and Padberg, 1993; Padberg and Rinaldi, 1991). In addition, CyLP can be used

as a modeling environment to formulate and solve LPs and MIPs via CLP and CBC. Our main motivation

for this research is the design of pivot rules suited to degenerate problems. In follow-up research, we apply

such rules to quadratic programs (QP) and mixed-integer QPs.

The pivot rule is part of the nerve center of any implementation of Simplex since it must be executed at

each iteration. One worry is thus that implementing it in an interpreted language seriously affects perfor-

mance. In order to limit the performance hit as much as possible, our choice is to write the communication

layer between Python and CLP in the Cython3 programming language. Cython is a strongly-typed superset

of Python whose main design goal is strictly speed and that eases the interfacing of binary code as well as of

source code. This feature makes it particularly suitable for facilitating communication between Python and

large libraries that users may not wish to recompile. CyLP is composed of three layers: a few C++ interface

classes, a thin Cython layer ensuring fast communication between the C++ code and the Python programming

language, and convenience Python classes. As our numerical experiments illustrate, not only are we able to

maintain competitive execution speeds, but the gains in flexibility and ease of development far outweigh the

performance hit. CyLP is available as an open-source package from github.com/mpy/CyLP.

The rest of this paper is organized as follows. Section 2 gives a brief description of the Simplex method,

common pivot rules typically found in solvers and the need to define and examine new pivot rules. In Section 3

we present the positive edge method, specifically designed for degenerate problems. Section 4 describes some

implementation details of CyLP, provides an implementation of Dantzig’s classic pivot rule as an example

and shows the essentials of our implementation of the positive edge rule in Python. It also covers how CyLP

is used to solve MIPs, how it can be used to examine different solution strategies scripted in Python, and

summarizes its modeling capabilities. Section 5 documents numerical experience. We conclude and look

ahead in Section 6.

1www.python.org
2projects.coin-or.org/Cbc
3www.cython.org

https://github.com/mpy/CyLP
www.python.org
https://projects.coin-or.org/Cbc
www.cython.org
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Related Research

Two of the major commercial LP solvers, CPLEX4 and Gurobi5, offer a Python API and allow users to

interact with the solution process of MIPs using callbacks to customize cut-generation and the branch-and-

cut procedure. They do not appear to let users define pivot rules.

PuLP is a Python modeler for LP and provides interfaces to existing open-source and commercial LP

solvers such as GLPK, CLP and CPLEX. PyCPX (Koepke, a) is a Cython interface to CPLEX that leverages

the power of Numpy6—a library defining the standard array type in Python—and provides more convenient

modeling facilities than the default CPLEX Python API. Pylpsolve (Koepke, b) is a similar interface to

lpsolve (Berkelaar) and Pycoin (Silva, 2005) is a Python interface to CLP. None of them appears to allow

users to customize the solution process.

There is growing interest in Cython as an interface language for projects written in low-level languages.

For example, CyIPOPT (Aides) is a wrapper for the interior-point optimizer IPOPT (Wächter and Biegler,

2006).

To the best of our knowledge, CyLP is the first toolset that connects with an efficient implementation of

Simplex and permits experimentation with pivot rules in a high-level language. Like PyCPX, CyLP allows

users to exploit the power of Numpy.

Notation

Throughout this paper we use capital latin letters for matrices and lowercase latin letters for vectors. Calli-

graphic letters are used to denote index sets. For any matrix M , we denote the j-th column of M by Mj ,

the i-th row of M by M i and the i-th element of Mj by mij . For any vector c, any matrix A and any index

set B, cB is the subvector of c indexed by B and AB is the submatrix of A composed of the columns indexed

by B. Similarly AB is the submatrix of A which contains the rows indexed by B. The only norm used in this

paper, denoted ‖ · ‖, is the Euclidian norm.

2 Implementing Simplex Pivot Rules

In this section, we give a high-level, and by no means complete, account of the Simplex method and an

overview of the CLP implementation.

2.1 The Simplex Method

The linear programming problem in standard form is

minimize
x∈Rn

cTx subject to Ax = b, x ≥ 0, (LP)

where c ∈ Rn, b ∈ Rm, A ∈ Rm×n and the inequality x ≥ 0 is understood elementwise. Simplex is an

iterative method. It divides variables into two categories: basic and non-basic. Let B be the index set of

basic variables, also called the basis, and N be that of the non-basic variables. At every Simplex iteration,

|B| = m and |N | = n −m. Non-basic variables are fixed to zero because if (LP) has a solution, then there

exists a solution with at most m nonzero elements (Dantzig, 1998). Using those index sets, we partition A,

x, and c as

A =
[
AB AN

]
, x =

[
xB
xN

]
and c =

[
cB
cN

]
.

For simplicity of exposition, we assume here that the m-by-m submatrix AB is nonsingular at every iteration.

This assumption is not required in practice as all that is required is the solution of a linear system with

coefficient matrix AB.

4www.cplex.com
5www.gurobi.com
6www.numpy.org

www.cplex.com
www.gurobi.com
www.numpy.org
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Upon re-writing the equality constraint in (LP) as ABxB+ANxN = b, we extract xB = A−1B (b−ANxN ).

In the same manner and using this expression for xB, the objective function becomes cTx = cTBA
−1
B b+ (cN −

AT
NA
−T
B cB)TxN . Each iteration of Simplex ensures xB ≥ 0. Because Simplex fixes xN = 0, these expressions

further simplify to xB = A−1B b and cTx = cTBA
−1
B b. If an improvement is possible, it has to involve increasing

a non-basic variable. The last expression of cTx shows that unit changes in xN change the objective value

at the rate r = cN −AT
NA
−T
B cB. Therefore, if r ≥ 0, (xB, 0) is an optimal solution. The vector r is called the

reduced cost vector. At each Simplex iteration we look for variables with a negative reduced cost and move

one of them—the entering variable—into the basis. Since we maintain m basic variables at all times, one

variable has to leave the basis—the leaving variable. This process of swapping two variables in and out of

the basis is called pivoting. If we define ĀN := A−1B AN and b̄ := A−1B b ≥ 0, the choice of the leaving variable

is guided by the requirement that the next xB = b̄ − ĀNxN ≥ 0. For a given entering variable xj (j ∈ N ),

we select the leaving variable xk (k ∈ B) as that allowing the largest increase possible in the value of xj , i.e.,

k ∈ argmini∈B{b̄i/āij | āij > 0}. From the definition of reduced cost, when xj enters the basis the objective

function improvement is equal to rj b̄k/ākj where k is the index of the leaving variable. The Simplex method

is outlined in Algorithm 2.1. There are many pivot rules for choosing the entering and the leaving variables

(Terlaky and Zhang, 1993). Moreover, pivot rules can have a significant impact on the practical performance

of the Simplex method.

Algorithm 2.1 Generic outline of the Simplex method

Step 0. Determine initial B and N by identifying a feasible starting point x = (xB, 0) with xB ∈ Rm.

Step 1. Compute the reduced cost vector r = cN − AT
NA
−T
B cB. If r ≥ 0, the solution is (xB, 0).

Otherwise choose j such that rj < 0 and set xj as the entering variable.

Step 2. If Āj ≤ 0 then the problem is unbounded. Otherwise, set xk as the leaving variable where
k ∈ argmini∈B

{
b̄i/āij | āij > 0

}
.

Step 3. Pivot: set N ← N \ {j} ∪ {k} and B ← B \ {k} ∪ {j}. Return to Step 1.

LP solvers, commercial or free, typically implement several predefined pivot rules. Most of these rules fall

into one of the following two categories. The first category is that of rules similar to the original pivot rule

presented by Dantzig (1998), where at each iteration a non-basic variable with the smallest negative reduced

cost is chosen to enter the basis. Variations on this method choose a variable with a negative reduced cost

that is not necessarily the minimum—an approach called partial pricing. The second category contains rules

based on the steepest-edge method (Goldfarb and Reid, 1977; Harris, 1975; Forrest and Goldfarb, 1992),

which work with normalized reduced costs.

It is possible to show that using Dantzig’s rule, the iterate moves from the current vertex to an adjacent

vertex along an edge d of the feasible polyhedron such that the directional derivative cT d is as negative as

possible. By contrast, a steepest edge rule selects an edge d such that the directional derivative along the

normalized edge direction cT d/‖d‖ is as negative as possible. Steepest edge rules are known to outperform

Dantzig’s original pivot selection by large margins (Wolfe and Cutler, 1963) but require a significantly higher

programming effort.

2.2 Implementing New Pivot Rules

In Step 2 of Algorithm 2.1, the definition of xB implies that b̄ ≥ 0. Therefore, if there exists a k0 ∈ B such

that b̄k0
= 0 then all choices of k are such that b̄k/āij = 0, and from §2.1 we know that performing the pivot

will cause no improvements in the objective function. This type of pivot is called a degenerate pivot and an

LP for which such pivots occur is said to be degenerate (Greenberg, 1986). Simplex may be very slow on

degenerate LPs or even fail to converge because of cycling. Simple modifications to pivot selection can help

avoid cycling, e.g., the method proposed by Bland (1977). Degeneracy occurs frequently in real-world LPs

including but not limited to large-scale set partitioning problems. Raymond et al. (2010a) report manpower

planning problems with a degeneracy level of 80%, i.e. at each iteration of Simplex we have b̄i = 0 for
typically 80% of i ∈ B. Likewise the patient distribution system (pds) instances of Carolan et al. (1990) have

a 80% degeneracy level on average.
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In a recent effort to solve large-scale problems with high occurrence of degenerate pivots efficiently,

Raymond et al. (2010a) introduce the positive edge rule. One of our initial motivations for developing CyLP

was to implement the positive edge rule for benchmarking purposes and for application to quadratic and

other classes of optimization problems. In the remainder of this section, we explain how new rules may be

implemented in CLP and motivate the need for the higher-level mechanism provided by CyLP.

CLP implements both Dantzig’s pivot selection and two variants of steepest edge methods with optional

partial pricing. In CLP, an execution of the Simplex method on a given problem is abstracted as a C++ class

possessing an attribute that represents the pivot selection rule to be used at each iteration. Users specify

the pivot rule of their choice by setting this attribute appropriately, the value of the attribute being another

C++ class that abstracts the pivot rule itself. New pivot rules may be implemented by subclassing the latter

class and overriding certain of its methods. The definition of such a pivot rule in Python can be significantly

shorter in terms of number of lines of code and easier in terms of development effort. For example, Dantzig’s

pivot rule implementation in CLP takes 58 lines of code while a straightforward Python implementation takes

only 19 lines—see Listing 1. A C++ implementation of the positive edge pivot rule takes 106 lines while we

can obtain the same functionality in Python in 38 more readable lines. Conciseness can be crucial in more

complex pivot rules. We estimate that the steepest edge method, whose implementation takes about 3800

lines of code in CLP, could be written in less than 500 lines in Python. This makes a Python implementation

remarkably easier to develop and debug. Furthermore, since low-level programming details such as memory

management are no longer a concern, the programmer can focus almost exclusively on the logic of the pivot

rule.

3 The Positive Edge Rule

The positive edge rule is a recent method to handle degenerate LPs efficiently. To explain this method we

consider (LP) and the notation from §2.1.

We stated in §2.2 that if there is a row i for which b̄i = 0 and āij > 0 for some j then we are facing

degeneracy. In large-scale LPs it is possible to spend the majority of the solution time performing degenerate

pivots.

The positive edge criterion of Raymond et al. (2010a) allows us to identify degenerate pivots. LetQ := A−1B
to simplify notation. Define Z = {i = 1, . . . ,m | b̄i = 0} and P = {i = 1, . . . ,m | b̄i > 0}. Note that if Z = ∅,
a nondegenerate Simplex iteration is guaranteed to exist. Accordingly, we partition Q and A row-wise as

Q =

[
QP

QZ

]
and A =

[
AP

AZ

]
,

where QP ∈ R|P|×m, QZ ∈ R|Z|×m, AP ∈ R|P|×n, and AZ ∈ R|Z|×n. Using a notation similar to that of

§2.1, we have [
ĀP

ĀZ

]
:=

[
QPA
QZA

]
=

[
QPAB QPAN
QZAB QZAN

]
=

[
I 0 QPAN
0 I QZAN

]
, (1)

where the last equality uses the identity QAB = I.

A variable xj , j ∈ B ∪ N is said to be compatible if and only if

QZAj = ĀZj = 0.

Using the usual identification of B with {1, . . . ,m}, we observe from this definition and (1) that for j ∈ B,

xj is compatible if j ∈ P and is incompatible if j ∈ Z. But we are particularly interested in the nonbasic

compatible variables because selecting one of them as the entering variable ensures a nondegenerate pivot.

From the definition of compatibility we deduce that for a given compatible entering variable xj (j ∈ N )

and a leaving variable xi chosen by the ratio test (§2.1) the improvement in the objective value, rj b̄i/āij ,

is strictly positive, and a non-degenerate pivot is performed. But calculating ĀZj for all variables requires

the matrix-matrix product QZA. For positive edge to be efficient we must lower the complexity of this

identification.



Les Cahiers du GERAD G–2012–07 5

For an arbitrary vector v ∈ R|Z|+ , define w = (QZ)T v. If the variable xj is compatible, we have

wTAj = vTQZAj = 0. (2)

Conversely, if wTAj = 0, can we affirm that xj is compatible, i.e., QZAj = 0? There are two possibilities:

either QZAj = 0, in which case xj is compatible, or QZAj ⊥ v. For random v, the probability of the latter

happenning in R|Z| is zero. However, in IEEE double precision arithmetic, this probability is proven to be

2−62 (Raymond et al., 2010a). Therefore, the probability that the statement

wTAj = 0 =⇒ xj is compatible

be erroneous is 2−62, and this would result in a single degenerate pivot. Since this method does not involve

the calculation of updated columns Āj its complexity reduces to O(mn)—the complexity of the dense matrix-

vector product wTA.

The details of the positive edge method are given in Algorithm 3.1. In order to obtain a Simplex algorithm

equipped with the positive edge rule, Algorithm 3.1 should replace Step 1 of Algorithm 2.1.

The positive edge method has a parameter that specifies the preferability of compatible variables. We

denote this parameter by 0 < ψ < 1. A value ψ = 0.4 means that we prefer a compatible variable over an

incompatible one even if the reduced cost of the former is 0.4 that of the latter.

Algorithm 3.1 The Positive Edge Rule

Step 0. If w is not initialized or updating w is required, set P := {i ∈ B | b̄i > ε} where ε > 0 is a
prescribed tolerance. Let v ∈ Rm be a random vector and fix vi = 0 for all i ∈ P. Compute w := A−TB v.

Step 1. Let rmin = rcomp = 0. For each j ∈ N , do:

1. if rj ≥ rcomp, skip to the next variable

2. if |wTAj | < ε (xj is likely compatible) then set rcomp = rj

3. set rmin = min(rmin, rj).

Step 2. If rcomp < ψ rmin, choose the compatible variable corresponding to rcomp to enter the basis.
Otherwise choose the variable corresponding to rmin and demand an update of w at the next iteration.

At Step 1 of Algorithm 3.1, rj denotes the j-th component of the vector of reduced costs defined in §2.1,
rcomp is the best reduced cost over compatible variables, and rmin is the best overall reduced cost found so

far. For more information on the design of the positive edge criterion, we refer the reader to (Raymond et al.,

2010a).

4 Implementation Details and Examples

Commercial implementations of Simplex typically allow users to choose a pivot rule among a set of predefined

rules, but not to plug in customized or experimental pivot rules. It therefore appears that open-source solvers

are the best option if one is to experiment with new pivot rules. One of the leading open-source LP solvers,

CLP, is part of the COIN-OR project (Lougee-Heimer, 2003) and has several advantages that make it our

solver of choice for the development of CyLP. Firstly, CLP has an object-oriented structure which makes it

convenient to extend or modify. Secondly, CLP is written in C++ , a language for which compilers are freely

available on most platforms. Finally, the large COIN-OR user base gives confidence that CLP implements

the state of the art, and has been exercised and debugged to satisfaction.

In CLP it is possible to define customized pivot rules but a good understanding of its internal structure

and of C++ are required. To simplify the exposition we show a partial UML class diagram (Larman, 2001)

of CLP in Figure 1. A class ClpSimplex implements the Simplex method. It has an attribute of type

ClpPrimalColumnPivot—the base class common to all pivot rules. Every pivot rule must derive from the
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latter and implement a method called pivotColumn() that returns an integer—the index of the entering

variable. Figure 1 also shows two pivot rules already implemented in CLP.

ClpModel

ClpSimplex

ClpSimplexPrimal ClpSimplexDual

ClpPrimalColumnPivot

pivotColumn()

ClpPrimalColumnDantzig

pivotColumn()

ClpPrimalColumnSteepest

pivotColumn()

Implements the Classic Dantzig Pivot Rule

Implements the Steepest Edge Pivot Rule

Figure 1: Partial UML Class Diagram for CLP

One of the goals of CyLP is to offer users practical and efficient means to implement pivotColumn()

directly in Python or Cython. Pivot rules need full access to different aspects of a problem, which demands

that CyLP wrap a number of components of CLP. In addition, implementing pivot rules often requires

defining and maintaining new data structures, vectors and matrices. The standard Python modules Numpy

and Scipy7 facilitate such tasks and make them reasonably efficient. CyLP must therefore be able to interact

with those standard packages.

CyLP consists of three layers. The first layer is the auxiliary C++ layer whose role is to enable or facilitate

the communication between C++ and Cython. This layer is often required because of technicalities such

as the fact that call-by-reference arguments are currently not supported in Cython. Thus, for Cython to

communicate with C++ code, it may be necessary to wrap certain functions and methods so as to modify their

apparent signature or return value. Consider for example a function that takes an argument by reference, f(A

&a) where A is a C++ class. One way to work with f() in Cython is to interface instead with a C++ wrapper of

f(): void f wrap(A *a) {f(*a);}. Another example is that of a function that returns an array generated

in C++ , say, in the form of a double*. Although we can use a double* array directly in Cython, we may prefer

working with a Numpy array not only because it provides the same constant access time to array elements,

but also because it is endowed with a variety of array operations we may need. However, if we require to use

the array in Python, the conversion to a Python-understood type like a Numpy array is inevitable. A role

of the auxiliary C++ layer is to expose the return array to Cython and Python by wrapping it into a Numpy

array data structure. This is achieved by returning the array to Cython as a PyObject*, i.e., a pointer to a

generic Python object, and subsequently casting this pointer as a pointer to a Numpy array inside Cython.

Though it is possible to return a double* directly and initialize the Numpy array at the Cython level, we

decided against this method for performance reasons.

The second and most important layer is the Cython layer, whose role is to ensure seamless communication

between Python and CLP. A collection of Cython files interfaces CLP either directly or indirectly via the

auxiliary layer. In the Cython layer, special attention is paid to handling matrices and vectors efficienly while

passing them back and forth between C++ and Python.

The third and final layer is the Python layer. This is where we define the callback functions that implement

custom pivot rules. These functions will be called from the Cython and/or C++ layers. In a typical use case,

we define a pivot rule in Python and pass it over for CLP to use while iterating. The CyLP layers are

illustrated in Figure 2. The rest of this section is devoted to explaining each of these layers in more detail.

To simplify the presentation, we abbreviate ClpPrimalColumnPivot to just Pivot.

7www.scipy.org

http://www.scipy.org
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Pivot

pivotColumn()

PivotBase
obj: PyObject*
runPivotColumn()

CyPivotBase
obj: PyObject*
pivotColumn()

DantzigPivot

pivotColumn()

PositiveEdge

pivotColumn()

CustomPythonPivot

pivotColumn()

PyPositiveEdge

pivotColumn()

C++ Cython Python

callback

Figure 2: Schema of the three layers of CyLP

In §4.1 we go into some of the details of our implementation of CyLP, the reason being that interfacing a

C++ library is not obvious. Moreover, those details may be relevant in other contexts. A reader who wishes

to skip over those details may safely go directly to §4.2.

4.1 Implementation Details

As a superset of the Python language, Cython is itself object oriented. If Cython supported inheritance from

C++ classes, we could create a Cython subclass of Pivot and override pivotColumn(). Unfortunately it is

currently not possible (at least in an automated way) to inherit from a C++ class inside Cython and we have to

find a workaround8. What we want is to have a class equivalent to Pivot in Cython, say CyPivot, which has

the same functionality, i.e., users should be able to define Cython subclasses of CyPivot and implement pivot

rules by overriding the pivotColumn() method. The key to achieving this is understanding the programming

concept of name binding, which is roughly the process of associating names with objects. The difficulty at

the CyLP level can be understood by first considering the following simplification of the definitions in CLP.

1 class Pivot{ // Base class for the user to subclass.
2 public:
3 int pivotColumn () {return -1;} // Generic method for the user to override.
4 };
5

6 class Simplex{
7 public:
8 Pivot *pivotMethod; // User must bind to a pivot method.
9 };

10

11 class MyFirstPivot: public Pivot{ // User -defined pivot rule.
12 public:
13 int pivotColumn () {return 0;}
14 };
15

16 class MyOtherPivot: public Pivot{ // User -defined pivot rule.
17 public:
18 int pivotColumn () {return 1;}
19 };
20

8Based on the idea discussed in tinyurl.com/6sqvd3l

http://tinyurl.com/6sqvd3l
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21 int main(void) {
22 Simplex S;
23 S.pivotMethod = new MyFirstPivot ();
24 printf("%d", S.pivotMethod ->pivotColumn ());
25 S.pivotMethod = new MyOtherPivot ();
26 printf("%d", S.pivotMethod ->pivotColumn ());
27 }

The main program above outputs -1 twice because both times, the pivotMethod attribute of S is bound

to an object of type Pivot at compile time, not to objects of type MyFirstPivot or MyOtherPivot. This

behavior is called static binding. If we change the signature of the pivotColumn() method of the Pivot

class and declare it virtual, binding will be delayed until runtime when the actual type of pivotMethod is

known, causing the main program to output 0 and 1. This kind of binding is called dynamic binding. This

allows CLP to run a pivotColumn() of a user-defined pivot rule class.

However, defining a pivot rule class in Cython breaks the inheritance chain—CLP will not be able to

recognize our class as a Pivot type. As a result, we must bind the C++ pivotMethod() to the Cython

implementation inside Cython where its type is known.

For instance suppose we define a class CyDantzigRule and implement the classic Dantzig pivot rule in its

pivotColumn() method. To be able to pass a CyDantzigRule object to C++ —where CyDantzigRule is not

recognized as a type—we make use of generic (void) pointers. Suppose we have a void pointer ptr, pointing to

a CyDantzigRule instance. Because casting the void pointer is necessary, Cython requires prior knowledge

of the user-defined class, here CyDantzigRule, to execute the corresponding pivotColumn() method, as

illustrated in the following listing:

(<CyDantzigRule >(ptr)). pivotColumn ()

To overcome this limitation we define a Cython class CyPivot which shall be the parent of every pivot rule

implemented in Cython. Now we are certain that the void pointer can safely be up-cast to a CyPivot pointer.

The Cython function defined in the following listing

cdef int RunPivotColumn(void *ptr):
return (<CyPivot >(ptr)). pivotColumn ()

performs this task and runs the pivotColumn() method. This is where the call to pivotColumn() is bound

(dynamically) to CyDantzigRule.pivotColumn().

Taking an additional step ahead, implementing a pivot rule directly in Python would be much more con-

venient. To this end, we define the CustomPythonPivot subclass of CyPivot as we would have done had we

wanted to define another pivot rule in Cython. At variance with CyPivot, instances of CustomPythonPivot

have a pivotMethod attribute that will be bound to a user-defined Python object implementing

pivotColumn(). This binding occurs when the user registers their pivot rule for use in the Simplex implemen-

tation. This registration stage is illustrated in §4.4. For example suppose a user defines the PyDantzigRule

class and implements a Python version of Dantzig’s pivot rule in the pivotColumn() method. Upon register-

ing this pivot rule, CustomPythonPivot.pivotColumn() is set to call pivotMethod.pivotColumn() (instead

of implementing a pivot rule itself). In brief, we provide to CustomPythonPivot a reference to an actual

pivot implementation—a callback.

4.2 Implementation of a Classic Pivot Rule in Cython and Python

Listing 1 gives the definition of the classic Dantzig pivot rule in Python. We use the Numpy package to gain

performance. We define a class deriving from the PyPivot class. In a method that is (and must be) called

pivotColumn() we first fetch the reduced costs. Then, using the Numpy where() function, we gather indices

of the variables that are unbounded or those which are at their bounds and whose reduced costs are large

enough and have a favorable sign. Among these variables, we choose the one with the maximum absolute

value.
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1 import numpy as np
2

3 class PyDantzig(PyPivot ):
4 def pivotColumn(self):
5 s = self.clpModel
6 rc = s.reducedCosts
7 tol = s.dualTolerance ()
8

9 indicesToConsider = np.where(s.varNotFlagged & s.varNotFixed &
10 s.varNotBasic &
11 (((rc > tol) & s.varIsAtUpperBound) |
12 ((rc < -tol) & s.varIsAtLowerBound) |
13 s.varIsFree ))[0]
14

15 abs_rc = abs(rc[indicesToConsider ])
16

17 if len(indicesToConsider) > 0:
18 return indicesToConsider[np.argmax(abs_rc )]
19 return -1

Listing 1: Dantzig’s Pivot Rule in Python

Implementing Dantzig’s pivot rule in Cython is essentially similar to the Python implementation in

Listing 1. The major difference is that in Cython the class is defined as cdef class CyDantzig(CyPivot).

4.3 Implementation of the Positive Edge Rule

In this section we demonstrate how to implement the positive edge rule of §3.

The core of the positive edge pivot rule implementation is essentially similar to that of Dantzig’s rule,

illustrated in Listing 1. The difference is that it should incorporate Algorithm 3.1 into its pivot selection

process.

We define the Python class PositiveEdge, a subclass of PyPivot, possessing an updateW() method used

to perform the optional update of w specified in Step 0 of Algorithm 3.1, as shown in Listing 2. First this

method populates z with indices of the constraints for which the right-hand-side is smaller in absolute value

than self.EPSILON—a predefined threshold. Then it sets corresponding elements in self.w to a random

number. Finally the call to vectorTimesB 1() multiplies self.w by A−1B in place.

def updateW(self):
z = np.where(np.abs(self.rhs) <= self.EPSILON )[0]
self.w[z] = np.random.random(len(z))
s = self.clpModel
s.vectorTimesB_1(self.w)

Listing 2: Updating w

To implement the pivotColumn() method of the postive edge rule we use Dantzig’s rule implementation

in Listing 1 as a starting point.

Each variable compatibility check requires a dot product, i.e. AT
j w for j ∈ N . Instead, we choose to check

the compatibility of all the non-basic variables at once by performing a vector by matrix multiplication, i.e.

AT
Nw, which is more efficient. To this end, we use a wrapper of ClpModel’s transposeTimesSubset() using

the call

s.transposeTimesSubset(idx , w, Aw)

which multiplies w by the rows of AT
N specified in the list idx. The result is stored in Aw, which is a Numpy

array. To get the indices of compatible variables we can use Numpy’s function where() once again:

compVars = idx[np.where(abs(Aw[idx]) < self.EPSILON )[0]]

We next identify a compatible variable with maximum reduced cost:

compRc = abs(rc[compVars ]) #Reduced costs of the compatible variables
maxCompIdx = compVars[np.argmax(compRc )]
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We compare rc[maxCompIdx] with the reduced cost of the variable chosen by Dantzig’s method consid-

ering the preferability of compatible variables, by the predefined parameter ψ, and decide either to choose a

compatible or an incompatible variable. If an incompatible variable is chosen, we call updateW() to recon-

struct w before moving on to the next iteration.

As a result, we are able to implement the positive edge method in Python in 38 lines while the same

implementation in C++ takes 106 lines.

4.4 A Complete Example Usage of CyLP

Suppose that we have a LP defined in an MPS file lp.mps. To solve this problem in Python using the positive

edge pivot method we use:

1 s = CyClpSimplex ()
2 s.readMps("lp.mps")
3 s.preSolve(tol =1.0e-8) # Optional presolve step.
4 pivot = PositiveEdgePivot(s)
5 s.setPivotMethod(pivot)
6 s.primal () # Executes primal Simplex.

Listing 3: Using Custom Pivot Rules

where we first create an instance of CyClpSimplex—a class which interfaces CLP’s ClpSimplex. After reading

the problem from lp.mps, we create an instance of PositiveEdge and register it with s. Then we solve the

model using the CLP’s primal Simplex method.

4.5 Modeling Facilities

As an alternative to reading from a file, CyLP provides intuitive modeling facilities to express linear pro-

gramming problems. Listing 4 shows how to model (3), solve it using primal Simplex, add a new constraint

and solve again.

minimize x0 − 2x1 + 3x2 + 2y0 + 2y1

subject to x0 + 2x1 ≤ 5
x0 + x2 ≤ 2.5

2 ≤ x0 + y0 + 2y1 ≤ 4.2
2 ≤ x2 + y1 ≤ 3

(y0, y1) ≥ 0
1.1 ≤ x1 ≤ 2
1.1 ≤ x2 ≤ 3.5.

(3)

1 import numpy as np
2 from CyClpSimplex import CyClpSimplex
3 from CyLP.python.modeling.CyLPModel import CyLPModel , CyLPArray
4

5 model = CyLPModel () # Initialize model.
6 x = model.addVariable(’x’, 3)
7 y = model.addVariable(’y’, 2)
8

9 # Define coefficient matrices and bound vectors.
10 A = np.matrix ([[1., 2., 0],[1., 0, 1.]])
11 B = np.matrix ([[1., 0, 0], [0, 0, 1.]])
12 D = np.matrix ([[1., 2.],[0, 1]])
13 a = CyLPArray ([5, 2.5])
14 b = CyLPArray ([4.2, 3])
15 u = CyLPArray ([2., 3.5])
16

17 # Add constraints and bounds to model.
18 model.addConstraint(A * x <= a)
19 model.addConstraint (2 <= B * x + D * y <= b)
20 model.addConstraint(y >= 0)
21 model.addConstraint (1.1 <= x[1:3] <= u)
22

23 # Define the objective function
24 c = CyLPArray ([1., -2., 3.])
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25 model.objective = c * x + 2 * y
26

27 s = CyClpSimplex(model) # Create CyClpSimplex object using model.
28 s.primal () # Solve. Solution: [0.2 2. 1.1 0. 0.9]
29

30 s.addConstraint(x[2] + y[1] >= 2.1) # Add a cut.
31 s.primal () # Warm start. Solution: [ 0. 2. 1.1 0. 1.]

Listing 4: Creating and solving an LP using CyLP modeling facility

CyLPModel objects encapsulate an LP’s variable and constraint information. The addVariable() method

returns a CyLPVar object which we use later to add constraints and bounds.

Lines 10–15 define coefficient matrices and vectors. Vectors are defined using CyLPArray objects instead

of the more familiar Numpy arrays, whereas matrices may be defined using Numpy’s matrix objects. The

reason lies in the way Numpy array operators take precedence. If we compare a CyLPVar object, x with a

Numpy array b using the expression b >= x the >= operator of b is called and returns a Numpy array with

the same dimension as b and all its elements set to False, which is of no significance since b is trying to

compare itself with another object that it does not know of. We would expect, instead, the <= operator of x

to execute, and to save b as the lower bound on x. This information could then be used later to construct

a CyClpSimplex object. To this end, we use CyLPArray objects which are Numpy arrays in most respects

except that they concedes performing an operation if the other operand is a CyLPVar object.

Constraints and variable bounds are declared using the addConstraint() method as in lines 18–21.

The objective function is defined by setting CyLPModel’s objective attribute. Once the LP is defined, the

writeMps() method allows us to write the problem to file in mps format. This makes the choice of modeling

with CyLP independent of the choice of solver. In CyLP, LPs may be solved using primal or dual Simplex.

The modeling tool also makes it easy to generate a problem dynamically, as in cut-generation or branch-

and-cut techniques in integer programming, by allowing users to add constraints at any time and re-solve

the problem with a warm start, i.e., using the solution of the last execution as the initial point for the new

problem. In the next section we demonstrate how CyLP can be used to solve MIPs and how users can

customize the branch-and-cut process using Python callbacks.

4.6 Mixed Integer Programming with CyLP

Much in the same way as CyLP enables to customize the pivot selection rule in CLP, it also enables to

customize the solution process of MIPs using a branch-and-cut strategy. This is made possible by interfacing

COIN-OR’s CBC library. Specifically, custom cuts may be input by the user by way of COIN-OR’s CGL

Cut-Generation Library9. CGL supplies generators for a collection of well-known cuts, such as Gomory, clique

and knapsack cover cuts. CyLP facilitates access to these cut generators. Although the interface is still at

a preliminary stage, it already offers a certain level of flexibility which, when combined with user-designed

pivot rules, may produce powerful variants of the solution process.

In this section, we illustrate how to add integrality restriction to variables, how to solve a MIP and tune

the solution process. Finally, we explain how CyLP can be used to write Python callbacks to customize the

branch-and-cut process.

Suppose that in the LP of Listing 4, x0, x1 and x2 should be integer. This may be specified using

the intuitive syntax s.setInteger(x[1:3]). Once the MIP has been modeled, it may be solved using

an instance of the CyCbcModel class. Listing 5 illustrates how to solve a MIP using two cut generators.

For problems that were not modeled using CyLPModel, specific variables may be marked as integer using

copyInIntegerInformation() as in line 5. In lines 4–5, we read an LP from an mps file and mark all

variables as integers. Calling getCbcModel() solves the initial relaxation using CLP and returns an instance

of the CyCbcModel class, which is an interface to CBC’s CbcModel class, that implements a branch-and-cut

procedure. We then add two cut generators—one generating Gomory cuts of at most 100 variables and the

other generating knapsack cover cuts. Afterwards we solve the problem and print out the solution.

9projects.coin-or.org/Cgl

https://projects.coin-or.org/Cgl


12 G–2012–07 Les Cahiers du GERAD

1 clpModel = CyClpSimplex ()
2

3 # Read problem from file and mark all variables as integers.
4 clpModel.readMps(’lp.mps’)
5 clpModel.copyInIntegerInformation(np.array(clpModel.nCols * [True], np.uint8))
6

7 # Solve initial relaxation and obtain a CyCbcModel object.
8 cbcModel = clpModel.getCbcModel ()
9

10 # Create a Gomory cut generator and a Knapsack cover cut generator.
11 gomory = CyCglGomory(limit =100)
12 knapsack = CyCglKnapsackCover(maxInKnapsack =50)
13

14 # Add cut generators to CyCbcModel.
15 cbcModel.addCutGenerator(gomory , name="Gomory")
16 cbcModel.addCutGenerator(knapsack , name="Knapsack")
17

18 cbcModel.branchAndBound () # Solve.
19 print cbcModel.primalVariableSolution

Listing 5: Integer Programming with CyLP

1 class SimpleNodeCompare(NodeCompareBase ):
2 def __init__(self):
3 self.method = ’depth ’ # Default strategy.
4

5 def compare(self , x, y):
6 "Return True if node y is better than node x."
7 if x.nViolated != y.nViolated:
8 return (x.nViolated > y.nViolated)
9 if x.depth == y.depth:

10 return x.breakTie(y) # Break ties consistently.
11 if self.method == ’depth’:
12 return (x.depth < y.depth)
13 return (x.depth > y.depth)
14

15 def newSolution(self , model , objContinuous , nInfeasContinuous ):
16 "Cbc calls this after a solution is found in a node."
17 self.method = ’breadth ’
18

19 def every1000Nodes(self , model , nNodes ):
20 "Cbc calls this every 1000 nodes for possible change of strategy."
21 return False # Do not demand a tree re-sort.

Listing 6: A simple node comparison impelementation in Python

CBC provides the capability to customize its branch-and-cut node selection process by writing C++

callbacks. For this purpose, CyLP enables us to, instead, use Python. Suppose that we wish to implement

a simplistic approach of traversing the branch-and-cut tree. The strategy is to look for nodes with the least

number of unsatisfied integrality constraints. In case of a tie, at first we select the deepest node (i.e., a

depth-first strategy). But whenever an integer solution is found we break the tie by choosing the highest

node (i.e., a breadth-first strategy). Listing 6 illustrates how to implement this strategy by defining a class

that inherits from the relevant base class NodeCompareBase.

Our subclass must implement compare() to determine the preference in node selection, newSolution(),

which will be run by CBC after a solution is found to perform a possible change of strategy, and

every1000Nodes(), which is similar to newSolution() but is called after CBC has visited 1000 nodes.

To use SimpleNodeCompare in Listing 5, we set the node comparison method by registering an instance snc

of SimpleNodeCompare with the CbcModel object using cbcModel.setNodeCompare(snc).

5 Numerical Experiments

In this section, we first examine the performance hit caused by implementing a pivot rule in Python or

Cython as opposed to C++ . We choose Dantzig’s pivot selection rule because it is simple enough to ensure a

fair comparison across different implementations. Later, we demonstrate how CyLP can be used to examine

the effectiveness of the positive edge pivot rule.
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We choose the Netlib LP benchmark10 for the first part, which contains 93 LPs of diverse dimensions and

sparsity. All our experiments are conducted on computers with Intel Xeon 2.4GHz CPUs and 49GB of total

shared memory. Let tdcpp, tdcy and tdpy denote the execution times of Algorithm 2.1 using C++ , Cython and

Python versions of Dantzig’s pivot rule, respectively.

Figure 3 show the performance profile (Dolan and Moré, 2002) of the execution times. The figure illustrates

that, as expected, the C++ implementation is always faster but that the Cython and Python versions are

essentially equivalent to one another. It also demonstrates that for 50% of the instances, the Cython and

Python versions are less than 3 times slower than the C++ version.
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Figure 3: Performance profile for the execution time of the primal Simplex Algorithm using the C++ , Cython
and Python implementations of Dantzig’s pivot rule

We next select those Netlib instances that take more than 5 seconds to solve using the C++ implementation

of Dantzig’s rule and measure the performance hit caused by using Cython and Python by computing the

slowdown factors tdcy/tdcpp and tdpy/tdcpp. The results are given in the form of a bar chart in Figure 4. Problems

are sorted by C++ execution time from greenbeb, taking 5 seconds, to dfl001, taking 9729 seconds. The

average slowdown is 2.3 and in the most difficult instance, dfl001, is about 1.4. Our observation is that as

problems become moderately large, the performance gap shrinks to a point where it no longer has a significant

impact.
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Figure 4: Performance hit caused by Python and Cython compared to C++

10www.netlib.org/lp/data

http://www.netlib.org/lp/data
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For the second part of the numerical tests we choose from among the pds instances from Mittlemann’s

benchmark (Carolan et al., 1990), which are large, sparse and highly degenerate—good target problems for

the positive edge method.

Let tpcpp and tppy be the execution times of the positive edge method using C++ and Python implemen-

tations, respectively. We compute tdcpp/t
p
cpp and tdpy/t

p
py which indicate the speedups gained by using the

positive edge rule relative to Dantzig’s rule in C++ and Python. Results of these tests appear in Table 1. In

this table, n and m denote the number of variables and constraints of the instance, respectively, id and ip are

the numbers of iterations necessary to solve the instance using Dantzig’s pivot rule and the positive edge rule,

respectively. Python reports higher speedups than C++ but the iteration reductions are identical. The reason

is that positive edge is adding an almost equal overhead to each iteration in C++ and Python. For example

in pds-06, the average C++ iteration time is 0.0002 seconds for Dantzig and 0.0004 seconds for positive edge.

As for Python, the average iteration time is 0.0019 seconds for Dantzig and 0.0017 seconds for positive edge.

This means that positive edge is adding an extra 0.0002 seconds on average to each Dantzig iteration which

is relatively more costly for C++ . This also shows that a careful implementation of the positive edge rule in

Python runs at almost the same speed as in C++ , each iteration taking 3× 10−6 seconds longer.

Table 1 demonstrates the superiority of the positive edge method over Dantzig’s pivot rule for larger pds

instances. In fact, increasing speedups for both implementations show that the effectiveness of the positive

edge rule increases as the problem size grows, both in terms of run time and in terms of number of pivots.

Table 1: Speedup of the positive edge method relative to Dantzig’s rule

Instance n m id ip C++ speedup Python speedup

pds-02 7535 2953 553 583 0.32 0.78
pds-06 28655 9881 7759 2816 1.03 2.85
pds-10 48763 16558 37939 6890 2.50 6.12
pds-20 105728 33874 293668 31584 3.92 9.78
pds-30 154998 49944 597447 65657 4.20 9.75
pds-40 212859 66844 1504587 139376 5.20 10.85

6 Discussion and Future Work

CyLP, available from github.com/mpy/CyLP, provides a high-level scripting framework to define and cus-

tomize aspects of the solution process of LPs and MIPs using COIN-OR’s CLP and CBC. It uses callback

methods to let users define new pivot rules in Python and have CLP use them during primal Simplex. We

demonstrated this feature by implementing the positive edge pivot rule in C++ and Python. We feel that the

ease of programming and flexibility offered by implementing pivot rules in Python outweigh the slowdown

caused by using a high-level interpreted programming language. Moreover, this slowdown becomes minor as

problem size grows.

Besides the pivot selection rules discussed throughout this paper, we also implemented the Last In First

Out and the Most Often Selected rules described by Terlaky and Zhang (1993), each in less than 30 lines

of code. However, those rules also demand to restrict the leaving variable selection, which is not currently

possible in CyLP. The reason is that in CLP, entering variable selection is designed to be customized by

users and is defined in separate classes whereas a leaving variables rule is built into CLP’s ClpSimplexPrimal

class. Nevertheless, future improvements to CyLP will remove this limitation.

Currently, custom pivot rules may only be passed to the primal Simplex solver. In the future, we wish to

provide facilities to implement dual pivot rules in Python. As an improvement to the integer programming

facilities—where we are already capable of defining the branch-and-cut node comparison rule in Python—we

will consider adding the capability to script cut generators in the same manner.

In follow-up research, we consider Wolfe’s pivot rule to solve the KKT system of a convex quadratic pro-
gram (Wolfe, 1959). The KKT system of a QP is a set of linear equations if we set aside the complementarity

conditions. Wolfe proposes to solve an LP to find a feasible point for this system by using a specific pivot

https://github.com/mpy/CyLP
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strategy to take care of complementarity. Our goal in doing so will be to investigate the application of the

positive edge rule and of the constraint aggregation techniques of Raymond et al. (2010b) to convex quadratic

programming. The interface to CLP described in the present paper will let us implement Wolfe’s rule and

construct modified linear programs easily. We hope other users find CyLP equally valuable in their research.

Cython is a powerful intermediate language to enable interaction between low-level high-performance

libraries and Python. We expect that other types of optimization solvers would benefit from similar scripting

capabilities. In nonconvex optimization, the flexibility and power of solvers such as IPOPT (Wächter and

Biegler, 2006) would, in our opinion, be greatly enhanced were users able to plug in their own linear system

solver or barrier parameter update using Python.
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V. Raymond, F. Soumis, and D. Orban. A new version of the improved primal Simplex for degenerate linear programs.
Computers & OR, 37(1):91–98, 2010b. DOI: 10.1016/j.cor.2009.03.020.

P. J. S. Silva. Pycoin, interface to some COIN packages. http://www.ime.usp.br/~pjssilva/software.html, 2005.
[Online; accessed 2-November-2011].

T. Terlaky and S. Zhang. Pivot rules for linear programming: A survey on recent theoretical developments. Annals
of Operations Research, 46-47:203–233, 1993. ISSN 0254-5330. DOI: 10.1007/BF02096264.
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