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Abstract

Facility layout is a well-known operations research problem that arises in numerous areas of applica-
tions. The multi-row facility layout problem is concerned with placing departments along one or several
rows so as to optimize objectives such as material handling and space usage. The particular cases of the
single-row and double-row facility layout problems are of particular interest in the manufacturing con-
text where materials flow between stations located along linear corridors. Significant progress has been
made in recent years on solving single-row problems to global optimality using semidefinite optimization
models. The contribution of this paper is the extension of the semidefinite programming approach to
the special case of multi-row layout in which all the rows have a common left origin and no empty space
is allowed between departments. We call this special case the space-free multi-row facility layout prob-
lem. Although this problem may seem overly restrictive, it is a relevant problem in several contexts such
as in spine layout design. Our computational results show that for space-free double-row instances the
proposed semidefinite optimization approach provides high-quality global bounds in reasonable time for
instances with up to 15 departments. If the assignment of departments to rows is fixed, then bounds can
be computed for instances with up to 70 departments.

Key Words: Facilities planning and design, Flexible manufacturing systems, Cell layout, Semidefinite
Programming, Global Optimization.

Résumé

Le layout est un problème bien connu en recherche opérationnelle qui se pose dans de nombreux do-
maines d’applications. Le problème de layout en lignes doit placer des départements en une ou plusieurs
rangées afin d’optimiser un objectif donné. Les cas particuliers de ligne simple et double sont d’un grand
intérêt dans le contexte de la fabrication où des flux de matériaux ont lieu en couloirs. Des progrès signifi-
catifs ont été réalisés ces dernières années sur l’optimisation globale de layouts en une rangée en utilisant
des modèles d’optimisation semi-définie. La contribution de cet article est l’extension de l’approche par
programmation semi-définie au cas particulier de layout multi-lignes dans lequel toutes les lignes ont une
origine commune et aucun espace vide n’est permis entre les départements. Nous appelons ce cas partic-
ulier le problème de layout multi-lignes sans espacement. Nos résultats montrent que l’approche proposée
par optimisation semi-définie offre des bornes globales de haute qualité dans des délais raisonnables pour
des instances avec un maximum de 15 départements. Si l’attribution des départements aux lignes est fixé
d’avance, alors les bornes peuvent être calculées pour les instances avec un maximum de 70 départements.

Acknowledgments: Research of the second author was partially supported by the Natural Sciences
and Engineering Research Council of Canada.
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1 Introduction

Facility layout is concerned with the optimal location of departments inside a plant according to a given
objective function. This is a well-known operations research problem that arises in different areas of ap-

plications. For example, in manufacturing systems, the placement of machines that form a production line

inside a plant is a layout problem in which one wishes to minimize the total material flow cost. Another

example arises in the design of Very Large Scale Integration (VLSI) circuits in electrical engineering. The

objective of VLSI floorplanning is to arrange a set of rectangular modules on a rectangular chip area so that
performance is optimized; this is a particular version of facility layout. In general, the objective function

may reflect transportation costs, the construction cost of a material-handling system, the costs of laying

communication wiring, or simply adjacency preferences among departments. Some facility layout problems

are dynamic, meaning that the layout may have to change over time (e.g. due to expected changes in the
production process).

The variety of applications means that facility layout encompasses a broad class of optimization problems.

The survey paper [30] divides facility layout research into three broad categories. The first is concerned with

models and algorithms for tackling different versions of the basic layout problem that asks for the optimal

arrangement of a given number of departments within a facility so as to minimize the total expected cost of
flows inside the facility. This includes the well-known special case of the quadratic assignment problem in

which all the departments sizes are equal. The second category is concerned with extensions of unequal-areas

layout that take into account additional issues that arise in real-world applications, such as designing dynamic

layouts by taking time-dependency issues into account, designing layouts under uncertainty conditions, and

computing layouts that optimize two or more objectives simultaneously. The third category is concerned
with specially structured instances of the problem, such as the layout of machines along a production line.

This paper is concerned with finding global upper and lower bounds for one such type of structured instances,

namely the multi-row facility layout problem (MRFLP) in which the departments are to be placed so as to

form one or more parallel rows.

Most facility layout problems have a strong combinatorial nature and turn out to be NP-hard. As such,
numerous heuristic and metaheuristic approaches have been proposed for the various categories of problems,

see e.g. [20]. However, few methods exist that provide global optimal solutions, or at least a measure of

nearness to global optimality, for large instances of layout problems. One exception is the case of the single-

row facility layout problem (SRFLP). This problem, sometimes called the one-dimensional space allocation
problem [31], consists of finding the optimal location of rectangular departments next to each other along

one row so as to minimize the total weighted sum of the center-to-center distances between all pairs of

departments. It arises for example as the problem of ordering stations on a production line where the

material flow is handled by an automated guided vehicle (AGV) travelling in both directions on a straight-

line path. The SRFLP has interesting connections to other combinatorial optimization problems such as the
maximum-cut problem, the quadratic linear ordering problem, and the linear arrangement problem. We refer

the reader to [6] for more details.

Global optimization approaches for the SRFLP are based on relaxations of integer linear programming

(ILP) or semidefinite programming (SDP) formulations. Semidefinite programming is the extension of linear

programming (LP) from the cone of non-negative real vectors to the cone of symmetric positive semidefinite
matrices. SDP includes LP as a special case, namely when all the matrices involved are diagonal. Several

excellent solvers for SDP are now available. We refer the reader to the handbooks [37, 5] for a thorough

coverage of the theory, algorithms and software in this area, as well as a discussion of many application areas

where SDP has had a major impact.

The SRFLP is a special case of the more general MRFLP. Another particular case of the MRFLP is
the double-row facility layout problem (DRFLP). The DRFLP is a natural extension of the SRFLP in the

manufacturing context when one considers that an AGV can support stations located on both sides of its

linear path of travel. This is a common approach in practice for improved material handling and space

usage. Furthermore, since real factory layouts most often reduce to double-row problems or a combination of
single-row and double-row problems, the DRFLP is especially relevant for real-world applications. A specific
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example of the application of the DRFLP is in spine layout design. Spine layouts, introduced by Tompkins

[36], require departments to be located along both sides of specified corridors along which all the traffic

between departments takes place. Although in general some spacing is allowed, layouts with no spacing are
much preferable since spacing often translates into higher construction costs for the facility.

Somewhat surprisingly, the MRFLP and DRFLP have received only limited attention in the literature. In

the 1980s Heragu and Kusiak [21, 22] proposed a non-linear programming model and obtained locally optimal

solutions to SRFLPs and DRFLPs. Recently Chung and Tanchoco [14] (see also [38]) focused exclusively

on the DRFLP and proposed a mixed-integer LP (MILP) formulation that was tested in conjunction with
several heuristics for assigning the departments to the rows. Algorithms for spine layout design have been

proposed, see e.g. [26], but to the best of our knowledge, there are no global optimization methods for spine

layout.

In this paper, as a first step towards developing an SDP-based global optimization approach to the general

MRFLP, we extend the SDP-based methodology for SRFLP originally proposed in [4] to the particular
version of the MRFLP in which all the rows have a common left origin and no empty space is allowed

between departments. We call it the space-free multi-row facility layout problem (SF-MRFLP). This is an

interesting special case, not only because it is relevant for the application of spine layout design, but also

because it captures much of the inherent difficulty of layout problems. This difficulty is characterized by

the large number of pairwise interactions between departments reflected by a high density of the objective
function matrix in the SDP relaxation: generally speaking, more pairwise interactions lead to SDP approaches

outperforming (M)ILP. Our computational results show that for space-free double-row instances the proposed

semidefinite optimization approach provides high-quality global bounds in reasonable time for instances with

up to 15 departments. If the assignment of departments to rows is fixed, then bounds can be computed for
instances with up to 70 departments.

This paper is structured as follows. In Section 2 we introduce the SRFLP and discuss the issues to address

in extending the SDP models from single-row to multi-row problems. In Section 3 we formally state the SF-

MRFLP and present new formulations of it. The SDP relaxations are presented in Section 4 and a heuristic

to obtain feasible layouts from the solutions of the SDP relaxations is proposed in Section 5. Computational
results demonstrating the strength and potential of our SDP framework are presented in Section 6. Finally,

conclusions and future research directions are given in Section 7.

2 From Single-Row to Multi-Row Layout

Our starting point are the most successful models for SRFLP. To introduce these, let π = (π1, . . . , πn) denote
a permutation of the indices [n] := {1, 2, . . . , n} of the departments, so that the leftmost department is π1,
the department to the right of it is π2, and so on, with πn being the last department in the arrangement.
Given a permutation π and two distinct departments i and j (and assuming that there is no space between
the departments), the center-to-center distance between i and j is 1

2ℓi+Dπ(i, j)+
1
2ℓj , where ℓi is the positive

length of department i, and Dπ(i, j) denotes the sum of the lengths of the departments between i and j in
the ordering defined by π. Solving the SRFLP consists of finding a permutation of [n] that minimizes the
weighted sum of the distances between all pairs of departments. In other words, the problem is:

min
π∈Πn

∑

i<j

cij

[

1

2
ℓi +Dπ(i, j) +

1

2
ℓj

]

(SRFLP)

where cij is the connectivity between departments i and j, and Πn denotes the set of all permutations of

[n]. Since the lengths of the departments are constant, it is clear that the crux of the problem is to minimize
∑

i<j

cijDπ(i, j) over all permutations π ∈ Πn.

The key information to express the quantity Dπ(i, j) can be encoded using betweenness variables. These
are

(

n
3

)

binary variables ζijk, i, j, k ∈ [n], i < j, i 6= k 6= j defined by:

ζijk =

{

1, if department k lies between departments i and j

0, otherwise.
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Not all possible combinations of values of the variables ζijk correspond to permutations of [n]. Specifically,
given three departments i, j, and k, exactly one of them must be located between the other two. This fact
is expressed using the following equations:

ζijk + ζikj + ζjki = 1, i, j, k ∈ [n], i < j < k. (1)

Anjos and Yen [8] show that these equations precisely characterize the combinations of values of the variables

ζijk that describe permutations of [n].

We collect all the betweenness variables in a vector ζ. Since every permutation π ∈ Πn can be encoded
as one such vector ζ, we express the center-to-center distance between departments i and j as

Dπ(i, j) =
∑

k∈[n], i6=k 6=j

ℓkζijk, i, j ∈ [n], i < j,

and hence express SRFLP as

∑

i,j∈[n], i<j

cij

2
(ℓi + ℓj) + min

ζ∈Pn
Btw

∑

i,j∈[n], i<j

cij





∑

k∈[n], i6=k 6=j

ℓkζijk



 ,

where Pn
Btw is the betweenness polytope:

Pn
Btw := conv {ζ : ζ ∈ {0, 1}n and ζijk + ζikj + ζjki = 1, i, j, k ∈ [n], i < j < k}.

Sanjeevi and Kianfar [33] show that the equations (1) describe the smallest linear subspace that contains

Pn
Btw. Buchheim et al. [9] proved a similar result in the context of quadratic linear ordering problems.

The betweenness polytope is the structure common to most of the recent LP and SDP relaxations for

the SRFLP. One visible difference between these two approaches is that SDP approaches define the binary

variables in terms of {−1, 1} instead of {0, 1}. In fact this makes no difference: Helmberg [18] proved that
one can easily switch between the {0, 1} and {−1, 1} formulations of binary problems in such a way that the

resulting bounds remain the same and structural properties are preserved.

The SDP relaxation proposed in Anjos et al. [4] was used by Anjos and Vannelli [7] to solve SRFLPs with

up to 30 departments to global optimality. This was improved on by Amaral [3] who used an LP relaxation

of Pn
Btw to solve instances with up to 35 departments. Global lower bounds for very large instances with up

to 100 departments were provided by Anjos and Yen [8] using a modified SDP relaxation. More recently,

Hungerländer and Rendl [24] provided global optimal solutions for instances with up to 42 departments, and

tighter bounds than the Anjos-Yen relaxation for instances with up to 100 departments. The relaxation in

[24] achieved the best practical performance to date among all approaches for the SRFLP.

While these approaches work extremely well for the SRFLP, none of them can be applied directly to the
MRFLP. This is because there are three modeling issues that arise in the MRFLP but not in the SRFLP:

1. Assigning each department to exactly one row;

2. Expressing the center-to-center distance between departments assigned to different rows;

3. Handling the possibility of empty space between departments.

The fundamental limitation is that the betweenness variables used for the state-of-the-art LP and SDP

relaxations are not sufficient to capture these issues.

Models for the DRFLP have been proposed by two groups of authors. Heragu and Kusiak [21] proposed a

non-linear programming model that provides locally optimal solutions to SRFLPs and DRFLPs, while Chung

and Tanchoco [14] (see also [38]) used a MILP formulation for the DRFLP. The latter approach is only able
to provide global optimal solutions for DRFLPs of small sizes. For larger instances, locally optimal solutions

were obtained by using the MILP formulation in conjunction with heuristics for assigning the departments

to the rows in advance.
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This paper proposes an SDP-based model that can provide global upper and lower bounds, and in some

cases global optimal solutions, for the SF-MRFLP. The proposed model extends the tight SDP relaxations

in [4, 24] and the algorithmic approaches in [24] to the SF-MRFLP. Our SDP relaxations further assume
that each department is already assigned to one of the rows but this restriction is overcome by optimizing

the relaxations over all row assignments or, for large instances, over a chosen subset of assignments. Our

computational results show that our approach obtains high-quality bounds for instances of SF-MRFLP

with up to 70 departments in reasonable computational time. The issue of allowing empty space between

departments will be addressed in future research.

3 Formulations of the Space-Free Multi-Row Facility Layout Prob-

lem

An instance of the SF-MRFLP consists of n one-dimensional departments with given positive lengths ℓ1, . . .,
ℓn, pairwise connectivities cij and a function r : [n] → R that assigns each department to one of the m rows
R := {1, . . . ,m}. The objective is to find permutations π1 ∈ Π1, . . . , πm ∈ Πm of the departments within
the rows such that the total weighted sum of the center-to-center distances between all pairs of departments
(with a common left origin) is minimized:

min
Π1,...,Πm

∑

i,j∈[n],i6=j

cijz
πr(i),πr(j)

ij , (SF-MRFLP)

where Π1 × . . . × Πm denotes the set of all feasible layouts and z
πr(i),πr(j)

ij denotes the horizontal distance

between the centroids of departments i and j in the layout π1 × . . .× πm.

We define the m-row betweenness polytope

Pn,m
Btw := conv {ζ : ζ represents orderings of the n departments on the m rows },

and introduce the binary ordering variables yij , i, j ∈ [n], r(i) = r(j), i < j:

yij =

{

1, if department i lies before department j

−1, otherwise.
(2)

We can express the betweenness variables ζ as quadratic terms in ordering variables:

ζijk =
1− yikyjk

2
, ζikj =

1 + yijyjk

2
, ζjki =

1− yijyik

2
, (3)

for i, j, k ∈ [n], r(i) = r(j) = r(k), i < j < k, and thus rewrite (1) (generalized for m rows) as

yijyjk − yijyik − yikyjk = −1, i, j, k ∈ [n], r(i) = r(j) = r(k), i < j < k. (4)

It was shown in [12, 13] that (4) describes the smallest linear subspace that contains the multi-level quadratic
ordering polytope

PMQO := conv

{

(

1
y

)(

1
y

)⊤

: y ∈ {−1, 1}, y satisfies (4)

}

,

where y is a vector collecting the ordering variables. We can also use y to express the center-to-center
distances of pairs of departments i, j ∈ [n], i < j:

z
y
ij =

{

Dij , r(i) = r(j)

|dij | , r(i) 6= r(j)
(5)

where

Dij =
1

2
(ℓi + ℓj) +

∑

k∈[n], k<i,
r(k)=r(i)

ℓk
1− ykiykj

2
+

∑

k∈[n], i<k<j,
r(k)=r(i)

ℓk
1 + yikykj

2
+

∑

k∈[n], k>j,
r(k)=r(i)

ℓk
1− ykiykj

2
,
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and

dij =









ℓi

2
+

∑

k∈[n], k<i,

r(k)=r(i)

ℓk
1 + yki

2
+

∑

k∈[n], k>i,

r(k)=r(i)

ℓk
1− yik

2









−









ℓj

2
+

∑

k∈[n], k<j,

r(k)=r(j)

ℓk
1 + ykj

2
+

∑

k∈[n], k>j,

r(k)=r(j)

ℓk
1− yjk

2









.

To linearize the absolute value in (5), we introduce binary ordering variables xij , i, j ∈ [n], r(i) 6= r(j), i < j
for departments in different rows

xij =

{

1, if the center of department i lies before the center of department j

−1, otherwise,

and let x be the vector collecting these linear ordering variables. The following constraints have to hold for
x:

xijdij ≤ 0, i, j ∈ [n], r(i) 6= r(j), i < j. (6)

We can thus rewrite (5) as

z
x,y
ij =

{

Dij , r(i) = r(j)

−xijdij , r(i) 6= r(j)
(7)

for all i, j ∈ [n], i < j. Now we can rewrite the objective function of SF-MRFLP in terms of x and y:
∑

i,j∈[n],i<j

cijz
x,y
ij . (8)

In summary we have deduced a second formulation of SF-MRFLP.

Theorem 1 Minimizing (8) over x, y ∈ {−1, 1}, (4) and (6) solves SF-MRFLP.

Proof. The equations (4) together with the integrality conditions on y suffice to induce all feasible layouts

within the rows. The integrality conditions on x together with (6) ensure that we incorporate the distances

between departments in different rows with the correct sign in the objective function.

Next we rewrite (8) in terms of matrices and obtain a matrix-based fomulation:

min
{

K + 2c⊤x x+ 2〈CV , V 〉+ 〈CY , Y 〉 : x, y ∈ {−1, 1}, (x,y) satisfy (4) and (6)
}

, (SF-MRFLP)

where K := 1
2

∑

h∈R

[(

∑

i,j∈[n], i<j,
r(i)=r(j)=h

cij

)(

∑

i,j∈[n], i<j,
r(i)=r(j)=h

ℓi

)]

, Y := yy⊤, V := xy⊤. The cost vector cx and

the cost matrices CY and CV are deduced by equating the coefficients of the following equations:

2〈CY , Y 〉
!
=

∑

i,j∈[n], i<j,
r(i)=r(j)

cij









∑

k∈[n], i<k<j,
r(k)=r(i)

yikykjℓk −
∑

k∈[n], k<i,
r(k)=r(i)

ykiykjℓk −
∑

k∈[n], k>j,
r(k)=r(i)

ykiykjℓk









,

4〈CV , V 〉
!
=

∑

i,j∈[n], i<j,
r(i) 6=r(j)

cijxij









∑

k∈[n], k<i,
r(k)=r(i)

ℓkyki −
∑

k∈[n], k>i,
r(k)=r(i)

ℓkyik −
∑

k∈[n], k<j,
r(k)=r(j)

ℓkykj +
∑

k∈[n], k>j,
r(k)=r(j)

ℓkyjk









,

4c⊤x x
!
=

∑

i,j∈[n], i<j,
r(i) 6=r(j)

cijxij

(

Lr(i) − Lr(j)

)

,

where Li denotes the sum of the length of the departments on row i:

Li =
∑

k∈[n], r(k)=i

ℓk, i ∈ R.

In the following section we use matrix-based relaxations to get tight lower bounds for SF-MRFLP.
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4 Semidefinite Relaxations

We collect the ordering variables in a vector

w :=

(

x

y

)

,

and consider the matrix variable W = ww⊤. Our object of interest is the multi-row ordering polytope

PMRO := conv

{

(

1
w

)(

1
w

)⊤

: w ∈ {−1, 1}, w satisfies (4) and (6)

}

,

We apply standard techniques to construct SDP relaxations. First we relax the nonconvex equation W −
ww⊤ = 0 to the positive semidefinite constraint

W − ww
⊤
< 0.

Moreover, the main diagonal entries of W correspond to squared {−1, 1} variables, hence diag(W ) = e, the
vector of all ones. To simplify notation let us introduce

Z = Z(w,W ) :=

(

1 w⊤

w W

)

, (9)

where dim(Z) =
(

n
2

)

+ 1 =: ∆. By the Schur complement theorem, W − ww⊤ < 0 ⇔ Z < 0. We therefore
conclude that PMRO is contained in the elliptope

E := { Z : diag(Z) = e, Z < 0 }, (10)

which is studied in detail by Laurent and Poljak [27, 28].

Next we can formulate SF-MRFLP as a semidefinite optimization problem in binary variables.

Theorem 2 The problem

min { K + 〈CZ , Z〉 : Z satisfies (4) and (6), Z ∈ E , w ∈ {−1, 1} }

where the cost matrix CZ is given by

CZ :=





0 cx 0
cx 0 CV

0 CV CY



 ,

is equivalent to SF-MRFLP.

Proof. Since w2
i = 1, i ∈ {1, . . . ,∆− 1} we have diag(W − ww⊤) = 0, which together with W − ww⊤ < 0

shows that in fact W = ww⊤ is integral. By Theorem 1, integrality on W together with (4) and (6) suffice

to describe SF-MRFLP.

Dropping the integrality condition on the first row and column of Z yields the basic semidefinite relaxation
of SF-MRFLP:

min {K + 〈CZ , Z〉 : Z satisfies (4) and (6), Z ∈ E } . (SDPbasic)

There are several ways to tighten the above relaxation. This is the topic of the next two subsections.
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4.1 Tightening the Semidefinite Relaxation by Exploiting Binarity and Ordering

Properites

Every matrix Z ∈ E with {−1, 1} entries also belongs to the metric polytope M:

M =















Z :









−1 −1 −1
−1 1 1
1 −1 1
1 1 −1













zij
zjk
zik



 ≤ e, 1 ≤ i < j < k ≤ ∆















. (11)

We note that M is defined through 4
(

∆
3

)

≈ 1
12n

6 facets. They are the triangle inequalities of the max-cut

polytope, see e.g. [15].

We can impose a transitivity relation on all ordering variables by imposing the 3-cycle inequalities on w:

|wij + wjk − wik| = 1, i, j, k ∈ [n], i < j < k.

These may rule out some optimal solutions but preserve at least one optimal solution. Squaring them we
obtain the 3-cycle equalities

wijwjk − wijwik − wikwjk = −1, i, j, k ∈ [n], i < j < k, (12)

which are a strengthening of (4) and together with Z < 0 also ensure the 3-cycle inequalities on w [23,

Proposition 4.2].

Another generic improvement was proposed by Lovász and Schrijver [29]. Applied to our problem, their
approach suggests to multiply the 3-cycle inequalities

1−wij − wjk +wik ≥ 0, 1 + wij + wjk − wik ≥ 0. (13)

by the nonnegative expressions

1−wlo ≥ 0, 1 + wlo ≥ 0, l, o ∈ [n], l < o. (14)

This results in the following 4
(

n
3

)(

n
2

)

≈ 1
3n

5 inequalities:

−1−wlo ≤ wij + wjk − wik + wij,lo + wjk,lo −wik,lo ≤ 1 + wlo,

−1 +wlo ≤ wij + wjk − wik − wij,lo − wjk,lo +wik,lo ≤ 1− wlo,
(15)

for i, j, k, l, o ∈ [n], i < j < k, l < o. We define the corresponding polytope LS:

LS := {Z : Z satisfies (15) }. (16)

We can also deduce lower and upper bounds on the sum of the inter-row ordering variables for each of
the

(

m
2

)

pairs of rows:

δ
c1,c2
l ≤

∑

i,j∈[n],i<j,
r(i)=c1 6=c2=r(j)

xij ≤ δ
c1,c2
u , c1, c2 ∈ R, c1 < c2, (17)

where δ
c1,c2
l and δc1,c2u are dependent on the given data. We obtain δ

c1,c2
l by sorting the departments in

row c1 by decreasing length and the departments in row c2 by increasing length, then computing the sum

of the inter-row ordering variables. Analogously we compute δc1,c2u by sorting the departments in row c1 by
increasing length and the departments in row c2 by decreasing length. If two centers are located exactly

below each other we break the symmetry and tighten the bounds by setting the respective variables to +1

in the first case and to -1 in the second case. Thus it can happen that δ
c1,c2
l > δc1,c2u ; in this case we set

δ
c1,c2
l = δc1,c2u :=

δ
c1,c2
l

+δc1,c2
u

2 +
(

δ
c1,c2
l

+δc1,c2
u

2 mod 2
)

to preserve an optimal solution.
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Fact 1 The constraints (17) can rule out some optimal solutions but preserve at least one optimal solution

and thus are valid for tightening the semidefinite relaxation.

We can rewrite (17) as

δ
c1,c2
l − δc1,c2u

2
≤

∑

i,j∈[n],i<j,
r(i)=c1 6=c2=r(j)

xij −
δ
c1,c2
l + δc1,c2u

2
≤

δc1,c2u − δ
c1,c2
l

2
, c1, c2 ∈ R, c1 < c2.

Squaring yields

0 ≤









∑

i,j∈[n],i<j,
r(i)=c1 6=c2=r(j)

xij









2

− (δc1,c2l + δ
c1,c2
u )

∑

i,j∈[n],i<j,
r(i)=c1 6=c2=r(j)

xij +

(

δ
c1,c2
l + δc1,c2u

2

)2

≤

(

δc1,c2u − δ
c1,c2
l

2

)2

(18a)

if (δc1,c2u − δ
c1,c2
l ) mod 4 = 0, and

1 ≤









∑

i,j∈[n],i<j,
r(i)=c1 6=c2=r(j)

xij









2

− (δc1,c2l + δ
c1,c2
u )

∑

i,j∈[n],i<j,
r(i)=c1 6=c2=r(j)

xij +

(

δ
c1,c2
l + δc1,c2u

2

)2

≤

(

δc1,c2u − δ
c1,c2
l

2

)2

(18b)

if (δc1,c2u − δ
c1,c2
l ) mod 4 = 2.

To obtain the lower bound we exploit the fact that the inter-row ordering variables are {−1, 1}. Hence if

δc1,c2u − δ
c1,c2
l ≤ 2 then (18) defines equalities on the sum of products of inter-row variables.

Fact 2 The smallest subspace containing the multi-row polytope is defined by (4), but we build our semidef-

inite relaxation on an even smaller subspace that contains at least one optimal solution. This subspace is

defined by (12) and possibly additional equations from (17) and (18).

We can also multiply
∑

i,j∈[n],i<j,

r(i)=c1 6=c2=r(j)

xij − δ
c1,c2
l ≥ 0, δ

c1,c2
u −

∑

i,j∈[n],i<j,

r(i)=c1 6=c2=r(j)

xij ≥ 0,

by (13) and (14). This results in the following inequalities

δ
c1,c2
l −

∑

i,j∈[n],i<j,

r(i)=c1 6=c2=r(j)

xij ≤ wlo

∑

i,j∈[n],i<j,

r(i)=c1 6=c2=r(j)

xij − wloδ
c1,c2
l ≤

∑

i,j∈[n],i<j,

r(i)=c1 6=c2=r(j)

xij − δ
c1,c2
l ,

∑

i,j∈[n],i<j,
r(i)=c1 6=c2=r(j)

xij − δ
c1,c2
u ≤ wloδ

c1,c2
u − wlo

∑

i,j∈[n],i<j,
r(i)=c1 6=c2=r(j)

xij ≤ δ
c1,c2
u −

∑

i,j∈[n],i<j,
r(i)=c1 6=c2=r(j)

xij ,

(19)

for c1, c2 ∈ R, c1 < c2, l, o ∈ [n], l < o and

δ
c1,c2
l

−
∑

i,j∈[n],i<j,

r(i)=c1 6=c2=r(j)

xij ≤ (wkl + wlo − wko)
∑

i,j∈[n],i<j,

r(i)=c1 6=c2=r(j)

xij − (wkl + wlo − wko)δ
c1,c2
l

≤
∑

i,j∈[n],i<j,

r(i)=c1 6=c2=r(j)

xij − δ
c1,c2
l

,

∑

i,j∈[n],i<j,
r(i)=c1 6=c2=r(j)

xij − δ
c1,c2
u ≤ (wkl + wlo − wko)δ

c1,c2
u − (wkl + wlo − wko)

∑

i,j∈[n],i<j,
r(i)=c1 6=c2=r(j)

xij ≤ δ
c1,c2
u −

∑

i,j∈[n],i<j,
r(i)=c1 6=c2=r(j)

xij ,

(20)

for c1, c2 ∈ R, c1 < c2, k, l, o ∈ [n], k < l < o.

We gather the O(n2m2) inequalities based on the bounds on the sum of the inter-row variables and define
the polytope SI:

SI := { Z : Z satisfies (17) − (20) }. (21)
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4.2 Tightening the Semidefinite Relaxation through the Distance Variables

We now turn our attention to the distance variables. We can tighten constraints (6) as follows:

xijdij ≤ dij , xijdij ≤ −dij , i, j ∈ [n], r(i) 6= r(j), i < j, (22)

which holds true for xij ∈ {−1, 1}. Similar constraints also hold for the intra-row variables y:

yijdij ≤ dij , yijdij ≤ −dij , i, j ∈ [n], r(i) = r(j), i < j. (23)

We can gather (22) and (23) together into a single expression in terms of w:

wijdij ≤ dij , wijdij ≤ −dij , i, j ∈ [n], i < j. (24)

Fact 3 The constraints (24) are valid.

For i, j ∈ [n], r(i) = r(j), i < j, the expressions yijdij and Dij represent different ways to express the

distance between two departments within the same row. They are equivalent for integral y but when we

look at the semidefinite relaxation, Dij is clearly preferable because it only involves variables that appear in

a 3-cycle equality (12) and thus are more tightly constrained in the relaxation. This fact also explains why

the various linear and semidefinite relaxations for SRFLP that include these equations on the betweenness
variables produce such tight bounds even for very large instances. That is why we expressed the intra-row

distances in the objective function (8) via Dij .

Another class of constraints are the triangle inequalities relating the distances between three departments,
where we use again Dij to measure the intra-row distances

Dij + Dik ≥ Djk, Dij + Djk ≥ Dik, Djk + Dik ≥ Dij , i < j < k ∈ [n], r(i) = r(j) = r(k), (25a)

xikdik + xjkdjk ≥ Dij , xikdik + Dij ≥ xjkdjk, Dij + xjkdjk ≥ xikdik, i < j < k ∈ [n], r(i) = r(j), r(i) 6= r(k), (25b)

xijdij + xikdik ≥ Djk , xijdij + Djk ≥ xikdik, Djk + xikdik ≥ xijdij , i < j < k ∈ [n], r(i) 6= r(j), r(j) = r(k), (25c)

xijdij + xikdik ≥ xjkdjk, xijdij + xjkdjk ≥ xikdik, xjkdjk + xikdik ≥ xijdij , i < j < k ∈ [n], r(i) 6= r(j) 6= r(k) 6= r(i). (25d)

For the exact SF-MRFLP formulation these constraints implicitly hold.

Fact 4 The constraints (25) are valid.

Furthermore these constraints imply the distance constraints for more than three departments.

Theorem 3 The triangle inequalities (25) imply all the distance constraints involving more than three de-

partments.

Proof. Consider a general distance constraint for γ > 3 departments

γ−1
∑

h=1

wihih+1dihih+1 ≥ wi1iγ di1iγ ,

where

wihih+1dihih+1 :=

{

Dihih+1 , r(h) = r(h+ 1),

xihih+1dihih+1 , r(h) 6= r(h+ 1).

We show that (25) implies the above inequality. We start out with the left hand side of the inequality and
use wi1i2di1i2 + wi2i3di2i3 ≥ wi1i3di1i3 to obtain

wi1i2di1i2 + wi2i3di2i3 +

γ−1
∑

h=3

wihih+1dihih+1 ≥ wi1i3di1i3 +

γ−1
∑

h=3

wihih+1dihih+1 .
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Next we use wi1i3di1i3 +wi3i4di3i4 ≥ wi1i4di1i4 in the same fashion. The process can be repeated resulting in
the chain of inequalities

γ−1
∑

h=1

wihih+1dihih+1 ≥ . . . ≥ wi1,iγ−1di1,iγ−1 +wiγ−1iγdiγ−1iγ ≥ wi1iγdi1iγ .

Hence we define the polytope
DV := { Z : Z satisfies (25) } (26)

using the 3
(

n
3

)

triangle inequalities relating the distances between 3 or more departments.

4.3 Tightest Semidefinite Relaxation and Solution Methodology

Gathering all the results in Section 4, we get the following relaxation of PMRO:

min {K + 〈CZ , Z〉 : Z satisfies (12) and (24), Z ∈ (E ∩M∩LS ∩ SI ∩ DV)} . (SDPfull)

While theoretically tractable, it is clear that (SDPfull) has an impractically large number of constraints.

Indeed, even including only O(n3) constraints is not realistic for instances of size n ≥ 20. For this reason,
we adopt an approach originally suggested in [16] and since then applied to the max-cut problem [32] and

several ordering problems [25, 12, 10, 11]. Initially, we only explicitly ensure that Z lies in the elliptope E .

This can be achieved efficiently with standard interior-point methods, see e.g. [19]. All other constraints are

handled through Lagrangian duality.

For notational convenience, let us formally denote the equations in (SDPfull) by e−A(Z) = 0. Similarly
we write the inequalities in (SDPfull) as g −D(Z) ≥ 0. Using the Lagrangian

L(Z, λ, µ) := 〈C,Z〉+ λ
⊤(e−A(Z)) + µ

⊤(g −D(Z)),

we obtain the partial Lagrangian dual

f(λ, µ) := min
Z∈B

L(Z, λ, µ) = e
⊤
λ+ g

⊤
µ+min

Z∈B
〈C −A⊤(λ)−D⊤(µ), Z〉.

Since (SDPfull) has strictly feasible points, strong duality holds and we can solve the relaxation through

maxµ≥0,λ f(λ, µ).

The function f is well-known to be convex but non-smooth. For a given feasible point (λ, µ) the evaluation

of f(λ, µ) amounts to optimizing over E . We do this using a primal-dual interior-point method which also
provides a primal feasible Zλ,µ yielding a subgradient of f . Using these ingredients, we get an approximate

minimizer of f using the bundle method [16]. Thanks to the use of the bundle method, we quickly obtain a

good initial set of constraints. On the other hand, since the rate of convergence is slow, we limit the number

of function evaluations to control the overall computational effort. These evaluations nevertheless constitute

the computational bottleneck for larger instances as there they are responsible for more than 95% of the
required running time. Detailed computational results are given in Section 6.

We next describe how a feasible layout can be obtained from a solution to any of the SDP relaxations.

5 Obtaining Feasible Layouts

To obtain feasible layouts, we apply the hyperplane rounding algorithm of Goemans-Williamson [17] to the
solution of the SDP relaxation. We take the resulting vector w and flip the signs of some of its entries to
make it feasible with respect to the 3-cycle inequalities

|yij + yjk − yik| = 1 (27)
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within the rows and the inequalities for the inter-row variables (6). Computational experiments demon-

strated that this repair strategy is not as critical as one might assume. For example, in multi-level crossing

minimization this SDP rounding heuristic clearly dominates traditional heuristic approaches [12].

Let us give a more detailed description of the implementation of our heuristic. We consider a vector w′

that encodes a feasible layout of the departments in all rows. The algorithm stops after 100 executions of

step 2. (Note that before the 51st execution of step 2, we perform step 1 again. As step 1 is quite expensive,

we refrain from executing it too often.)

1. Let W ′′ be the current primal (fractional) solution of (SDPfull) (or some other semidefinite relaxation)
obtained by the bundle method or an interior-point solver. Compute the convex combination R :=

λ(w′w′⊤)+(1−λ)W ′′ using a randomly generated λ ∈ [0.3, 0.7]. Compute the Cholesky decomposition

DD⊤ of R.

2. Apply Goemans-Williamson hyperplane rounding to D and obtain a −1/+1 vector w (cf. [32]).

3. Compute the induced objective value z(w) :=

(

1
w

)⊤

CZ

(

1
w

)

. If z(w) ≥ z(w′): go to step 2.

4. If w satisfies (27) and (6): set w′ := w and go to 2. Else: modify w by first changing the signs of one

of three variables in all violated 3-cycle inequalities, afterwards flipping signs of the inter-row ordering

variables to satisfy (6) and go to step 3.

The final w′ is the heuristic solution. If the duality gap is not closed after the heuristic, we return to the
SDP optimization algorithm and then retry the heuristic (retaining the last vector w′).

6 Computational Experience

We report the results for different computational experiments with our semidefinite relaxations. All compu-

tations were conducted on an Intel Xeon E5160 (Dual-Core) with 24 GB RAM, running Debian 5.0 in 64-bit

mode. The algorithm was implemented in Matlab 7.7.

We define DRFLP instances using the data from SRFLP instances in the literature as well as data ran-
domly generated in the same way as in [24], namely with a density of 50% and with lengths and connectivities

varying randomly between 1 and 10.

Tables 1 and 9 give the characteristics of the SRFLP instances that we considered. These include well-

known benchmark instances from [22, 34, 1, 2, 3], randomly generated instances from [7, 24], and instances

with clearance requirements from [21]. All the instances can be downloaded from
http://anjos.mgi.polymtl.ca/flplib. We use the latter without taking the clearance requirement into

account, hence we could round on 5 as the lengths of the departments are multiples of 10. In general, while

for the SRFLP we can round to the nearest integer because 0.5 can only occur in the constant term, for the

MRFLP we can round the lower bound only to 0.5 as the inter-row distances do not have to be integer.

For each instance considered, our computational objective is to obtain the best possible solution for a
placement of the departments in two rows. We report results only for the two-row case for two reasons: the

high computational costs involved in solving the SDP relaxations, and the fact that double-row problems

are the most common in practice. Nevertheless we emphasize that our relaxations and methodology are

applicable to MRFLP instances with any given number of rows.

6.1 Global Optimization of Small Instances Using (SDPfull)

For small DRFLP instances, the relaxation (SDPfull) can be solved for each of the 2n−1 − 1 possible row

assignments. From the obtained bounds, we can deduce global upper and lower bounds: these are the minima

of all upper and lower bounds respectively. We restricted the running time per instance to 24 hours. The

upper bounds were obtained using the SDP rounding heuristic in Section 5. The results are summarized in

Table 2. We point out that the lower and upper bound were often obtained from different row assignments.

http://anjos.mgi. polymtl.ca/flplib
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Table 1: Characteristics of smaller instances with between 5 and 15 departments

Instance Source Size SRFLP
(n) Optimal SRFLP Time (sec)

solution [24]
S 8 [34] 8 801 0.6
SH 8 [34] 8 2324.5 2.3
S 9 [34] 9 2469.5 0.7
SH 9 [34] 9 4695.5 9.2
S 10 [34] 10 2781.5 0.6
S 11 [34] 11 6933.5 1.3
H 5 [22] 5 800 0.1
H 6 [22] 6 1480 0.1
H 7 [22] 7 3680 0.6
H 8 [22] 8 4725 0.4
H 12 [22] 12 17945 7.9
H 15 [22] 15 45840 19.6

Rand 5 new 5 147.5 0.1
Rand 6 new 6 420 0.4
Rand 7 new 7 344 0.3
Rand 8 new 8 382 1.3
Rand 9 new 9 1024.5 2.2
Rand 10 new 10 1697 3.1
Rand 11 new 11 1564 2.0
Rand 12 new 12 2088 8.4
Rand 13 new 13 3101.5 7.8
Rand 14 new 14 3653 17.9
Rand 15 new 15 5345.5 19.2
P 15 [1] 15 6305 19.7

Table 2: Computational results for (SDPfull)

Global bounds Statistics for the Computational statistics
(over all row assignments) 2n−1 − 1 subproblems

Instance Lower Upper Gap Largest Average Nbr times Average nbr Total time Total time
bound bound (%) gap (%) gap (%) zero-gap active w/ bundle w/o bundle

inequalities (sec) (sec)
H 5 420 450 7.14 7.14 1.54 7 144.2 9.6 8.7

Rand 5 52.5 52.5 0 7.65 1.03 10 141.3 7.9 9.0
H 6 703 720 2.42 10.96 3.30 7 477.4 130.3 384.8

Rand 6 189.5 190.5 0.53 6.18 1.70 7 424.8 94.2 317.6
H 7 1639.5 1700 3.69 14.05 2.69 6 1205.2 6177.5 47619.6

Rand 7 166 166 0 13.21 2.20 16 1016.0 2704.0 19448.3

Looking at the running times and their growth rates, we deduce that this approach is realistic only for
instances with fewer than 8 departments within the 24-hour time limit.

The last two columns of Table 2 illustrate the impact of an important computational strategy. We start
with the basic relaxation:

min {K + 〈CZ , Z〉 : Z satisfies (12) and (24), Z ∈ E} . (SDPbasic)

For the results labelled “w/ bundle” we used 10 function evaluations of the bundle method and 3 constraint
updates to obtain an initial set of constraints to add to the relaxation (SDPbasic). We then solved the resulting

relaxation using Sedumi [35]; added violated inequality constraints (from all the inequalities in (SDPfull));

solved again using Sedumi; and repeated this process until no more violations were found. Alternatively one

can skip the search for an initial set of inequalities using the bundle method and proceed straight to using
Sedumi starting from the relaxation (SDPbasic). The times for this alternative approach are labelled “w/o

bundle”. The important observation is that the use of the initial set of inequalities yields a speed-up of one

order of magnitude in the running time for the largest instances. The same effect was observed for the linear

relaxation of the linear ordering problem for very large instances (n ≥ 150) [23, Section 10.3].
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Table 3: Study of the impact of constraint classes DV and SI

Instance (SDPbasic) (SDPbasic) ∩ DV

Total time Gap (%) Average nbr Total time (sec) Gap (%) Average nbr
(sec) ineqs added (sec) ineqs added

H 5 5.2 72.75 7.1 4.5 10.43 12.9
Rand 5 4.5 98.11 6.3 4.5 0 26.5
H 6 11.5 171.70 10.6 12.3 8.27 19.5

Rand 6 12.4 126.79 10.0 13.8 1.06 20.9
H 7 32.0 188.14 14.5 31.7 4.36 30.8

Rand 7 30.9 114.19 13.2 31.7 0 31.0

Instance (SDPbasic) ∩ SI (SDPbasic) ∩ DV ∩ SI

Total time Gap (%) Average nbr Total time (sec) Gap (%) Average nbr
(sec) ineqs added (sec) ineqs added

H 5 5.4 71.43 25.9 5.3 10.43 30.3
Rand 5 5.0 90.91 23.1 5.1 0 29.3
H 6 13.9 104.26 39.7 15.7 8.27 43.9

Rand 6 15.4 83.17 35.1 14.9 1.06 37.9
H 7 45.4 139.44 79.7 39.4 4.36 62.1

Rand 7 41.8 97.62 49.9 39.0 0 59.8

6.2 Analysis of the Practical Impact of the Various Constraint Classes

Because (SDPfull) is too expensive to be solved for n ≥ 8, we examine the efficiency (impact on computation

time) and effectiveness (impact on bound quality) of the various constraint classes. The aim is to find a
smaller relaxation that contains the most important constraints with respect to bound quality.

Our starting relaxation is again (SDPbasic). This model reflects the fundamental structure of the original

problem in the sense that it would suffice to obtain the optimal solution if we additionally imposed integrality

conditions on the ordering variables (see Theorem 1).

First we examine the practical effect of the constraint sets DV and SI. The computational results are

summarized in Table 3. The results support the conclusion that DV is both effective and efficient. On the

other hand, the impact of SI is much less.

Adding DV to (SDPbasic), we obtain a relaxation that is improved but still computationally cheap:

min {K + 〈CZ , Z〉 : Z satisfies (12) and (24), Z ∈ (E ∩ DV)} . (SDPcheap)

Next we examine the effects of adding LS and M to this new relaxation (SDPcheap). The results are

summarized in Table 4. We observe that neither M nor LS is particularly efficient. We also tested the

relaxation (SDPbasic) ∩ M ∩ LS and found that the overall gaps for these same instances are always over

50%. Furthermore, the running times are much higher than for (SDPcheap).

In summary, our computational results in this section strongly suggest that (SDPcheap) provides the best

tradeoff between computational time and quality of the bounds. Of course, the constraint classes not included

in (SDPcheap) still help tighten the relaxation but it is more efficient to use them within the improvement

strategy proposed in Section 6.5.

6.3 Optimizing Over All Row Assignments Using (SDPcheap)

We run again the algorithmic approach of Section 6.1 but using the relaxation (SDPcheap). The results are

reported in Table 5.

Comparing with the performance of (SDPfull) documented in Table 2, we see that (SDPcheap) runs at

least one order of magnitude faster for instances of size n = 6 and n = 7 with only a mild deterioration of

the lower bounds, and hence of the gap.

Using (SDPcheap), we are able to compute bounds for instances of sizes up to n = 14 within the 24-hour
time limit. We observe that the quality of the bounds does not deteriorate as the size increases, and that the

running time increases by a factor of 3 for each unit increase in n.
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Table 4: Study of the impact of constraint classes M and LS

Instance (SDPcheap) (SDPcheap) ∩ LS

Total time Gap (%) Average nbr Total time (sec) Gap (%) Average nbr
(sec) ineqs added (sec) ineqs added

H 5 4.5 10.43 12.9 6.6 7.27 70.0
Rand 5 4.5 0 26.5 6.6 0 71.2
H 6 12.3 8.27 19.5 35.4 4.65 198.8

Rand 6 13.8 1.06 20.9 29.9 1.06 177.5
H 7 31.7 4.36 30.8 255.1 4.26 415.0

Rand 7 31.7 0 31.0 232.0 0 407.4

Instance (SDPcheap) ∩ M (SDPfull)

Total time Gap (%) Average nbr Total time (sec) Gap (%) Average nbr
(sec) ineqs added (sec) ineqs added

H 5 8.3 7.27 92.9 9.6 7.14 144.2
Rand 5 7.9 0 98.4 7.9 0 141.3
H 6 70.4 2.42 339.8 130.3 2.42 477.4

Rand 6 58.2 0.53 310.5 94.2 0.53 424.8
H 7 1821.5 3.72 940.1 6177.5 3.69 1205.2

Rand 7 1006.0 0 780.4 2704.0 0 1016.0

Table 5: Computational results for (SDPcheap)

Global bounds Statistics for the Computational
(over all row assignments) 2n−1 − 1 subproblems statistics

Instance Lower Upper Gap Largest Average Nbr times Average nbr Total time
bound bound (%) gap (%) gap (%) zero-gap active w/ bundle

inequalities (sec)
H 5 407.5 450 10.43 10.43 2.52 5 12.9 4.5

Rand 5 52.5 52.5 0 8.93 1.78 7 15.1 4.5
H 6 665 720 8.27 16.95 5.78 4 19.5 12.3

Rand 6 188.5 190.5 1.06 6.65 2.59 3 20.9 13.8
H 7 1629 1700 4.36 15.17 3.75 4 30.8 31.7

Rand 7 166 166 0 13.82 3.16 11 31.0 31.7
H 8 2351 2385 1.45 21.22 5.80 1 42.9 86.8
S 8 380.5 408 7.23 20.10 5.87 2 44.1 91.6
SH 8 990.5 1135.5 14.64 17.00 10.85 4 56.1 87.4

Rand 8 192 205 6.77 28.10 4.77 6 42.8 82.2
S 9 1163 1181.5 1.59 13.63 3.42 6 64.2 253.4
SH 9 1974.5 2294.5 16.21 18.87 11.31 0 80.6 251.9

Rand 9 447.5 492.5 10.06 19.73 5.61 3 55.8 252.6
S 10 1314 1374.5 4.60 10.77 4.20 7 82.7 713.0

Rand 10 779 838 7.57 15.16 5.68 0 78.7 698.2
S 11 3325.5 3439.5 3.43 14.92 5.16 6 106.8 2127.0

Rand 11 643.5 708 10.02 23.95 5.76 9 103.4 2048.5
H 12 8446.5 8995 6.49 17.31 6.19 0 125.1 6189.5

Rand 12 775.5 799 3.03 17.69 6.21 0 128.8 6389.5
Rand 13 1058 1070 1.13 19.11 5.98 0 159.5 20636.9
Rand 14 1335.5 1393.5 4.34 20.25 6.59 1 172.5 60845.6

6.4 Using Bounds in the Enumeration

It is possible to further reduce the computational effort within the enumeration scheme using previously

acquired lower-bound knowledge. This is because the computation of a lower bound can be stopped if its
current value is already above the current global lower bound.

The impact of this strategy depends on the order in which we look at the row assignments; those with the

weakest lower bounds should be computed first. We propose the following heuristic to obtain a reasonably

good ordering:

• Order the row assignments in increasing difference of the sums of the lengths of the departments in
each row
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• If two or more assignments are tied, further sort them in increasing difference between the sum of
connectivities within the rows and the sum of connectivities between the rows. Specifically for the
two-row case, we have:
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The intuition behind this heuristic is that small differences in both cases are generally good: it is desirable

that the sum of lengths of departments in the rows should be equal, and that connectivities should be spread

equally.

Table 6 summarizes the results obtained for the enumeration using bound information for instances

with n ≤ 15 departments. Comparing with the performance of using (SDPcheap) without bound information

documented in Table 5, we see that using the bounds makes a dramatic reduction in the running time without

any effect on the quality of the results. As a consequence, we are able to compute bounds for instances with

up to n = 15 within the 24-hour time limit. Nevertheless, the running time still increases by a factor of 3 for
each unit increase in n. For the instances with n = 15, the rapid growth of the computational effort required

to handle the 3-cycle equations is clear.

We point out that for the results in Table 6, we change our strategy for n ≥ 10 by doing 20 function

evaluations (instead of 10) and 5 constraint updates (instead of 3) in the bundle method. Not only do the

Sedumi iterations become more expensive compared to bundle iterations for n ≥ 10, but also because in these
tests we use the bounds for pruning, running the bundle method longer reduces the overall computation time

as we often can prune the lower bound computation before switching to Sedumi. As a consequence we do

not have to go to Sedumi for many assignments (see the sixth and seventh columns in Table 6).

We checked the quality of the order of the row assignments obtained by our heuristic using the data

obtained by the complete enumeration approach above. The results are summarized in the last two columns
of Table 6 which give the average position of the best assignment with respect to the lower and the upper

bound respectively. The impact of the heuristic is measured by comparing the average percentages we obtain

with the expected value of 50% for a random ordering; our smaller percentages show that the heuristic

generally has the desired effect. Note that the quality of the heuristic cannot be evaluated for instances with
more than 14 departments since the exact lower bounds for all row assignments of these instances could not

be computed in the previous subsection.

6.5 A Strategy for Further Improvement of the Bound Quality

The relaxation (SDPcheap) is more efficient than (SDPfull) but is also weaker. We can often improve the quality

of the global lower bounds for an instance by finding the row assignment with the weakest lower bound; taking

the optimal solution of its (SDPcheap) relaxation as reported in Table 5; adding to the relaxation the violated
inequalities from those present in (SDPfull) and resolving with Sedumi until we get the optimal solution of

(SDPfull) for the selected row assignment; update the global lower bound of the instance accordingly. We

repeat this process until the weakest lower bound comes from a row assignment for which we have already

improved the (SDPcheap) relaxation. We also use the current overall lower bound to stop the lower bound
computation when it becomes irrelevant.

The results we obtained using this improvement approach on instances with n = 7, 8, 9 are reported in

Table 7. (We omit Rand 7 since (SDPcheap) is already optimal for it.) As the direct solution for instances

with 8 or more departments is far too expensive, the improvement strategy proves to be a very valuable tool.

For instance, for the H 7 instance, we were able to compute the global lower bound from (SDPfull) in only
31.7+80.1 < 112 seconds instead of the 6177.5 seconds needed in Table 2. Furthermore, for the H 8 instance,

we closed the gap and hence proved global optimality. Overall we see that most of the gaps are reduced

by between 0.2% and 1.5% with respect to those in Table 6. But there is significant variability: while for

the H 8 instance we closed the gap and hence proved global optimality, the lower bound for SH 8 was not
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Table 6: Results using (SDPcheap) and using bounds for pruning in enumeration

Global bounds Computational statistics Validation of the
(over all row assignments) ordering heuristic

Instance Lower Upper Gap Total time % of instances stopped early by Position of Position of
bound bound (%) w/ bundle bundle bundle or best lower best upper

(sec) only Sedumi bound bound
H 5 407.5 450 10.43 2.6 66.7 80.0 46.67 26.67

Rand 5 52.5 52.5 0 2.0 86.7 86.7 13.33 13.33
H 6 665 720 8.27 5.6 83.9 87.1 41.94 41.94

Rand 6 188.5 190.5 1.06 6.4 83.9 90.3 12.90 16.13
H 7 1629 1700 4.36 13.5 90.5 95.2 7.94 7.94

Rand 7 166 166 0 14.9 76.0 90.5 22.22 22.22
H 8 2351 2385 1.45 44.2 66.1 96.1 22.05 5.51
S 8 380.5 408 7.23 47.8 60.6 96.1 18.11 21.26
SH 8 990.5 1135.5 14.64 47.9 60.0 99.2 0.79 10.24

Rand 8 192 205 6.77 47.2 49.6 93.7 36.22 36.22
S 9 1163 1181.5 1.59 126.2 60.4 98.8 1.57 1.57
SH 9 1974.5 2294.5 16.21 135.9 49.4 99.6 3.92 3.53

Rand 9 447.5 492.5 10.06 109.1 80.4 98.0 10.20 2.35
S 10 1314 1374.5 4.60 333.2 82.6 98.8 2.35 4.50

Rand 10 779 838 7.57 398.4 71.4 98.8 11.74 4.31
S 11 3325.5 3439.5 3.43 1221.2 54.5 99.4 25.22 12.51

Rand 11 643.5 708 10.02 556.6 96.6 99.2 20.14 20.14
H 12 8446.5 8995 6.49 3245.2 52.2 99.7 24.72 5.18

Rand 12 775.5 799 3.03 1428.3 97.8 99.7 16.27 23.50
Rand 13 1058 1070 1.13 3444.5 98.5 99.8 30.99 30.99
Rand 14 1335.5 1393.5 4.34 9941.4 97.4 99.9 39.58 39.58
H 15 16066 16640 3.57 69181.3 44.2 99.9 - -
P 15 3046 3195 4.89 69622.8 42.8 99.9 - -

Rand 15 2461 2643.5 7.42 64097.9 48.9 99.9 - -

Table 7: Computing the (SDPfull) bounds starting with the (SDPcheap) relaxation

Improvement Global bounds Computational
statistics (over all row assignments) statistics

Instance Nbr of Nbr of Lower Upper Gap Total time Average final
instances instances bound bound (%) (sec) nbr of ineq

with gap > 0 improved constraints
H 7 3 1 1639.5 1700 3.69 80.1 1320.0
H 8 4 4 2385 2385 0 911.2 2457.5
S 8 26 1 380.5 408 7.23 1.9 336.0
SH 8 58 2 999.0 1135.5 13.66 20.3 1013.5

Rand 8 17 1 193 205 6.22 1713.0 3360.0
S 9 6 2 1168.0 1181.5 1.16 432.9 2888.0
SH 9 131 9 2009.5 2294.5 14.18 8806.9 2599.7

Rand 9 22 1 448.5 492.5 9.81 77.7 1516.0

reduced at all. Similarly the computational times vary significantly even for instances of the same size. For

instance, computing the (SDPfull) bound for Rand 9 in this manner required only 77.7 seconds (less time

than it took to compute the (SDPcheap) bound for it in Table 6) while the (SDPfull) bound for SH 9 took

over 9000 seconds.

We can control the computational effort involved in improving the lower bounds by considering a relaxation
between (SDPcheap) and (SDPfull) in the sense of setting a limit on the total number of inequality constraints

that can be present in the relaxation. Motivated by the results from Tables 3 and refreslsmet, we consider

the inequalities in the following order: (24), DV , LS, M, SI. We summarize the computational results,

where we use at most 2000, 4000 or 6000 inequality constraints in Table 8. Whenever the fourth column of

Table 8 has a zero, this means that we effectively solved (SDPfull). Therefore we do not test those instances
for larger values of the maximum number of inequalities.

Comparing the results for the instances with 9 departments in Tables 7 and 8 shows that limiting the

number of constraints helps to reduce the computation time considerably without too much impact on the
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Table 8: Improved bounds starting from (SDPcheap) and with limits on the number of inequality constraints

Instance Nbr of Nbr of Nbr of instances Lower Upper Gap Total time Average final
instances instances for which max nbr bound bound (%) (sec) nbr of ineq

with gap > 0 improved of ineqs added constraints
Maximum of 2000 inequality constraints

S 9 6 2 1 1168.0 1181.5 1.16 262.7 1150.0
SH 9 131 8 4 2008 2294.5 14.27 822.5 1129.5
S 10 19 1 0 1319.5 1374.5 4.17 115.1 1760.0

Rand 10 84 1 1 788 838 6.35 128.1 2000.0
S 11 62 2 2 3334 3439.5 3.16 560.8 2000.0

Rand 11 5 1 1 649.5 708 9.01 155.0 2000.0
H 12 478 10 3 8482 8995 6.05 710.9 1079.4

Rand 12 3 1 1 777.5 799 2.77 216.3 2000.0
Rand 13 3 1 1 1061 1070 0.85 368.5 2000.0
Rand 14 6 2 1 1349 1393.5 3.30 307.0 1546.5

Maximum of 4000 inequality constraints
Rand 10 84 2 1 792.5 838 5.74 1779.4 2305.0
S 11 62 2 0 3337.5 3439.5 3.06 9932.8 3761.0

Rand 11 5 1 1 652.5 708 8.51 1366.9 4000.0
H 12 478 10 3 8485 8995 6.01 5086.4 1694.3

Rand 12 3 1 1 783.5 799 1.98 1465.3 4000.0
Rand 13 3 1 1 1062.5 1070 0.71 2054.0 4000.0
Rand 14 6 2 1 1353.5 1393.5 2.96 1880.7 2546.5

Maximum of 6000 inequality constraints
Rand 10 84 2 1 793 838 5.68 9891.8 3306.0
Rand 11 5 1 1 655.5 708 8.01 4173.0 6000.0
H 12 478 10 3 8485.5 8995 6.00 23844.3 2285.8

Rand 12 3 1 1 785.5 799 1.72 5968.7 6000.0
Rand 13 3 1 1 1063 1070 0.66 6905.5 6000.0
Rand 14 6 2 1 1355.5 1393.5 2.80 5588.9 3537.0

quality of the lower bounds. Changing the limit from 2000 to 4000 and from 4000 to 6000 constraints we

observe that while the lower bound improves a little, the computation time grows significantly. When allowing

at most 6000 constraints the computation times get already quite large and hence we do not consider adding

even more constraints.

Starting the improvement strategy with (SDPbasic) is not an attractive option because the bounds are
much weaker than the (SDPcheap) bounds, and the number of relevant inequalities in DV is very small

compared to the
(

n
3

)

3-cycle equalities.

6.6 Medium and Large Instances

As a final test of our SDP relaxations, we consider the DRFLP using the data from selected SRFLP

instances with between 17 and 70 departments. For each value of n we chose one instance in the lit-
erature. Table 9 lists the characteristics of the instances. All the instances can be downloaded from

http://anjos.mgi.polymtl.ca/flplib.

Given the size of these instances, we can only solve the relaxation for a selection of row assignments.

We select the row assignments using the following simple heuristic: We first randomly assign 25% of the

departments to each of the two rows; then the remaining 50% of the departments are added one at a time
by taking the longest remaining department and adding it to the shorter row. This heuristic quickly yields

assignments for which the total row lengths are very close; see the second-to-last column of Table 11. Similar

row lengths are often of interest in the design of layouts in practice, see e.g. [26].

We summarize in Table 10 the results averaged over 10 row assignments selected by our heuristic. We do

this using (SDPcheap) and solve it exactly with Sedumi using the same algorithmic approach as proposed in
Section 6.1. We have to call Sedumi 3 times on average to solve (SDPcheap) exactly. It is interesting to note

that in all our experiments, the gap changes only marginally after the first call to Sedumi.

http://anjos.mgi.polymtl.ca/flplib
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Table 9: Characteristics of larger instances with between 17 and 70 departments

Instance Source Size SRFLP
(n) Best Best Time (sec)

lower bound layout w/ bundle [24]
P17 [2] 17 9254 35
P18 [2] 18 10650.5 33
H 20 [22] 20 15549 54

N25 05 [7] 25 15623 211
H 30 [22] 30 44965 547

N30 05 [7] 30 115268 1110
Am33 03 [3] 33 69942.5 2193
Am35 03 [3] 35 69002.5 3194
ste36.5 [8] 36 91651.5 1078
N40 5 [24] 40 103009 8409
sko42-5 [8] 42 248238.5 4122
sko49-5 [8] 49 666130 666143 34222
sko56-5 [8] 56 591915.5 592335.5 64006

AKV-60-05 [4] 60 318801 318805 99106
sko64-5 [8] 64 501342.5 502063.5 119158

AKV-70-05 [4] 70 4213774.5 4218002.5 101765

Table 10: Double-row results over 10 row assignments using (SDPcheap) and Sedumi

Instance Lower Upper Minimum Maximum Average Average Average
bound bound gap gap gap (%) nbr of time

(%) (%) inequalities (sec)
P17 4501.5 4722 2.68 10.05 5.82 265.7 41.5
P18 5153 5503.5 3.85 11.51 8.36 298.6 67.4
H 20 7520 8046 4.97 10.86 7.70 400.7 242.6

N25 05 7385 7986 5.62 11.56 8.79 659.1 1386.3
H 30 21028 22848 6.64 13.74 9.63 1057.6 7949.8

N30 05 53854 58221 5.89 13.46 9.27 1201.3 9439.3
Am33 03 32847 35904.5 7.59 13.88 9.31 1580.7 21133.3
Am35 03 32142 35273 8.64 12.89 9.74 1666.3 37676.7
ste36.5 44786.5 46794.5 1.36 5.54 3.66 1633.6 45615.5

For even larger instances, say n ≥ 40, we continue to use (SDPcheap) but apply only the bundle method

(without Sedumi) to obtain reasonable bounds. We report results only for instances with up to 70 departments

as the experiments quickly become too time consuming. This is evidenced by the growth of the running times
in Table 11 below, as well as in Table 9 for solving the simpler SRFLP relaxation. We restrict the bundle

method to 125 function evaluations of f(λ, µ). This limitation of the number of function evaluations sacrifices

some possible incremental improvement of the bounds.

Table 11 summarizes the results we obtained. Comparing the results in Tables 10 and 11 shows that

the lower bounds of the bundle method quickly get close to the exact (SDPcheap) bounds even though the
number of function evaluations is capped at 125. Furthermore, while the running times in Table 10 grow very

quickly with the problem size, the computation times of the bundle method in Table 11 are not so strongly

affected by the problem size. Hence this approach yields bounds competitive with the exact optimal value of

(SDPcheap) at only a fraction of the computational cost.

7 Conclusions and Future Research

We proposed a new semidefinite programming approach for the space-free multi-row facility layout problem.
This is the special case of multi-row layout in which all the rows have a common left origin and no empty space

is allowed between departments. Our computational results show that for space-free double-row instances

the proposed semidefinite optimization approach provides high-quality global bounds in reasonable time for

instances with up to 15 departments. If the row assignment is fixed, then bounds can be computed for
instances with up to 70 departments.
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Table 11: Double-row results over 10 row assignments using (SDPcheap) and the bundle method

Instance Lower Upper Minimum Maximum Average Average Average
bound bound gap gap gap difference of time

(%) (%) (%) row lengths (sec)
P17 4435 4737 4.68 9.62 7.29 1.8 24.9
P18 5080 5462.5 5.09 14.32 9.63 1.0 32.0
H 20 7402 8149 8.54 12.40 10.03 2.0 48.5

N25 05 7254 7945 6.37 15.33 10.45 0.4 128.7
H 30 20659.5 22801 9.18 18.70 13.34 2.0 313.2

N30 05 52756.5 58425 7.29 13.55 10.45 1.8 310.4
Am33 03 32058 35958.5 10.45 20.41 15.39 1.6 554.3
Am35 03 31521 34794.5 8.77 18.48 14.83 1.2 720.1
ste36.5 41409.5 47259.5 7.14 19.94 12.91 1.0 808.2
N40 5 48212.5 56204 11.13 20.39 16.90 1.0 1524.2
sko42-5 113606 127639.5 11.36 19.43 15.54 1.0 1959.6
sko49-5 291004.5 349137 17.46 23.10 20.20 2.0 4904.0
sko56-5 261686 306133.5 15.91 22.54 19.66 1.0 11849.1

AKV-60-05 145702 171280 17.56 22.42 19.41 1.0 17162.7
sko64-5 219646 261257.5 18.95 24.78 21.56 1.0 22828.3

AKV-70-05 1861211 2196942.5 18.04 21.36 19.62 1.2 45232.4

Because the number of possible assignments of departments to rows grows exponentially, future research

will seek better heuristics to quickly find high-quality assignments to which the proposed SDP approach can

then be applied. Other issues to address in future research are the incorporation of spacing within the rows in
the optimization process, and the use of the SDP approach within a suitable enumeration scheme to globally

optimize instances of double-row and multi-row layout.
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