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Abstract

It is shown that parametric bootstrap can be used for computing P-values of goodness-of-fit tests
of multivariate time series parametric models. These models include Markovian models, GARCH mod-
els with non-Gaussian innovations, regime-switching models, as well as semiparametric models involving
copulas of multivariate time series. The methodology is intuitive, easy to implement, and provides an
interesting alternative to Khmaladze’s transform or other projection methods.

Key Words: Time series; Goodness-of-fit test; Monte Carlo simulation; Parametric bootstrap;
P -values; HMM; GARCH; Copulas.

Résumé

On montre dans cet article que le rééchantillonage paramétrique peut être appliqué pour le calcul de
probabilités critiques de tests d’adéquation pour des modèles de séries chronologiques multivariées. Ces
modèles incluent les modèles markoviens, les modèles GARCH avec des innovations non gaussiennes, les
modèles à changement de régimes ainsi que les modèles semi-paramétriques pour des copules de séries
chronologiques multidimensionnelles. La méthode proposées est intuitive, facile à implanter, et est une al-
ternative intéressante à la méthode de transformation de Khmaladze ou tout autre méthode de projection.
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1 Introduction

In many financial applications, such as hedging, option pricing, hedge fund replication, risk management and

credit risk, it is very important to model correctly multivariate data, including its distribution over time and

serial dependence, if any. Sometimes one is interested in modeling the full distribution, hereby referred to

as parametric modeling, or one can be interested in modeling the serial dependence and/or interdependence,

referred to as semiparametric modeling. In the latter case, only the dependence structure is modeled by

a parametric family. In general, tests of goodness-of-fit are based on statistics expressed as functions of

empirical processes, and the limiting distribution of these processes always depend on unknown parameters,

making it difficult to calculate P-values. This problem can be solved by using projection techniques like

Khmaladze’s transform, which however, changes completely the original process. Tests based on likelihood

ratios are not covered in the paper, since they are not really tests of goodness-of-fit, and they can create

problems, specially in Hidden Markov models.

Here it is proposed to use a simpler intuitive technique, called parametric bootstrap, to approximate

P-values. That methodology has been shown to work, both in parametric and semiparametric settings,

when there is no serial dependence. The aim here is to extend its applicability to dynamic models, i.e.,

models including serial dependence. Simply stated, if a goodness-of-fit test is based on a statistic Sn of the

observations Y1, . . . , Yn with distribution Pθ, for some unknown parameter θ estimated by θn, the parametric

bootstrap approach consists in generating a large number N of sequences Y ∗
1,k, . . . , Y

∗
n,k, k = 1, . . . , N with

distribution Pθn , evaluating each time the goodness-of-fit statistic S∗
n,k, and then approximating the p-value

by the percentage of values S∗
n,k greater than Sn, assuming that the null hypothesis is rejected for large

values of Sn. Basically, parametric bootstrap is a valid way to compute P-values if one can show that

(Sn, S
∗
n,1, . . . , S

∗
n,N ) converges in law to (S, S∗

1 , . . . , S
∗
N ), where S∗

1 , . . . , S
∗
N are independent copies of S.

After reviewing the literature on goodness-of-fit tests for dynamic models in Section 2, one proves the main

result behind the validity of parametric bootstrap in Section 3, provided the estimators of the parameters

involved in the model are regular in some sense. Examples of applications for parametric and semiparametric

settings are then given. First, in Section 4, one states general results for the parametric setting, where the

null hypothesis to be tested takes the form

H0: The conditional distribution of Yt given Ft−1 belongs to the parametric family {Ft,θ; θ ∈ O}.

The asymptotic limit of the empirical processes based on the Rosenblatt transforms is also identified, ex-

tending results of Bai (2003) and Bai and Chen (2008). In particular, it is shown that parametric bootstrap

can be used in p-Markov, ARMA, GARCH and regime-switching models. Examples of regular estimators

are given in each case. Then, in Section 5, one considers goodness-of-fit in semiparametric settings, i.e., for

copula models. First, it is shown that parametric bootstrap works for copulas associated with multivariate

Markov processes. Here the null hypothesis can be stated as follows:

H0: The copula C of (Yt−p, . . . , Yt) belongs to the parametric family C = {Cφ;φ ∈ P},

where (Yt−p+1, . . . , Yt) is assumed to be a Markov process, which is often referred to as Y being p-Markov,

and C is then the associated copula. Here, no structure is imposed of the marginal distributions of the

random vectors Yt. These models have been recently proposed in order to deal with serial dependence and

interdependence, i.e., dependence between the components of Yt (Rémillard et al., 2011).

Another case of semiparametric modeling often considered in applications is the modeling of the joint

distribution of innovations εt = (εt,1, . . . , εt,d) coming from several univariate time series models that are

estimated separately (van den Goorbergh et al., 2005, Patton, 2006, Chen and Fan, 2006a). In that case, the

null hypothesis can be stated as H0: The copula C of εt belongs to C = {Cφ;φ ∈ P}. That case has been

treated recently (Rémillard, 2010), so it is not covered here. Finally, in Section 6, one gives an example of

application for GARCH models with innovations having a generalized error distribution (GED).
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2 Review of the literature

From now on, one will concentrate on tests of goodness-of-fit based on the Rosenblatt’s transform (Rosenblatt,

1952), which is a mapping (or a series of mappings) so that the output is a sequence of independent and

identically distributed (i.i.d.) random vectors U1, . . . , Un with uniform distribution over [0, 1]d, denoted

by Ut ∼ C⊥, where C⊥ is the usual notation for the so-called independence copula defined by C⊥(u) =

u1 × · · · × ud, u = (u1, . . . , ud) ∈ [0, 1]d. The main reason for ignoring other methods is that, based on

recent results of Genest et al. (2009), tests using Rosenblatt’s transform seem to be more powerful, at least

in the multivariate case. In the univariate case, they are equivalent in general to the tests based on the

usual empirical distribution function. Furthermore, these tests are also computationally simpler in general.

The idea of using Rosenblatt’s transform for testing goodness-of-fit is not new, the main contributions being

Durbin (1973) in the i.i.d. case, and Diebold et al. (1998) in time series models, both in univariate cases.

2.1 I.I.D. observations

For the first part of the literature review, suppose that the observations are i.i.d. To test the null hypothesis

that the (univariate) observations Y1, . . . , Yn had distribution function F belonging to {Fθ; θ ∈ O}, Durbin

(1973) proposed to base the test on the empirical distribution function

Dn(u) = n−1
n
∑

t=1

1{Fθn(Yt) ≤ u}, u ∈ [0, 1].

His reasoning was that if θn is a good estimator of the unknown parameter θ, then under the null hypothesis,

the pseudo-observations un,t = Fθn(Yt) should be close to the (not observable) random variables Ut = Fθ(Yt),

the latter forming an i.i.d. sequence uniformly distributed over [0, 1]. Hence, Dn(u) should be close to u,

for any u ∈ [0, 1], under the null hypothesis. Assuming additional conditions on θn, in particular the

convergence in law of Θn = n1/2(θn − θ) to Θ, together with differentiability conditions on F , he showed

that Dn(u) = n1/2 {Dn(u)− u}  D(u) = B(u) − Θ⊤γ(u), where  denotes convergence in the Skorohod

space D ([0, 1]) of càdlàg functions, and Bn  B, where B is the usual Brownian bridge process arising as the

limiting distribution of the sequence of empirical processes,

Bn(u) = n−1/2
n
∑

t=1

{1(Ut ≤ u)− u} ,

and γ(u) = Ḟθ ◦ F−1
θ (u), with Ḟθ being the (column vector) gradient of Fθ with respect to θ. Except for

natural location/scale parametric families, like the Gaussian or the exponential families, the distribution of

Θ⊤γ depend on the unknown value θ, making it impossible to tabulate statistics based on D = B−Θ⊤γ.

To overcome the difficulty, there exist some options: Transform the process Dn so it becomes asymptoti-

cally distribution free, or bootstrapp it. One of the first transformation technique is Khmaladze’s martingale

technique (Khmaladze, 1988, 1993). It is relatively easy to implement for univariate data, but it seems that

the level of the test can be imprecise, if the sample size is not quite large. See Bai (2003) for an easy in-

troduction to the technique, even in the context of univariate time series. However, Khmaladze’s martingale

transform might be difficult to evaluate for semiparametric test statistics and/or imprecise when applied to

multivariate data. Some also might not like the idea of working with a transformed process, when the inter-

pretation of the process is not obvious, even if it converges to a Brownian motion. Other examples of the use

of that technique is Delgado and Stute (2008), who used it for very special cases of tests on bivariate data.

Finally, Li (2009) extended Khmaladze’s work to more general projection methods, in view of applications

in semiparametric regression settings. So far, no power comparison study has been attempted to answer the

question of efficiency between transformation techniques and bootstrapping techniques. This will be done in

a forthcoming paper.

By bootstrapping a statistic or more generally a stochastic process An, one means a method for generating

a process Ãn so that (An, Ãn) (A, Ã), where Ã is an independent copy of A. Repeating the bootstrapping
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process N times, one can then approximate P-values of statistics based on An. The most known technique

of bootstrapping is of course the resampling method (Efron, 1979). Going back to Durbin’s process Dn, as a

rule of thumb, if one can bootstrap Θn, one can also bootstrap Dn. Resampling bootstrap should also work

for multivariate data. However, one will not pursue the matter since it might not be applicable for dynamic

models. Another form of bootstrapping, called parametric bootstrap, appeared in Efron (1979). The first

results about its validity were stated in Beran et al. (1987), Beran and Millar (1987, 1989). Stute et al. (1993)

proved its validity for multivariate goodness-of-fit tests based on the empirical distribution function, while

Andrews (1997) extended it by incorporating covariates. Finally, Genest and Rémillard (2008) addressed its

validity for a wide range of goodness-of-fit tests in semiparametric models, including dependence modeling.

There is another possible bootstrapping technique that could be used, sometimes called weighted bootstrap

or multipliers technique. So far it has been used for observations, not pseudo-observations, except in copula

contexts (Scaillet, 2005, Rémillard and Scaillet, 2009, Kojadinovic and Yan, 2010). However, its validity

and applicability, is beyond the scope of the present paper. For a complete review of that methodology,

see, e.g., Rémillard (2011). Finally, note that a technique close to parametric bootstrap, called Maximized

Monte Carlo (MMC), has been proposed by Dufour (2006). However, his technique cannot be considered as

boostrapping. It seems however that the results proved here could be used to generalized the MMC approach

to dynamic models.

2.2 Dynamic models

The idea of using a conditional analog of the Durbin process in a time series context goes back to Diebold

et al. (1998). In such settings, one also ends up with limiting processes of the form D = B − Θ⊤γ, though

γ is more complex in general than in the i.i.d. case. For testing purposes, they proposed to divide the

sample into two parts, one for estimation and one for testing. However, this sort of approach should be

avoided as much as possible, since the samples sizes need to be very large in general and since they are

alternative methods than can work much better. As shown in Bai (2003), Khmaladze’s transform can also

be used in univariate time series. In his paper, he also proved general results on the convergence of empirical

process used for parametric goodness-of-fit of dynamic models. In Bai and Chen (2008), the authors studied

goodness-of-fit for multivariate GARCH, transforming the pseudo-observations into a univariate series and

then using Khmaladze’s transform. Although correct, that methodology might lack power. It also shows that

Khmaladze’s transform is not that easy to implement for multivariate data. Note that even for univariate

time series, Khmaladze’s approach ca be difficult to implement when one has to estimate parameters for the

distribution of the innovations, e.g., for GARCH models with GED or Student distribution for the innovations

For some special cases of dynamic models, Li and Tkacz (2006) based their test on a distance between

density estimates and then used parametric bootstrap. Their proof is not general enough to be adapted

to general settings considered by Bai (2003), a fortiori to semiparametric settings. Finally, in a univariate

time series context similar to the one in Bai (2003), Corradi and Swanson (2006) proposed Kolmogorov-

Smirnov type tests for goodness-of-fit and used block bootstrap to approximate P-values. The reason why

Corradi and Swanson (2006) did not use parametric bootstrap is that instead of computing conditional

expectations with respect to a filtration, they considered smaller sigma-algebras, calling that “dynamic

misspecification”. Here is an example: For an AR(1) model, one could want to test that Yt is Gaussian,

based on en,t = Φ{(Yt−µn)/sn}, where µn and sn are respectively the mean and the standard deviation of the

series Y1, . . . , Yn. The empirical process based on the pseudo-observations en,1, . . . , en,n would then converge

to a quite complex Gaussian process. For the applications mentioned at the beginning of the introduction,

no misspecification is allowed, so block bootstrap is not needed.
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3 Validity of the parametric bootstrap

The goal of this section is to find sufficient conditions for proving that the parametric bootstrap procedure

work. Given a sample Y1, . . . , Yn from a law P = Pθ, with θ unknown and estimated by θn, and a statistic

Sn = ψn(Y1, . . . , Yn) needed to be bootstrapped, the parametric bootstrap procedure based on the estimator

θn of θ can be described as follows:

For k = 1, . . . , N , generate a sample (Y ∗
k,1, . . . , Y

∗
k,n) from law Pθn and compute S∗

n,k = ψn(Y
∗
k,1,

. . . , Y ∗
k,n).

The parametric bootstrap work if it can be shown that as n → ∞, (Sn, S
∗
n,1, . . . , S

∗
n,N) converges jointly to

(S, S∗
1 , . . . , S

∗
N ), where all variables are independent and identically distributed. In other words, S∗

1 , . . . , S
∗
N

are independent copies of S and, for example, P (S ≥ c) can be estimated consistently by N−1
∑N

k=1 1(S
∗
n,k >

c). In particular, assuming that large values of Sn lead to the rejection of H0, an approximate P -value for

the test based on Sn is given by N−1
∑N

k=1 1(S
∗
n,k > Sn). Note that the size of N has generally an impact

on the power of the test.

To describe the conditions for the validity of the parametric bootstrap, set

ℓn(Y1, . . . , Yn, θ) = log

{

dPθ

dP

∣

∣

∣

∣

Fn

}

.

Suppose that uniformly for all a in a compact subset of Rs,

ℓn(Y1, . . . , Yn, θ + n−1/2a) = a⊤Wn −
1

2
a⊤J a+ oP (1), as n→ ∞, (1)

where Wn is a statistic of Y1, . . . , Yn, and Wn  W, with W ∼ N(0,J ). It appears that in goodness-of-

fit testing, Wn plays an essential role, as shown next. The main result for the validity of the parametric

bootstrap procedure can now be stated as follows.

Theorem 1 Suppose that An constructed from Y1, . . . , Yn has values in the Skorohod space D(T,Rm), for

some closed interval T of [−∞,∞]p, and assume that (1) holds true. Further assume that (Wn,Θn,An)  

(W,Θ,A), the joint law being centered Gaussian, with a(t) = E
{

A(t)W⊤
}

for all t ∈ T and Γ = E
(

ΘW⊤
)

.

Let θ∗n and A∗
n be the bootstrap analogs of θn and An, and set Θ∗

n = n1/2(θ∗n − θ). Then

(Wn,Θn,An,Θ
∗
n,A

∗
n) (W,Θ,A,Θ∗,A∗),

where Θ∗ = Θ̃+ΓΘ, A∗ = Ã+aΘ, and (Θ̃, Ã) is an independent copy of (Θ,A). In particular, the parametric

bootstrap works for An if and only if A is independent of W.

For the proof, see Appendix A.1.

Example 1 In many goodness-of-fit tests, the statistics are based on a process Dn that satisfies (Wn,Θn,Bn,

Dn)  (W,Θ,B,D), with D = B − Θ⊤γ, and γ(t) = E {B(t)W}, t ∈ T . Then, according to Theorem 1, the

parametric bootstrap will work if D is independent of W, which in turn is equivalent to (I − Γ)⊤γ(t) = 0 for

all t ∈ T . The latter is obviously satisfied if Γ = I.

The previous example motivates the following definition, which appeared in Genest and Rémillard (2008)

in a serially independent context.

Definition 1 Suppose that θn = Tn(Y1, . . . , Yn) is an estimator of θ ∈ O ⊂ Rs and set Θn = n1/2(θn − θ).

Then θn is called regular if (Wn,Θn)  (W,Θ) ∼ N(0,Σ), where Σ =

(

J I
I V

)

, and I is the identity

matrix.

It follows that the parametric bootstrap procedure works for Dn, as described in Example 1, provided θn
is regular.
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Remark 1 According to Theorem 1, θn is regular if and only if n1/2(θ∗n − θn)  Θ̃, an independent copy

of Θ. It was shown in Genest and Rémillard (2008) that the usual estimators (MLE, moment matching,

minimum distance) calculated from i.i.d. observations were regular. A priori, it might seem strange that in

all previous papers proving a version of the validity of the parametric bootstrap, that “regularity” of θn was

not assumed. Well, it was implicitly assumed. For example, in Andrews (1997), condition E2 states that

if θn is any non random sequence converging to θ, then one must have n1/2(θ∗n − θn)  Θ. On the other

hand, choosing θn = θ+n−1/2γ, it is easy to check that (ℓn(θn),Θn) (γ⊤W− 1
2γ

⊤J γ,Θ). As in the proof

of Theorem 1, one can use Le Cam’s Third Lemma to obtain that n1/2(θ∗n − θn)  Θ + (Γ − I)γ. Hence

condition E2 of Andrews (1997), also similar to condition (5.4) in Beran et al. (1987), implicitly assumed

that Γ = I, and it is in fact a stronger assumption which is much more difficult to verify than the regularity

condition appearing in Definition 1.

Remark 2 Instead of studying convergence on the Skorohod space D(T ;Rm), one may also consider con-

vergence on ℓ∞(A), over some class of functions A; for more details, one may consult van der Vaart and

Wellner (1996). The conclusions of Theorem 1 still hold in that case.

We are now in a position to study the validity of parametric bootstrap for dynamic models, extending

the results of Genest and Rémillard (2008).

4 Goodness-of-fit for dynamic parametric models

The first category of models one considers is the family of parametric models, where the null hypothesis takes

the form

H0: For some θ ∈ O, the conditional distribution of Yt given Ft−1 is Ft,θ, for all t ≥ 1.

Throughout this section, one will assume that Ft,θ has a strictly positive density ft,θ with respect to a

reference measure λt, not depending on θ. Since each Ft(·, θ) is a distribution function, one can then associate

with it a Rosenblatt transform Rt,θ.

Recall that for a given multivariate distribution function H , with X = (X1, . . . , Xd) ∼ H , and continuous

marginal distributions F1, . . . , Fd, the Rosenblatt transform R, studied in Rosenblatt (1952), can be defined

as R(x) =
(

R(1)(x1), . . . ,R(d)(x1, . . . , xd)
)

, with R(1)(x1) = F1(x1), and for j = 2, . . . , d,

R(j)(x1, . . . , xj) = P (Xj ≤ xj |X1 = x1, . . . , Xj−1 = xj−1).

The main property of the Rosenblatt transform is that X ∼ H if and only if U = R(X) ∼ C⊥, i.e., U is

uniformly distributed in [0, 1]d. It also follows that by inverting the mapping, one can generate X ∼ H viz.

X = R−1(U), by simulating U ∼ C⊥.

Therefore, if d > 1, the null hypothesis can be restated as follows:

H0: For some θ ∈ O, the Rosenblatt’s transforms of Yt given Ft−1 is Rt,θ, for all t ≥ 1.

It follows that under the null hypothesis, U1, . . . , Un are independent and uniformly distributed in [0, 1]d,

where Ut = Rt,θ(Yt) ∼ C⊥. Unfortunately, θ is unknown and must be estimated by some statistic θn =

Tn(Y1, . . . , Yn). So Ut is not observable and has to to replaced by the pseudo-observation un,t = Rt,θn(Yt).

Therefore it is natural to base a goodness-of-fit test on statistic on the empirical process Dn = n1/2(Dn−C⊥),

with

Dn(u) =
1

n

n
∑

t=1

1(un,t ≤ u) =
1

n

n
∑

t=1

d
∏

k=1

1(un,t,k ≤ uk), u = (u1, . . . , ud) ∈ [0, 1]d.

Following the results obtained in many power comparisons, in particular, Genest et al. (2009), it is

suggested to use the Cramér-von Mises type statistic
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Sn = Sn(un,1, . . . , un,n) =

∫

[0,1]d
D2

n(u)du

=
1

n

n
∑

t=1

n
∑

i=1

d
∏

k=1

{1−max (un,t,k, un,i,k)} −
n
∑

t=1

d
∏

k=1

(

1− u2n,t,k
)

+
n

3d
. (2)

Remark 3 One could also consider Kolmogorov-Smirnov type statistics but their power seem to be much

smaller than those using Sn in addition to be more difficult to compute.

4.1 Convergence of the empirical process

Suppose that H0 is true, i.e., assume that for some θ ∈ O, the conditional law of Yt given Ft−1 is Ft,θ.

Furthermore, the following assumptions will be imposed on the parametric family {Ft,θ; θ ∈ O}:

Assumption 1 For every t ≥ 1, Ft,θ has density ft,θ with respect to some reference measure λt, not depend-

ing on θ. Furthermore,

A1: For every t ≥ 1, the density ft,θ admits first and second order continuous derivatives with respect to

all components of θ. The gradient (column) vector with respect to θ is denoted ḟt,θ, and the Hessian

matrix is represented by f̈t,θ.

A2: For every t ≥ 1, and for every θ0 ∈ O, there exist a neighborhood N of θ0 and a λt-integrable function

ht such that supθ∈N

∥

∥

∥f̈t,θ(y)
∥

∥

∥ ≤ ht(y) and supθ∈N

∥

∥

∥ḟt,θ(y)
∥

∥

∥

2

≤ ht(y), λt-almost surely.

A3: Setting ξt =
ḟt,θ0 (Yt)

ft,θ0 (Yt)
, then

1

n

n
∑

t=1

ξtξ
⊤
t

Pr
−→ J , (3)

with J invertible, and for every ǫ > 0,

1

n

n
∑

t=1

E
{

‖ξt‖
21(‖ξt‖ > ǫn1/2)|Ft−1

}

Pr
−→ 0. (4)

A4:

1

n

n
∑

t=1

f̈t,θ0(Yt)

ft,θ0(Yt)

Pr
−→ 0. (5)

In the sequel, θ0 represents the true (unknown) value of θ and P = Pθ0 . Furthermore,

ft = ft,θ0, ḟt = ḟt,θ0, f̈t = f̈t,θ0 .

Remark 4 Using Assumptions A1-A2, together with Lebesgue’s dominated convergence theorem, one may

conclude that
∂

∂θ

∫

ft,θ(y)g(y)λt(dy) =

∫

ḟt,θ(y)g(y)λt(dy), (6)

for any bounded measurable function g on Rd not depending on θ. In particular,

E







ḟt(Yt)

ft(Yt)

∣

∣

∣

∣

∣

Ft−1







=

∫

ḟt(y)λt(dy) = 0. (7)

Set

Wn = n−1/2
n
∑

t=1

ḟt(Yt)

ft(Yt)
. (8)
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Note that by Assumption A3 and (7), ξt =
ḟt(Yt)
ft(Yt)

are square integrable martingale differences satisfying the

conditions of the Lindeberg-Feller Theorem for martingale differences stated in Appendix C. As a result,

Wn  W ∼ N(0,J ). Furthermore, in most applications, ξt is a function of an ergodic Markov process with

a unique stationary measure, so assumptions A3-A4 are automatically met.

The following theorem generalizes the results of Bai (2003) and Bai and Chen (2008) and identifies the

limiting deterministic function γ appearing in the limit. To state it, set Bn = n1/2(Bn − C⊥), where

Bn(u) = n−1
n
∑

t=1

1(Ut ≤ u), u ∈ [0, 1]d,

and where Ut = Rt,θ0(Yt), t ≥ 1.

Theorem 2 Suppose that Assumptions A1–A4 are met and that Θn = n−1/2
∑n

t=1 ηt + oP (1), where the

ηt are square integrable martingale differences satisfying the conditions of the Lindeberg-Feller Theorem for

martingale differences in Appendix C. If in addition,

1

n

n
∑

t=1

1(Ut ≤ u)ξt
Pr
−→ γ(u), u ∈ [0, 1]d, (9)

1

n

n
∑

t=1

ηtξ
⊤
t

Pr
−→ I, (10)

and
1

n

n
∑

t=1

1(Ut ≤ u)ηt
Pr
−→ ψ(u), u ∈ [0, 1]d, (11)

where γ and ψ are continuous, then (Wn,Θn,Bn,Dn)  (W,Θ,B,D), with Dn  D = B − Θ⊤γ, where

γ(u) = E{B(u)W}, u ∈ [0, 1]d, and B is a C⊥-Brownian bridge. In addition, the parametric bootstrap work

for Dn since θn is regular.

Example 2 If the maximum likelihood estimator θn of θ exists, then Θn = J −1Wn + oP (1), so ηt = J −1ξt
satisfies conditions (10) and (11).

Remark 5 As discussed in Bai (2003), in practice, a truncated conditional expectation is used, instead of

the full conditional expectation, meaning that the information about (Yt)t≤0 is replaced by setting Yt = 0, for

all t ≤ 0. In most dynamic models, that does not affect the methodology since for large t, the process usually

forgets from where it starts (otherwise estimation would be impossible).

The rest of the section is dedicated to particular examples.

4.2 Markovian models

Suppose that (Yt)t≥1 is a time series with values in Rd. It is called p-Markov, p ≥ 1, if the the process

{Zt = (Yt−p+1, . . . , Yt)}t≥p is Markov. In other words, if t ≥ p, then the conditional law of Yt given Ft−1

depends only on Zt−1. Suppose that under Pθ, that conditional law has a density gθ(z, y) with respect to

some reference measure λ. As a result, ft,θ(y) = gθ(zt−1, y), t > p. Assume also that under Pθ, the law of

Zp has density πθ with respect to a reference measure λ0, with πθ bounded and continuous with respect to

θ. Finally, suppose that the process is ergodic, with unique stationary measure ν. For simplicity set g = gθ0
and let Xt = (Zt−1, Yt) = (Yt−p, . . . , Yt), t > p. Then

Wn = n−1/2
n
∑

t=p+1

ġ(Xt)

g(Xt)
+ oP (1),

and Assumptions A3-A4 are met if A1-A2 holds for ft,θ = gθ.

Finally, let θn = Tn(Y1, . . . , Yn) be an estimator of θ and introduce Θn = n1/2(θn − θ0).
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4.2.1 Empirical process for goodness-of-fit

For simplicity set Zt = (Y1, . . . , Yt) whenever t ≤ p, and Xt = (Zt−1, Yt) = (Y1, . . . , Yt) whenever t ≤ p. It

follows that the Rosenblatt’s transform Rt,θ is given by R
(1)
t,θ (y) = P (Yt1 ≤ y1|Zt−1), and for j = 2, . . . , d,

R
(j)
t,θ (y) = P (Ytj ≤ yj |Zt−1, Ytk = yk, k = 1, . . . , j − 1) ,

for all t ≥ 1. When t > p, then Rt,θ(y) = Gθ(Zt−1, y), where Gθ(z, ·) is the Rosenblatt’s transform associated

with density gθ(z, ·). As a result, condition (9) is satisfied with

γ(u) =

∫

1 {G(z, y) ≤ u} ġ(z, y)λ(dy)ν(dz) = E {B(u)W} , u ∈ [0, 1]d, (12)

where G = Gθ0 and g = gθ0 .

Remark 6 For simplicity, set G = Gθ0 . Hn(x) = Gθn(x), H(x) = R(x). It follows easily that if Hn =

n1/2(Hn −H), and Θn  Θ, then Hn  H, where H(j)(x) = Θ⊤Ġ(j)(x), x ∈ R(p+1)d, j ∈ {1, . . . , d}. Using

the results in Ghoudi and Rémillard (2004), one can then conclude that Dn = n1/2(Dn − C⊥) D, where

D(u) = B(u)−Θ⊤







d
∑

j=1

γj(u)







, u ∈ [0, 1]d,

with

γj(u) = E
{

Ġ(j)(Xp+1)1(Vp+1 ≤ u)|Vp+1,j = uj

}

, j = 1, . . . , d. (13)

The next lemma, proven in Appendix B.1, shows that γ =
∑d

j=1 γj.

Lemma 1 For all u ∈ [0, 1]d, γ(u) = E{B(u)W} =
∑d

j=1 γj(u), where γ and γj are respectively defined by

(12) and (13).

Finally, we state some conditions on the estimator θn so that it is regular and satisfies all conditions of

Theorem 2.

Example 3 Suppose that θn = Tn(Y1, . . . , Yn) for θ ∈ O satisfies

Θn = n−1/2
n
∑

t=p+1

Jθ(Xt) + oP (1) (14)

where the score function Jθ : Rd → Rs is square integrable with respect to gθ(z, y)λ(dy)ν(dz) and such that

for all θ ∈ O, one has both
∫

Jθ(z, y)gθ(z, y)λ(dy) = 0 and

∫

Jθ(z, y)ġ
⊤
θ (z, y)λ(dy)π(dz) = I. (15)

Then θn is regular and conditions (10)-(11) are met. Also, since X is ergodic, ηt = Jθ(Xt) satisfies the

Lindeberg-Feller CLT for martingale differences (Appendix C).

As shown by Genest and Rémillard (2008), many well-known estimators are regular. With a few adapta-

tions for the Markovian setting, they are also regular. In addition to the MLE, there are other well-known

estimators satisfying (14)–(15).

Example 4 (Moments-based estimators) Many moments estimators also satisfy (14)–(15). Assume

that θ = ψ(µ), where for all z, νθ a.s.,

∫

M(z, y)gθ(z, y)λ(dy) = µ,
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for some integrable function M : R(p+1)d → Rd that does not depend on θ. Suppose also that ψ is continuously

differentiable and that the matrix ψ̇ of derivatives is non-singular. Then ψ−1 exists and is continuously

differentiable by the inverse function theorem. Furthermore, Slutsky’s theorem implies that for all x ∈ R(p+1)d,

condition (14) is satisfied with Jθ(x) = ψ̇{ψ−1(θ)}{M(x)−ψ−1(θ)}. Finally, condition (15) is also met since

∫

{M(z, y)− ψ−1(θ)}gθ(z, y)λ(dy) = 0

and

E(ΘW⊤) = ψ̇{ψ−1(θ0)}

∫

M(z, y)ġ(z, y)λ(dy)π(dz)

= ψ̇{ψ−1(θ0)}

[

∂

∂θ

∫ ∫

M(z, y)gθ(z, y)λ(dx)π(dz)

]

θ=θ0

= ψ̇{ψ−1(θ0)}

[

∂

∂θ
ψ−1(θ)

]

θ=θ0

= I.

4.3 Regime-switching Markovian models

Suppose that (τt) is a (non observable) Markov chain on {1, . . . ,m} with transition matrix Q and (τt, Yt)

is a Markov process so that given τt−1 = i and Yt−1 = z, (τt, Yt) has density Qijfθ(j, z, y) with respect to

measure λ × ν, ν being the counting measure on {1, . . . ,m}. It means that for any bounded continuous

function h on {1, . . . ,m} × Rd,

E {h(τt, Yt)|τt−1 = i, Yt−1 = z} =
m
∑

j=1

Qij

∫

h(j, y)fθ(j, z, y)dy.

Even if (τt, Yt) is a Markov process, the results of the previous section does not apply directly since the

regime process τ is not observed, only Y being observed.

The next result shows that the parametric bootstrap works for regime-switching Markov models when

parameters are estimated using the EM algorithm.

Proposition 1 Suppose that the process (τt, Yt) is ergodic with stationary measure π for the Markov chain

τ . Under the smoothness conditions in Cappé et al. (2005), if (Qn, θn) are the estimated parameters of (Q, θ)

using the EM algorithm, then these estimators are regular and parametric bootstrap works.

The proof is given in Appendix B.3. Note that the conditions of Proposition 1 hold for the traditional

HMM model with Gaussian densities. An implementation of the parametric bootstrap in that setting is

illustrated in Rémillard et al. (2010). Note that because the process is ergodic, the values of τ0 and Y0 are

not important.

Remark 7 For the selection of the number r of regimes, it makes sense to choose the first r0 for which the

P -value of the test of goodness-of-fit is larger than 5%. That was proposed in Papageorgiou et al. (2008).

4.4 Dynamic models with innovations

By a dynamic model with innovations, one means a model of the following form:

Yt = µt + σtεt,

where the εt are i.i.d. with mean 0, covariance matrix I and common distribution Kθ1 , with density gθ1,

and with Rosenblatt’s transform Gθ1 , µt ∈ Rd and σt ∈ Rd×d are Ft−1 measurable and do not depend on

parameter θ1, only on parameter θ2. Here, θ = (θ1, θ2)
⊤
. In addition, σt is invertible.
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In a model with innovations, it follows that Rt,θ(y) = Gθ1

{

σ−1
t (y − µt)

}

, and ft,θ(y) = gθ1
{

σ−1
t (y − µt)

}

/|σt|, where |σt| is the determinant of σt. Note that Rt,θ(Yt) = Gθ(εt) and if en,t is the residual estimating

ǫt, depending on θn,2, then vn,t = Gθn,1(en,t).

It follows that ft(y) = g
{

σ−1
t (y − µt)

}

/|σt|, so

∂θ1 log ft,θ(y) =
ġ
{

σ−1
t (y − µt)

}

g
{

σ−1
t (y − µt)

}

and

∂θ2j log ft,θ(y) = −
g′
{

σ−1
t (y − µt)

}

g
{

σ−1
t (y − µt)

} σ−1
t

{

∂θ2jσtσ
−1
t (y − µt) + ∂θ2jµt

}

−
∂θ2j |σt|

|σt|
,

1 ≤ j ≤ s2, where g
′ is the (row) gradient vector of g with respect to x. As a result, Wn = (Wn,1,Wn,2)

⊤
,

with

Wn,1 = n−1/2
n
∑

t=1

ġ(εt)

g(εt)
(16)

and

Wn,2,j = −n−1/2
n
∑

t=1

[

g′(εt)

g(εt)
σ−1
t

{

∂θ2jσtεt + ∂θ2jµt

}

+
∂θ2j |σt|

|σt|

]

, (17)

for all 1 ≤ j ≤ s2.

Remark 8 Recall that ∂v logAv = Trace
(

A−1
v ∂vAv

)

. As a result,
∂θ2j

|σt|

|σt|
= Trace

(

σ−1
t ∂θ2jσt

)

, for all

1 ≤ j ≤ s2.

It is easy to check that if θ is estimated by the maximum likelihood method, then θn, if it exists, will be

regular.

However, in applications, θ2 is often estimated using the so-called quasi maximum likelihood method

(QMLE), where the innovations are treated as Gaussian even if they are not. More precisely, θn,2 is the value

minimizing

θn,2 = argmin
θ2

{

n
∑

t=1

(yt − µt)
⊤h−1

t (yt − µt) +
n
∑

t=1

log |ht|

}

= argmin
θ2

L(θ2),

where ht = σtσ
⊤
t .

The following proposition in proven in the Appendix.

Proposition 2 Under the conditions above, if θn,1 is a regular estimator of θ1 then θn is a regular estimator

of θ.

Note that unfortunately, the limiting process will depend on the unknown value θ2, so one cannot just ap-

ply the parametric bootstrap to the innovations. One has to generate the process Y and estimate parameters

θ = (θ1, θ2) for each replication.

Finally, in addition to Theorem 2, one can state a result that will be useful when dealing with tests of

independence or goodness-of-fit for the innovations.

To do so, set Kn = (Kn −K), where

Kn(x) =
1

n

n
∑

t=1

1(en,t ≤ x), x ∈ [−∞,∞]d.

Further set

αn(x) =
1

n1/2

n
∑

t=1

{1(εt ≤ x)−K(x)} , x ∈ [−∞,∞]d.
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Theorem 3 Suppose that Assumptions A1–A4 are met and that Θn,2 = n−1/2
∑n

t=1 ηt + oP (1), where the

ηt are square integrable martingale differences satisfying the conditions of the Lindeberg-Feller Theorem for

martingale differences in Appendix C. If in addition,

1

n

n
∑

t=1

1(εt ≤ x)ξt,2
Pr
−→ γ(x), x ∈ [−∞,∞]d, (18)

1

n

n
∑

t=1

ηtξ
⊤
t,2

Pr
−→ Γ, (19)

and
1

n

n
∑

t=1

1(εt ≤ x)ηt
Pr
−→ ψ(x), x ∈ [−∞,∞]d, (20)

where γ and ψ are continuous, then (Wn,2,Θn,2, αn,Kn)  (W2,Θ2, α,K), with K = α − Θ⊤
2 γ2, where

γ2(x) = E{α(x)W2}, x ∈ [−∞,∞]d, and α is a K-Brownian bridge.

To see that one can recover Theorem 2 from Theorem 3, consider the case d = 1. In this case,

Dn(u) = n−1
n
∑

t=1

1{Fθn(en,t) ≤ u} = Kn ◦ F−1
θn

(u),

so Dn(u) = n1/2{Dn(u)− u} can be written as

Dn(u) = Kn ◦ F−1
θn,1

(u) + n1/2{K ◦ F−1
θn,1

(u)− u}

 K ◦ F−1(u)−Θ⊤
1 Ḟ ◦ F−1(u)

= α ◦ F−1(u)− Θ⊤
2 γ2 ◦ F

−1(u)−Θ⊤
1 Ḟ ◦ F−1(u)

= β(u)−Θ⊤γ(u),

where γ(u) = E {β(u)W}, u ∈ [0, 1], and β = α ◦ F−1 is a standard Brownian bridge.

5 Goodness-of-fit tests for copula-based models

The second category of models one considers is the family of semiparametric models, where the null hypothesis

is a parametric hypothesis about the serial and interdependence of the series. In most cases, these models

are concerned with two-stage modeling: The first stage is the modeling of univariate series, while the second

stage is the modeling of the dependence between the series. More precisely, it is often assumed that Yt,j =

µt,j + h
1/2
t,j εt,j, where µt, ht ∈ Ft−1 and εt = (εt,1, . . . , εt,d)

⊤ are i.i.d. with continuous marginal distributions

F1, . . . , Fd and copula C. These models appeared in van den Goorbergh et al. (2005), Patton (2006), Chen

and Fan (2006a). Formal goodness-of-fit tests were treated in Rémillard (2010), so there is no need to pursue

that subject here.

Another type of copula-based models for univariate time series were studied in Chen and Fan (2006b)

and extended to the multivariate case in Rémillard et al. (2011). More precisely, assume that the time series

Y is p-Markov and stationary. One is not interested in modeling the series Y but in modeling the series U ,

where

Ut =M(Yt) = (M1(Yt1), . . . ,Md(Ytd))
⊤, t ≥ 1,

and whereMj is the (continuous) marginal distributions of Ytj , j = 1, . . . , d. As a result, each Utj is uniformly

distributed over [0, 1]. For that reason, the p-Markov process U is said to be on natural scale. The copula

C of interest in this case is defined as the joint distribution function of Vt−1 = (Ut−p, . . . , Ut−1) and Ut. For

details on estimation and tests of goodness-of-fit, see, e.g., Rémillard et al. (2011). The rest of the section is
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devoted in proving the validity of the parametric bootstrap methodology proposed in Rémillard et al. (2011).

Not all copulas can be used. In fact, by stationarity, one must have,

C(u) = C(u,1, . . . ,1) = C(1, u,1, . . . ,1) = · · · = C(1, . . . ,1, u), for all u ∈ [0, 1]d.

Note that C is a stationary distribution for the p-Markov process U . Throughout the rest of the section, the

null hypothesis takes the form

H0: The distribution function C of (Vt−1, Ut), t > 1, belongs to the parametric family {Cθ; θ ∈ O}.

From now on, assume that the density cθ of Cθ is continuous and positive on (0, 1)(p+1)×d. It then follows

that the Markov chain V is irreducible and ergodic (Bradley, 2005)[Theorem 3.5]. As before, instead of

working directly with the distribution functions, one will work with the Rosenblatt transforms. Therefore,

the null hypothesis can be rewritten as

H0: The Rosenblatt transform Rt of (Vt−1, Ut), belongs to the parametric family {Rt,θ; θ ∈ O}.

Note that because V is a Markov process, it follows that for all t > p, Rt,θ(u) = Gθ(vt−1, u), for some

parametric family Gθ defined on (0, 1)(p+1)×d. For simplicity, set G = Gθ0 , Ġ = Ġθ0 , and G̈ = G̈θ0 , where θ0
is the true (unknown) parameter. For simplicity set c = cθ0 and set q = qθ0 , where qθ(v) =

∫

(0,1)r
cθ(v, u)du.

Then

Wn = n−1/2
n
∑

t=p+1

{

ċ(Vt−1, Ut)

c(Vt−1, Ut)
−
q̇(Vt−1)

q(Vt−1)

}

+ oP (1),

and Assumptions A3-A4 are met if A1-A2 holds for ft,θ(v, u) = cθ(v, u)/qθ(v).

Before describing the test and the parametric bootstrap procedure, set un,t,j = Mn,j(Yt,j) = En,j(Ut,j),

where

En,j(uj) =
1

n

n
∑

t=1

1(Ut,j ≤ uj) (21)

is the j-th marginal of En(u) = 1
n

∑n
t=1 1(Ut ≤ u), u ∈ [0, 1]d. Further set En = n1/2(En − C), Fn(u) =

(En1(u1), . . . , End(ud))
⊤,

Hn(v) =
(

F⊤
n (v11, . . . , v1d), . . . , F

⊤
n (vp1, . . . , vpd)

)⊤
,

v = (v11, . . . , v1d, . . . , vp1, . . . , vpd)
⊤ ∈ [0, 1]p×d, and Bn = n1/2(Bn − C⊥), where

Bn(u) =
1

n

n
∑

t=1

1 {Rt,θ0(Ut) ≤ u} , u ∈ [0, 1]d.

Define en,t = Rθn(un,t), t ∈ {1, . . . , n}. Then for p < t ≤ n, en,t = Gθn{Hn(Vt−1), Fn(Ut)}. In the

present context, recall that (Ut) is a stationary and ergodic Markov process so that (Vt−1, Ut) ∼ C. Under

the null hypothesis H0, the empirical distribution function

Dn(u) =
1

n

n
∑

t=1

1 (en,t ≤ u) , u ∈ [0, 1]d,

should be “close” to C⊥, the d-dimensional independence copula. Based on the results in Genest et al. (2009),

to test H0, it was proposed in Rémillard et al. (2011) to use the Cramér-von Mises type statistic

Sn = T (Dn) =

∫

[0,1]d
D2

n(u)du = n

∫

[0,1]d
{Dn(u)− C⊥(u)}

2 du (22)

=
n

3d
−

1

2d−1

n
∑

t=1

d
∏

k=1

(

1− e2n,tk
)

+
1

n

n
∑

t=1

n
∑

j=1

d
∏

k=1

{1−max (en,tk, en,jk)} ,
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where Dn = n1/2(Dn − C⊥). Thus assume that θn = Tn(U1, . . . , Un) and suppose that Sn = φ(Dn) is a

continuous functional of the empirical process Dn. The parametric bootstrap procedure can be described as

follows:

For k = 1, . . . , N , generate a stationary Markov process U∗, so that so that the joint law of

(U∗
k,j , . . . , U

∗
k,j+p) is Cθn , 1 ≤ j ≤ n−p and estimate θ by θ∗k,n = Tn

(

U∗
k,1, . . . , U

∗
k,n

)

. Then define

u∗k,n,t = F ∗
k,n

(

U∗
k,t

)

, and e∗k,n,t = Rt,θ∗
n,k

(

u∗k,n,t

)

, t ∈ {1, . . . , n}. Compute S∗
k,n = ψn

(

D∗
k,n

)

according to formula (22), where D∗
k,n(u) =

1
n

∑n
t=1 1(e

∗
k,n,t ≤ u).

Assuming that large values of Sn lead to the rejection of H0, an approximate P -value for the test based

on Sn is given by

1

N

N
∑

k=1

1(S∗
k,n > Sn).

5.1 Convergence of the empirical process D
n

In addition to Assumptions A1–A4, assume that En  E, where E is a continuous centered Gaussian process.

That condition yields the convergence of Dn, as well as the convergence of pseudo-likelihood estimators of θ.

See, e.g., Rémillard et al. (2011). In fact, a sufficient condition for the convergence of En is that the process

U is α-mixing, with α(n) ≤ cn−a, for some c > 0 and a > 1. Most copula families satisfy this property

(Rémillard et al., 2011). Under these conditions, it can also be shown that Cn = n1/2(Cn − C) C, where

Čn = n1/2(Čn − C) Č,

Cn(v, u) = n−1
n
∑

t=p+1

1(Hn(Vt−1) ≤ v, Fn(Ut) ≤ u),

Čn(v, u) = n−1
n
∑

t=p+1

1(Vt−1 ≤ v, Ut ≤ u),

and C has representation C(v, u) = Č(v, u) − F(u)⊤∇uC(v, u) − H(v)⊤∇vC(v, u), (v, u) ∈ [0, 1](p+1)d. Un-

der the smoothness assumptions on Gθ, it then follows that for all j = 1, . . . , d, n1/2
[

G
(j)
θn

{Hn(v), Fn(u)}

−G(j)(v, u)
]

converges weakly

Θ⊤Ġ(j)(v, u) +
d
∑

k=1

∂uk
G(j)(v, u)Ek(uk) +

p
∑

l=1

d
∑

k=1

∂vlkG
(j)(v, u)Ek(vlk).

Next, under Assumptions A1–A2, ∆Mt =
ċ(Vt−1,Ut)
c(Vt−1,Ut)

− q̇(Vt−1)
q(Vt−1)

, t > p, form a martingale difference sequence

satisfying the conditions of the Lindeberg-Feller CLT for martingales (Appendix C). As a result, Wn =

n−1/2
∑n

t=p+1 ∆Mt + oP (1) W ∼ Np (0,J ), where

J =

∫

(0,1)(p+1)×d

ċθ(v, u)ċθ(v, u)
⊤

cθ(v, u)
dvdu −

∫

(0,1)p×d

q̇θ(v)q̇θ(v)
⊤

qθ(v)
dv,

if the chain is ergodic. As said before, the latter is true because cθ(v, u) > 0 for all u, v ∈ (0, 1)(p+1)×d. By

Lemma 1,
d
∑

j=1

E
{

Ġ(j)(V, U)1{G(V, U) ≤ u}|G(j)(V, U) = uj

}

= γ(u) = E {B(u)W} .

Next, for any k ∈ {1, . . . , d}, and for any bounded continuous function h on [0, 1] so that h(0) = h(1) = 0,

set
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µk(u, h) =
d
∑

j=1

p
∑

l=1

E
{

∂vlkG
(j)(V, U)h(Vlk)1{G(V, U) ≤ u}|G(j)(V, U) = uj

}

+

d
∑

j=1

E
{

∂uk
G(j)(V, U)h(Uk)1{G(V, U) ≤ u}|G(j)(V, U) = uj

}

.

Therefore, using the results in Ghoudi and Rémillard (2004), one may conclude that Dn  D, where D(u) =

B(u)−Θ⊤γ(u)−
∑d

k=1 µk(u,Ek).

5.2 Validity of the parametric bootstrap

It follows from Theorem 1 that if θn is regular for θ, then the parametric bootstrap work if and only if

E{D(u)W} = 0 for all u ∈ [0, 1]d. This is the content of the next result which is proven in Appendix B.2.

Lemma 2 E{D(u)W} = 0 for all u ∈ [0, 1]d and E{C(v, u)W} = Ċ(v, u) for all (v, u) ∈ [0, 1](p+1)d.

We now give some examples of regular estimators.

Example 5 (Pseudo maximum likelihood) An obvious extension of the pseudo maximum likelihood

method (Genest et al., 1995) to the Markovian case consists is maximizing

n
∑

t=p+1

log







cθ

(

V̂t−1, Ût

)

qθ

(

V̂t−1

)







(23)

with respect to θ, where cθ is the density of Cθ, assumed to be non vanishing on (0, 1)(p+1)×d, and qθ is

the density of Cθ(v,1). Note that (23) is the logarithm of the conditional density of Up+1, . . . , Un, given

U1, . . . , Up. Under assumptions A1–A4 in Rémillard et al. (2011), and if the sequence Ut is α-mixing, then

the maximum likelihood estimator θ̃n obtained by maximizing

n
∑

t=p+1

log

{

cθ (Vt−1, Ut)

qθ (Vt−1)

}

(24)

with respect to θ behaves nicely. In fact, n1/2
(

θ̃n − θ
)

= J −1Wn + oP (1) Θ̃ = J−1W ∼ Np

(

0,J−1
)

. It

follows that n1/2 (θn − θ)  Θ̃ + Θ̌ ∼ Np (0, J), for some covariance matric J , if Lθ(v, u) =
ċθ(v,u)
cθ(v,u)

− q̇θ(v)
qθ(v)

is continuously differentiable with respect to (v, u) and Θ̌ = J −1
∫ {

∇uL
⊤
θ (v, u)F(u) +∇vL

⊤
θ (v, u)H(v)

}

dCθ(v, u). It then follows that θn is a regular estimator of θ, since by the proof of Lemma 2, E{F(u)W} = 0

and E{H(v)W} = 0, for all (v, u) ∈ [0, 1](p+1)d.

Example 6 (Moments-based estimators) Often, it can be shown that for some moments M, M =

K(θ), with K invertible and differentiable, and n1/2(Mn − M) = Hθ(Cn) + oP (1), for some continuous

linear function H with values in Rs. It then follows that θn = K−1(Mn) is a regular estimator of θ if

Hθ(Ċθ) = K ′(θ). In particular, Kendall’s tau and Spearman’s rho are moments that satisfy n1/2(Mn−M) =

Hθ(Cn) + oP (1).

6 An illustration

Consider a GARCH(1,1) model with GED innovations, i.e., Yt = µ+σtεt, where σ
2
t = ω+ασ2

t−1ε
2
t−1+βσ

2
t−1,

and εt has GED distribution with parameter ν > 0, with density hν(x) = ν
21+1/νbνΓ(1/ν)

e−
1
2 (

|x|
bν
)
ν

, and

bν = 2−1/ν
√

Γ(1/ν)
Γ(3/ν) . The innovation ε are independent and εt is independent of Ft−1. Note that the case

ν = 2 corresponds to the Gaussian distribution. From the results of Section 4.4, using the MLE or QMLE

estimates, the parametric bootstrap approach is valid.
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Implementing Khmaladze’s transform for Gaussian innovations is relatively easy, while implementing it

for the GED distribution is very difficult. However, the parametric bootstrap approach is always easy to

implement. Using the parametric bootstrap approach with the maximum likelihood estimator, we obtain

the following parameters for the returns of Apple (appl) from January 14th 2009 to January 14thm 2011.

µ̂ = 0.0028, ω̂ = 7.12 × 10−7, α̂ = 0.0817, β̂ = 0.8969, and ν̂ = 1.3511. The P -values corresponding to the

Kolmogorov-Smirnov test statistic (Kn) and the Cramér-von Mises statistic (Sn) are respectively 14.4% and

28.4%, using N = 1000 bootstrap samples. Hence the null hypothesis of a GARCH(1,1) model with GED

innovations is not rejected. For the Gaussian distribution however, corresponding to a GED with ν = 2, the

Kolmogorov-Smirnov and Cramér-von Mises statistics based on the Khmaladze’s transform, and both our

test statistics Kn and Sn yield P -values close to 0, rejecting the null hypothesis of a GARCH(1,1) model

with Gaussian innovations.

A Proofs of the main results

A.1 Proof of Theorem 1

The proof is very similar to the proof of the analogous result in Genest and Rémillard (2008) obtained in the

serial independent case; however it is included here for sake of completeness.

Suppose (Ỹ1, . . . , Ỹn) is an independent copy of (Y1, . . . , Yn). Denote their joint law by Pn. Set ℓ̃n =

ℓn(Ỹ1, . . . , Ỹn, θn), and denote by P ∗
n the joint law of (Y1, . . . , Yn, Ỹ1, . . . , Ỹn) under the change of measure

defined by
dP∗

n

dPn
= exp(ℓ̃n). It is easy to check that under Pn, and conditionally on (Y1, . . . , Yn), (Ỹ1, . . . , Ỹn)

has law Pθn , i.e., under Pn, (Ỹ1, . . . , Ỹn) has the same law as the bootstrap sample (Y ∗
1 , . . . , Y

∗
n ). The rest

of the proof is based on a very powerful result, called “Le Cam Third Lemma”, that can be used to transfer

any convergence result valid for statistics of (Ỹ1, . . . , Ỹn) into a corresponding result for the bootstrap sample

(Y ∗
1 , . . . , Y

∗
n ). However, it is much easier to work with (Ỹ1, . . . , Ỹn), since it is independent of Y1, . . . , Yn)

and its law is the same. In particular, if Sn is any statistic of (Y1, . . . , Yn), i.e., Sn = ψn(Y1, . . . , Yn), let

S̃n be its independent copy based on (Ỹ1, . . . , Ỹn), i.e., S̃n = ψn(Ỹ1, . . . , Ỹn), and let S∗
n be its bootstrapped

version, i.e. S∗
n = ψn(Y

∗
1 , . . . , Y

∗
n ). In particular, define (W̃n, θ̃n, Ãn), (W

∗
n, , θ

∗
n,A

∗
n) accordingly. Further set

Θ̃n = n1/2(θ̃n − θ) and Θ∗
n = n1/2(θ∗n − θ).

By construction, under Pn, (W̃n, Θ̃n, Ãn) is an independent copy of (Wn,Θn,An), so

(Wn,Θn,An, W̃n, Θ̃n, Ãn) (W,Θ,A, W̃, Θ̃, Ã),

where (W̃, Θ̃, Ã) is an independent copy of (W,Θ,A). Using the tightness of Θn and the joint convergence

of (Θn, W̃n), it follows from (1) that

ℓ̃n = ℓn(Ỹ1, . . . , Ỹn, θn) = Θ⊤
n W̃n −

1

2
Θ⊤

nJΘn + oP (1),

as n→ ∞. Consequently, setting ζn = exp(ℓ̃n), one also gets

(ζn,Wn,Θn,An, W̃n, Θ̃n, Ãn) (ζ,W,Θ,A, W̃, Θ̃, Ã),

with ζ = exp
(

Θ⊤W̃− 1
2Θ

⊤JΘ
)

. Note that ζ > 0 and E(ζ|W,Θ,A) = 1 since W̃ ∼ N(0,J ) and is

independent of (W,Θ,A), so ζ defines a change of measure.

Invoking Le Cam’s Third Lemma (van der Vaart andWellner, 1996), one can now see that P ∗
n is contiguous

with respect to Pn, and one may conclude that

(Wn,Θn,An,W
∗
n,Θ

∗
n,A

∗
n) (W,Θ,A,Θ∗,A∗),

where

E{L(W,Θ,A,Θ∗,A∗)} = E{ζL(W,Θ,A, Θ̃, Ã)},
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for any bounded continuous function L on Rs × Rs × D(T,Rm) × Rs × D(T,Rm). It remains to study the

law of (W,Θ,A, Θ̃, Ã) under the change of measure ζ. To do so, it is enough to study the law of any linear

combination of

W,Θ,A(t1), . . . ,A(tk), Θ̃, Ã(s1), . . . , Ã(sj).

Therefore, to complete the proof, it suffices to study the law of (ξ1, ξ2) under the change of measure, for

any random variables ξ1 and ξ2, with ξ2 independent of (W,Θ,A, ξ1), (ξ1, ξ2, W̃) centered Gaussian, with

E(ξ22) = σ2 and E
(

ξ2W̃
)

= γ. To that end, let (ξ∗1 , ξ
∗
2) denote the associated vector under the change of

measure and note that for every λ1, λ2 ∈ R, one has

E {exp (iλ1ξ
∗
1 + iλ2ξ

∗
2)} = E{ζ exp(iλ1ξ1 + iλ2ξ2)}

= E{exp(iλ1ξ1 + iλ2ξ2 +Θ⊤W̃−Θ⊤JΘ/2)}

= E{exp(iλ1ξ − λ22σ
2/2 + iλ2γ

⊤Θ)}

= E[exp{iλ1ξ1 + iλ2(ξ2 + γ⊤Θ)}].

As a result, (ξ∗1 , ξ
∗
2) has the same law as (ξ1, ξ2 + γ⊤Θ). 2

A.2 Proofs of Theorems 2–3

Let δ > 0 be given. First, note that because Θn is tight, one can find M > 0 such that P (‖Θ‖ > M) < δ.

Also, one can find a finite number of vectors a1, . . . , am, m depending on M and δ, so that

{‖Θn‖ ≤M} ⊂
m
⋃

k=1

{‖θn − θn,k‖ < δ/n1/2},

where θn,k = θ+n−1/2ak, k = 1, . . . ,m. The trick now is to replace the random value Θn by the deterministic

values θn,k, using partitions of unity as in Ghoudi and Rémillard (2004). See also van der Vaart and Wellner

(2007) who used the same trick.

Under P = Pθ0 , Wn  W ∼ N(0,J ). Since

log

(

dPθn,k

dP

∣

∣

∣

∣

Fn

)

 a⊤k W−
1

2
a⊤k J ak,

then under Pθn,k
, Wn  W(k) = W+ J ak, so under Pθn,k

,

log

(

dP

dPθn,k

∣

∣

∣

∣

Fn

)

 −a⊤k W
(k) +

1

2
a⊤k J ak = −a⊤k W−

1

2
a⊤k J ak.

Next, again invoking Le Cam’s Third Lemma (van der Vaart and Wellner, 1996), under Pθn,k
, D

(k)
n  B,

where B is a C⊥-Brownian bridge, then under P , Dn  B − a⊤k γ, where γ(u) = E {B(u)W}. As a result,

going back to Θ, under P , Dn  B−Θ⊤γ, completing the proof of Theorem 2.

The proof of Theorem 3 goes along the same lines. Under Pθn,k
, n1/2(Kn −Kθn,k

)  BK , where BK is

a K-Brownian bridge and E {BK(x)W} = γK(x). Hence, by Le Cam’s Third Lemma, one gets Kn  K =

BK − a⊤k γK . Going back to Θ, one may conclude that Kn  BK −Θ⊤γK , completing the proof of Theorem

3.
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B Auxiliary results

B.1 Proof of Lemma 1

It follows easily that

E{B(u)W} = Eπ

{

1(Ut ≤ u)
ġ(Xt)

g(Xt)

}

=

∫

1{G(z, y) ≤ u}ġ(z, y)λ(dy)π(dz),

for any t > p. Here Eπ stands for the expectation under the stationary distribution π of Zt.

Next, set y(j) = (y1, . . . , yj), and define

g(j−1)
(

z, y(j−1)
)

=

∫

g(j)(z, y(j), yj+1)λj(dyj),

1 ≤ j ≤ d, with g(d)(z, y) = g(z, y). Note that for any j = 1, . . . , d,

G(j) (z, y) =

∫ yj

−∞

g(j)
(

z, y(j−1), w
)

λj(dw)/g
(j−1)

(

z, y(j−1)
)

. (25)

Next, using (25), one gets

∫

1
{

G(d)(z, y) ≤ ud

}

g
(d)
θ

(

z, y(d−1), yd

)

λd(dyd)

= g
(d−1)
θ

(

z, y(d−1)
)

G
(d)
θ

[

z, y(d−1),
{

G(d)
}−1 (

z, y(d−1), ud

)

]

,

so using Lebesgue’s dominated convergence,

∫

1
{

G(d)(z, y) ≤ ud

}

ġ
(

z, y(d−1), yd

)

λd(dyd)

= ∂θ

[∫

1
{

G(d)(z, y) ≤ ud

}

g
(d)
θ

(

z, y(d−1), yd

)

λd(dyd)

]

θ=θ0

= ∂θ

[

g
(d−1)
θ

(

z, y(d−1)
)

G
(d)
θ

{

z, y(d−1),
{

G(d)
}−1 (

z, y(d−1), ud

)

}]

θ=θ0

= ġ(d−1)
(

z, y(d−1)
)

G(d)

[

z, y(d−1),
{

G(d)
}−1 (

z, y(d−1), ud

)

]

+g(d−1)
(

z, y(d−1)
)

Ġ(d)

[

z, y(d−1),
{

G(d)
}−1 (

z, y(d−1), ud

)

]

= udġ
(d−1)

(

z, y(d−1)
)

+g(d−1)
(

z, y(d−1)
)

Ġ(d)

[

z, y(d−1),
{

G(d)
}−1 (

z, y(d−1), ud

)

]

.

As a result,

E{B(u)W} = γd(u)

+ud

∫ ∫

ġ(d−1)
(

(z, y(d−1)
)

d−1
∏

k=1

1
{

G(k)
(

z, y(k)
)

≤ uk

}

×λ(d−1)
(

dy(d−1)
)

π(dz).

Using (25) and iterating the last procedure, one ends up with
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E{B(u)W} = γ2(u) + · · ·+ γd(u)

+





d
∏

j=2

uj





∫ ∫

ġ(1)(z, y1)1
{

G(1)(z, y1) ≤ u1

}

λ1(dy1)π(dz).

Finally,
∫

ġ(1)(z, y1)1
{

G(1)(z, y1) ≤ u1

}

λ1(dy1)

= ∂θ

[∫

g
(1)
θ (z, y1)1

{

G(1)(z, y1) ≤ u1

}

λ1(dy1)

]

θ=θ0

= ∂θ

[∫

G
(1)
θ

{

z,
{

G(1)
}−1

(z, u1)

}]

θ=θ0

= Ġ(1)

{

z,
{

G(1)
}−1

(z, u1)

}

.

As a result

γ1(u) =





d
∏

j=2

uj





∫ ∫

ġ(1)(z, y1)1
{

G(1)(z, y1) ≤ u1

}

λ1(dy1)π(dz),

so E{B(u)W} = γ(u), completing the proof.

B.2 Proof of Lemma 2

Since one already knows that E{B(u)W} = γ(u), E{D(u)W} = 0 is equivalent to
∑d

k=1 E{µk(u,Ek)W} = 0,

u ∈ [0, 1]d. From the very definition of µk, to prove the previous equality, it is sufficient to show that

E{Ek(s)W} = 0, for any s ∈ [0, 1]. That follows from the fact that E(CW) = Ċ, proven next, since

E{Ek(s)W} = Ċ(1, 1, . . . , 1, s, 1, . . . , 1) = ∂θ [s]θ=θ0
= 0.

Since C(v, u) = Č(v, u)− F(u)⊤∇uC(v, u)−H(v)⊤∇vC(v, u), it follows from the proof of Lemma 2 that

E{C(v, u)W} = E{Č(v, u)W}, for all (v, u) ∈ [0, 1](p+1)d.

Now

E{Č(v, u)W} = lim
n→∞

n−1E





n
∑

i=p+1

n
∑

t=p+1

{

ċ(Vt−1, Ut)

c(Vt−1, Ut)
−
ḋ(Vt−1)

d(Vt−1)

}

1(Vt−1 ≤ v, Ut ≤ u)





= lim
n→∞

n−1
n
∑

t=p+1

E

[{

ċ(Vt−1, Ut)

c(Vt−1, Ut)
−
ḋ(Vt−1)

d(Vt−1)

}

1(Vt−1 ≤ v, Ut ≤ u)

]

+ lim
n→∞

n−1
∑

p+1≤t<i≤n

E

[{

ċ(Vt−1, Ut)

c(Vt−1, Ut)
−
ḋ(Vt−1)

d(Vt−1)

}

1(Vt−1 ≤ v, Ut ≤ u)

]

.

First, E
{

ċ(Vt−1,Ut)
c(Vt−1,Ut)

1(Vt−1 ≤ v, Ut ≤ u)
}

= Ċ(v, u), since

∫

(0,1)(p+1)d

ċ(z, w)1(z ≤ v, w ≤ u)dzdw = ∂θ

[

∫

(0,1)(p+1)d

c(z, w)1(z ≤ v, w ≤ u)dzdw

]

θ=θ0

= ∂θ [C(v, u)]θ=θ0
= Ċ(v, u).

Next, since
∫

(0,1)d c(u, v)du = q(v), one gets, whenever p+ 1 ≤ t < i,

E

{

ċ(Vt−1, Ut)

c(Vt−1, Ut)
1(Vi−1 ≤ v, Ui ≤ u)

}

= E

{

q̇(Vt)

q(Vt)
1(Vi−1 ≤ v, Ui ≤ u)

}

,
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by using the Markov property and integrating with respect to Ut−p. As a result,

n
∑

t=p+1

E

[{

ċ(Vt−1, Ut)

c(Vt−1, Ut)
−
q̇(Vt−1)

q(Vt−1)

}

1(Vt−1 ≤ v, Ut ≤ u)

]

+
∑

p+1≤t<i≤n

E

[{

ċ(Vt−1, Ut)

c(Vt−1, Ut)
−
q̇(Vt−1)

q(Vt−1)

}

1(Vi−1 ≤ v, Ui ≤ u)

]

= (n− p)Ċ(v, u)−
n
∑

t=p+1

E

[

q̇(Vt−1)

q(Vt−1)
1(Vt−1 ≤ v, Ut ≤ u)

]

+
∑

p+1≤t<i≤n

E

[{

q̇(Vt)

q(Vt)
−
q̇(Vt−1)

q(Vt−1)

}

1(Vi−1 ≤ v, Ui ≤ u)

]

= (n− p)Ċ(v, u)−
n
∑

i=p+1

E

{

q̇(Vp)

q(Vp)
1(Uik ≤ s)

}

.

Hence, since Cn converges in probability to C, it follows that

E{C(v, u)W} = Ċ(v, u)− lim
n→∞

n−1
n
∑

i=p+1

E

{

q̇(Vp)

q(Vp)
1(Vi−1 ≤ v, Ui ≤ u)

}

= Ċ(v, u)− C(v, u)E

{

q̇(Vp)

q(Vp)

}

= Ċ(v, u)− C(v, u)

∫

(0,1)pd
q̇(v)dv = Ċ(v, u).

Hence one may conclude that E{C(v, u)W} = Ċ(v, u) for all (v, u) ∈ [0, 1](p+1)d.

B.3 Proof of Proposition 1

Suppose (τ∗t , Y
∗
t )

n
t=0 is an independent copy of the chain (τt, Yt)

n
t=0 with parameters (Q0, θ0). Denote by F∗

k

the sigma-algebra generated by (τ∗t , Y
∗
t )

k
t=0. Suppose that (Qn, θn) are n

1/2-consistent estimates of (Q0, θ0)

and define the law PQ0,θ0 ⊗ PQn,θn on Fn ∨ F∗
n by

ℓn = log

(

dPQ0,θ0 ⊗ PQn,θn

dPQ0,θ0 ⊗ PQ0,θ0

)∣

∣

∣

∣

Fn∨F∗
n

=
n
∑

t=1

log

{

Qn(τ
∗
t−1, τ

∗
t )

Q0(τ∗t−1, τ
∗
t )

×
fθn(τ

∗
t , Y

∗
t−1, Y

∗
t )

fθ0(τ
∗
t , Y

∗
t−1, Y

∗
t )

}

=

n
∑

t=1

log

{

Qn(τ
∗
t−1, τ

∗
t )

Q0(τ∗t−1, τ
∗
t )

}

+

n
∑

t=1

log

{

fθn(τ
∗
t , Y

∗
t−1, Y

∗
t )

fθ0(τ
∗
t , Y

∗
t−1, Y

∗
t )

}

.

Then under PQ0,θ0 ⊗ PQn,θn , given Fn, the Markov chain (τ∗t , Y
∗
t ) is determined by law PQn,θn .

For simplicity, set Q = Q0 and f = fθ0 . Further set Am = {(i, j); i, j ∈ {1, . . . ,m}, j 6= i}.

Then, setting N∗
n(i, j) =

∑n
t=1 1(τ

∗
t−1 = i, τ∗t = j), and N∗

n(i, ·) =
∑n

t=1 1(τ
∗
t−1 = i), one gets

ℓn,1 =

n
∑

t=1

log

{

Qn(τ
∗
t−1, τ

∗
t )

Q(τ∗t−1, τ
∗
t )

}

=
m
∑

i=1

m
∑

j=1

n
∑

t=1

1(τ∗t−1 = i, τ∗t = j) log

{

Qn(i, j)

Q(i, j)

}
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=

m
∑

i=1

m
∑

j=1

N∗
n(i, j) log

{

Qn(i, j)

Q(i, j)

}

=
1

n1/2

m
∑

i=1

m
∑

j=1

N∗
n(i, j)

Q(i, j)
Qn(i, j)−

1

2n

m
∑

i=1

m
∑

j=1

N∗
n(i, j)

{Q(i, j)}2
{Qn(i, j)}

2 + oP (1)

=
1

n1/2

∑

(i,j)∈Am

{

N∗
n(i, j)

Q(i, j)
−
N∗

n(i, i)

Q(i, i)

}

Qn(i, j)−
1

2n

∑

(i,j)∈Am

N∗
n(i, j)

{Q(i, j)}2
{Qn(i, j)}

2

−
1

2n

m
∑

i=1

N∗
n(i, i)

{Q(i, i)}2







−
∑

j 6=i

Qn(i, j)







2

+ oP (1)

= Q⊤
nW

∗
n,1 −

1

2
Q⊤

nAnQn + oP (1),

where Qn and W∗
n,1 are respectively the m(m − 1)-dimensional vectors with components n1/2{Qn(i, j) −

Q(i, j)}, and n−1/2
{

N∗
n(i,j)

Q(i,j) −
N∗

n(i,i)
Q(i,i)

}

, (i, j) ∈ Am, ∆n is the m(m − 1) ×m(m − 1) diagonal matrix with

element
N∗

n(i,j)
n{Q(i,j)}2 at (i, j) ∈ Am, and An = ∆n+

1
n

∑m
i=1

N∗
n(i,i)

{Q(i,i)}2 1i1
⊤
i , where 1i is the m(m−1)-dimensional

vector with zeros everywhere but at elements (i, j) where it is 1, whenever j 6= i. Note that An → A a.s.,

where A = ∆+
∑m

i=1
πi

Q(i,i)1i1
⊤
i , and ∆ is the m(m− 1)×m(m− 1) diagonal matrix with element πi

Q(i,j at

(i, j) ∈ Am.

As a result,

ℓn,1 = Q⊤
nW

∗
n,1 −

1

2
Q⊤

nAQn + oP (1). (26)

Further note that W∗
n,1  W∗

1, where W
∗
1 is centered Gaussian with covariance matrix A. To see that, set

ζt =
1

Q(i,j)1(τ
∗
t−1 = i, τ∗t = j)− 1

Q(i,i)1(τ
∗
t−1 = i, τ∗t = i) and ξt =

1
Q(α,β)1(τ

∗
t−1 = α, τ∗t = β)− 1

Q(α,α)1(τ
∗
t−1 =

α, τ∗t = α). Then E(ζt|Ft−1) = E(ξt|Ft−1) = 0, so E (ζtξk) = 0 if t 6= k and

E (ζtξt) =
πi

Q(i, j)
IiαIjβ +

πi
Q(i, i)

Iiα.

As a result, if λ is a m(m− 1)-dimensional vector, then one has

Var(λ⊤W∗
1) =

∑

(i,j)∈Am

∑

(α,β)∈Am

λ(i, j)λ(α, β)

{

πi
Q(i, j)

IiαIjβ +
πi

Q(i, i)
Iiα

}

=
∑

(i,j)∈Am

πiλ
2(i, j)

Q(i, j)
+

m
∑

i=1

πi
Q(i, i)







∑

j 6=i

λ(i, j)







2

= λ⊤Aλ. (27)

Next, set

W∗
n,2 = n−1/2

n
∑

t=1

ḟ(τ∗t , Y
∗
t−1, Y

∗
t )

f(τ∗t , Y
∗
t−1, Y

∗
t )
,

and remark that
ḟ(τ∗

t ,Y
∗
t−1,Y

∗
t )

f(τ∗
t ,Y

∗
t−1,Y

∗
t ) is a difference martingale since for any i ∈ {1, . . . ,m} and any z ∈ Rd,

∫

ḟ(i, z, y)dy = 0. (28)

Furthermore,

Jf,n =
n
∑

t=1

{

f̈(τ∗t , Y
∗
t−1, Y

∗
t )

f(τ∗t , Y
∗
t−1, Y

∗
t )

−
ḟ(τ∗t , Y

∗
t−1, Y

∗
t )ḟ(τ

∗
t , Y

∗
t−1, Y

∗
t )

⊤

f2(τ∗t , Y
∗
t−1, Y

∗
t )

}
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converges in probability to −cIf , where

Jf =

m
∑

i=1

m
∑

j−1

πiQ(i, j)

∫ ∫

ḟ(j, z, y)ḟ(j, z, y)⊤

f(j, z, y)
g(i, z)dzdy,

the sequence (τ∗t , Y
∗
t−1, Y

∗
t ) being ergodic.

By the central limit theorem for martingales, e.g., Durrett (1996), one may conclude that W∗
n,2  

N(0,Jf). One can also show that the covariance between Wn,1 and W∗
n,2 is zero, again because of (28).

From the calculation in Section 4.2, it follows that

ℓn,2 =

n
∑

t=1

log

{

fθn(τ
∗
t , Y

∗
t−1, Y

∗
t )

f(τ∗t , Y
∗
t−1, Y

∗
t )

}

= Θ⊤
nW

∗
n,2 −

1

2
Θ⊤

nJf,nΘn + oP (1)

= Θ⊤
nW

∗
n,2 −

1

2
Θ⊤

nJfΘn + oP (1).

As a result, ℓn = Q⊤
nW

∗
n,1 −

1
2Q

⊤
nAQn + Θ⊤

nW
∗
n,2 −

1
2Θ

⊤
nJfΘn + oP (1). Finally, by construction, W∗

n,1 and

W∗
n,2 are independent of (Qn,Θn) and one may conclude that

(Qn,Θn,W
∗
n,1,W

∗
n,1) (Q,Θ,W∗

1,W
∗
2),

where the latter is a centered Gaussian vector with (W∗
1,W

∗
2) independent of (Q,Θ). Furthermore, since the

covariance between W∗
n,1 and W∗

n,2 is zero, it follows that W∗
1 and W∗

2 are independent, with W∗
1 ∼ N(0, A)

and W∗
2 ∼ N(0,Jf ). As a result,

(Qn,Θn,W
∗
n,1,W

∗
n,1, ℓn) (Q,Θ,W∗

1,W
∗
2, ℓ),

with ℓ = Q⊤W∗
1 −

1
2Q

⊤AQ+Θ⊤W∗
2 −

1
2Θ

⊤JfΘ. Furthermore, using (27) and independence of W∗
1 and W∗

2,

one has E {exp(ℓ)|Q,Θ} = 1, showing that E {exp(ℓ)} = 1.

It remains now to show that the MLE estimators (Qn, θn) based of the EM algorithm, and depending

only on Y1, . . . , Yn are regular. According to Cappé et al. (2005), one has
[

Qn

Θn

]

= J−1Zn = J−1

[

Zn,1

Zn,2

]

,

where Zn,1 is a m(m− 1)-dimensional vector with component Zn,1(i, j),(i, j) ∈ Am given by

Zn,1(i, j) = n−1/2
n
∑

t=1

ηt(i, j),

where the martingale differences ηt are defined by

ηt(i, j) = E

[{

Nt(i, j)

Q(i, j)
−
Nt(i, i)

Q(i, i)

}∣

∣

∣

∣

Yt

]

− E

[{

Nt−1(i, j)

Q(i, j)
−
Nt−1(i, i)

Q(i, i)

}∣

∣

∣

∣

Yt−1

]

,

and Zn,2 = n−1/2
∑n

t=1 Ξt, where the martingale differences Ξt are defined by

Ξt = E

[

t
∑

k=1

ḟ(τk, Yk−1, Yk)

f(τk, Yk−1, Yk)

∣

∣

∣

∣

∣

Yt

]

− E

[

t−1
∑

k=1

ḟ(τk, Yk−1, Yk)

f(τk, Yk−1, Yk)

∣

∣

∣

∣

∣

Yt−1

]

,

where Yt is the σ-algebra generated by τ0, Y0, . . . , Yt. Moreover Zn  Z, where Z is centered Gaussian

with covariance matrix J . Therefore, to show that (Qn, θn) are regular, it suffices to show that E
(

WZ⊤
)

=

J . First, note that E{Nn(i, j)|Ft} = Nt(i, j) +
∑m

l=1

∑n
k=t+1 1(τt = l)

(

Qk−1−t
)

li
Qij . As a result, since

Yt ⊂ Ft, it follows that E {Wn,1(i, j)|Yt} − E {Wn,1(i, j)|Yt−1} = n−1/2ηt(i, j), (i, j) ∈ Am. Therefore,

Zn,1 = E(Wn,1|Yn). Similarly, E {Wn,2|Yt}−E {Wn,2|Yt−1} = n−1/2Ξt, so Zn,2 = E(Wn,2|Yn). Combining

the two equalities, one obtains that Zn = E(Wn|Yn). Hence, as n → ∞, E
(

WnZ
⊤
n

)

= E
(

ZnZ
⊤
n

)

→ J ,

completing the proof.
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B.4 Proof of Proposition 2

It follows that for j, k ∈ {1, . . . , s2},

∂θ2,jL = −2

n
∑

t=1

(yt − µt)
⊤h−1

t ∂θ2,jµt −
n
∑

t=1

(yt − µt)
⊤h−1

t ∂θ2,jhth
−1
t (yt − µt)

+

n
∑

t=1

∂θ2,j |ht|

|ht|

and

∂θ2,j∂θ2,kL = −2

n
∑

t=1

(yt − µt)
⊤h−1

t ∂θ2,j∂θ2,kµt + 2

n
∑

t=1

(yt − µt)
⊤h−1

t ∂θ2,jhth
−1
t ∂θ2,kµt

+2

n
∑

t=1

(yt − µt)
⊤h−1

t ∂θ2,khth
−1
t ∂θ2,jµt + 2

n
∑

t=1

∂θ2,jµ
⊤
t h

−1
t ∂θ2,kµt

+

n
∑

t=1

(yt − µt)
⊤h−1

t

{

2∂θ2,jhth
−1
t ∂θ2,kht − ∂θ2,j∂θ2,kht

}

h−1
t (yt − µt)

+

n
∑

t=1

[

∂θ2,j∂θ2,k |ht|

|ht|
−
∂θ2,j |ht|∂θ2,k |ht|

|ht|2

]

.

Note that since Trace
{

h−1
t ∂θ2,j

}

= ∂θ2,j log |ht|, it follows that

∂θ2,j∂θ2,k |ht|

|ht|
−
∂θ2,j |ht|∂θ2,k |ht|

|ht|2
= Trace

{

h−1
t ∂θ2,j∂θ2,kht − h−1

t ∂θ2,khth
−1
t ∂θ2,jht

}

.

Set ζt,j = 2ε⊤t σ
−1
t ∂θ2,jµt +Trace

{

σ−1
t ∂θ2,jht

(

σ⊤
t

)−1 (
εtε

⊤
t − I

)

}

, and

Vt,jk = 2ε⊤t σ
−1
t

{

∂θ2,jhth
−1
t ∂θ2,kµt + ∂θ2,khth

−1
t ∂θ2,jµt − ∂θ2,j∂θ2,kµt

}

+2∂θ2,jµth
−1
t ∂θ2,kµt +Trace

{

h−1
t ∂θ2,khth

−1
t ∂θ2,jht

}

+Trace
{

σ−1
t

(

2∂θ2,jhth
−1
t ∂θ2,kht − ∂θ2,j∂θ2,kht

) (

σ⊤
t

)−1 (
εtε

⊤
t − I

)

}

,

and note that E(ζt|Ft−1) = 0 and

E(Vt,jk|Ft−1) = 2∂θ2,jµth
−1
t ∂θ2,kµt +Trace

{

h−1
t ∂θ2,jhth

−1
t ∂θ2,kht

}

,

1 ≤ j, k ≤ s2. Assuming that 1
n

∑n
t=1 Vt

Pr
−→ V and 1

n

∑n
t=1E(Vt|Ft−1)

Pr
−→ V , then Θn,2 = n−1/2

∑n
t=1

V −1ζt + oP (1).

Finally, E (ζtξt,1|Ft−1) = 0 and

E (ζt,jξt,2,k|Ft−1) = 2∂θ2,jµth
−1
t ∂θ2,kµt + 2Trace

(

h−1
t ∂θ2,jhth

−1
t ∂θ2,kσtσ

⊤
t

)

= E(Vt,jk|Ft−1),

since h−1
t ∂θ2,jhth

−1
t is symmetric. As a result, if (Θn,2,Wn)  (Θ2,W), then E

(

Θ2W
⊤
)

= (0, I)⊤. Hence,

if θn,1 is a regular estimator of θ1, then θn is a regular estimator of θ.

C Central limit theorem for dependent variables

The following theorem is proven in Durrett (1996).

Theorem 4 (Lindeberg-Feller CLT for Martingales) Suppose that E(Xn,m|Fn,m−1) = 0 and set Vn,k

=
∑k

m=1E(X2
n,m|Fn,m−1). Set Sn(t) =

∑[nt]
m=1Xn,m, t ∈ [0, 1]. If, for every t ∈ [0, 1], Vn,[nt]

Pr
−→ t and

∑n
m=1 E

{

X2
n,m1(|Xn,m| > ǫ)|Fn,m−1

} Pr
−→ 0, for every ǫ > 0, then Sn  β, where β is a Brownian motion,

so Sn(1) β(1) ∼ N(0, 1).
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