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Abstract

The sophisticated and automated means of data collection used by an increasing number of institu-
tions and companies leads to extremely large datasets. Subset selection in regression is essential when
a huge number of covariates can potentially explain a response variable of interest. The recent statis-
tical literature has seen an emergence of new selection methods that provide some type of compromise
between implementation (computational speed) and statistical optimality (e.g. prediction error mini-
mization). Global methods such as Mallows’ Cp have been supplanted by sequential methods such as
stepwise regression. More recently, streamwise regression, faster than the former, has emerged. A recently
proposed streamwise regression approach based on the variance inflation factor (VIF) is promising but
its least-squares based implementation makes it susceptible to the outliers inevitable in such large data
sets. This lack of robustness can lead to poor and suboptimal feature selection. This article proposes a
robust VIF regression, based on fast robust estimators, that inherits all the good properties of classical
VIF in the absence of outliers, but also continues to perform well in their presence where the classical ap-
proach fails. The analysis of two real data sets shows the necessity of a robust approach for policy makers.

Key Words: Variable selection; Linear regression; Multicollinearity, M -estimator.

Résumé

Un nombre croissant d’établissements et de compagnies utilisent des moyens sophistiqués et automa-
tisés de collection de données qui mènent à des ensembles de données extrêmement grands. Lorsqu’il existe
un nombre énorme de variables explicatives pour une variable réponse, le choix de sous-ensembles dans
la régression est essentiel. La littérature statistique récente a vu l’apparition de nouvelles méthodes de
sélection qui fournissent un certain type de compromis entre l’exécution (la vitesse de calcul) et l’optimalité
statistique (par exemple, la minimisation de l’erreur de prévision). Des méthodes globales telles que le
Cp de Mallows ont été supplantées par des méthodes séquentielles telles que la régression stepwise. Plus
récemment, la régression streamwise, plus rapide que cette dernière, a émergé. Une approche récemment
proposée de régression streamwise basée sur le variance inflation factor (VIF) est prometteuse, mais son
implémentation basée sur les moindres carrés la rend susceptible aux valeurs aberrantes inévitables dans
de grands ensembles de données. Ce manque de robustesse peut mener à une sélection mauvaise et sous-
optimale. Cet article propose une régression VIF robuste, basée sur des estimateurs robustes rapides,
qui hérite de toutes les bonnes propriétés de VIF classique dans l’absence de valeurs aberrantes, mais
continue également de bien performer dans leur présence, où l’approche classique échoue. L’analyse de
deux vrais jeux de données montre la nécessité d’une approche robuste pour les responsables de politiques
économique, sociale et juridique.

Acknowledgments: The first author acknowledges the support of the Natural Sciences and Engineering
Research Council of Canada. The second author acknowledges the support of the Swiss National Science
Foundation (grant no 100014-131906).
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1 Introduction

Datasets with millions of observations and a huge number of variables are now quite common, especially
in business- and finance-related fields, as well as computer sciences, health sciences, etc. An important

challenge is to provide statistical tools and algorithms that can be used with such datasets. In particular, for

regression models, a first data analysis requires that the number of potential explanatory variables be reduced

to a reasonable and tractable amount. Consider p potential explanatory variables [1 x1 . . . xp]
T = x and a

response variable y observed on n subjects. The classical normal linear model supposes y|x ∼ N(xTβ;σ2)
with slope parameters β = [β0, β1, . . . , βp]

T . Let also X = [1 xj ]j=1,...,p be the n × (p + 1) design matrix

with 1 a vector of ones. The aim is to find a subset of explanatory variables that satisfies a given criterion

and such that the regression model holds.

The selection criteria are numerous and can be based on prediction, fit, etc. The available selection

procedures can be broadly classified into three classes according to their general strategy and, as a result,
their computational speed. A first class considers all the possible combinations of covariates as potential

models, evaluates each according to a fixed criterion, and chooses the model which best suits the selected

criterion. A second class is formed of sequential selection procedures in which a covariate at a time is entered

in (or removed from) the model, based on a criterion that can change form one step to the next and that
is computed for all potential variables to enter (or to exit) until another criterion is reached. Finally, the

third class of selection procedures is also sequential in nature, but each covariate is only considered once as a

potential covariate. For the first class, we find criteria such as the AIC (Akaike 1973), BIC (Schwarz 1978),

Mallows’ Cp (Mallows 1973), cross-validation, etc (see also Efron 2004). These methods are not adapted to

large datasets since the number of potential models becomes too large and the computations are no longer
feasible. For the second class, we find for example the classical stepwise regression which can be considered

as a simple algorithm to compute the estimator of regression coefficients β that minimizes an lq penalized

sum of squared errors ‖y −Xβ‖22 + λq‖β‖lq , with q = 0, i.e. ‖β‖l0 =
∑p

j=1 η(βj 6= 0) (see Lin, Foster, and

Ungar 2011). Fast algorithms for stepwise regressions are available, e.g. Foster and Stine (2004). Procedures
for the l1 problem are also available, e.g. Lasso/LARS (Efron, Hastie, Johnstone, and Tibshirani 2004), the

Dantzig Selector (Candes and Tao 2007), or coordinate descent (Friedman, Hastie, and Tibshirani 2010). But

these algorithms may also become very slow for large data sets, not only because all remaining variables are

evaluated at each stage, but also because the penalty λq needs to be computed, and often via cross-validation.

The last class is a variation of stepwise regression in which covariates are tested sequentially but only once

for addition to the model. An example is the streamwise regression of Zhou, Foster, Stine, and Ungar (2006)

which uses the α-investing rule (Foster and Stine 2008), is very fast, and guards against overfitting. An

improved streamwise regression approach was recently proposed in Lin, Foster, and Ungar (2011) where a

very fast to compute test statistic based on the variance inflation factor (VIF) of the candidate variable given
the currently selected model is proposed. The approach takes into account possible multicollinearity, seeking

to find the best predictive model, even if it is not the most parsimonious. Comparisons in Lin, Foster, and

Ungar (2011) establish that the method performs well and is the fastest available.

Our concern in this paper is to provide model selection tools for the regression model that are robust

to small model deviations. As argued in Dupuis and Victoria-Feser (2011) (see also Ronchetti and Staudte
1994), spurious model deviations such as outliers can lead to a completely different, and suboptimal, selected

model when a non robust criterion, like Mallows’ Cp or the VIF, is used. This happens because under slight

data contamination, the estimated model parameters, using for example the least squares estimator (LS), and

consequently the model choice criterion can be seriously biased. The consequence is that when the estimated

criteria are compared to an absolute level (like a quantile of the χ2 distribution), the decisions are taken at the
wrong level. For the first class of selection procedures, robust criteria have been proposed such as the robust

AIC of Ronchetti (1982), the robust BIC of Machado (1993), the robust Mallows’ Cp of Ronchetti and Staudte

(1994) and a robust criterion based on cross-validation (CV) in Ronchetti, Field, and Blanchard (1997). Since

standard robust estimators are impossible to compute when the number of covariates is too large, Dupuis and
Victoria-Feser (2011) proposed the use of a forward search procedure together with adjusted robust estimators

when there is a large number of potential covariates. Their selection procedure, called Fast Robust Forward

Selection (FRFS), falls in the second class of selection procedures. FRFS outperforms classical approaches
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such as Lasso/LARS when data contamination is present and outperforms, in all studied instances, a robust

version of the LARS algorithm proposed by Khan, Van Aelst, and Zamar (2007).

However, although FRFS is indeed very fast and robust, it too can become quite slow when the number of

potential covariates is very large as all covariates are reconsidered after one is selected for entry in the model.
It is therefore important to have a robust selection procedure in the streamwise regression class so that very

large datasets can be analyzed in a robust fashion. In this paper, we develop a robust VIF approach that is

fast, very efficient, and clearly outperforms non-robust VIF in the presence of outliers.

The remainder of the paper is organized as follows. In Section 2, we review the classical VIF approach

and present our robust VIF approach. A simulation study in Section 3 shows the good performance of the

new approach. In Section 4, we consider two real data sets and show how policy makers are better served by
robust VIF regression than by classical VIF or Lasso. Section 5 contains a few closing remarks.

2 Robust VIF Regression

2.1 The classical approach

Lin, Foster, and Ungar (2011) propose a procedure that allows one to sweep through all available covariates

and to enter those that can reduce a statistically sufficient part of the variance in the predictive model. Let

XS be the design matrix that includes the selected variables at a given stage, and X̃S = [XS zj ] with zj

the new potential covariate to be considered for inclusion. Without loss of generality, we suppose all variables
have been standardized. Consider the following two models

y = XSβS + zjβj + εstep, εstep ∼ N(0, σ2
stepI) (1)

rS = zjγj + εstage, εstage ∼ N(0, σ2
stageI) . (2)

where rS = (I−XS(X
T
SXS)

−1XT
S )y are the residuals of the projection of y onXS . All known estimators of

the parameters βj , σ
2
step and γj , σ

2
stage will provide different estimates when the covariates present some degree

of multicollinearity, and consequently, significance tests based on estimates of βj or γj do not necessarily lead

to the same conclusions. While in stepwise regression the significance of βj in model (1) is at the core of the

selection procedure, in streamwise regression, one estimates more conveniently γj . Lin, Foster, and Ungar
(2011) show that, when LS are used to estimate, γ̂j = ρβ̂j where ρ = zT

j (I −XS(X
T
SXS)

−1XT
S )zj . They

then compare Tγ = γ̂j/(ρ
1/2σ), with suitable estimates for ρ and σ, to the standard normal distribution to

decide whether or not zj should be added to the current model. The procedure is called VIF regression since

Marquardt (1970) called 1/ρ the VIF for zj.

2.2 A robust weighted slope estimator

Since the test statistic Tγ is based on : (1) the LS estimator γ̂j , (2) ρ, in-turn based on the design matrix

XS and zj , and (3) the classical estimator of σ, it is obviously very sensitive to outliers, a form of model

deviation. An extreme response or a very badly placed design point can have a drastic effect on Tγ . The

latter is then compared to the null distribution : the correct asymptotic distribution under the hypothesis

that the regression model holds. With model deviations, the null distribution is not valid, and hence selection
decisions (to add the covariate or not) are taken rather arbitrarily. We propose here to limit the influence of

extreme observations by considering weighted LS estimators of the form

β̂ = (XwTXw)−1XwTyw (3)

with Xw = diag(
√
w0

i )X and yw = diag(
√
w0

i )y. The weights w0
i depend on the data and are such that

extreme observations in the response and/or in the design have a nil or limited effect on the value of β̂.

Dupuis and Victoria-Feser (2011) propose Tukey’s redescending biweight weights

wi(ri; c) =

{ ((
ri
c

)2 − 1
)2

if |ri| ≤ c,

0 if |ri| > c,
(4)
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where ri = (yi − xT
i β)/σ are standardized residuals that are computed in practice for chosen estimators of

β and σ (see below). The constant c controls the efficiency and the robustness of the estimator. Indeed,

the most efficient estimator is the LS estimator, i.e. (3) with all weights equal to one (i.e. c → ∞), but
it is very sensitive to (small) model deviations, while a less efficient but more robust estimator is obtained

by downweighting observations that have a large influence on the estimator, i.e. by setting c < ∞ in (4).

The value c = 4.685 corresponds to an efficiency level of 95% for the robust estimator compared to the LS

estimator at the normal model and is the value used throughout the paper.

We follow Dupuis and Victoria-Feser (2011) and use for the weights w0
i = wi(r

0
i ; c) in (3), where the

residuals r0i = (yi − xT
i β̂

0
)/σ̂0 and σ̂0 = 1.483med|r̃0i − med(r̃0i )|, the median absolute deviation (MAD)

of the residuals r̃0i = yi − xT
i β̂

0
. The slope estimates are β̂

0
=
[
(Xw

0 )
TXw

0

]−1
(Xw2

0 )Ty, with Xw
0 =

[ 1
√
wi1xi1 . . .

√
wipxip ] and Xw2

0 = [ 1 wi1xi1 . . . wipxip ], i = 1, . . . , n, with weights wij , ∀j =

1, . . . , p, computed using (4) at the residuals rij = (yi − β̂0j − xij β̂j)/σ̂j , with σ̂j = MAD(yi − β̂0j − xij β̂j).

The slope estimators β̂1, . . . , β̂p and the intercept estimators β̂01, . . . , β̂0p are computed on the p marginal
models y = β01 + x1β1 + ε1, . . . , y = β0p + xpβp + εp using a robust weighted estimator defined implicitly

through
n∑

i=1

wi(ri; c)rixi = 0 . (5)

Here we actually propose to consider Huber’s weights given for the regression model by

wi(ri; c) = min

{
1;

c

‖rixi‖

}
(6)

with c = 1.345. Estimators in (5) belong to the class of M -estimators (Huber 1964, 1967). With (6) in (5),

the marginal intercepts and slope estimators are simpler (and faster) to compute than the ones based on

Tukey’s biweight weights as originally proposed in Dupuis and Victoria-Feser (2011). For the scale in the
weights in (5), we propose to use the MAD of the residuals.

The estimator in (3) is a one-step estimator that is actually biased when there is multicollinearity in

the covariates. Dupuis and Victoria-Feser (2011) show that the bias can be made smaller and even nil if

β̂ = β̂
1
is iterated further to get say β̂

k
computed at the updated weights w1

i , . . . , w
k−1
i based on the residuals

r
(1)
i = (yi−xT

i β̂
(1)

)/σ̂(1), . . ., r
(k−1)
i = (yi−xT

i β̂
(k−1)

)/σ̂(k−1). In the simulation study in Section 3 however,

we find that the bias is very small even with relatively large multicollinearity, so that in practice there is

often no need to proceed with this iterative correction.

2.3 Robust VIF selection criterion

Let Xw
S = diag(

√
w0

iS)XS be the weighted design matrix at stage S with say q columns (hence q − 1

covariates) and zw
j = diag(

√
wij)zj the new candidate covariate that is evaluated at the current stage S+1.

One could use the weights w0
iS for zw

j instead of the weights wij computed at the marginal models with only

zj as covariate, but this would require more computational time. The simulation results in Section 3 show

that one gets very satisfactory results with wij . Let also X̃
w

S = [Xw
S |zw

j ] and define β̂w
j as the last element

of the vector [X̃
wT

S X̃
w

S ]
−1X̃

wT

S yw with yw = diag(
√
w0

iS)y. β̂w
j is actually a robust estimator of βj in (1).

Let Hw
S = Xw

S (X
wT
S Xw

S )
−1XwT

S and β̂S = (XwT
S Xw

S )
−1XwT

S yw, then

β̂w
j = −(zwT

j zw
j − zwT

j Hw
Sz

w
j )

−1zwT
j Xw

S (X
wT
S Xw

S )
−1XwT

S yw

+(zwT
j zw

j − zwT
j Hw

Sz
w
j )

−1zwT
j yw

= (zwT
j zw

j − zwT
j Hw

Sz
w
j )

−1zwT
j (yw −Xw

S β̂S)

= (zwT
j zw

j − zwT
j Hw

Sz
w
j )

−1zwT
j rw

S

= (zwT
j zw

j − zwT
j Hw

Sz
w
j )

−1(zwT
j zw

j )(z
wT
j zw

j )
−1zwT

j rw
S
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where rwS are the residuals of the weighted fit of yw on Xw
S . Let

ρw = (zwT
j zw

j − zwT
j Hw

Sz
w
j )(z

wT
j zw

j )
−1

then

β̂w
j = (ρw)−1γ̂w

j

with γ̂w
j = (zwT

j zw
j )

−1zwT
j rwS , i.e. the weighted estimator of the fit of zw

j on the weighted residuals rwS , i.e.

model (2). Note however that β̂w
j is not equal to the last element of β̂

1

S+1 unless the weights w0
iS are used

for zw
j . Note also that we can write

ρw = 1−Rw2
jS

with

Rw2
jS = zwT

j Hw
Sz

w
j (z

wT
j zw

j )
−1 (7)

a robust estimate of the coefficient of determination R2. Renaud and Victoria-Feser (2010) propose a robust

R2 based on weighted responses and covariates and (7) is equivalent to their proposal (with a = 1, see

their Theorem 1) but with other sets of weights. Moreover, ρw is the partial variance of zw
j given Xw

S (see
Dupuis and Victoria-Feser 2011). Lin, Foster, and Ungar (2011) note that using all the data to compute ρ

(in the classical setting) is quite computationally expensive and they propose a subsampling approach. For

the same reason, we also propose to actually estimate ρw by computing (7) on a randomly chosen subset of

size m = 200.

To derive the t-statistic based on γ̂w
j , we follow Lin, Foster, and Ungar (2011) who base their comparison

on the expected value of the estimated variance of respectively β̂w
j and γ̂w

j . Let σ̂
2
step and σ̂2

stage be respectively
robust residual variance estimates for models (1) and (2). Let also A(i)(j) denote the element (i, j) of matrix

A. For β̂w
j , supposing that wij/w

0
i ≈ 1, we can use

̂Var(β̂w
j ) ≈ σ̂2

step

[
X̃

wT

S X̃
w

S

]−1

(q+1)(q+1)
e−1
c

= σ̂2
step(z

wT
j zw

j − zwT
j Hw

Sz
w
j )

−1e−1
c

= σ̂2
step(ρ

w)−1(zwT
j zw

j )
−1e−1

c

=
σ̂2
step

n
(ρw)−1

(
1

n

∑

i

(zwij)
2

)−1

e−1
c

with ec given by equation (3.20) in Heritier et al. (2009). For γ̂w
j , based on the model with rwS as the response

and zw
j as the explanatory variable (without intercept) we have

V̂ar(γ̂w
j ) ≈ σ̂2

stage(z
wT
j zw

j )
−1ẽ−1

c

=
σ̂2
stage

n

(
1

n

∑

i

(zwij)
2

)−1

ẽ−1
c

with ẽ−1
c the efficiency of a robust slope estimator computed using Huber’s weights relative to the LS,

which is not equal to e−1
c , the efficiency of a robust slope estimator computed using Tukey’s weights relative

to the LS. We will see below that the computation of the former is not needed. Hence, approximating

σ̂2
step ≈ σ̂2

stage = σ̂2, we have

̂Var(β̂w
j ) ≈ (ρw)−1V̂ar(γ̂w

j )(ec/ẽc)
−1.

An honest approximate robust test statistic Tw is then given

β̂w
j√

Var(β̂w
j )

≈
(ρw)−1γ̂w

j√
(ρw)−1V̂ar(γ̂w

j )(ec/ẽc)
−1
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i.e.

Tw = (ρw)−1/2
γ̂w
j√

σ̂2

n

(
1
n

∑
i z

w2
ij

)−1
e−1
c

(8)

with σ̂2 a robust mean squared error for the model with rwS as response and zw
j as explanatory variable (i.e.

model (2)). We use σ̂ = MAD(rw
S − zw

j (z
wT
j zw

j )
−1zwT

j rw
S ).

Our fast robust evaluation procedure is summarized by the following five steps. Suppose that we are at

stage S and a set of q − 1 covariates has been chosen in the model. We are considering covariate zj for

possible entry. We are working with c = 4.685 and have computed ec and the weights wij and w0
iS .

1. Obtain the residuals rw
S = yw −Xw

S (X
wT
S Xw

S )
−1XwT

S yw.

2. Set zw
j = diag(

√
wij)zj . Compute γ̂w

j = (zwT
j zw

j )
−1zwT

j rw
S and σ̂ = MAD(rw

S −zw
j (z

wT
j zw

j )
−1zwT

j rwS ).

3. Sample a small subset I = {i1, . . . , im} ∈ {1, . . . , n} of the observations and let Ix denote the corre-
sponding subsample from the regressor x.

4. Let IH
w
S = IX

w
S (IX

wT
S IX

w
S )

−1
IX

wT
S , compute Rw2

jS = Iz
wT
j IH

w
S Iz

w
j (Iz

wT
j Iz

w
j )

−1, and find ρw =

1−Rw2
jS .

5. Compute the approximate t-ratio Tw = (ρw)−1/2γ̂w
j /
√
σ̂2
(∑

i z
w2
ij

)−1
e−1
c and compare it to an adapted

quantile to decide to add or not zj to the current set.

A more detailed algorithm in which the decision rule (add or not the new variable) is also specified is given
in the Appendix.

2.4 Comparison with the robust t-statistic of FRFS

The t-statistic proposed by Dupuis and Victoria-Feser (2011) (equation (5)) and used to test whether a
candidate covariate is entered in the current model, can be written as

T 2 =
1

σ2ρw
n∑
wij

ecy
wT
j zw

j (z
wT
j zw

j )
−1zwT

j (I −Hw
S )y

w
j

with yw
j = diag(

√
wij)y. Supposing that yw

j ≈ yw and n/
∑

wij ≈ 1, then

T 2 ≈ 1

σ2ρw
ecy

wTzw
j γ̂

w
j

=
(γ̂w

j )
2

σ2ρw(zwT
j zw

j )
−1

ec
1

γ̂w
j

ywTzw
j (z

wT
j zw

j )
−1

=
(γ̂w

j )
2

σ2ρw(zwT
j zw

j )
−1

ec
ywTzw

j

zwT
j (I −Hw

S )y
w

(9)

Hence, Tw in (8) and T in (9) differ by a multiplicative factor of

κ =

√
ywT
j zw

j

zwT
j (I −Hw

S )y
w
j

which is the square root of the ratio of the robustly estimated covariance between zj and y, and the robustly

estimated partial covariance between zj and y given XS . One can notice that in the orthogonal case (and

standardized covariates), we have zwT
j Hw

S ≈ 0 so that κ ≈ 1.

3 Simulation Study

We carry out a simulation study to assess the effectiveness of the model selection approaches outlined above.
First, we create a linear model

y = X1 +X2 + . . .+Xk + σε (10)
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where X1, X2, . . . , Xk are multivariate normal (MVN) with E(Xi) = 0, Var(Xi) = 1, and corr(Xi, Xj) = θ,

i 6= j, i, j = 1, . . . , k, and ε an independent standard normal variable. We choose θ to produce a range of

theoretical R2 = (Var(y)−σ2)/Var(y) values for (10) and σ to give t values for our target regressors of about
6 under normality as in Ronchetti et al. (1997). The covariates X1, . . . , Xk are our k target covariates. Let

ek+1, . . . , ep be independent standard normal variables and use the first 2k to give the 2k covariates

Xk+1 = X1 + λek+1, Xk+2 = X1 + λek+2,

Xk+3 = X2 + λek+3, Xk+4 = X2 + λek+4,

...

X3k−1 = Xk + λe3k−1, X3k = Xk + λe3k;

and the final p− 3k to give the p− 3k covariates

Xi = ei, i = 3k + 1, . . . , p.

Variables Xk+1, . . . , X3k are noise covariates that are correlated with our target covariates, and variables
X3k+1, . . . , Xp are independent noise covariates. Note that the covariates X1, . . . , Xp are then relabeled with

a random permutation of 1 : p so that the target covariates do not appear in position 1 : k, but rather in

arbitrary positions. This is necessary to test the effectiveness of the streamwise variable selection as covariates

considered early on are favored when many covariates are correlated.

We consider samples without and with contamination. Samples with no contamination are generated using

ε ∼ N(0, 1). To allow for 5% outliers, we generate using ε ∼ 95%N(0, 1) + 5%N(30, 1). These contaminated

cases also have high leverage X-values: X1, . . . , Xk ∼ MVN as before, except Var(Xi) = 5, i = 1, . . . , k.

This represents the most difficult contamination scheme: large residuals at high leverage points. We choose
λ = 3.18 so that corr(X1, Xk+1) = corr(X1, Xk+2) = corr(X2, Xk+3) = . . . = corr(Xk, X3k) = 0.3.

In all simulations, we simulated n independent samples, with or without contamination, to use for variable

selection. Then, another n independent samples without contamination were simulated for out-of-sample
performance testing. The out-of-sample performance was evaluated using the mean sum of squared errors

(MSE),
∑2n

i=n+1(yi − xT
i β̂)

2/n where β̂ is the estimated coefficient determined by the classical and robust

VIF regression selection procedures applied to the training set. Because the true predictors are known, we

also compute the out-of-sample performance measure using the true β. Classical VIF selection was carried

out using the VIF package for R and default argument settings. Robust VIF was also implemented in R.

Simulations results for n = 1000, k = 5, and p = 100 and p = 1000, are presented in Table 1 and Figures 1

and 2, respectively. Entries in the top panel of the table give the percentage of runs falling into each category.

The category “Correct” means that the correct model was chosen. “Extra” means that a model was chosen
for which the true model is a proper subset. “Missing 1” means that the model chosen differed from the

true model only in that it was missing one of the target covariates; “Missing 2” and “Missing 3” are defined

analogously. The Monte Carlo standard deviation of entries is bounded by 3.5%. We also report the empirical

marginal false discovery rate (mFDR) m̂FDR = Ê(V )/(Ê(V )+ Ê(S)+ η) where Ê(S) is the average number

of true discoveries, Ê(V ) is the average number of false discoveries and η = 10 is selected following Lin,

Foster, and Ungar (2011). We also report the required computation time. Note the particularly frugal robust

approach : the cost of robustness is no more than a doubling of the computation time.

Both algorithms do not perform well in terms of the proportion of correctly selected models. Both

algorithms do however choose a model for which the true model is a subset when there are no outliers. The

classical VIF approach fails miserably in the presence of outliers, while the robust VIF approach is only
slightly affected by the presence of outliers.

As the simulated data sets have noise covariates that are correlated with target covariates, the poor

performance in terms of %Correct is expected given the streamwise approach of VIF regressions. The FRFS

approach in Dupuis and Victoria-Feser (2011) chose the correct model in at least 80% of the cases in similar
data sets. But as pointed out by Lin, Foster, and Ungar (2011), the goal here is different : good fast out-of-

sample prediction. The streamwise approach is fast and the main purpose of an α-investing control is to avoid



Les Cahiers du GERAD G–2011–58 7

Table 1: Model selection results. Simulated data, as described in §3, have n = 1000 observations with p = 100
and p = 1000 potential regressors, including k = 5 target regressors. Correlation among target regressors
is θ = 0.1 (R2 = 0.20), θ = 0.53 (R2 = 0.50) and θ = 0.85 (R2 = 0.80). Correlation among each target
regressor and two other regressors is 0.3 in all cases. Remaining regressors are uncorrelated. Methods are
classical (C) and robust (R) VIF regression. Table entries are % of cases in categories listed in first column.
Empirical mFDR appears in the second to last row. Mean execution times (in seconds) appear in the last
row. Results are based on 200 simulations for each configuration.

p = 100
R2 = 0.20 R2 = 0.50 R2 = 0.80

No outliers 5% outliers No outliers 5% outliers No outliers 5% outliers
C R C R C R C R C R C R

%Correct 13.5 33 0 20 6 12 0 10.5 11.5 18.5 0 15
%Extra 83.5 58 0 65.0 92 83 0 80 86.5 76.5 0 73.5
%Missing 1 1.5 3.5 0 6.5 1 1 0 2.0 0.5 1 0 3
%Missing 2 0 0.5 1 0.5 0 0 1.5 0 0 0 1.5 0
%Missing 3 0 0 2 0 0 0 9.5 0 0 0 11 0
%Other 1.5 5 97 8 1 4 89 7.5 1.5 4 87.5 8.5
%mFDR 11.0 6.3 6.1 9.3 17.9 14.2 7.5 14.7 16.1 13.2 10.7 13.8
Time 0.63 1.11 0.54 1.09 0.65 1.12 0.59 1.18 0.69 1.20 0.59 1.20

p = 1000
R2 = 0.20 R2 = 0.50 R2 = 0.80

No outliers 5% outliers No outliers 5% outliers No outliers 5% outliers
C R C R C R C R C R C R

%Correct 30 32 0 25 14.5 19.5 0 17 14.5 16 0 10
%Extra 53 27 0 26 75.5 50.5 0 43.5 77 54 0 43
%Missing 1 5.5 17 0 20 1.5 7.5 0 7 3 7.5 0 6
%Missing 2 1 5.5 0 6 0 0 0.5 1 0 0 1.5 1.5
%Missing 3 0 0.5 0 1 0 0 2.5 0 0 0 13 0
%Other 10.5 18 100 22 8.5 22.5 97 31.5 5.5 22.5 85.5 39.5
%mFDR 7.0 4.4 4.6 6.0 14.8 11.0 4.8 11.1 15.5 13.6 6.2 13.5
Time 5.8 10.8 6.1 11.7 5.7 10.6 5.8 11.7 5.86 10.9 5.47 11.3

model overfitting. We assess the latter through out-of-sample performance. Figure 1 shows out-of-sample
MSE for the case p = 100. Robust VIF is as efficient as classical VIF when there are no outliers (top panel)

and clearly outperforms classical VIF when there are 5% outliers (bottom panel). Much of the same can be

seen in Figure 2 where results for the case p = 1000 are shown.

4 Real Data

In this section, we analyze two real data sets. In each case, the variables have been centered. The analysis of
these two data sets will show how classical, i.e. non robust, VIF regression can be inadequate for the policy

maker : in the first example, failing to keep important features, and in the second, failing to give a usable

result. The selected models are compared using the median absolute prediction error (MAPE), as measured

by 10-fold CV. That is, we split the data into 10 roughly equal-sized parts. For the kth part, we carry out
model selection using the other nine parts of the data and calculate the MAPE of the chosen model when

predicting the kth part of the data. We do this for k = 1, . . . , 10 and show boxplots of the 10 estimates of the

MAPE. For all methods, the data were split in the same way. For the first data set, we randomly generated

the folds, whereas in the second data set, we used the provided fold variable. Note here that we look at

MAPE instead of mean squared prediction error as these real data can contain outliers (as opposed to the
simulated data which were clean) and the MAPE is a better choice.

For completeness, we compare the models selected by classical and robust VIF approaches with that of

the popular least angle regression (LARS) of Efron, Hastie, Johnstone, and Tibshirani (2004), an extremely

efficient algorithm for computing the entire Lasso (Tibshirani 1996) path. We use the R package lars to do

the computations.
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Figure 1: Out-of-sample mean square errors of the models chosen by classical and robust VIF regression.
Simulated data with n = 1000 observations with p = 100 potential regressors, including k = 5 target
regressors. Simulation scenarios as described in Table 1 where other details of the selected models can be
found.

4.1 College Data

The data are in the R package AER and are a subset of the data previously analyzed in Rouse (1995). There

are 4739 observations on 14 variables. The variables are listed in Table 2. We seek to predict the number of

years of education using 13 economic and demographic variables. There are continuous and binary variables
along with one categorical variable with three categories which is converted to two dummy variables. When

considering only first-order variables we thus have n = 4739 and p = 14, when we include second-order

interaction terms p rises to 104 (some interaction terms are constant and are removed).

Tables 3 and 4 list the VIF and robust VIF regression selected features, along with estimated slopes, for

the p = 14 and p = 104 scenarios, respectively. For both scenarios, the robust VIF regression approach selects
slightly more, and/or slightly different, features. When considering only first-order terms, we see that the

classical and robust estimates of commonly selected features are almost the same. This serves as a good form

of validation for the relative importance of these features. However, the presence of outliers in the data has

lead classical VIF regression to completely miss two important features which are identified by robust VIF
regression : unemp and wage. Even LS estimates (not shown) of the robust VIF regression selected model

find these two features important with t-values of 3.15 and -2.70, but the classical VIF regression selection

procedure could not detect this importance for the reasons outlined in Section 1. VIF regression also misses

the two important features in the p = 104 scenario, see Table 4. As both the county unemployment rate

and the state hourly wage in manufacturing are directly impacted by economic policy, policy makers must
be equipped with the best feature selection tools to have an effective strategy to reach sought after goals :

in this case, increasing the level of education among its constituents. These tools, we argue, must include a
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Figure 2: Out-of-sample mean square errors of the models chosen by classical and robust VIF regression.
Simulated data with n = 1000 observations with p = 1000 potential regressors, including k = 5 target
regressors. Simulation scenarios as described in Table 1 where other details of the selected models can be
found.

Table 2: Original 14 Variables in College Data.

Variable Description
gender Factor indicating gender.
ethnicity Factor indicating ethnicity (African-American, Hispanic or other).
score Base year composite test score. These are achievement tests given

to high school seniors in the sample.
fcollege Factor. Is the father a college graduate?
mcollege Factor. Is the mother a college graduate?
home Factor. Does the family own their home?
urban Factor. Is the school in an urban area?
unemp County unemployment rate in 1980.
wage State hourly wage in manufacturing in 1980.
distance Distance from 4-year college (in 10 miles).
tuition Average state 4-year college tuition (in 1000 USD).
income Factor. Is the family income above USD 25,000 per year?
region Factor indicating region (West or other).
education Number of years of education.

robust selection procedure as shown effectively by this example. Further evidence is given in Figure 3 where

MAPE for VIF, robust VIF and Lasso are shown for both scenarios. Robust VIF outperforms both of its

competitors.
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Table 3: VIF and robust VIF selected variables and estimated slope parameters (t-values) when only consid-
ering first-order terms. Significance : ∗0.05, ∗∗0.01, ∗∗∗0.001.

Variable β̂LS β̂rob

ethnicityafam 0.349 ( 5.28)∗∗∗ 0.345 ( 4.90)∗∗∗

ethnicityhispanic 0.360 ( 5.97)∗∗∗ 0.316 ( 4.92)∗∗∗

score 0.088 (31.29)∗∗∗ 0.094 (31.77)∗∗∗

fcollegeyes 0.540 ( 8.40)∗∗∗ 0.573 ( 8.51)∗∗∗

mcollegeyes 0.380 ( 5.25)∗∗∗ 0.425 ( 5.60)∗∗∗

homeyes 0.141 ( 2.39)∗ 0.148 ( 2.38)∗∗

urbanyes - 0.057 ( 0.96)
unemp - 0.028 ( 3.00)∗∗

wage - -0.047 (−2.56)∗∗

distance -0.027 (−2.81)∗∗ -0.036 (−3.22)∗∗∗

incomehigh 0.359 ( 6.70)∗∗∗ 0.398 ( 7.07)∗∗∗

Table 4: VIF and robust VIF selected variables and estimated slope parameters (t-values) when including
second-order interactions. Significance : ∗0.05, ∗∗0.01, ∗∗∗0.001.

Variable β̂LS β̂rob

ethnicityafam 0.346 ( 5.25)∗∗∗ 0.342 ( 4.83)∗∗∗

ethnicityhispanic -0.028 (-0.20) 0.311 ( 4.83)∗∗∗

score 0.088 (30.98)∗∗∗ 0.093 (27.26)∗∗∗

fcollegeyes 0.543 ( 8.46)∗∗∗ -0.080 (-0.16)
mcollegeyes 0.055 ( 0.28) 0.132 ( 0.24)
homeyes 0.136 ( 2.19)∗ 0.108 ( 1.60)
urbanyes - 0.066 ( 1.12)
unemp - 0.021 ( 2.09)∗

wage - -0.050 (−2.35)∗∗

distance -0.036 (−3.53)∗∗∗ -0.034 (−3.00)∗∗

incomehigh 0.368 ( 6.87)∗∗∗ 0.089 ( 0.27)
genderfemale:score 0.001 ( 1.17) -
genderfemale:fcollegeyes - 0.008 ( 0.06)
genderfemale:mcollegeyes 0.407 ( 3.11)∗∗ 0.509 ( 3.43)∗∗∗

ethnicityhispanic:unemp 0.048 ( 2.96)∗∗ -
mcollegeyes:homeyes 0.120 ( 0.62) -
score:incomehigh - 0.006 ( 0.98)
fcollegeyes:homeyes - 0.297 ( 1.74)∗

fcollegeyes:unemp - 0.028 ( 1.23)
fcollegeyes:wage - 0.000 ( 0.00)
fcollegeyes:tuition - 0.227 ( 1.44)
mcollegeyes:wage - 0.000 ( 0.00)

4.2 Crime Data

We analyze recently made available crime data. These data are from the UCI Machine Learning Repository

(Frank and Asuncion 2010) and are available at http://archive.ics.uci.edu/ml/datasets

/Communities+and+Crime. We seek to predict the per capita violent crimes rate using economic, demo-
graphic, community and law enforcement related variables. After removing variables with missing data, we

are left with n = 1994 observations on p = 97 first-order covariates. If we include second-order interactions

(removing those that are constant) we have p = 4753. VIF regression selects 33 and 1993 variables, in the

respective scenarios, while robust VIF regression selects 20 variables is both cases. Classical VIF experiences

problems with the larger data set, which contains outliers in a highly multicollinear setting, and chooses too
many covariates. This shows how the guarantee of no overfitting only holds at the model, i.e. without any

outliers in the data. For these data, robust VIF regression provides the only viable option for policy makers

as the 1993 features returned by classical VIF regression do not provide useful information. As can bee seen

in Figure 4, robust VIF is clearly the best performer for both scenarios. VIF regression chooses too many
features for many of the folds and this leads to catastrophic results out-of-sample.
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Figure 3: College data: Out-of-sample median absolute prediction errors of the models chosen by classical
and robust VIF regression, and the Lasso, in 10-fold cross-validation.
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Figure 4: Crime and communities data: Out-of-sample median absolute prediction errors of the models
chosen by classical and robust VIF regression, and the Lasso, in 10-fold cross-validation. ∗ Results are not
shown as VIF collapses in 4 folds, yielding MAPE of 5.62, 6.55, 6.82, 9.4, and 15.1, respectively. Results for
other folds were good, 0.0652, 0.0676 0.0686, 0.0694, 0.0744, but are excluded from the boxplot to allow for
a better comparisons of all methods.

5 Concluding remarks

In Lin, Foster, and Ungar (2011), it was also shown that classical VIF regression equates or outperforms

stepwise regression, Lasso, FoBa, an adaptive forward-backward greedy algorithm focusing on linear models

(Zhang 2009), and GPS, the generalized path-seeking algorithm of Friedman (2008). In this paper, we present

a very efficient robust VIF approach that clearly outperforms classical VIF in the case of contaminated data

sets. This robust implementation comes with a very small cost in speed, computation time is less than
doubled, and provides much needed robust model selection for large data sets.
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Appendix - Algorithm Robust VIF regression

The robust VIF regression procedure, based on a streamwise regression approach and α-investing, can then
be summarized by the following algorithm :

Input data y,x1,x2, . . . (standardized)

Set initial wealth a0 = 0.50, pay-out ∆a = 0.05, subsample size m, and robustness constant c.

Compute efficiency e−1
c where

ec =
[∫ c

−c(5r
4/c4 − 6r2/c2 + 1)dΦ(r)

]2/∫ c

−c r
2(r2/c2 − 1)4dΦ(r).

Get All marginal weights wij by fitting p marginal models y = β01 + x1β1 + ε1, . . . , y = β0p + xpβp + εp
using (5) and (6).

Initialize j = 1, S = {0}, XS = 1, Xw
S = diag(

√
w0

iS)XS and yw = diag(
√
w0

iS)y where w0
iS is computed

using (4) where r0 = (y − 1β̂
0
)/σ̂0 using Xw

0 = Xw2
0 = 1, β̂

0
=
[
(Xw

0 )
TXw

0

]−1
(Xw2

0 )Ty, where

σ̂0 = 1.483med|r̃0 −med(r̃0)| and r̃0 = y − 1β̂
0
.

repeat

set αj = aj/(1 + j − f)

get Tw from the five-step Fast Robust Evaluation Procedure in §2.3.
if 2(1− Φ(|Tw|)) < αj then

S = S ∪ {j}, XS = [1 xj ], Xw
S = diag(

√
w0

iS)XS , yw = diag(
√
w0

iS)y,

where w0
iS is computed using (4) where r0 = (y −XSβ̂

0
)/σ̂0 using Xw

0 = [1
√
wijxij ], X

w2
0 =

[1 wijxij ], i = 1, . . . , n, β̂
0
=
[
(Xw

0 )
TXw

0

]−1
(Xw2

0 )Ty, where σ̂0 = 1.483med|r̃0 −med(r̃0)| and
r̃0 = y −XSβ̂

0
.

aj+1 = aj +∆a

f = j

else aj+1 = aj − αj/(1− αj)

end if

j = j + 1

until all p covariates have been considered
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