
Les Cahiers du GERAD ISSN: 0711–2440

A Visual Environment to Study and
Find Communities in Networks

G. Caporossi
S. Perron

G–2011–55

October 2011

Les textes publiés dans la série des rapports de recherche HEC n’engagent que la responsabilité de leurs auteurs. La publication

de ces rapports de recherche bénéficie d’une subvention du Fonds québécois de la recherche sur la nature et les technologies.





A Visual Environment to Study and

Find Communities in Networks

Gilles Caporossi

Sylvain Perron

GERAD & HEC Montréal
3000, chemin de la Côte-Sainte-Catherine

Montréal (Québec) Canada, H3T 2A7

gilles.caporossi@gerad.ca
sylvain.perron@gerad.ca

October 2011

Les Cahiers du GERAD

G–2011–55

Copyright c© 2011 GERAD





Les Cahiers du GERAD G–2011–55 v

Abstract

In the last ten years, finding communities in networks, has been the subject of intense studies. If
modularity maximization is still one of the mostly studied criterion, some criticism tend to arise and re-
searchers in that field are more and more studying various criterion for finding communities in networks.
To facilitate the task of studying various or new criterion, Constellation was developed. The software
does not only allow an interactive definition of new criterion, it also provides a graphical interface and
an optimization module that are useful tools for the researcher. This paper describes Constellation and
its use.

Résumé

Durant les dix dernières années, trouver des communautés dans des réseaux a été l’objet d’intenses
études. Si la maximisation de la modularité est toujours un des critères les plus étudiés, certaines critiques
tendent à s’élever et les chercheurs du domaine étudient de plus en plus d’autres critères. Pour faciliter
le travail d’étudier de nouveaux critères variés, Constellation a été développé. Ce logiciel ne permet pas
seulement une définition interactive de nouveaux critères, il comporte aussi une interface graphique et
un module d’optimisation qui sont autant d’outils utiles au chercheur. Cet article décrit Constellation et
son utilisation.





Les Cahiers du GERAD G–2011–55 1

1 Introduction

In order to help researchers studying networks and communities in networks, Constellation was recently

designed. The main purpose of Constellation is to provide a graphical environment in which networks may

be studied. In order to better stimulate this research, the network may be displayed on the computer screen

and its vertices may be moved either automatically or by the mean of the mouse. The graphical interface and

the interactive use of Constellation is described in Section 2. From that last few years, the interest in finding

communities in networks is ever increasing. Indeed, various algorithms and criterion are under study and one

task of researchers in that field is to analyze new criterion, identify its assets and drawbacks. Constellation

provides the researcher the ability to study new criterion by the mean of an interactive criterion definition

whose syntax is described in Section 3. Still to help studying criterion, a generic optimization module is

provided that allows reasonable performances for a wide variety of problems. The optimization module of

Constellation is described in Section 4. Finally, a classical application example is provided in Section 5.

2 Interactive use of Constellation

A good approach when interactively studying a new graph is to start by asking the system to randomly place

the vertices. According to the number of vertices and the density of the graph, the scale may then be adapted.

The next step is to ask the system to propose a tentative community detection by defining the criterion under

study as defined in Section 3. The criterion being defined, the user may run the optimization after setting

the proper parameters as described in Section 4. After completing the optimization, the underlying structure

of the graph may be exhibited in few steps. The first approach is to click the “separate clusters” button few

times as to display the links between various clusters. The user then has the opportunity to arrange clusters

interactively by first moving a vertex of the proper cluster (identified by its color) and then translating all

other vertices of that same cluster accordingly by pressing the “m” key.

When opening a graph in Constellation, the user could see the graph on the right and some information

characterizing it on the left. Among the available information, one can read the number of vertices, the

number of edges, the diameter, the radius,the average distance, the minimum and maximum transmissions

as well as the minimum and maximum degrees.

Through a tab, it is possible to adjust the size of vertices (to reflect their degree) and some position

routines are also available to help identifying the structure found by the clustering algorithm.

By the mean of a graphical interface, it is possible to define the criterion to use for clustering vertices of
the graph. As it implements a powerful heuristic that is robust enough to handle a wide variety of problems,

one of the major use of Constellation is certainly finding clusters or communities in a graph.

3 Problem definition

Constellation was designed as a general toolbox for researchers willing to study communities in graphs.

Instead of providing a series of clustering criterion, Constellation has a simple syntax that allows the user

to define his own criterion based upon classical measures such an the degree, the number of edges inside a

cluster, the number of edges crossing a cluster etc. as well as some basic operators such as add, substract,

multiply, divide, sum. Each operator is associated to a vector of data either associated to vertices, clusters or

the whole partition (the graph). As an example, the invariant INDEG N represents the vector of inner degree

associated to each vertex. Should a vertex of degree 4 have 3 neighbors in the same cluster, its value would

be 3. In Constellation, INDEG N represents a vector of size n indicating the inner degree of each vertex.

In the same way, the invariant INCLS CLS is a vector representing the number of edges between vertices

of the same cluster. This vector could be considered as a vector of size k, having an entry for each cluster.

The operators considered in Constellation involve 1 or 2 arguments. The result of the operator depends on

its arguments. For example, multiplying a constant c by a vector v will give a vector of the same size as v.

The operator SUM CLS has as argument a vector of values corresponding to nodes and summarizes these

values by cluster, thus providing a vector of size k. For the time being, Constellation involves relatively few



2 G–2011–55 Les Cahiers du GERAD

operators and few invariants but this number is increasing with the usage to reach the users needs. Any line

in the problem definition is associated to a vector resulting from its operator or invariant. Arguments are

given by the number of the line where it is defined. The modularity definition in Constellation is defined

as described on Figure 1. Line 1 is a vector of the number of edges within each cluster, that we shall call

in. Line 2 is an operation which consists in multiplying each entry of in (the first argument is 1, which

corresponds to in) by 2, the value associated to this operator. As a result, line 2 refers to a vector whose

values are 2 ∗ in. Following the definitions, one finds the modularity associated to the current partition

defined on line 11. To indicate to Constellation that line 11 refers to the objective function, the radio button

on line 11 and column Obj is checked. In a similar manner, the user may define up to 3 constraints comparing

the right hand side to the left hand side of the constraint sign (= or <= or >=).

Figure 1: Definition of a problem in Constellation

To handle constraints and avoid numerical instability, the quality of a solution is not only characterized

by the objective function value (as it would be by classical Lagrangian type penalization techniques), but by a

vector of values sorted by increasing magnitude which are lexicographically compared during the optimization.

The first entry is the objective function value, then are 3 values dedicated to constraints chosen by the user

and a last value is dedicated to the number of clusters if it is fixed. The graphical interface does not display

the values of the constraints but displays the partition quality in red if it corresponds to a non realizable

solution.

For convenience, some special operators are provided in Constellation to model constraints. For example,

the operator <= used in a <= b will return b− a is a > b and 0 otherwise. Should the user select that this

value corresponds to constraint 1, this value will be minimized with a higher importance than the original

objective function.

As soon as a criterion is entered in Constellation, it may be saved and loaded again or modified as needed.



Les Cahiers du GERAD G–2011–55 3

4 Variable Neighborhood Search

The software is designed to handle a wide variety of graph clustering problems, therefore, no specific routine

that is well known to work for any given criterion is implemented. Instead, it was decided that generic

routines would be used. As it was found in some other generic optimization software such as AutoGraphiX

(AGX) [1, 2], the variable neighborhood search (VNS) heuristic [4, 5] provides good results for a wide variety

of problems with little need for parameter adjustments. For this reason, the optimization uses VNS in

Constellation.

4.1 VNS overview

The optimization in Constellation is done by VNS which is well suited to handle a wide variety of problems

with little tuning, compared to most other methods such as tabu search or genetic algorithms.

Let S be a solution of the communities detection problem and consider a transformation T , that changes S

to an alternate solution. The set of solutions obtained from S by applying T is called NT (S), the neighborhood

of S according to transformation T .

Searching the neighborhood NT (S) to find a better solution may recursively be used to define a local

search LS. If S∗ is better than any of the solutions in NT (S∗), we say that S∗ is a local optima with regard

to T .

Next, consider an extension of NT (S), Nk
T (S) which is defined by applying k times the transformation T

instead of once. Nk
T will most probably consist in a larger set of solutions than NT . By changing the value of

k, we get different neighborhoods and the number of corresponding solutions tends to grow with k. We say

that Nk is nested in Nk+1. An exhaustive search in a very wide neighborhood is very time consuming and

usually not recommended but picking at random a solution in Nk(S) (applying a perturbation P k to S) will

provide a new starting solution from which LS could be applied. Depending on the value of k, the search

will be concentrated in a small or large vicinity of S.

Using these key concepts, one could construct a first VNS algorithm, alternating local search and variable

magnitude perturbations as described on Figure 2.

Initialization:
• Select the neighborhood structure Nk and a stopping condition.
• Let S be an initial (usually random) partition.
• Let S∗ denote the best partition obtained to date.

Repeat until condition is met:
• Set k ← 1;
• Until k = kmax,do:

(a) Generate a random partition S′ ∈ Nk(S);
(b) Apply LS to S′

Denote S′′ the obtained local optimum S′′ = LS(S′);
(c) If S′′ is better than S∗,

Let S∗ ← S′′ and
k ← 1

otherwise,
set k ← k + 1.

done

Figure 2: Rules of Variable Neighborhood Search.



4 G–2011–55 Les Cahiers du GERAD

4.2 Local Search

Local search is achieved by variable neighborhood descent. The user may choose the transformations involved

in the search from a list. If more than one is selected, all the transformations are used by the system one

after the other until none of them succeed in improving the quality of the solution.

After some experiments, we identified that few of the transformations are really efficient and we will

concentrate on them here. For clarity reasons, we will refer to these local search by the name of the trans-

formation involved i.e., Merge, Split and Redispatch. In all the local searches used by Constellation, the first

improvement strategy is used, which means that as soon as a transformation is found interesting, it is applied

even if another transformation would be more profitable. Indeed, it is possible that the global improvement

after a step of the search is not as good as it would be with the best improvement which only applies the most

interesting transformation after testing them all, but first improvement is faster to apply, so that, overall, it

seems to be a good choice.

1. Merge

In the Merge local search, all pairs of clusters are considered one after the other. Should merging two

clusters improve the solution, this transformation is applied.

2. Split

The Split local search could be considered as the reverse of Merge. Each cluster is considered for

splitting and as soon as a split is found improving, it is applied. From a technical point of view, there

are many ways to split a cluster. Some of those are not efficient and others are very time consuming. As

the potential splits applied in the optimization process a fast yet efficient implementation was chosen.

If we denote by ci the cluster to split, two distinct non pending vertices (v1 and v2) belonging to the

ci are first selected and v2 is assigned to an empty cluster cj . Then, each vertex v of ci is assigned to

cluster ci or cj if it is closer to v1 or v2 respectively.

3. Redispatch

The Redispatch transformation is very close to Split, the only difference being that instead of considering

a cluster ci, two clusters ci and cj are considered. For every pair of clusters (ci, cj), we first randomly

choose two non pending vertices vi and vj belonging to ci ∪ cj . Then, each observation from ci ∪ cj is

reassigned to ci or cj depending if it is closer to vi or vj .

4.3 Perturbations

For the time being, 6 perturbation schemes are implemented in Constellation and the choice of the pertur-

bation to use is left to the user. The selected perturbation is then successively applied k times to obtained a

partition in Nk(S).

• Redispatch Two clusters are randomly selected and the same Redispatch procedure as the one defined

in the local search is applied.

• Split One cluster is randomly selected cluster and split it in two in the way described for the Split

procedure in local search.

• Move Star One vertex is randomly chosen and moved altogether with all its neighbors to another cluster

also randomly chosen.

• Multistart This perturbation is not sensitive to the value k and consists in assigning every vertex a

random cluster to simulate the multistart procedure within the vns framework.

4.4 Multi threads support

The optimization algorithm was developed in order to take advantage of multithreading. The easiest way to

use VNS in a multithreading scheme is by making a copy of the whole problem under study for each thread

and only sharing the best known solution. This approach limits the access to the shared memory and is more

efficient from this point of view. In Constellation, this procedure is implemented and each thread uses its

own sets of parameters, so that different threads may use different local searches and different values for kmax



Les Cahiers du GERAD G–2011–55 5

for example. Unfortunately, it was found that having different threads working on the same current solution

with various local searches may provide interesting results. For this reason, the concept of collaborative

threads was also implemented in Constellation. From a technical point of view, each thread is linked to a

master thread with which it shares the current solution. The master thread is then linked to itself and the

system does not allow a thread to be linked to another that is not a master (that is not linked to itself). For

example, threads 2 and 3 may be linked to thread 1 (the master) while threads 5 and 6 are linked to thread 4

(another master). In this case, threads 1, 2 and 3 are collaborating and threads 4, 5 and 6 also. In this

example, two sets of threads are to be considered: (1, 2, 3) and (4, 5, 6) these two sets are not collaborating

and may explore different spaces while threads from a same set are improving the same solution. The masters

are the only threads that apply perturbations when reaching a local optima (the others will only search for

the master’s solution).

Collaborative threads improve the efficiency of the local search but are demanding because they share

some information that is often read or written. It is recommended that small groups of threads collaborates

while it is not a problem if there are a lot of threads that only share the best known solution. Indeed, even if

threads are collaborating, they only share the current solution at local optima in order to avoid the excessive

overhead time due to the waiting for the access to the memory. When a thread reaches a local optima, it

searches for the current solution from the master. Should this solution be better, it is loaded and used as

starting point for a local search. In the case the local solution is better than that from the master this last

solution is updated for the use of the other threads.

5 Application examples

An example of problem study with Constellation is presented. The netscience main dataset which gives a

network of collaborations in research is considered as it represents an example of reasonable size for which

the graphical representation is interesting and easy to visualize. Constellation allows a first drawing of the

network in such a way that its structure is easy to understand, as shown on Figure 3. Note that the node

size could be modified to provide information on the degree of the corresponding vertex.

Figure 3: The netscience graph representation



6 G–2011–55 Les Cahiers du GERAD

5.1 Maximizing modularity

As an illustration of the use of Constellation, for finding communities in a graph, we consider an example of

clustering criterion that is most likely the most used, the modularity. This criterion was initially proposed

by Girvan and Newman in 2002 [3] as a stopping rule for a hierarchical divisive algorithm and was later

proposed as an independent criterion [6].

Modularity aims at finding a partition of V which maximizes the sum, over all clusters (or modules), of

the number of inner edges minus the expected number of such edges assuming that they are drawn at random

with the same distribution of degrees as in G. Modularity is defined as:

Q =
∑
C∈C

[aC − eC ] ,

where aC is the fraction of all edges that lie within module C and eC is the expected value of the same

quantity in a graph in which the vertices have the same expected degrees but edges are placed at random.

A maximum value of Q near to 0 indicates that the network considered is close to a random one (barring

fluctuations), while a maximum value of Q near to 1 indicates strong community structure. Observe that

maximizing modularity gives an optimal partition together with the optimal number of modules.

Let the vertex function weight function be defined as:

ω(v) =


∑

{u,v}∈E

ω({u, v}) if {v, v} /∈ E∑
{u,v}∈E,u6=v

ω({u, v}) + 2ω({v, v}) if {v, v} ∈ E

Let C be a partition of V , the sum over modules of their modularities can be written as

Q =

∑
C∈C

∑
{u,v}∈EC

ω({u, v})

∑
e∈E

ω(e)
−

∑
C∈C

(∑
v∈VC

ω(v)

)2

4

(∑
e∈E

ω(e)

)2 . (1)

The modularity is interesting as a starting point because the number of clusters does not need to be fixed.

The Figure 4 represents the solution obtained by Constellation for the modularity maximization criterion.

On this solution, the value of the modularity is 0.848587 and has 19 clusters represented by different colors.

Note that for technical reasons, the colors of different clusters may look similar, but it is easy to recognize

these cases by looking at the underlying structure.

5.2 Maximizing modularity with Radicchi constraints

To improve the quality of the clustering obtained, some constraints could be added reinforcing the concept

of clusters. Radicchi et al. [7] proposed some condition that a cluster should respect to be considered as a

community in the strong sense. This condition is that each vertex must have more neighbors in its community

than neighbors outside its community. When this condition is added to the problem definition, Constellation

finds a different solution which only has 17 clusters and the value of the modularity was reduced to 0.812573.

We notice some large clusters that seem to be the junction of clusters that are joined by one single common

vertex.



Les Cahiers du GERAD G–2011–55 7

Figure 4: The netscience graph solution found by Constellation while maximizing modularity.

Figure 5: The netscience graph solution found by Constellation while maximizing modularity with strong
Radicchi conditions.



8 G–2011–55 Les Cahiers du GERAD

References

[1] M. Aouchiche, J.-M. Bonnefoy, A. Fidahoussen, G. Caporossi, P. Hansen, J. Lacheré, and A. Monhait. Variable
neighborhood search for extremal graphs. 14. The AutoGraphiX 2 system. In L. Liberti and N. Maculan, editors,
Global Optimization. From Theory to Implementation. Springer Science, New-York, 2006.

[2] G. Caporossi and P. Hansen. Variable neighborhood search for extremal graphs. 1. The AutoGraphiX system.
Discrete Math., 212:29–44, 2000.

[3] M. Girvan and M. Newman. Community structure in social and biological networks. Proc. Natl. Acad. Sci.
U.S.A., 99:7821–7826, 2002.

[4] P. Hansen and N. Mladenović. Variable neighborhood search: Principles and applications. European J. Oper.
Res., 130:449–467, 2001.

[5] N. Mladenović and P. Hansen. Variable neighborhood search. Comput. Oper. Res., 24:1097–1100, 1997.

[6] M. Newman and M. Girvan. Finding and evaluating community structure in networks. Physical Review E,
69:026133, 2004.

[7] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto and D. Parisi. Defining and identifying communities in
networks. PNAS, 101:2658–2663, 2004.


	Introduction
	Interactive use of Constellation
	Problem definition
	Variable Neighborhood Search
	VNS overview
	Local Search
	Perturbations
	Multi threads support

	Application examples
	Maximizing modularity
	Maximizing modularity with Radicchi constraints


