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Abstract

Parameterizing source code for architecture-bound optimization is a common approach to high-
performance programming but one that makes the programmer’s task arduous and the resulting code
difficult to maintain. Certain parameterizations, such as changing loop order, may require elaborate code
instrumenting that distract from the main objective. In this paper, we propose a templating and auto-
matic code generation approach based on standard Python modules and the Opal library for algorithm
optimization. Advantages of our approach include its programmatic simplicity and the flexibility offered
by the templating engine. We provide a complete example for the matrix multiply where optimization
with respect to blocking, loop unrolling and compiler flags takes place.

Key Words: Algorithm optimization, nonsmooth optimization, template programming, automatic code
generation.

Résumé

La paramétrisation de code source pour l’optimisation vis-à-vis de la plate-forme informatique est une
approche courante en calcul de haute performance mais elle complique la tâche du programmeur et le code
résultant est difficile à entretenir. Certaines paramétrisations, telles qu’un changement d’ordre de boucles,
peuvent demander des annotations complexes du code qui éloignent l’attention du but principal. Dans
cet article, nous proposons une approche de particularisation de canevas et sur de génération automatique
de code basée sur des modules Python standard et sur la librairie Opal d’optimisation d’algorithmes.
Parmi les avantages de notre approche, nous citons la simplicité de programmation et la flexibilité du
moteur de particularisation de canevas. Nous illustrons notre approche sur un exemple complet pour la
multiplication matricielle où l’optimisation se fait sur les paramètres de blocage, le déroulage de boucles
et les options de compilation.

Acknowledgments: Research partially supported by NSERC Discovery Grant 299010-04.
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1 Introduction

Given an algorithm, the Opal library [1, 2] casts the algorithmic parameter tuning problem as the nonsmooth
optimization problem

minimize
p∈P

φ(p) subject to ψi(p) ∈ M, (i = 1, . . . ,m), (1)

where p is the set of parameters under consideration, P is the domain of p as given by the algorithm
specifications, φ and each ψi are so-called composite measures and M is a user-defined feasible set. In
a typical situation, running the algorithm with representative input data produces a collection of atomic
measures which depend upon the parameter values chosen by the user. Composite measures are arbitrary
combinations of atomic measures. In computer architecture-bound tuning, relevant atomic measures may
include the elapsed time, the amount of memory consumed, the throughput, or any other relevant performance
metric. The objective and constraints of (1) are usually nonsmooth and may be noisy. In Opal, (1) is
solved by way of the direct-search solver Nomad [3], an implementation of the mesh-adaptive direct-search
framework (Mads) [4]. The Mads framework is supported by strong convergence guarantees and does not
fit in the class of empirical or heuristic methods.

In this paper, we are interested in the application of Opal to the automated tuning of high-performance
numerical libraries. The vast diversity of computer architectures makes the implementation of such libraries
notoriously challenging. Though some appropriate optimizations may be performed by modern compilers,
they are often entirely heuristic and insufficient. In the recent past, researchers have turned to code param-
eterization to facilitate automated tuning. The prime successful example of this approach is the Atlas [5]
implementation of the Blas [6] dense linear algebra kernels. Various approaches are possible and most consist
in instrumenting the source code by way of customized annotations (such as C pragmas) or of an augmenting
scripting language. POET [7] is an XML-type augmenting scripting language used to wrap the source code
and to describe parameters and how they can be used to perform source transformations. POET scripts can
be rather lengthy and contain numerous cryptic symbols that make the code difficult to read and maintain.
PLW [8] is an augmenting scripting language defined as a restricted subset of Python1. PLW annotations can
provide a Python script with static typing and assist in porting to a parallel platform. Some of PLW’s goals
are now covered by the increasingly popular Cython2 extension of Python which provides static typing and
seamless interfacing with external C, C++ and Fortran libraries. The X language [9] is an annotation-based
system aiming to support multiple versions of a program with empirical tuning in mind. A disadvantage of
the X language is the restricted set of rules that can be used for code transformation. Finally, the ROSE [10]
compiler allows to define rules for source-to-source transformation by code fragment substitution.

We propose a simpler approach that does not necessitate the development of a new augmenting language
or of a customized compiler designed specifically for the parameter optimization task. Instead, our Python-
based approach relies on established standard Python tools each focusing on a narrow specific goal. Code
is written as a set of templates which support some functional programming constructs such as tests and
loops. Instances of templates may be rendered by specifying concrete parameter values. In our examples we
use C as the base low-level language but other languages, such as Fortran or Python, could be used. The
resulting instance may be compiled on-the-fly as a shared library and dynamically imported into the current
Python session. When wrapped into an Opal description script, the result is a Python-based toolchain for
the automatic generation of optimized code based on templates.

Code parameterization is by no means new or even recent. The use of optimization for stability analysis of
computational methods may be traced back to the mid-70’s. The authors of [11, 12, 13, 14] devise languages
in which numerical algorithms are to be implemented. Upon compilation, a descent method exercises the
algorithm by varying its input so as to maximize an error measure with the intent of assessing the numerical
stability of the method as implemented. The programming languages impose a number of stringent rules on
the implementation which, for instance, may not make use of loops.

1www.python.org
2www.cython.org
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The rest of this paper is organized as follows. Section 2 gives an overview of the algorithm to be optimized
and the Opal modeling and solving environment, and §3 describes code parameterization via templates and
how they are used to generate code automatically. Numerical experience is reported in §4 and further research
is discussed in §5.

2 The Opal Framework and the Target Algorithm

Opal is a versatile Python framework providing tools to formulate a parameter optimization problem based
on a description of the target algorithm, the name and type of its parameters, and the atomic measures
available after running the algorithm on sample data. We describe the modeling process below after a brief
discussion of our target algorithm.

The dense matrix-multiply is a crucial linear algebra kernel and much attention has been, and still is,
given to tuning it to the host architecture. A number of search heuristics are compared in [15] but in
the present work, we propose a search based on a black-box solver with strong convergence guarantees.
The Level-3 BLAS matrix multiply performs several types of update, among which C = AB + βC, where
C ∈ R

m×n, A ∈ R
m×p, B ∈ R

p×n and β ∈ R. For simplicity, we only consider real matrices. In order to avoid
unnecessary memory reads or scalar multiplies, different kernels are usually written depending on whether
β = 0, β = 1, or β �∈ {0, 1}. Several parameters can be considered. Three of them are related to blocking,
which consists in performing the multiply by updating entire submatrices of C instead of a single element at a
time. Blocking leads to a more efficient implementation than the straightforward three-loop implementation
because it increases the probability of cache hits and decreases that of code branch misprediction. Suppose
C is decomposed into blocks C[ij], each of size mb-by-nb except perhaps those in the last block row and
column, and that A and B are similarly decomposed into blocks of size mb-by-kb and kb-by-nb, respectively.
Updating C[ij] can now be performed via C[ij] = (A[i1]B[1j] + βC[ij]) +

∑
k≥2 A[ik]B[kj]. In other words, we

need a single call to a kernel using the user-requested value of β and operating on blocks of size mb × nb,
mb × kb and kb × nb, respectively, followed by several calls to a similar kernel using β = 1. If smaller blocks
are encountered in the last block row or column, a specific kernel, referred to as a cleanup kernel in [16], is
called. In our implementation, we do not use blocking in the cleanup kernel, though it would be possible.
In ATLAS, blocking parameters are bounded between 16 and min(

√
L1, 80), where L1 is the size of the L1

cache. Our implementation relies on the optimization engine and lets blocking parameters vary between 1

and the row or column size. Three additional parameters concern loop unrolling and they are the extent to
which each loop i, j or k, is unrolled. This determines the extent to which a code fragment will be vectorized.
Compilers typically perform some amount of loop unrolling based on heuristics but the optimal amount is
architecture dependent. Unrolling amounts vary between zero and the number of elements in the loop. A last
set of parameters is that of compiler flags. We describe the flags used in our tests in §4. Other parameters,
such as loop order, are explored by heuristic search in [15].

Modeling a parameter optimization problem in Opal consists in writing three Python files which we
now briefly describe. The declaration file contains a description of the parameters of the target algorithms
along with their type and bounds, if any. In our case, those are the blocking factors nb, mb, kb, the loop
unrolling amounts nu, mu, ku, and the compiler flags. All are integer and are bounded as specified above.
In the present case, the declaration file also contains the test data—randomly generated matrices that are
preserved throughout the search—and an atomic measure representing elapsed time. The run file contains
the commands necessary to run the target algorithm with the parameter values suggested by the black-box
solver. Those values are exchanged via files for maximum portability. The test matrices are read from
file each time the run file is run. After running the run file, the atomic measure is known for the current
parameter values. Finally, the model file describes the parameter optimization problem and may combine
atomic measures into arbitrary composite measures to define the objective function and constraints of (1).
This file may also specify options to the black-box solver.
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3 Code Generation and Compilation by Templating

Our kernels, main code and cleanup code are generated from templates. In our case, templates are strings
containing C code and special markup that will allow us to specialize those strings and generate customized
code from them. We use the Jinja2 template engine3 for its ease of use and flexibility. It appears that
templating engines were initially created with web development in mind but it turns out that they can be
extremely useful in other areas where automatic code generation is crucial. In a template, the double curly
brace notation {{NB}} is used to mark a place where the value of the parameter NB may be substituted.
Consider for example the simplified template t = Template("for (i=0; i<{{NB}}; i++)") describing the
opening statement of a for loop in the C language. The command t.render(NB=16) produces the expected
output; the string "for (i=0; i<16; i++)". Jinja2 also supports constructs for tests and loops in its
templates which makes it convenient for automatic code generation. A blocking kernel template illustrating
the curly brace notation and conditionals, strongly inspired from [16], is shown in Listing 1. The standard
{% for ... %} / {% endfor %} Jinja2 construct may be used for loop unrolling. Statements involving
the loop variable can be included in the loop and sets of variables can be declared inside the loop. A loop
unrolling fragment with loop constructs is shown in Listing 2.

As indicated in §2, a kernel using a generic value of β and a kernel using β = 1 will be needed. Similarly,
cleanup code with both β and β = 1 will be needed. In our numerical experiments, cleanup code is never
blocked and its loops are never unrolled. Clearly, this choice may limit the attainable performance. At the
very least, cleanup code parameters should be different from kernel parameters.

Once the necessary templates have been rendered, they may be concatenated and it is necessary to compile
them as a Python extension module. Several possibilities exist and our choice is to use Instant4—a package
for inlining C code within Python code by creating and importing an extension module on the fly—for its
small footprint, ease of use and ability to work seamlessly with Numpy5 arrays—the de facto standard data
structure for arrays in Python. Rendering templates and compiling them as an extension module that is
immediately dynamically imported is illustrated in Listing 3.

In the present example, the templates are relatively short strings. On 64bit platforms, the maximum
length of Python strings is essentially limited by the memory available. Note however that template-based
code generation only requires those segments of the code that depend on the parameters to be templated.
Other components of the code may be precompiled in a library that is linked in by Instant. Instant accepts
user-selected compiler flags via the cppargs keyword argument to inline_module_with_numpy().

4 Experimental Framework and Numerical Results

Our tests are run under OSX 10.6.7 on a dual-core 2.66 GHz Intel Core i7-620M Arrandale processor with
256 KB of L2 cache per core and 4 MB of L3 cache. Throughout, the compiler used is gcc 4.2.1 (Apple
Inc. build 5664). We performed two sets of tests. The first helped us determine appropriate parameters for
Nomad itself by optimizing over a three-dimensional space only, corresponding to the three blocking factors
mb, nb and kb. Nomad is a direct-search method in which the search space is implicitly discretized uniformly
using a given mesh size. A typical iteration consists in an optional search step and a mandatory poll step. In
the search step, a set of candidates is proposed via a user-supplied procedure. Should one of those candidates
improve upon the current iterate, it will be accepted as next iterate and the poll step is bypassed. The role of
the poll step is to offer convergence guarantees. The objective function is evaluated at some mesh neighbors
of the current iterate along a set of iteration-dependent directions. One of those improving upon the current
iterate becomes the next iterate. Should none realize an improvement, the mesh size is decreased. When
good improvement is obtained the mesh size may increase. Convergence is guaranteed via a procedure that
selects the set of directions defining the neighbors of the current iterate. This procedure should ensure the
directions form a positive basis and that in the limit, as the mesh size converges to zero, the union of all

3jinja.pocoo.org
4launchpad.net/instant
5numpy.scipy.org
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1 kernel_code = """
2 void opal_dgemm_kernel_{{- suffix -}}(
3 int nrowA , int ncolA , const double *A,
4 int nrowB , int ncolB , const double *B,
5 int nrowC , int ncolC , double *C, double beta) {
6
7 int i, j, k;
8 register double cij;
9

10 for (i = 0; i < {{ NB }}; i++) {
11 for (j = 0; j < {{ MB }}; j++) {
12

13 {% if beta0 %}
14 cij = 0.0;
15 {% elif beta1 %}
16 cij = C[i*ncolC + j]; /* = C[i,j] */
17 {% else %}
18 cij = C[i*ncolC + j] * beta; /* = C[i,j] * beta */
19 {% endif %}
20
21 for (k = 0; k < {{ KB }}; k++)
22 cij += A[i*ncolA + k] * B[k*ncolB + j];
23
24 C[i*ncolC + j] = cij;
25 }}}"""

Listing 1: Blocking kernel template with conditionals.

1 {% for ku in range(KU) -%}
2 {% for ju in range(JU) -%}
3 {% for iu in range(IU) -%}
4 cij_{{- iu -}}_{{- ju }} += A[(i + {{iu}})*ncolA + k + {{ku}}] *
5 B[(k + {{ku}})*ncolB + j + {{ju}}];
6 {% endfor -%}
7 {% endfor %}
8 {% endfor %}

Listing 2: Loop unrolling fragment with loop constructs.

1 from instant import inline_module_with_numpy
2 from dgemm_template import * # Templates are defined here.
3 from numpy.random import random
4 kernel1 = kernel_template.render (beta1=True , suffix=’1’, NB=8, MB=16, KB=32)
5 kernelb = kernel_template.render (suffix=’b’, NB=8, MB=16, KB=32)
6 dgemm = dgemm_template.render (NB=8, MB=16, KB=32)
7 cleanup1 = cleanup_template.render(beta1=True , suffix =’1’)
8 cleanupb = cleanup_template.render(suffix=’b’)
9 code = kernel1 + kernelb + cleanup1 + cleanupb + dgemm

10 dgemm_module = inline_module_with_numpy(code.encode(’ascii’),
11 arrays =[[’nrowA ’,’ncolA’,’A’],
12 [’nrowB ’,’ncolB’,’B’],
13 [’nrowC ’,’ncolC’,’C’]],
14 modulename=’dgemm’)
15 dgemm_module.opal_dgemm(random ((50,50)),random ((50,50)),random ((50 ,50)) ,2.0)

Listing 3: Rendering the kernel, main and cleanup templates of DGEMM, compiling as an extension module
and running on 50× 50 random matrices.
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normalized directions forms a dense set in the unit sphere. For details, we refer the reader to [4]. Our tests
use square matrices of size 1024 and each elapsed time reported is the median of five runs. The first variant of
Nomad uses a set of n+1 directions, where n is the dimension of the search space. The second variant uses
2n directions. The direction-setting procedure used by the two variants is the one referred to as the Lower
Triangular procedure in [4]. A third variant uses 2n orthogonal directions and is detailed in [17]. They are
denoted Lt-n+1, Lt-2n and Ortho-2n in what follows. The advantage of the third variant over the first two
is that it generates reproducible results. For each variant, two additional options were considered. The first
is the opportunistic strategy in which the first neighbor yielding an improvement in the poll step is accepted
as next iterate. This is in contrast with the non-opportunistic strategy in which the neighbor yielding the
best improvement is selected. The second option concerns the use of a quadratic model of the objective in the
search step to propose a new incumbent. Should the search step fail when using the opportunistic strategy,
the quadratic model is evaluated at all neighbors which are ordered by increasing model value before the poll
step.

Our results are summarized in Fig. 1, which plots the objective function value against time. The best
found objective value is indicated on the vertical axis of each plot. It is not surprising to note that using
quadratic models alone does not yield the best performance as the true objective function is likely highly
non-quadratic and even non-smooth. It seems however that the opportunistic strategy pays off, even in
conjunction with the quadratic models. Note in all cases the typical L-shaped descent curves exhibiting a
sharp decrease in the early iterations and tailing off for most of the search process. Within 1000 seconds or
less, most of the descent is achieved for all variants which indicates that this is a reasonable time budget
in the absence of a problem-specific search step procedure. In all cases, the final solutions differ sufficiently
to indicate that many parameter sets produce similar timings. This was already noted in [15]. Note that
all total run times reported include the time required to read the test matrices from file at each black-box
evaluation and the time required to compile and load the generated code as a Python extention module. All
elapsed times reported only represent the time required to perform the matrix update.

The second set of tests comprises more parameters and is run using the dominant variants of Nomad. We
first selected the Lt-n+1 procedure with the opportunistic strategy alone, and the Ortho-2n procedure with
the opportunistic strategy and quadratic models. The search space comprises this time the three blocking
factors, three unrolling amounts and two compiler flags. The first compiler flag is the optimization level and
can take the values -O0, -O1, -O2 or -O3. The second flag, -march=core2, can be either turned on or off
and determines whether the compiler should produce generic or machine-specific code. When turned on, this
flag activates MMX, SSE, SSE2, SSE3 and SSSE3 instruction set support. In all cases, all initial parameters
are set to 1, optimization is set to -O2 and the -march flag is deactivated. The initial elapsed time is about
22s. The final parameter values identified by the Lt-n + 1 variant are nb = 33, mb = 12, kb = 25, nu = 3,
mu = 3, ku = 1 with compiler flags -O2 and -march=core2 for a final elapsed time of 0.95s, a total run
time of 4799s and 635 evaluations. The Ortho-2n variant stopped with nb = 33, mb = 40, kb = 20, nu = 3,
mu = 14, ku = 1 and compiler flags -O1 and -march=core2 for a final elapsed time of 0.91s, a total run time
of 7428s and 1249 evaluations. As in the first set of tests, the Lt-n+ 1 variant appears to yield good results
faster than other variants and appears desirable despite it not being entirely reproducible. The value ku = 1

is quite surprising as this parameter is known to be influential but in other runs, larger values of ku were
obtained with a similar final elapsed time. Numerous improvements on these preliminary tests are possible,
including re-starting from the final values with a large mesh size to escape from a local solution, and using
problem-specific search step procedures. We do not explore such possibilities here in order to keep the focus
on the templating framework.

5 Discussion

Only the parts of a code that require optimization need be templated. The rest may be precompiled and
linked in at compile time. This makes templating a viable option for general-purpose optimization of scientific
computing codes.
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Figure 1: Evolution of the objective (s) versus time (s) for various NOMAD settings.

Using a direct-search method with convergence guarantees has several advantages over heuristic searches
such as those used by [15]. Firstly, some variants are deterministic and ensure reproducibility of the results
when run in similar conditions, although measures such as elapsed time may be relatively noisy. The stopping
conditions offer a certain optimality certificate—we refer the interested reader to [4] for full details. At each
iteration, the search step allows for a surrogate model to be used to steer the iterates towards promising
regions. Using as a surrogate the search procedure currently used in, say, Atlas, guarantees that the direct-
search approach will identify parameters that are at least as good as those suggested by Atlas. Any other
search procedure, whether heuristic or not, could be used as a surrogate model. In our opinion, this is the
feature that differentiates the Opal approach the most from previous proposals.

An advantage of the framework proposed in this paper is its modularity. Other black-box optimization
solvers can be interfaced with Opal and used in a code templating application. There exist numerous
templating engines for Python—see wiki.python.org/moin/Templating—each with different feature sets
and those could be interchanged to better suit the needs of the current application. Finally, several Python
modules for automatic compilation of C code are available and Instant is just one of them, which stands out
for its simplicity, its ability to handle Numpy arrays and its small footprint. Alternatives include Weave,
which is part of the SciPy project6, F2Py, which is part of NumPy, and Cython, which will become a
superset of the Python language providing static typing and tight integration with NumPy arrays. Another

6www.scipy.org
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advantage is that all the tools required are already part of the Python tool chain. As a consequence, though
our approach is currently not able to annotate code automatically as in, e.g., the Rose LoopProcessor [10],
annotation via templating is easy and uses classical programmatic constructs. For a simple matrix multiply,
rather than a matrix update, other parameters could have been considered. Loop order is the most natural
and could be implemented in Opal as a periodic integer variable, i.e., each loop order has two “neighbors”. In
particular, the neighbors of the first in the list are the second and the last. In future versions of Opal, they
will be modeled as categorical parameters, i.e., discrete parameters on which no specific order is prescribed.
Modeling categorical parameters requires the user to describe the set of neighbors of each parameter value.
One possibility would be for each loop order to have every other possible loop order as neighbors.

Templating in other languages than C presents no additional difficulty save for the fact that there may
not exist a way to easily compile and import the rendered code as a Python extension module. However
Opal does not impose that the resulting code be run as an extension module—it could simply be run by
issuing system commands, which can be done from Python as well.

We intend to generalize the framework proposed in the present paper to a more complete template-
based set of linear algebra kernels. We expect that the modularity and flexibility of our approach will ease
improvement of the search engine, the templating engine, or any other part of the optimization process.

References

[1] Audet, C., Orban, D.: Finding optimal algorithmic parameters using derivative-free optimization. SIAM
Journal on Optimization 17(3) (2006) 642–664

[2] Audet, C., Dang, C.K., Orban, D.: Algorithmic parameter optimization of the DFO method with the
OPAL framework. In K. Naono, K. Teranishi, J.C., Suda, R., eds.: Software Automatic Tuning: From
Concepts to State-of-the-Art Results. Springer, New-York, NY (2010) 255–274

[3] Le Digabel, S.: Algorithm 909: NOMAD: Nonlinear optimization with the MADS algorithm. ACM
Transactions on Mathematical Software 37(4) (2011) 44:1–44:15

[4] Audet, C., Dennis, Jr., J.E.: Mesh adaptive direct search algorithms for constrained optimization. SIAM
Journal on Optimization 17(1) (2006) 188–217

[5] Whaley, R.C., Petitet, A., Dongarra, J.J.: Automated empirical optimization of software and the ATLAS
project. Parallel Computing 27(1–2) (2001) 3–35

[6] Blackford, L.S., Demmel, J., Dongarra, J., Duff, I., Hammarling, S., Henry, G., Heroux, M., Kaufman,
L., Lumsdaine, A., Petitet, A., Pozo, R., Remington, K., Whaley, R.C.: An updated set of basic linear
algebra subprograms (BLAS). ACM Transactions on Mathematical Software 28 (2002) 135–151

[7] Yi, Q., Seymour, K., You, H., Vuduc, R., Quinlan, D.: POET: Parameterized optimizations for empirical
tuning. International Parallel and Distributed Processing Symposium (2007) 447

[8] Luszczek, P., Dongarra, J.: High performance development for high end computing with python language
wrapper (PLW). International Journal of High Performance Computing Applications 21(3) (2007) 360–
369

[9] Donadio, S., Brodman, J., Roeder, T., Yotov, K., Barthou, D., Cohen, A., Garzarán, M., Padua, D.,
Pingali, K.: A language for the compact representation of multiple program versions. In Ayguadé,
E., Baumgartner, G., Ramanujam, J., Sadayappan, P., eds.: Languages and Compilers for Parallel
Computing. Volume 4339 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg (2006)
136–151

[10] Schordan, M., Quinlan, D.: A source-to-source architecture for user-defined optimizations. In Böször-
ményi, L., Schojer, P., eds.: Modular Programming Languages. Volume 2789 of Lecture Notes in Com-
puter Science. Springer Berlin / Heidelberg (2003) 214–223

[11] Miller, W.: Software for roundoff analysis. ACM Transactions on Mathematical Software 1 (1975)
108–128

[12] Miller, W., Spooner, D.: Sofware for roundof analysis II. ACM Transactions on Mathematical Software
4 (1978) 369–387



8 G–2011–30 Les Cahiers du GERAD

[13] Larson, J.L., Sameh, A.H.: Algorithms for roundoff error analysis—a relative error approach. Computing
24 (1980) 275–297

[14] Larson, J.L., Pasternak, M.E., Wisniewski, J.A.: Algorithm 594: Software for relative error analysis.
ACM Transactions on Mathematical Software 9 (1983) 125–130

[15] Seymour, K., You, H., Dongarra, J.J.: A comparison of search heuristics for empirical code optimization.
In: Proceedings of the 2008 IEEE International Conference on Cluster Computing. Third international
Workshop on Automatic Performance Tuning (iWAPT 2008), Tsukuba International Congress Center,
EPOCHAL TSUKUBA, Japan (2008) 421–429

[16] Whaley, R.C.: A guide to user contribution to ATLAS (April 2011)
[17] Abramson, M.A., Audet, C., Dennis, Jr., J.E., Le Digabel, S.: OrthoMADS: A deterministic MADS

instance with orthogonal directions. SIAM Journal on Optimization 20(2) (2009) 948–966


	Introduction
	The Opal Framework and the Target Algorithm
	Code Generation and Compilation by Templating
	Experimental Framework and Numerical Results
	Discussion

