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Abstract

We propose a conceptually simple, finite simplicial branch-and-bound algorithm for minimizing a con-
cave function over a polytope. The proposed algorithm requires at each iteration the solution of two closely
related linear programs of constant size for the computation of the lower bound and of the subdivision
point; moreover, the objective function need to be evaluated only at extreme points of the polytope and of
the initial simplex. Preliminary computational results are presented, which point to future improvements.

Key Words: concave minimization, simplicial covering algorithm.

Résumé

Nous proposons un algorithme conceptuellement simple d’énumération implicite de simplexes pour
la minimisation d’une fonction concave sur un polytope en un nombre fini d’itérations. Cet algorithme
requiert à chaque itération la solution de deux programmes linéaires étroitement liés et de taille constante
pour le calcul de la borne inférieure et du point de subdivision; de plus la fonction objectif n’a besoin
d’être évaluée qu’en des points extrêmes du polytope et du simplexe initial. Des résultats numériques
préliminaires sont présentés, qui suggèrent des améliorations futures.

Mots clés : Minimisation concave; algorithme de recouvrement simplicial.
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1 Introduction

The concave minimization problem

(CP ) min{f(x) | x ∈ P}

consists in finding a global minimizer x∗ of the concave function f over the polytope P = {x ∈ IRn : Ax ≤ b}
where A is a matrix of IRm×n and b a vector of IRm. It is well known that this problem is NP-hard, even

if the objective function is quadratic concave and the polytope is a hypercube, see for example [9]. On the

other hand, this problem has the nice property that its optimal value is attained at one extreme point of
the polytope (we will refer to this property as the extreme point property). This property suggests a finite

algorithm to solve problem (CP), with the number of iterations depending only on the size of the polytope. It

is the purpose of this paper to propose such an algorithm. Although our algorithm can solve in principle any

instance of problem (CP), it is more specially intended for instances where the polytope may have degenerate

extreme points and/or where the objective function is costly to evaluate. Examples of applications where
the polytope might be degenerated include the minimum concave-cost flow problems (see e.g. [4]).

The solution methods for problem (CP ) can be roughly divided in three classes: enumerative methods,
successive approximation methods and branch-and-bound methods (see e.g. Benson [2] for a survey on these

methods and for references to applications).

Among the enumerative methods,the extreme points ranking method exploits directly the extreme point

property by enumerating the extreme points of P in nondecreasing order with respect to the value of a linear
underestimator of f over P . This method suffers from the large number of extreme points to explore, due to

the often bad quality of the linear underestimator, and more importantly, is very sensitive to the presence of

degenerate extreme points (see [2] and references therein).

On the other side, branch-and-bound methods based on partitioning do not exploit at all the extreme point

property. The first simplicial branch-and-bound method was proposed by Horst [5] in 1976. At a given
iteration of this algorithm, we have at hand an incumbent solution and a collection of simplices that cover

the part of the polytope that might still contain a point better that the incumbent solution. To conclude

that a simplex (or more precisely, the intersection of that simplex with the polytope) cannot improve on the

incumbent solution, a lower bound on f is computed by minimizing a (local) linear underestimator of f over
the portion of the polytope contained in the simplex. If this lower bound is larger than the incumbent value,

the simplex cannot contain a better feasible point and can therefore be eliminated from further consideration.

Otherwise the simplex will eventually be partitioned into subsimplices through a so-called radial subdivision

with respect to a point of the simplex. Special cases of this subdivision process include the bisection - the

subdivision point is the middle point of a longest edge of the simplex - and the ω-partition - the subdivision
point is the optimal solution ω obtained in the bounding operation. Since this algorithm and their variants

cannot be showed to be finite, the focus has been made on showing convergence at infinity. The infinite

convergence property implies the finitness of the algorithm if we are satisfied with an ε-optimal solution with

ε > 0; in that case however, the number of iterations will depend on the value of ε. It was for a long time an
open question whether the simplicial partitioning algorithm using only ω-partitions was convergent or not:

this question has been positively answered by Locatelli and Raber [11].

Although they perform quite well in practice, the partitioning branch-and-bound algorithms are not com-

pletely satisfying from a mathematical point of view, because we know that an optimal solution to problem

(CP) can be found in a finite number of steps. Several authors have tried to modify the simplicial partitioning
algorithm to achieve finitness. Benson [1] and Benson and Sayin [3] propose to minimize the linear under-

estimator defined for the current simplex on the whole polytope, instead of on the portion of the polytope

contained in the simplex. This yields an extreme point of the polytope, lying generally outside the simplex,

which is stored in a list. When a simplex has to be subdivided, one looks in the list for an extreme point
contained in the simplex and partition the simplex with respect to this point. Unfortunately the extreme

points computed during the bounding steps do not suffice: it also necessary to add to the list all neighbours

of these extreme points, a step that can be computationally costly if the polytope is degenerated. Nast

[16] proposes a finite simplicial partitioning algorithm using a completely different subdivision rule: given

a constraint and a simplex to be subdivided, a simplicial partition of the part of the simplex satisfying the
linear inequality is built. Locatelli and Thoai [12] ensure finitness of the simplicial partitioning algorithm by

a rather complex method that involves cuts generation and modification of the objective function.
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Also partially relevant to this paper are works that do not seek a finite algorithm but that propose either

a covering algorithm or to minimize the linear underestimator of the current simplex over the whole polytope.

Horst, Thoai and De Vries [7] propose a covering simplicial algorithm with the purpose of eliminating rapidly
large parts of the interior of the polytope. The extreme points of P do not play any role in the definition

of the subsimplices, and only infinite convergence is proven. Kuno and Nagai [10] minimize the linear

underestimator over the whole polytope, obtaining an extreme point of P . This extreme point is however

only used to try to improve the incumbent value, since bisections are used to partition the simplex.

There also exist branch-and-bound algorithms to solve problem (CP) that use other geometrical objects
in place of simplices, more particularly rectangles and cones. Several finite conical covering algorithms have

already been proposed [14, 15]. The algorithm that is proposed here for simplices is inspired from [14].

In this paper, we propose a conceptually simple, finite covering algorithm for solving problem (CP).

Instead of subdividing a simplex with respect to a point that lies inside the simplex as proposed in Horst [5],
we allow the subdivision point to be outside the simplex. This will yield a covering of the current simplex,

instead of a partitioning. The subdivision point is obtained by minimizing the linear underestimator of f

defined for this simplex over the face of P containing ω (we recall that ω is the optimal solution obtaining

in the bounding procedure, which consists in minimizing the linear underestimator over the intersection of

the current simplex with the polytope). At first look, it might seem a total nonsense to replace a simplex by
subsimplices which together are strictly larger (in terms of inclusion) than the simplex! It turns out however

that we are able to prove a monotonicity result on the lower bound: the lower bound of a subsimplex can

never be worst than the lower bound of its parent simplex. We then get the same monotonicity result than

in simplicial partitioning algorithms, with the advantage that simplices are defined by extreme points of the
polytope. An interesting property of this algorithm is that we need to evaluate the objective function only

at extreme points of the polytope. One can therefore expect that the number of evaluations of the objective

function will be much smaller than in a partitioning algorithm, which may be particularly interesting if the

function is costly to evaluate.

The remaining of this paper is organized as follows. In Section 2 we describe the basic operations that
are needed by the algorithm, while the algorithm itself is described in Section 3. The finitness result is stated

and proved in Section 4. In Section 5, we discuss the implementation and present some very preliminary

computational results, that suggest some future improvements. Finally we conclude in Section 6.

2 Basic operations

In this section, the basic operations of the algorithm are described. The construction of an initial simplex

(Section 2.1) and the computation of a lower bound (Section 2.2) are two standard operations from the

literature, that we recall for completeness. As for the subdivision of a simplex (Section 2.3), we generalize

the radial subdivision of Horst [5] to the case where the subdivision point lies outside the simplex. The
computation of the subdivision point is the main novelty of this paper. The monotonicity result is also given

in this subsection. Finally we need to check for cycling: this is explained in Section 2.4.

2.1 Initial simplex

The first task of the algorithm is to construct a simplex S that contains the polytope P . We use the following

simple method: we look for a simplex S of the following form: S = {x ∈ IRn : xi ≥ di(i = 1, . . . , n);
n
∑

i=1

xi ≤

d0} where di(i = 0, . . . , n) are constants that are determined by solving the following n+ 1 linear programs:

min
x∈P

xi(i = 1, . . . , n) and max
x∈P

n
∑

i=1

xi.

2.2 Lower bound

Given a simplex S, a lower bound of f over S∩P is obtained by minimizing fS over S ∩P , where fS denotes

the convex envelope of f over S. Roughly speaking, the convex envelope of f over S is the greatest convex
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underestimator of f over S, see e.g. Horst and Tuy [8] for a formal definition. It is well known that the

convex envelope fS of f over the simplex S = conv{v0, v1, . . . , vn} spanned by the vertices v0, v1, . . . , vn

admits the following simple representation:

fS(x) =

n
∑

j=0

λjf(v
j)

where the λj(j = 0, . . . , n) are the barycentric coordinates of x, i.e., the unique solution to the system

x =

n
∑

j=0

λjf(v
j)

n
∑

j=0

λj = 1

see, e.g., [8, Theorem IV.6].

As a consequence, the minimum α(S) of fS over S∩P is the optimal value of the following linear program:

min
n
∑

j=0

λjf(v
j) (1)

s.t.



























ai

(

n
∑

j=0

λjv
j

)

≤ bi i = 1, . . . ,m

n
∑

j=0

λj = 1

λj ≥ 0, j = 0, . . . , n

where ai denote the ith row of A, i = 1, . . . ,m.

We will denote by ω(S) the point of P ∩ S defined by ω(S) =
n
∑

j=0

λ∗
jv

j , where λ∗ is an optimal solution

of the linear program (1).

2.3 Subdivision

This subsection is divided into 3 parts: we first extend the notion of radial subdivision of a simplex to the
case of a covering in Section 2.3.1. Then in Section 2.3.2, we define the new subdivision point. Finally in

Section 2.3.3 we state and derive the monotonicity result on the lower bound of a subsimplex with respect

to the one of its parent simplex.

2.3.1 Radial subdivision

We slightly generalize the notion of radial subdivision introduced in Horst [5] to the covering of a simplex

as follows. Let again S = conv{v0, v1, . . . , vn} be a simplex and let v =
n
∑

i=0

λiv
i be a point of IRn with

n
∑

i=0

λi = 1. The only assumption on v is that v does not coincide with any of the vertices of S. In particular,

v may lie outside S, a situation that will be characterized by some λi being negative.

Let J> = {j |λj > 0}. For all j ∈ J>, define Sj to be the simplex obtained by replacing vj by v in S.

Proposition 1 The set of simplices Sj(j ∈ J>) forms a covering of the simplex S..

Proof. We have to prove that S ⊆
⋃

j∈J>

Sj . Let x be any point of S. We want to show that there exists some

ℓ with λℓ > 0 such that x ∈ Sℓ. Since x belongs to S, there exists µ ≥ 0 such that x =
n
∑

j=0

µjv
j ,

n
∑

j=0

µj = 1.
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Let ℓ be such that µℓ

λℓ
= min

j∈J>

µj

λj
. We have

x =

n
∑

j=0,j 6=ℓ

µjv
j +

µℓ

λℓ



v −
n
∑

j=0,j 6=n

λjv
j





=

n
∑

j=0,j 6=ℓ

(

µj −
µℓ

λℓ

λj

)

vj +
µℓ

λℓ

v.

By definition of ℓ, µj −
µℓ

λℓ
λj ≥ 0 for j = 0, . . . , n, j 6= ℓ and µℓ

λℓ
≥ 0. Moreover

n
∑

j=0,j 6=ℓ

(

µj −
µℓ

λℓ

λj

)

+
µℓ

λℓ

= (1− µℓ)−
µℓ

λℓ

(1− λℓ) +
µℓ

λℓ

= 1.

Hence x belongs to Sℓ.

We will say that a simplex Sj (j ∈ J>) is a son of the simplex S by the subdivision process and that S is a

father of Sj. Note that since we are dealing with covering, a same simplex could have several fathers.

2.3.2 A new subdivision point

To show the finitness of our algorithm we need that all simplices are subdivided with respect to an extreme

point of the polytope. If ω(S) is an extreme point of P , we choose v = ω(S). We now explain how to define

the subdivision point v if ω(S) is not an extreme point of P .

Let I= be the subset of the constraints of P satisfied at equality by the optimal solution λ∗ of proble (1).

We consider the new linear program:

min

n
∑

j=0

λjf(v
j) (2)

s.t.







































ai

(

n
∑

j=0

λjv
j

)

= bi i ∈ I=

ai

(

n
∑

j=0

λjv
j

)

≤ bi i ∈ {1, . . . ,m} \ I=

n
∑

j=0

λj = 1.

Observe the differences with the linear problem (1): the constraints of P satisfied at equality by λ∗ were
transformed to equalities, and non-negativity constraints on the variables λ were removed. Let λ

′∗ be a basic

optimal solution of (2), and let α′(S) be its optimal value. We claim the following:

• Problem (2) is feasible and α′(S) ≤ α(S). Indeed λ∗ is a feasible solution to (2) with value α(S), and

(2) is a minimization problem.

• ω′(S) =
n
∑

j=0

λ
′∗
j vj is an extreme point of P .

We take v = ω′(S) for the radial subdivision of the simplex S. Note that if ω(S) is an extreme point of P ,

ω′(S) = ω(S).

2.3.3 Monotonicity result

The following result is crucial for our finitness result:

Proposition 2 Assume that f(ω′(S)) > α(S). Then α(Sℓ) ≥ α(S) for every son Sℓ of simplex S.
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Proof. The dual of (1) is

max −
m
∑

i=1

µibi + π (3)

s.t.







−
m
∑

i=1

µiaiv
j + π ≤ f(vj), j = 0, . . . , n

µi ≥ 0 i = 1, . . . ,m.

Let (µ∗, π∗) be an optimal solution. Let us show that (µ∗, π∗) is a feasible solution to the dual associated

with simplex Sℓ. We have to show that

−
m
∑

i=1

µ∗
i aiω

′(S) + π∗ ≤ f(ω′(S)).

Since aiω(S) = bi for all i such that µ∗
i > 0 by the complementary slackness conditions (see e.g. Luen-

berger [13]), we have that aiω
′(S) = bi for such i by construction of the linear program (2), hence

−
m
∑

i=1

µ∗
i aiω

′(S) + π∗ = −
m
∑

i=1

µ∗
i bi + π∗.

By duality, the right-hand side is equal to α(S), which by assumption, is strictly less than f(ω′(S)). It

follows that (µ∗, π∗) with objective value −
m
∑

i=1

µ∗
i bi + π∗ = α(S) is feasible for the dual (3) associated with

the simplex Sℓ. Since the dual is a maximization problem, we conclude that α(Sℓ) ≥ α(S).

Note that the assumption in Proposition 2 is not restrictive. Indeed if the assumption is not satisfied, i.e., if

f(ω′(S)) ≤ α(S), then the simplex S can be eliminated and will therefore not be subdivided.
Note also that the proof did not exploit the fact that λ

′∗ is an optimal solution of (2). Actually the proof

of Proposition 2 remains valid if instead of ω′(S), we take any feasible point v of the face F of P containing

ω(S). However in order to get a finite algorithm, we need that v is an extreme point of the face F which

satisfies fS(v) < f(v).

2.4 Anti-cycling

It could happen that the algorithm generates a sequence of simplices Sp, Sp+1, . . . , Sp+t for some integers p
and t where for each k = p, . . . , p+ t− 1, Sk+1 is a son of Sk, and such that Sp+t = Sp. This is what we call

a cycle. In order to avoid generating again an already subdivided simplex that would cause the algorithm to

enter in an infinite loop, we need to test for each subsimplex whose lower bound equals the one of its father if

that subsimplex was not already subdivided. This testing can be done relatively easily if we use the standard

practice from the literature that consists in selecting for subdivision at each iteration the simplex waiting
to be subdivided that has the smallest lower bound. Indeed let f

h
denote the lower bound of the simplex

selected to be subdivided at iteration h. By Proposition 2, {f
h
} defines a non-decreasing sequence, therefore

cycling can only involve simplices corresponding to the same value of f
h
. Assume that at iteration h1, a new

value for f
h
is obtained, i.e., f

h1

> f
h1−1

. We will store in a list all subdivided simplices that have f
h1

as
lower bound. When generating a subsimplex of lower bound equal to f

h1

, we first scan the list to check that

the subsimplex was not already subdivided; if yes we do not generate it again. The list is emptied when we

arrive at an iteration h2 where f
h2

> f
h1

.

3 Algorithm

We now proceed to the description of our algorithm. At the beginning of an iteration, the following quantities

are available:

• Cover: the set of simplices that have yet to be processed;
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• f = min
S∈Cover

α(S): lower bound on the optimal value f∗.

• x and f : respectively the current incumbent solution and the current incumbent value.

• Done: set of simplices S that have been processed and whose lower bound α(S) is equal to f : this set

will have to be checked when generating a new simplex in order to prevent cycling, see Section 2.4.

• N ew: set of new simplices resulting from the subdivision of the selected simplex at the previous iteration

(at the first iteration, N ew will contain the initial simplex).

The algorithm is now as follows:

Step 1 (initialization) : construct an initial simplex S0 containing P as explained in Section 2.1. Let N ew =

{S0}. Set f to −∞ and f to +∞. Initialize the sets Cover and Done to ∅.

Step 2 (fathoming) : for each simplex S in N ew, solve the linear program (1), obtaining the optimal value
α(S). Remove from N ew all simplices S for which α(S) ≥ f .

Step 3 (anti-cycling) : remove from N ew all simplices that are in Done.

Step 4 (subdivision point computation) : for each simplex S in N ew, let ω′(S) be the extreme point of P

corresponding to a basic optimal solution of problem (2). If f(ω′(S)) < f , update x and f .. If f = f :
stop and return x; otherwise add to Cover the simplices of N ew.

Step 5 (simplex selection) : if Cover = ∅, stop: return x. Otherwise select the simplex S̃ = arg min
S∈Cover

α(S)

and remove it from Cover. If α(S̃) > f , reset Done to ∅ and f to α(S̃). Add S̃ to Done.

Step 6 (subdivision) : subdivide the simplex S̃ via the point ω′(S̃) as indicated in Section 2.3. Let N ew be

the set of sons of S̃. Return to Step 2.

4 Finitness result

In this section, we show that the algorithm described in Section 3 is finite and that it provides an optimal

solution of problem (CP).

Theorem 1 The algorithm described in Section 3 terminates after a finite number of iterations with a global

minimizer to problem (CP ).

Proof. We first observe that the simplices generated by the algorithm are in finite number: indeed the
vertices defining the simplices are the extreme points of P and the n + 1 vertices of the initial simplex S0.

It might be convenient to view the algorithm as generating a graph G defined as follows: the vertices of G

correspond to the simplices generated by the algorithm, and there is an arc from simplex Si to simplex Sj if

and only if Sj was obtained from Si through a subdivision (note that G may not be a directed tree since a
same simplex could be the sons of several different simplices). Proposition 2 ensures that if we progress along

a path of G, the lower bound α of the encountered simplices will never decrease. In principle, we could have

a cycle between simplices of same lower bound, but Step 3 makes this impossible. Since no cycle is possible,

the algorithm will indeed be finite. The main effort in the proof will therefore be to prove that when the

algorithm stops, it has found an optimal solution of problem (CP).

Assume that the incumbent value was f when the algorithm stopped, and assume by contradiction that

there exists x′ ∈ P with f(x′) < f . Let γ = f and γ′ = f(x′). Since f is concave on IRn, it is also continuous

(see, e.g., Rockafellar [17]), hence by definition

∀ε > 0 ∃δε > 0 | x ∈ B(x′, δε) ⇒ |f(x) − γ′| < ε

where B(x′, δε) denote the ball of center x′ and radius δε.

We fix ε to γ−γ′

2
, which implies that f(x) ≤ γ+γ′

2
< γ for all x ∈ B(x′, δε). To any subset Ei of vert(P ) ∪

vert(S0) with |Ei| ≤ n, we associate the affine subspace Hi spanned by the elements of Ei. Since the Hi are

in finite number and of dimension < n, the set B(x′, δε)∩ P \

(

⋃

i

Hi

)

is non-empty. Let x̃ ∈ B(x′, δε)∩ P \
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(

⋃

i

Hi

)

: then f(x̃) < γ. We consider the sequence {Sq}, q = 0, 1, . . . of simplices containing x̃ such that for

all q, Sq+1 is a son of Sq by the subdivision process of Step 6. Note that α(Sq) < γ for all q, since otherwise
f(x) ≥ γ for all x ∈ Sq ∩P , contradicting the fact that f(x̃) < γ. Hence all simplices of the sequence belong

to the set of simplices generated by the algorithm.. Moreover since the subdivision process is always defined,

the sequence is infinite. This infinite sequence could be interrupted in our algorithm by the anti-cycling rule

of Step 3. To show that this is not the case, and to get a contradiction that will allow us to conclude, we

will show that all simplices in the sequence must be distinct. To show that all simplices in the sequence are
distinct, assume that Sq = conv{vq0, vq1, . . . , vqn} contains x̃. Then there exists a unique vector ζ̃q > 0 such

that

x̃ =

n
∑

j=0

ζ̃
q
j v

qj

n
∑

j=0

ζ̃
q
j = 1

(the fact that no component of the vector ζ̃q is null is a consequence of the assumption x̃ 6∈
⋃

i

Hi). We claim

that

n
∑

j=0

ζ̃
q
j f(v

qj) < γ. Indeed, if

n
∑

j=0

ζ̃
q
j f(v

qj) ≥ γ, by concavity of f , f(x̃) = f

(

n
∑

j=0

ζ̃
q
j v

qj

)

≥
n
∑

j=0

ζ̃
q
j f(v

qj) ≥

γ, a contradiction. It is now not difficult to show that the simplex Sq+1 is the son of Sq obtained by

replacing the point vqℓq by wq = ω′(Sq) =

n
∑

j=0

λ
q
jv

qj with ℓq satisfying
ζ̃
q

ℓq

λ
q

ℓq

= min
j|λq

j
>0

{

ζ̃
q
j

λ
q
j

}

(see the proof of

Proposition 1). We then have Sq+1 = conv{vq+1,0, . . . , vq+1,n} with vq+1,j = vqj for j = 0, . . . , n, j 6= ℓq and

vq+1,ℓq = wq, and x̃ =
n
∑

j=0

ζ̃
q+1

j vq+1,j with

ζ̃
q+1

j =























ζ̃
q
j −

ζ̃
q
ℓq

λ
q
ℓq

λ
q
j if j 6= ℓq

ζ̃
q
ℓq

λ
q
ℓq

if j = ℓq.

Then

fSq+1(x̃) =

n
∑

j=0

ζ̃
q+1

j f(vq+1,j) =

n
∑

j=0

(

ζ̃
q
j −

ζ̃
q
ℓq

λ
q
ℓq

λ
q
j

)

f(vq,j) +
ζ̃
q
ℓq

λ
q
ℓq

f(wq)

=

n
∑

j=0

ζ̃
q
j f(v

q,j) +
ζ̃
q
ℓq

λ
q
ℓq



f(wq)−
n
∑

j=0

λ
q
jf(v

q,j)





=

n
∑

j=0

ζ̃
q
j f(v

q,j) +
ζ̃
q
ℓq

λ
q
ℓq

(f(wq)− fSq (wq))

> fSq(x̃),

the last inequality holding because f(wq) > αq ≥ α′q = fSq (wq) (if f(wq) ≤ αq, the simplex Sq+1 would

have been eliminated) and
ζ̃
q
ℓq

λ
q
ℓq

> 0 by the choice of x̃ and ℓq. Since the value of fS(x̃) depends only on x̃

and on the simplex, this shows that a same simplex cannot repeat. We therefore have an infinite sequence

of distinct simplices, which is not possible because there are a finite number of different simplices. Therefore

our assumption that there exists a point x′ of P with f(x′) < f was false, which concludes the proof.

It is not known presently if there can be cycles, i.e., if Step 3 of the algorithm is really necessary. A proof of

the non-existence of a cycle would simplify the algorithm and its implementation and would make the proof
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Table 1: Numerical results

Instance algorithm #iter. max|Cover| max|Done| #eval f
(15,5) covering 137 (19) 47 9 41

ω-partition 107 (15) 41 7 50
(30,6) covering 137680 (176) 20157 4693 201

ω-partition 37013 (37) 7702 337 2862
(30,7) covering > 230000 (186) ≥ 182239 ≥ 27378 ≥ 481

ω-partition 163034 (63) 37450 2129 9161

of Theorem 1 straightforward. It is not difficult to show that if a cycle exists, the intersection of the simplices

involved in the cycle must contain at least one vertex of the initial simplex that is not in P . Moreover the
current proof of Theorem 1 can be adapted to show that the dimension of the intersection must be less than

n.

5 Implementation and computational experiments

In the covering algorithm described in Section 3, a same simplex may be generated several times. To ensure

finitness, we need only to check that a generated simplex is not already in the set Done. But for efficiency
purpose, we need also to check that a generated simplex is not already in the set Cover, in order to avoid

duplicate work. A simplex can be viewed as a list of n+1 pointers to vertices. In order to compare 2 simplices,

it suffices then to compare their lists of pointers. This however assume that a same vertex is not generated

more than once. In practice we have to add therefore a fourth list to the description of the algorithm, Vertex,
which contains the vertices already generated. Each time a vertex ω′(S) is generated in Step 4, we check if
it is already in the list or not. In a first step, these lists were implemented in a very straightforward manner,

implying that a search in a list involves traversing the whole list each time.

In fact, our main objective with this non-optimized implementation was to evaluate the number of iterations

needed by the algorithm, as well as the number of function evaluations, and to compare these numbers
with those of the simplicial partitioning algorithm using only ω-subdivisions. To this effect, we generated 3

instances of problem (CP) with the following objective function:

f(x) = −





n
∑

j=1

x2
j



 log



1 +

n
∑

j=1

x2
j



 .

This objective function has been used in particular in [6, 3, 12]. The three instances correspond to (m,n) =

(15, 5), (m,n) = (30, 6) and (m,n) = (30, 7).

Table 5 shows the results that we obtained. The first number in the column #iter is the number of

iterations, while the number in parenthesis has a different meaning depending on the algorithm: for the

covering algorithm, it corresponds to the number of iterations for which the subdivision point was inside the

simplex; for the ω-partitioning algorithm, it corresponds to the number of iterations for which the subdivision
point was an extreme point of the polytope P . The columns max|Cover| and max|Done| report the largest

size of the sets Cover and Done respectively (the ω-partitioning algorithm does not require the use of an

explicit set Done; the number in this column therefore corresponds to the maximum number of iterations with

the same value of the lower bound f). Finally #eval f reports the number of evaluations of the function f .

It must be noted that the covering algorithm for instance (m,n) = (30, 7) was still running, so we report
bound on the corresponding values when available. The ω-partitioning algorithm returns ε-optimal solution

with ε = 10−6. To allow a fair comparison of the number of evaluations of the objective function, the list

Vertex is also used in the ω-partitioning algorithm to ensure that the objective function is not evaluated

more than once on a same vertex.

We observe that the number of iterations is much larger with the covering algorithm than with the ω-

partitioning algorithm. This seems to be due to an increase of the maximum number of iterations with the
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same lower bound, see column max |Done|. This in turn can be explained by the fact that the point ω(S)

may still be feasible for some subsimplex, resulting in no change in their lower bound. This suggests to

modify the subdivision process in order to guarantee that the point ω(S) is not feasible for any subsimplex
of S. A possible way to do that is to allow simplices with more than n+ 1 extreme points (i.e., polytopes),

in a similar way to what was proposed for cones in Jaumard and Meyer [15].

As for the number of evaluations of the objective function, our algorithm performs much better than the

ω-partitioning algorithm as expected. For the second instance, the number of evaluations is divided by more

than 10, while the number of iterations is multiplied by 4. Of course it is not possible to conclude on one
instance, but if these ratios were similar for other instances, we could possibly accept the increase in the

number of iterations if the cost to evaluate the objective function is high.

We did not report the computational time here, but it is clear that for the covering algorithm to be efficient in

practice, we will have to implement very carefully the various lists needed by the algorithm, in order to allow
efficient searches in these lists. For the second instance for example, more than 60% of the computational

time is spent in operations on the lists, and it is believed that this number is much larger for the third

instance.

6 Conclusion

We have presented a finite simplicial covering algorithm for the problem of minimizing a concave function
over a polytope. Unlike most of the existing algorithms, simplices are all subdivided via an extreme point

of the polytope, which allow finitness of the algorithm and reduction in the number of evaluations of the

objective function. More work is needed to obtain a competitive algorithm, in particular the implementation

of this new algorithm set new challenges to programmers to efficiently check that a simplex was not already

generated.
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