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Abstract

The production-routing problem can be seen as a combination of two well known combinatorial op-
timization problems: the lotsizing and the vehicle routing problems. The variant considered in this
paper consists in designing a production schedule for an uncapacitated plant, replenishment schedules
for multiple customers, and a set of routes for a single uncapacitated vehicle starting and ending at the
plant. The aim of the problem is to fulfill the demand of the customers over a finite horizon such that
the total cost of distribution, setups, and inventories is minimized. This paper introduces a basic mixed
integer linear programming formulation and several strong reformulations of the problem. Two families
of valid inequalities, 2-matching and generalized comb inequalities, are introduced to strengthen these
formulations, and they are used within a branch-and-cut algorithm. Computational results on a large set
of randomly generated instances are presented. Instances with up to 40 customers and 15 time periods
or with 80 customers and 8 periods have been solved to optimality within a two-hour limit. The tests
clearly indicate the effectiveness of the new formulations and of the valid inequalities. In addition, an
uncoordinated approach is considered to demonstrate the benefits of the simultaneous optimization of
production and distribution planning. The total cost increases on average by 47% when employing such
an uncoordinated approach. Finally, a heuristic algorithm, based on defining an a priori tour for the ve-
hicle routing part, is investigated. The heuristic algorithm shows an excellent performance. The average
CPU time is less than 1% of the CPU time for the optimal solution, whereas the average cost increase is
only 0.33%.

Key Words: Vehicle routing, production planning, branch-and-cut algorithm, integer programming,
reformulation techniques.

Résumé

Le problème de production et tournées peut être vu comme la combinaison de deux problèmes
d’optimisation combinatoire bien connus: le problème de lotissement et le problème de tournées de
véhicules. La variante considérée dans cet article consiste à concevoir un plan de production pour une
usine à capacité infinie, un plan de réapprovisionnement des clients, et un ensemble de tournées de livrai-
son pour un véhicule unique basé à l’usine. L’objectif du problème est de répondre à toute la demande
des clients durant un horizon de planification fini de manière à minimiser le coût total des stocks, de la
distribution et de mises en course. L’article présente une formulation linéaire en variables mixtes ainsi
que plusieurs reformulations. Deux familles d’inégalités valides sont aussi proposées pour renforcer ces
formulations et sont utilisées à l’intérieur d’un algorithme de séparation et coupes. Des résultats sont
présentés sur un grand ensemble d’instances générées aléatoirement. Des instances avec 40 clients et un
horizon de 15 périodes ou avec 80 clients et 5 périodes peuvent être résolues en deux heures de calcul.
Une approche sans coordination est également présentée afin de démontrer les bénéfices de l’optimisation
intégrée de la production et de la distribution. Finalement, un algorithme heuristique est étudié. Celui-ci
exige seulement 1% du temps nécessaire à la résolution exacte du problème et fournit des solutions avec
un coût ne dépassant en moyenne que de 0.33% le coût de la solution optimale.

Mots clés : tournées de véhicules, planification de la production, séparation et coupes, programmation
en nombres entiers, techniques de reformulation.
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1 Introduction

A supply chain is a network of facilities that procure raw materials, transform them into finished products, and
deliver the products to customers through a distribution system to meet the demand of the customers. Supply

chain management consequently deals with a collection of interrelated subproblems such as raw material

procurement, production planning, inventory management, and distribution routing. These subproblems

have been extensively researched but mostly separately dealt with in both industrial applications and the

literature. In the last three decades several studies have shown that coordinating these subproblems can lead
to significant cost savings in the supply chain. In this paper we consider a joint production and distribution

planning problem. This is a relevant problem in practice, as witnessed by the examples of many companies

that considered joint production and distribution planning. For example, Blumenfeld et al. (1987) investigated

an optimization model that synchronizes scheduling of production and distribution at the Delco electronics
division of General Motors, which resulted in a 26% reduction in logistics costs. Similar results have been

reported for other companies such as Xerox (Stenross and Sweet, 1991), Hewlett Packard (Lee and Billington,

1995), Kellog Company (Brown et al., 2001), and Frito-Lay (Çetinkaya et al., 2009).

More specifically, we investigate the Production-Routing Problem (PRP) which considers the simultaneous

coordination of production planning and distribution routing. These two subproblems are known in the
literature as the lotsizing problem and the inventory-routing problem, respectively. The PRP can also be

classified as a combination of a two-level lotsizing problem and a vehicle routing problem. The PRP comprises

a plant, producing a set of products using resources. If there is production in a specific time period, then

setup and production costs are incurred. Production costs are dependent on the production volume, whereas

the setup cost is independent of the realized volume. Resources in a production system can include, e.g.,
manpower, equipment, machines, budget, etc. The finished products are delivered to customers to meet the

time-varying demand. Deliveries can be made to a customer before the actual (external) demand realizes,

but backlogging is not allowed. Any excess production, both at the plant and at a customer, is carried over

as inventory to the next period and inventory holding costs are incurred. Therefore, the demand in a specific
time period at a customer site can be met from deliveries in the period and from the inventories left over

from the previous period at the customer site. Transportation from the plant to customers with a multi-stop

routing policy is carried out by a fleet of vehicles. If a vehicle leaves the plant to make deliveries to a set of

customers, then a routing cost is incurred that is proportional to the traveled distance.

The PRP consists in designing a production schedule at the plant, replenishment schedules for multiple
customers, and a set of vehicle routes starting and ending at the plant. The planning is done over a finite

discrete time horizon in a coordinated manner. The aim of the problem is to meet the demand of the

customers in such a way that the total cost of distribution, setups, and inventories is minimized subject to

the constraints of the problem.

The PRP is NP-hard as it contains the Traveling Salesman Problem (TSP) as a special case. As a result,
most of the previous studies on the PRP have focused on heuristic solution approaches. To the best of our

knowledge, only a few studies, such as Fumero and Vercellis (1999), Archetti et al. (2009), and Bard and

Nananukul (2010), consider obtaining lower bounds. All of these studies use a weak representation of the

problem which limits their ability to obtain optimal solutions.

Our focus in this paper is on exact methods and strong formulations. We study the PRP in which the
following assumptions hold. The plant manufactures a single product using resources that are available in

unlimited quantity in each time period. Replenishments from the plant to the customers are performed by a

single uncapacitated vehicle. Routing costs are symmetrical. We assume that the lead times are zero. The

demand at the customer sites is considered to be deterministically known in each time period. Shortages

are not permitted. We assume that initial inventories are equal to zero and that all the costs related to
production, inventory holding as well as routing are time-invariant. Since we assume that production costs

are time-invariant, the total production cost over the whole horizon is constant. Therefore, the production

cost is omitted from the problem. These restrictions do not limit the flexibility of our formulations and

solution approach. Although the problem being considered is simple, it is important to analyze it as it will
form the building block for extensions such as the multi-vehicle case or the case with capacity constraints
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for the vehicles and for the plant. Since our solution approach is based on strong formulations and cutting

planes, it can also be used to solve extended problems that contain the basic PRP as a substructure.

We make several contributions in this paper. First, we introduce strong formulations for the PRP. Second,

we present a branch-and-cut algorithm to solve these formulations. We introduce two families of valid

inequalities adapted from the literature, 2-matching and generalized comb inequalities, to strengthen these

formulations. Third, we present a new heuristic separation algorithm for the generalized comb inequalities.
Fourth, we adapt a heuristic algorithm presented by Solyalı and Süral (2008) to find high quality integer

feasible solutions for the PRP. Fifth, we report extensive computational experiments on a large set of instances

showing that strong formulations both increase the lower bound and decrease the CPU time, and that the

simultaneous optimization of production and distribution reduces costs significantly.

The content of the paper is as follows. In the next section we give a literature review on the previous

studies related to the PRP. In Section 3 we introduce the notation, the basic formulation, several strong

reformulations of the problem, and an uncoordinated approach. In Section 4 we introduce two families of
valid inequalities adapted from the literature to strengthen the formulations. These valid inequalities are

added to the model during the branch-and-cut algorithm which is described in Section 5. The a priori tour

heuristic algorithm adapted from an inventory-routing context is introduced in Section 6. Computational

experiments are reported in Section 7 and conclusions follow in Section 8.

2 Literature Review

As mentioned earlier, the PRP can be seen as a combination of the Lotsizing Problem (LSP) and the

Inventory-Routing Problem (IRP). Both the IRP and LSP have been extensively studied in isolation. For

more information about the IRP and LSP, the reader is referred to the reviews of Andersson et al. (2010)

and Jans and Degraeve (2008), respectively. In the PRP, production (i.e., lotsizing) decisions should be given

at the plant in addition to the classical IRP such as routing decisions and replenishment decisions at the
retailers. Although there is a vast amount of literature on the IRP (see, e.g., Andersson et al. 2010), the

literature on the PRP is rather limited but growing rapidly as will be seen in this section. In the following we

give a review on the PRP, in which inventory management at customer and plant sites as well as production

planning and distribution routing are involved.

We will review the literature on the PRP from three different angles. First, we discuss the various

components which can be taken into account in the objective function. Second, we give an overview of the

many extensions that have been proposed. Finally, we review the various solution approaches that have been
used. This discussion will allow us to clearly show the value of our various contributions.

As the PRP is a combination of the classical lotsizing and vehicle routing problems, the traditional cost

components related to these two substructures are typically found as well in the PRP. Almost all the works
have inventory holding and set up costs at the plant level. The only study that does not consider set up costs

at the plant level is Lei et al. (2006). Also the inventory holding cost at the customer level is a standard

cost element. However, Boudia et al. (2007, 2008), and Boudia and Prins (2009) do not consider this cost

as they assume that it is paid by the customer. Variable production costs at the plant level are usually not

explicitly taken into account. In most situations, these costs are assumed to be time-invariant and hence
the total production cost over the whole time horizon is a fixed amount and can be left out. However, it is

straightforward to incorporate these costs in the models (Bertazzi et al. 2005, Lei et al. 2006, Archetti et al.

2009, Shiguemoto and Armentano 2010). On the routing side, fixed transportation costs can be incurred if

a vehicle is used in a specific time period (Chandra 1993, Chandra and Fisher 1994, Fumero and Vercellis
1999). Alternatively, Bertazzi et al. (2005) and Shiguemoto and Armentano (2010) assume a fixed cost if

a vehicle is used at least once over the whole time horizon. Variable transportation costs are mostly solely

distance-based, except in Fumero and Vercellis (1999) where these costs are assumed to be based on the

distance and the load. Lei et al. (2006) include both types of variable transportation costs in their model.

All studies consider the asymmetric version of the problem, that is, the distance between any pair of locations
is not necessarily the same in the two directions. Finally, fixed delivery costs per customer are only considered

by Bard and Nananukul (2009b) in a relaxation of the full model.
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Many extensions to the basic PRP have been proposed. A natural extension on the production side is

to include multiple items (Chandra 1993, Chandra and Fisher 1994, Fumero and Vercellis 1999, Shiguemoto

and Armentano 2010). Many authors also consider limited production capacity (Chandra and Fisher 1994,
Fumero and Vercellis 1999, Lei et al. 2006, Bard and Nananukul 2009a; 2009b, and 2010, Boudia et al. 2007,

2008, and Boudia and Prins 2009). In some cases, there is also a capacity limit on the inventory level (Lei

et al. 2006, Bertazzi et al. 2005, Archetti et al. 2009, Bard and Nananukul 2009a; 2009b, and 2010, Boudia

et al. 2007, 2008, and Boudia and Prins 2009, Shiguemoto and Armentano 2010). Bertazzi et al. (2005)

consider an order-up-to level policy imposing that if a delivery is made to a specific customer, the customer’s
inventory has to be raised to a pre-specified level. Archetti et al. (2009) compare this policy to a policy

without such restriction. All works also consider only a single plant, except Lei et al. (2006). In none of the

works have we found the option of backlogging the demand. On the routing part, most studies consider a

fleet of capacitated vehicles. Only Lei et al. (2006) incorporate a fleet of heterogeneous vehicles. A further
extension is to allow split deliveries (Chandra 1993, Chandra and Fisher 1994, Fumero and Vercellis 1999).

Since the PRP and its extensions are very hard to solve, most of the research has focused on heuristic

algorithms. Many studies propose a sequential heuristic in which the problem is first solved using an uncoor-

dinated approach. The lotsizing and routing subproblems are solved sequentially (optimally or heuristically),

and the result of the first problem is an input for the second problem. Next, this solution is usually improved
further to better coordinate the production and routing decisions. In some works (Chandra 1993, Chandra

and Fisher 1994, Boudia et al. 2008), the production problem is first solved, and next the routing part is

solved. Sometimes the production problem is further improved in a third step (Bertazzi et al., 2005). Other

works (Bertazzi et al. 2005, Archetti et al. 2009) first heuristically solve the distribution problem, and next

the production subproblem. Bertazzi et al. (2005) prove that for a specific choice of initial demand values,
both sequences lead to the same result if the subproblems are solved to optimality. Lei et al. (2006) propose a

different two-phase heuristic, where first the problem is optimally solved allowing only direct shipments and

next this solution is heuristically improved by allowing combined shipments. Bard and Nananukul (2009b)

also first solve a relaxation of the problem where only direct shipment costs (fixed delivery cost per customer
as well as a volume and distance based variable cost) are considered and propose a tabu search algorithm

to construct good routes. Various other meta-heuristics have also been proposed for extensions of the PRP

such as a tabu search algorithm by Shiguemoto and Armentano (2010), a memetic algorithm by Boudia and

Prins (2009), and a GRASP by Boudia et al. (2007).

To the best of our knowledge, only two studies propose exact algorithms. Bard and Nananukul (2010)
propose a branch-and-price algorithm in which they consider the lotsizing and inventory constraints as the

complicating constraints which are kept in the master. The subproblem decomposes into separate routing

problems per time period. A heuristic implementation of the branch-and-price algorithm is also investigated

by Bard and Nananukul (2009a). A branch-and-cut algorithm has been developed by Archetti et al. (2009).

Some valid inequalities are added a priori to the formulation and subtour elimination constraints are dy-
namically added. Using exact algorithms, only small instances can be solved to optimality. The application

of exact algorithms is limited to 6 time periods and 10 customers (Bard and Nananukul, 2010) and 6 time

periods and 19 customers (Archetti et al., 2009). To solve larger problems, the authors in both papers resort

to heuristics.

Some studies (Bard and Nananukul 2009b and Boudia et al. 2007) note that the LP lower bound from
the standard formulation gives very weak values and leads to integrality gaps of 50% and more. All studies in

the literature use this weak standard formulation. Apart from the two works using exact algorithms, only a

few studies investigate stronger lower bounds. Fumero and Vercellis (1999) obtain a lower bound by applying

Lagrangean relaxation. They relax the demand balance constraint at the plant and the vehicle capacity
constraints. A specific heuristic is devised to also obtain feasible solutions. To solve the uncoordinated

approach, they use a two-phase heuristic, in which the lotsizing part is solved optimally and the remaining

distribution problem is solved via a Lagrangean heuristic. Bard and Nananukul (2009b) propose a lower

bound based on solving a relaxation of the model in which only direct shipment costs are considered.

Fumero and Vercellis (1999) note that the comparison of the coordinated and uncoordinated approaches
cannot be considered accurate as both are solved using heuristic methods (as also done by Chandra 1993
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and by Chandra and Fisher 1994). Our paper is the first study to compare optimal solutions for both the

coordinated and the uncoordinated approaches.

3 Formulations

We begin this section by presenting the general notation used in the paper. Additional notation will be
defined as needed in subsequent subsections. The first formulation that we present is a basic model of

the PRP. This formulation, called WEAK, will serve as a comparison basis for all other formulations. As

indicated before, it is used in all other studies discussing the PRP. In the subsequent subsections we develop

strong reformulations, i.e., formulations for which the optimal value of the linear programming relaxation is
closer to the optimal integer solution value than that of the original formulation.

For the uncapacitated lotsizing problem, two reformulations have been introduced: the shortest path (Ep-

pen and Martin, 1987) and the facility location formulations (Krarup and Bilde, 1977). These reformulations

can be applied to a wide range of lotsizing problems (Pochet and Wolsey, 2006). Using the same ideas,

we obtain two new reformulations of the PRP. We call them the Four Index Shortest Path (FISP) and the
Four Index Facility Location (FIFL) formulations, respectively, as four indices are involved in the redefined

variables.

The FISP and FIFL formulations have one disadvantage, namely, the high number of variables due to

four indices. We thus present two formulations that involve only three-index variables. This can be done by

reformulating the plant and customer lotsizing subproblems separately. However, we cannot do this directly
since the demand at the plant is not known a priori but it is actually equal to the deliveries to the customers,

which are decision variables. To counter this problem, we use the echelon stock reformulation.

The echelon concept, introduced by Clark and Scarf (1960), has often been used to decompose multi-level

lotsizing problems into independent single level lotsizing subproblems (see, e.g., Pochet and Wolsey 2006,

chapter 13). Note that the PRP can be seen as a two-level problem where the plant is the first level, and the
customers are the second level. Therefore, we first use the echelon concept to decompose the problem into

independent single-item lotsizing subproblems for each customer and the plant. We next use the previously

mentioned reformulation ideas to obtain two new reformulations, called the Echelon Stock Facility Location

(ESFL) and the Echelon Stock Shortest Path (ESSP) formulations, respectively.

These four formulations are used for the first time for the PRP. In the context of the one-warehouse
multi-retailer problem, however, similar formulations have already been used (see, e.g., Federgruen and Tzur

1999 for the echelon stock reformulation, Levi et al. 2008 for the four index facility location reformulation,

and Solyalı and Süral 2009 for the four index shortest path formulation).

Another way to obtain reformulations is to add valid inequalities (cutting planes) a priori to the ba-

sic formulation in the original variables. In our fifth reformulation we consider adding the so-called (l, S)
inequalities. These valid inequalities are known to describe the convex hull of feasible solutions for the un-

capacitated single-item lotsizing problem (see Barany et al. 1984). However, it is not practical to add all

(l, S) inequalities since their cardinality is exponential with respect to the number of time periods. If an

uncapacitated single-item lotsizing problem has Wagner-Whitin Costs (WWC), i.e., the sum of production

and holding costs in a period is greater than or equal to the production cost in the next period, then only a
small subset of (l, S) inequalities is needed to describe the convex hull of feasible solutions. Those inequalities

are called (l, S,WW ) inequalities (see, e.g., Pochet and Wolsey 2006, page 225).

In our fifth reformulation, we first use the echelon stock concept to decompose the basic problem into

independent single-item lotsizing problems for each customer and the plant. Then, we add (l, S,WW )

inequalities to each subproblem. We refer to the resulting formulation as the Echelon Stock Wagner-Whitin

cost (ESWW) formulation. Since the (l, S,WW ) inequalities are a subset of the general (l, S) inequalities,

they are valid even if the WWC assumption does not hold. In Section 3.8 we explain in detail when the

WWC assumption holds in the PRP problem.
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Since we want to compare optimal solutions for the coordinated and the uncoordinated approaches, we

also present the uncoordinated approach for the PRP in the last part of this section. As the uncoordinated

approach has been studied widely, we only give a short description of it.

3.1 Notation

The PRP can be defined on a complete undirected graph G = (N,E) where N = Nc ∪ {0} is the set of

nodes, Nc = {1, 2, . . . , n} is the subset of customer nodes, node 0 represents the plant, and E = {(i, j) : i, j ∈
N, i < j} is the set of edges. We define the set T = {1, . . . ,m} of time periods. With each edge (i, j) ∈ E

is associated a routing cost cij . For each node i ∈ Nc and time period t ∈ T , let dit denote the demand of
customer i in period t. We denote by hi the holding cost at node i ∈ N and by s the setup cost at the plant.

Several types of decision variables are defined. We let Iit be the inventory level at node i ∈ N at the end

of period t ∈ T . Note that Ii0 = 0 ∀i ∈ N . We let rit represent the amount delivered to node i ∈ Nc in
period t ∈ T and pt the production level in period t ∈ T . For each edge (i, j) ∈ E with i 6= 0, we let xijt

be a binary variable taking value 1 iff the vehicle travels along edge (i, j) in period t ∈ T . For i = 0, this

variable is ternary and takes value 2 iff the vehicle visits only customer j in period t ∈ T . We let yt be a

binary variable taking value 1 iff there is a setup at the plant in period t ∈ T and zit a binary variable taking
value 1 iff node i ∈ N is visited in period t ∈ T .

We also define δ(S) = {(i, j) ∈ E : i ∈ S, j /∈ S or i /∈ S, j ∈ S} as the set of edges incident to a node set

S and xt(S) =
∑

i,j∈S xijt as the total flow on the edges in set S in period t to simplify the notation. We
denote by d0t =

∑

i∈Nc
dit the aggregated demand of all customers in period t ∈ T , and by Ditu =

∑u
q=t diq

the sum of the demand at node i ∈ N from period t to u.

3.2 Basic Formulation

The basic formulation of the PRP is as follows:

Minimize
∑

t∈T



s× yt +
∑

i∈N

hiIit +
∑

(i,j)∈E

cijxijt



 (1)

subject to

pt ≤ D0tmyt, ∀t ∈ T, (2)

I0,t−1 + pt =
∑

i∈Nc

rit + I0t, ∀t ∈ T, (3)

Ii,t−1 + rit = dit + Iit, ∀i ∈ Nc, ∀t ∈ T, (4)

rit ≤ Ditmzit, ∀i ∈ Nc, ∀t ∈ T, (5)

xt(δ(i)) = 2zit, ∀i ∈ N, ∀t ∈ T, (6)

z0t ≥ zit, ∀i ∈ Nc, ∀t ∈ T, (7)

xt(δ(S)) ≥ 2zit, ∀S ⊆ Nc, |S| ≥ 2, ∀i ∈ S, ∀t ∈ T, (8)

Iit ≥ 0, ∀i ∈ N, ∀t ∈ T, (9)

rit ≥ 0, ∀i ∈ Nc, ∀t ∈ T, (10)

pt ≥ 0, ∀t ∈ T, (11)

xijt ∈ {0, 1}, ∀(i, j) ∈ E : i 6= 0, ∀t ∈ T, (12)

x0jt ∈ {0, 1, 2}, ∀j ∈ Nc, ∀t ∈ T, (13)

zit ∈ {0, 1}, ∀i ∈ N, ∀t ∈ T, (14)

yt ∈ {0, 1}, ∀t ∈ T. (15)

The objective function (1) minimizes the total cost of setups, inventories, and distribution. If there is

production in a specific time period, then a setup cost is incurred at the plant as ensured by constraints
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(2). Constraints (3) and (4) are the inventory balance constraints at the plant and customer locations,

respectively. If there is delivery to a node, then it must be visited in that time period as forced by constraints

(5). Constraints (6) require the number of edges incident to a node to be either 2 if node i is visited or 0
otherwise. Constraints (7) ensure that if a customer node is visited, then the depot is also visited since the

vehicle starts and ends its route at the plant. The Generalized Subtour Elimination Constraints (GSECs)

(8) eliminate subtours; there must be at least two edges between S and its complement whenever node i ∈ S

belongs to the solution and the plant does not belong to S. Inventory, delivery, and production level variables

are nonnegative. All the setup and routing variables are binary, except the routing variables associated with
edges that are incident to the plant. Those variables are ternary to allow single customer trips.

The first part of the model, i.e., constraints (2) – (5), represents a one-warehouse multi-retailer lotsizing

problem (see, e.g., Solyalı and Süral 2009). The second (routing) part of the model, i.e., constraints (6) –

(8), is adapted from the orienteering problem context (see, e.g., Fischetti et al. 1998). The disadvantage

of this part is the presence of GSECs, whose size grows exponentially with the number of customers. This
disadvantage is, however, mitigated by the fact that not all GSECs must be put into the formulation at

the beginning, but they can be generated as needed. There are two main differences between our routing

formulation and the PRP formulations used in the literature. These formulations consider the asymmetric

version of the problem, i.e., the distance between each pair of locations is not necessarily the same in the
two directions. However, all the studies which use a distance-based variable transportation cost actually

assume symmetric costs in their computational experiments. The advantage of the symmetric formulation

is that it contains fewer routing variables, but we need ternary variables to represent single customer trips.

The other difference is related to subtour elimination. In Fumero and Vercellis (1999), Lei et al. (2006), and

Shiguemoto and Armentano (2010) subtours are avoided by commodity flow conservation constraints, the
number of which grows polynomially. As expected, the LP relaxation of this formulation is inferior to the

relaxation of the formulations with GSECs. In Chandra and Fisher (1994) capacity constraints are used to

avoid subtours, the size of which grows exponentially. In this case, the minimum number of vehicles needed

to serve any set of customers, i.e., the right hand side of the constraint, cannot be rounded up as the quantity
of the product delivered to customers in a period is not known in advance. This makes its relaxation weaker.

Boudia et al. (2007, 2008) and Boudia and Prins (2009) eliminate subtours using the traditional subtour

elimination constraints, while Archetti et al. (2009) use very similar GSECs as we do.

3.3 Four Index Facility Location Formulation (FIFL)

To describe the FIFL formulation, we introduce an additional decision variable fituq representing the amount
produced in period t that is delivered to customer i in period u to satisfy demand in period q. The FIFL

formulation of the PRP is as follows:

Minimize (1)

subject to (6) – (8), (12) – (15), and

t
∑

u=1

t
∑

q=u

fiuqt = dit, ∀t ∈ T, ∀i ∈ Nc, (16)

t
∑

q=u

fiuqt ≤ dityu, ∀i ∈ Nc, 1 ≤ u ≤ t ≤ m, (17)

q
∑

u=1

fiuqt ≤ ditziq, ∀i ∈ Nc, 1 ≤ q ≤ t ≤ m, (18)

I0,t−1 +
∑

i∈Nc

m
∑

q=t

m
∑

u=q

fitqu =
∑

i∈Nc

t
∑

q=1

m
∑

u=t

fiqtu + I0t, ∀t ∈ T, (19)

Ii,t−1 +

t
∑

q=1

m
∑

u=t

fiqtu = dit + Iit, ∀t ∈ T, ∀i ∈ Nc, (20)

fituq ≥ 0, ∀i ∈ Nc, 1 ≤ t ≤ u ≤ q ≤ m. (21)
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Constraints (16) ensure that the total amount produced at the plant and delivered to i from period 1

through t is equal to the demand of i in t. Constraints (17) and (18) are used in place of (2) and (5),

respectively. Constraints (19) and (20) are inventory balance constraints at the plant and customer sites,
respectively. Notice that constraints (19) and (20) can be eliminated by rewriting the objective function in

terms of the new fituq. Constraints (21) are nonnegativity constraints. The link with the variables of the

basic formulation is as follows:

pt =
∑

i∈Nc

m
∑

q=t

m
∑

u=q

fitqu, rit =

t
∑

q=1

m
∑

u=t

fiqtu.

3.4 Four Index Shortest Path Formulation (FISP)

Following Eppen and Martin (1987), we define gituq as the fraction of the demand at node i ∈ Nc from period
u through q that is produced in period t and delivered to node i in period u. We let aitu be equal to 1 if

Ditu > 0 and 0 otherwise. The FISP formulation of the PRP is as follows:

Minimize (1)

subject to (6) – (8), (12) – (15), and

m
∑

q=1

gi11q = 1, ∀i ∈ Nc, (22)

t−1
∑

q=1

t−1
∑

u=q

giqu,t−1 =

t
∑

q=1

m
∑

u=t

giqtu, ∀i ∈ Nc, 2 ≤ t ≤ m, (23)

t
∑

q=1

m
∑

u=t

aitugiqtu ≤ zit, ∀i ∈ Nc, ∀t ∈ T, (24)

t
∑

l=u

m
∑

q=t

ailqgiulq ≤ yu, ∀i ∈ Nc, 1 ≤ u ≤ t ≤ m, (25)

I0,t−1 +
∑

i∈Nc

m
∑

u=t

m
∑

q=u

Diuqgituq =
∑

i∈Nc

t
∑

u=1

m
∑

q=t

Ditqgiutq + I0t, ∀t ∈ T, (26)

Ii,t−1 +

t
∑

u=1

m
∑

q=t

Ditqgiutq = dit + Iit, ∀i ∈ Nc, ∀t ∈ T, (27)

gituq ≥ 0, ∀i ∈ Nc, 1 ≤ t ≤ u ≤ q ≤ m. (28)

Constraints (22) – (23) are the conservation of flow equalities for the shortest path network. Figure 1

illustrates the shortest path network for customer i in a problem instance with three periods. Sending a

unit flow through the network is equivalent to imposing that demand must be met within the horizon. For

instance, if gi113 = 1, then production in period 1 satisfies the demand at node i from period 1 to 3 and the
production is delivered to node i in period 1. Constraints (24) and (25) are used in place of (2) and (5),

respectively. Note that if Ditu = 0, then (24) and (25) do not force setups as aitu is equal to zero in this case.

For any fixed u = û and t = t̂ the left hand side of constraints (25) is the flow from the set {û− 1, . . . , t̂− 1}
to the set {t̂, . . . ,m} in the shortest path network related to production in period û. Due to the definition
of the shortest path network, this flow is always less than or equal to one. Constraints (26) and (27) are

the inventory balance constraints at the plant and customer sites, respectively. Constraints (28) are the

nonnegativity constraints. The link with the variables of the basic formulation is as follows:

pt =
∑

i∈Nc

m
∑

u=t

m
∑

q=u

Diuqgituq, rit =

t
∑

u=1

m
∑

q=t

Ditqgiutq.
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Figure 1: Shortest path network for customer i in a problem with 3 periods.

3.5 Echelon Stock Reformulation

Multi-level lotsizing problems can be decomposed into a set of independent single level lotsizing subproblems

by applying the echelon stock concept in which each inventory variable of an item at a specific level is replaced

by an echelon stock variable representing the amount of inventory of the item, not only at that level, but also
at all subsequent levels where it is present (see, e.g., Pochet and Wolsey 2006, Section 13.1.2). Therefore,

echelon stock variables for the PRP can be defined as follows:

eit = Iit, ∀i ∈ Nc, ∀t ∈ T,

e0t =
∑

i∈N

Iit, ∀t ∈ T.

These equations mean that for a customer an echelon stock variable is the same as an inventory variable

whereas for the plant, an echelon stock variable states the total stock of the item within the whole system,

i.e., both at the plant and customer level, at time t.

Replacing the regular inventory variables by the echelon stock variables results in the following formula-

tion:

Minimize
∑

t∈T



s× yt + h0e0t +
∑

i∈Nc

(hi − h0)eit +
∑

(i,j)∈E

cijxijt



 (29)

subject to (2), (5) – (8), (10) – (15), and

e0,t−1 + pt = e0t + d0t, ∀t ∈ T, (30)

ei,t−1 + rit = eit + dit, ∀t ∈ T, ∀i ∈ Nc, (31)

e0t ≥
∑

i∈Nc

eit, ∀t ∈ T, (32)

eit ≥ 0, ∀i ∈ N, ∀t ∈ T. (33)

The objective function (29) is rewritten in terms of the echelon stock variables. Constraints (30) and
(31) are the demand balance constraints at the plant and customer level, respectively. Note that now the

plant is facing known demand, i.e., the aggregated demand of all the customers. Constraint (32) ensure that

the echelon stock at the plant (i.e., the total stock in the system) is greater than or equal to the sum of

the inventories at the customer sites. These constraints result from reformulating the original non-negativity
constraint on the plant inventory level using the echelon stock variables via the following substitution:

I0t = e0t −
∑

i∈Nc

Iit = e0t −
∑

i∈Nc

eit ≥ 0.
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This reformulation will not give a better LP relaxation than the basic formulation. Therefore, we will not

use this formulation in our computational experiments. The advantage is, however, that we now have inde-

pendent single item uncapacitated lotsizing problems both at the plant and customer level as a substructure.
In the next three sections, we will apply known reformulation techniques that give stronger bounds for the

single item uncapacitated lotsizing substructures. Without using the echelon stock concept, this would not

be possible as the demand would not be known at the plant level.

3.6 Echelon Stock Facility Location Formulation (ESFL)

We now can reformulate the independent uncapacitated single item lotsizing problems at both the plant and
customer levels using the Facility Location Formulation. Let v0ut be the amount produced at the plant in

period u to satisfy the aggregated demand of all the customers in period t and viut the amount delivered to

customer i in period u to satisfy the demand of customer i in period t. The ESFL formulation of the PRP

is as follows:

Minimize (29)
subject to (6) – (8), (12) – (15), (32) – (33), and

t
∑

u=1

viut = dit, ∀i ∈ N, ∀t ∈ T, (34)

v0ut ≤ d0tyu, 1 ≤ u ≤ t ≤ m, (35)

viut ≤ ditziu, ∀i ∈ Nc, 1 ≤ u ≤ t ≤ m, (36)

e0,t−1 +
m
∑

u=t

v0tu = e0t + d0t, ∀t ∈ T, (37)

ei,t−1 +
m
∑

u=t

vitu = eit + dit, ∀t ∈ T, ∀i ∈ Nc, (38)

viut ≥ 0, ∀i ∈ N, 1 ≤ u ≤ t ≤ m. (39)

Constraints (34) ensure that the demand in each time period and for each customer is satisfied. Constraints

(35) stipulate that a setup is incurred if there is production in period u. If there is a delivery to a node, it

must be visited in that period (36). Constraints (37) and (38) are inventory balance constraints at the plant
and customer sites, respectively. Constraint (39) are nonnegativity constraints. The link with the variables

of the basic formulation is as follows:

pt =

m
∑

u=t

v0tu, rit =

m
∑

u=t

vitu.

3.7 Echelon Stock Shortest Path Formulation (ESSP)

Let w0tu be the fraction of the aggregated demand of all customers from period t through u that is produced

in period t and witu the fraction of the demand of customer i from period t through u that is delivered in

period t.

Recall that constants aitu and variables eit are defined in Sections 3.4 and 3.6, respectively. The ESSP
formulation of the PRP is as follows:

Minimize (29)
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subject to (6) – (8), (12) – (15), (32) – (33), and

m
∑

t=1

wi1t = 1, ∀i ∈ N, (40)

t−1
∑

u=1

wiu,t−1 =

m
∑

u=t

witu, ∀i ∈ N, 2 ≤ t ≤ m, (41)

m
∑

u=t

a0tuw0tu ≤ yt, ∀t ∈ T, (42)

m
∑

u=t

aituwitu ≤ zit, ∀t ∈ T, ∀i ∈ Nc, (43)

e0,t−1 +

m
∑

u=t

D0tuw0tu = e0t + d0t, ∀t ∈ T, (44)

ei,t−1 +

m
∑

u=t

Dituwitu = eit + dit, ∀t ∈ T, ∀i ∈ Nc, (45)

witu ≥ 0, ∀i ∈ N, ∀1 ≤ t ≤ u ≤ m. (46)

The flow conservation is ensured by constraints (40) – (41). Constraints (42) define the production setup
variables yt whereas constraints (43) define the delivery setup variables zit. Note that if Dilm = 0, then

(42) – (43) do not force setups as ailm is zero. Constraints (44) – (45) express the demand satisfaction in

each time period. Constraints (46) are nonnegativity constraints. The link with the variables of the basic

formulation is as follows:

pt =

m
∑

u=t

D0tuw0tu, rit =

m
∑

u=t

Dituwitu.

3.8 Echelon Stock Formulation with Wagner-Whitin Costs (ESWW)

This formulation is the same as the basic echelon stock reformulation in Section 3.5 with the following

(l, S,WW ) inequalities added at both plant and customer level:

e0,t−1 +

u
∑

q=t

D0quyq ≥ D0tu, 1 ≤ t ≤ u ≤ m, (47)

ei,t−1 +

u
∑

q=t

Diquziq ≥ Ditu, 1 ≤ t ≤ u ≤ m, ∀i ∈ Nc. (48)

Constraints (47) indicate that if there is no production during the periods from t to u then the total

inventory within the system at the end period t − 1 must be greater than or equal to the total external

demand from t to u. Constraints (48) specify that if there is no delivery to node i during the period from t
to u then the inventory at node i at the end period t− 1 must be greater than or equal to the demand of i

from periods t to u.

We now explain under what conditions the PRP has Wagner-Whitin costs (WWC). Recall that if the

sum of the unit production and holding costs in a period is greater than or equal to the unit production cost

in the next period, then the problem has WWC. Since we have assumed that the unit production costs are
time-invariant, the WWC assumption holds at the plant level if the holding cost h0 is non-negative. At the

customer level there is no production cost and thus the WWC assumption holds for customer i if hi−h0 ≥ 0

as hi − h0 is the holding cost for customer i in the echelon stock formulation (see (29)).
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3.9 Uncoordinated Approach

In the uncoordinated approach the PRP is solved sequentially in two phases. In the first phase, the unca-

pacitated single-item lotsizing problem is solved to optimality with the demand at the plant in period t set
equal to d0t. The uncapacitated single-item lotsizing problem can be solved optimally in O(T logT ) (see, e.g.,

Wagelmans et al., 1992). Let pt be the optimal production values in the first phase. In the second phase, the

inventory-routing problem, which is modeled using the facility location formulation, is solved to optimality

in a similar way as done for the PRP. In this problem the availability of production volume at the plant is
fixed by the solution of the first phase, i.e., the following constraint must be satisfied:

t
∑

u=1

∑

i∈Nc

riu ≤
t

∑

u=1

pu ∀t ∈ T.

We call this as the PD approach. For more information about this approach, the reader is referred Chandra
and Fisher (1994) and Fumero and Vercellis (1999). However, in these studies the uncoordinated approach

is not solved to optimality.

4 Valid Inequalities

We describe two families of valid inequalities for the PRP, 2-matching and generalized comb inequalities,

which are adapted from the literature. Adding cuts strengthens a formulation and leads to more efficient
solution methods. We will demonstrate the usefulness of these valid inequalities through computational

experiments.

A comb is a family C = (H,T1, . . . , Tq) of q+1 node subsets, where q ≥ 3 is an odd integer. The node set

H is called the handle while T1, . . . , Tq are called the teeth. In addition, these sets must satisfy the following

conditions:

• Ti ∩ Tj = ∅ for all i 6= j;

• Ti\H 6= ∅ and H ∩ Ti 6= ∅ for i = 1, . . . , q.

The comb inequality associated with C is

xt(σ(H)) +

q
∑

i=1

xt(σ(Ti)) ≤ |H |+

q
∑

i=1

(|Ti| − 1)− (q + 1)/2, (49)

where σ(S) = {(i, j) ∈ E|i ∈ S, j ∈ S}. These constraints are known to be facets for the traveling salesman

problem (see, e.g., Grötschel and Padberg 1979). Fischetti et al. (1997) generalized comb inequalities to the

symmetrical generalized traveling salesman problem (GTSP). In GTSP, given a proper partition of S1, . . . , Su

of Nc, the objective is to find a minimum cost Hamiltonian cycle such that at least one node in each subset
Si is visited. Node subsets Si are called clusters. These generalized comb inequalities can be directly used in

the PRP by considering the whole node set N as a single cluster. This results in the following proposition.

Proposition 1. Consider comb C = (H,T1, . . . , Tq). For i = 1, . . . , q let bi be any node in H ∩ Ti, and let oi
be any node in Ti\H. Inequalities

xt(σ(H)) +

q
∑

i=1

xt(σ(Ti)) +
∑

i∈N

βi(1 − zit) ≤ |H |+

q
∑

i=1

(|Ti| − 1)− (q + 1)/2, (50)

where βj = 0 for all j ∈ N\(H ∪ T1 ∪ . . . ∪ Tq), βj = 1 for all j ∈ H\(T1 ∪ . . . ∪ Tq), and for j = 1, . . . , q:

• βj = 2 for j ∈ Ti ∩H, j 6= bj;

• βbj = 1;

• βj = 1 for j ∈ Ti\H, j 6= oj ;

• βoj = 0;
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are valid for the PRP.

If for comb C the following conditions hold:

• Ti ∩ Tj = ∅ for all i 6= j;

• |Ti\H | = 1 and |H ∩ Ti| = 1 6= ∅ for i = 1, . . . , q;

then the inequalities associated with the comb C are known as 2-matching inequalities. Therefore, a 2-

matching inequality is equivalent to a comb inequality with exactly two nodes in every tooth.

5 Branch-and-Cut Algorithm

In this section, we describe a branch-and-cut algorithm to solve the PRP. We focus on the separation proce-
dures used to identify violated inequalities.

First the LP relaxation of the problem without GSECs is solved. Thus, all the formulations contain the

constraints mentioned in their respective sections except the GSECs (8) and the integrality requirements on

the variables. If the solution of this relaxation is not an integer feasible solution or if it contains subtours,

then the branch-and-cut algorithm is started.

At each node of the branch-and-bound tree, the separation algorithms described in Sections 5.1.1 and 5.1.2
are called to detect the inequalities violated by the current solution. We call the separation algorithm in

the following order. First, we call the heuristic separation algorithm for the GSECs (8). Then we call the

exact one. Finally, we call the separation algorithm for the generalized comb inequalities (50). If one of

these separation algorithms finds the violated inequalities then they are added to the formulation, which is
re-optimized, and the separation process is started from the beginning. This procedure is repeated until no

violated inequalities are found. For the basic formulation the comb or 2-matching separation algorithms are

not called as it serves as a comparison basis for other formulations (i.e., no improvements or strengthenings

are done for the basic formulation).

Once no further violated inequalities are detected, branching starts. We use a branching priority rule
where we first branch on y variables, next on z variables, and lastly on x variables.

5.1 Separation procedures

We outline the separation algorithms which are applied for each time period to detect the violated valid

inequalities. We simplify the notation used in this section by dropping the time period index t and consider

the PRP as if it contained only one time period. We denote by G∗ = (N∗, E∗) the support graph associated

with the given fractional solution (x∗, z∗), where N∗ = {i ∈ N |z∗i > 0} and E∗ = {(i, j) ∈ E|x∗
ij > 0}. We

define x(B : C) =
∑

i∈B,j∈C xij .

5.1.1 Generalized Subtour Elimination Constraints.

In the heuristic separation algorithm we look for connected components of the support graph G∗. This

idea has been used in the context of the TSP (see, e.g., Applegate et al. 2007). If we find more than one

connected component, then we detect a set of violated generalized subtour elimination constraints (GSECs)

because x(δ(Si)) = 0 for each connected component Si. For each connected component we only separate the

maximal violated GSEC. If the found connected component Si consists of the plant node, then we separate
the GSEC in the format x(δ(Si)) ≥ 2max{z∗i |i ∈ N∗\Si}, otherwise we separate the GSEC in the format

x(δ(Si)) ≥ 2max{z∗i |i ∈ Si}. The reason for the former case is that the flow from a connected component

that contains the plant does not have to be positive unless there is at least one customer that must be visited

and that does not belong to the connected component being considered.

In the exact separation algorithm for each customer node t ∈ N∗ a minimum s− t cut problem is solved
where s is a plant node. A minimum s − t cut problem asks for a minimum set of edges whose removal

disconnects s from t. Let (S, T ) denote the minimum cut where disjoint sets S and T contain nodes s and
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t, respectively. If the value of the minimum cut (S, T ) is less than 2zt, the cut defines a violated GSEC. For

each detected GSEC we separate the GSEC in the format x(δ(T )) ≥ 2max{z∗i |i ∈ T }. We use a minimum

s − t cut algorithm of the Concorde callable library (see, e.g., Applegate et al. 2005) that implements the
push-relabel flow algorithm described in Goldberg and Tarjan (1988).

5.1.2 Comb and 2-Matching Inequalities.

We develop a heuristic separation algorithm for the comb inequalities. These inequalities were presented in

Fischetti et al. (1997) in the context of the symmetric generalized TSP. They proposed a separation algorithm

only for the subset of the generalized comb inequalities that are called the generalized 2-matching inequalities.

Our separation algorithm is able to detect the violated generalized comb inequalities, not only the violated
2-matching inequalities. Our separation algorithm contains two phases. In the first phase we try to identify

the 2-matching inequalities. If we find a 2-matching inequality, then in the second phase, we try to extend

the 2-matching inequality to a comb inequality. Next, we describe both phases in detail.

Our separation algorithm for the 2-matching inequalities is very similar to that of Fischetti et al. (1998).

Let x∗
ij be viewed as a weight associated with each (i, j) ∈ E∗. We apply Kruskal’s greedy algorithm (Kruskal

1956) to find a minimum-weight spanning tree on G∗. When this algorithm selects a new edge (i, j) we check

in the subgraph of G∗ induced by all the edges selected so far, whether this edge forms a cycle or not. If it

does, then we consider the connected component that contains both nodes i and j as a handle H . In this

way we generate efficiently almost all the connected components H of subgraph G∗
θ = (N,E∗

θ ) induced by
E∗

θ = {(i, j) ∈ E : 0 < x∗
ij < θ} for every θ ∈ (0, 1].

For each handle H we first select a subset F of edges that are incident to the set H in the following way:

F = argmax
S⊆δ(H)







∑

(i,j)∈S

x∗
ij : all the edges in S are pairwise disjoints







.

Let F = {α1, . . . , αu} with x∗
α1

≥ x∗
α2

≥ · · · ≥ x∗
αu

. Then we select the first q edges from the set F such that

u ≥ q ≥ 3, q is odd, and it maximizes the following expression:

x∗
α1

+ (x∗
α2

+ x∗
α3

− 1) + · · ·+ (x∗
αq−1

+ x∗
αq

− 1).

These q edges are teeth for the handle H . We denote the found 2-matching by M = (H,T1, . . . , Tq).

In the second phase, given a 2-matching M, we use a simple heuristic algorithm to extend the given

2-matching inequality to a comb inequality. For notational reasons we denote here the handle H by T0. For

each node j ∈ N∗ we determine whether it belongs to the subsets T0\
⋃q

i=1 Ti, N
∗\

⋃q

i=0 Ti, or
⋃q

i=1 Ti. In

the first case, we determine an index k̃ for which the following expression is maximized:

max
k=1,...,q

{x(Tk, j)− zj} .

If the expression x(Tk̃, j)− zj is positive, we extend subset Tk̃ as Tk̃ = Tk̃ ∪{j}. In the second case, we again

determine an index k̃ for which the following expression is maximized:

max
k=0,...,q

{x(Tk, j)− zj} .

If the expression x(Tk̃, j) − zj is positive, we extend subset Tk̃ as Tk̃ = Tk̃ ∪ {j}. Extensions mean that the

value of the left-hand side of the inequality (50) is increased more than the value of the right-hand side. In the
last case, we do nothing. This process is repeated until no further extension can be done. After the second

phase, we check whether the inequality (50) is violated or not. To separate the 2-matching inequalities only,

skip the second phase.

6 A Priori Tour Based Heuristic

We have adapted the effective a priori tour based heuristic of Solyalı and Süral (2008), originally proposed for

an inventory-routing problem, to find an integer feasible solution for the PRP. The main idea of the heuristic
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is to replace the vehicle routing decisions in the mathematical programming formulation with constraints

dictating a global tour (i.e., a priori tour) over all the nodes of the problem. For a given subset of nodes to

be visited in a period, the route of the vehicle is automatically found by skipping the non-visited nodes and
following the precedence order of the nodes in the a priori tour. To implement the idea, one has to solve a

TSP over all the nodes (not necessarily to optimality) to obtain the sets of nodes that can be visited before

and after visiting a node i (i ∈ N). These sets are denoted by πi, and σi, respectively. Note that the sets πi

and σi involve the plant (i.e., node 0) for all i ∈ Nc, and π0 and σ0 involve all i ∈ Nc. This idea was initially

introduced by Pinar and Süral (2006) in the context of an inventory-routing problem but within a weak
MIP formulation which could not be solved to optimality; thus hiding its effectiveness. Solyalı and Süral

(2008) showed the effectiveness of the a priori tour based heuristic by embedding the idea into a strong MIP

formulation. We therefore use the FISP formulation to implement the heuristic. We now give the resulting

formulation which we refer to as APTF:
Minimize

∑

t∈T



s× yt +
∑

i∈N

hiIit +
∑

i∈N

∑

j∈σi

cijx
′
ijt



 (51)

subject to (14), (15), (22) – (28), and

∑

j∈σi

x′
ijt = zit, ∀i ∈ N, ∀t ∈ T, (52)

∑

j∈πi

x′
jit = zit, ∀i ∈ N, ∀t ∈ T, (53)

x′
ijt ∈ {0, 1}, ∀i ∈ N, ∀j ∈ σi, ∀t ∈ T, (54)

where x′
ijt is a binary variable taking value 1 iff the vehicle travels to node j immediately after node i.

Note that the x′
ijt variables above are defined based on the a priori tour. Therefore, the graph associated with

this formulation is not the same as in other formulations presented in this paper. It is a directed incomplete

graph that consists of an arc (i, j) if for node i ∈ N , it holds that j ∈ σi. As a consequence, unlike the
xijt variables, the x′

ijt variables are now associated with directed arcs instead of edges. Also, note that the

degree constraints and the generalized subtour elimination constraints are replaced by constraints (52) and

(53) which impose the vehicle to follow the given a priori tour. Although any feasible solution to the above

formulation is a valid upper bound for the PRP, we solve it to optimality and improve the objective value

by solving a TSP for each t ∈ T based on the customers visited in t. The computational effectiveness of the
heuristic, which we refer to as the APT heuristic, depends on the solvers used for solving the TSPs and the

APTF formulation. Thanks to the publicly available efficient TSP solver Concorde, MIP solver CPLEX, and

our strong formulation APTF, we are able to obtain the initial upper bound within about one minute even

for the largest instances generated (see Section 7).

7 Computational Experiments

In the literature several datasets for the PRP have been published (see Boudia et al. 2007 or Archetti et al.

2009). These sets have mainly been designed for heuristic algorithms, making most instances too large for

our exact algorithms. In addition, all of these datasets involve capacity constraints on vehicles. Therefore,

we have generated a new set of instances that is more suitable for our purposes. Yet, we use an instance

generation scheme very similar to that of Archetti et al. (2009).

We generate instances by varying the following parameters: 1) the interval from which the holding costs

hi, i ∈ Nc, are drawn; 2) the interval from which the coordinates of the nodes are drawn; 3) the number

of customers n; 4) the number of time periods m; and 5) the probability that the demand of a customer is

equal to zero in each time period. Holding costs are varied to see whether the presence or absence of WWC

has an effect. We look at different values for the interval of coordinates to measure the impact of putting
more weight on the distribution part (i.e., higher routing costs cij). The probability that the demand of a
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customer is equal to zero is varied to see whether the presence of zero demand has an effect. We consider 252

different parameter combinations in total. The first 144 combinations form a basic set and the remaining ones

are used only to examine the limit of our formulations and the performance of the APT heuristic. For each
combination, which we call a class, we generate 10 random instances, thus yielding a total of 2520 different

instances.

For all classes, the setup cost s and the holding cost at the plant h0 are set to 1000 and 3, respectively,

and the demand dit of customer i in period t is randomly selected from the interval [5, 25]. The values

of parameters for the basic set, classes 1 to 144, are shown in Table 1 while the values for the second

set, classes 145 to 252, are shown in Table 2. The first three columns indicate the class identifiers with
different upper bounds (CUB) for the intervals from which the coordinates of the nodes are drawn. The

lower bound of the interval is equal to 0 for all the classes. For example, for the instances in classes 1,

49, and 97, all the parameters and intervals are the same except the coordinates of the nodes, which are

chosen in the square [0, 500] × [0, 500], [0, 1000] × [0, 1000], and [0, 2500] × [0, 2500], respectively. Column

HCC indicates the interval from which the holding cost for each customer is randomly selected. Column
P gives the probability that the demand of a customer is equal to zero. In other words, when defining

the demand of a customer, first a number from [0, 100] is drawn. If it is less than P, then the demand of

the customer is set equal to 0, otherwise the demand is drawn from [5, 25]. Columns 6 and 7 state the

number of customers n and the number of time periods m, respectively. In all cases, random selections
are performed according to a uniform distribution using a one decimal accuracy, except demands for which

random numbers are selected according to a uniform, integer distribution. The generated instances are

available at http://www.sal.tkk.fi/en/personnel/mirko.ruokokoski/.

Table 1: Parameter values used in the generation of classes 1 to 144.

Class Id / CUB HCC P n m Class Id / CUB HCC P n m

500 1000 2500 500 1000 2500

1 49 97 [1, 3] 0 15 6 25 73 121 [1, 3] 0 30 10
2 50 98 [1, 3] 25 15 6 26 74 122 [1, 3] 25 30 10
3 51 99 [1, 3] 50 15 6 27 75 123 [1, 3] 50 30 10
4 52 100 [1, 3] 75 15 6 28 76 124 [1, 3] 75 30 10
5 53 101 [1, 5] 0 15 6 29 77 125 [1, 5] 0 30 10
6 54 102 [1, 5] 25 15 6 30 78 126 [1, 5] 25 30 10
7 55 103 [1, 5] 50 15 6 31 79 127 [1, 5] 50 30 10
8 56 104 [1, 5] 75 15 6 32 80 128 [1, 5] 75 30 10
9 57 105 [3, 5] 0 15 6 33 81 129 [3, 5] 0 30 10

10 58 106 [3, 5] 25 15 6 34 82 130 [3, 5] 25 30 10
11 59 107 [3, 5] 50 15 6 35 83 131 [3, 5] 50 30 10
12 60 108 [3, 5] 75 15 6 36 84 132 [3, 5] 75 30 10
13 61 109 [1, 3] 0 20 8 37 85 133 [1, 3] 0 40 15
14 62 110 [1, 3] 25 20 8 38 86 134 [1, 3] 25 40 15
15 63 111 [1, 3] 50 20 8 39 87 135 [1, 3] 50 40 15
16 64 112 [1, 3] 75 20 8 40 88 136 [1, 3] 75 40 15
17 65 113 [1, 5] 0 20 8 41 89 137 [1, 5] 0 40 15
18 66 114 [1, 5] 25 20 8 42 90 138 [1, 5] 25 40 15
19 67 115 [1, 5] 50 20 8 43 91 139 [1, 5] 50 40 15
20 68 116 [1, 5] 75 20 8 44 92 140 [1, 5] 75 40 15
21 69 117 [3, 5] 0 20 8 45 93 141 [3, 5] 0 40 15
22 70 118 [3, 5] 25 20 8 46 94 142 [3, 5] 25 40 15
23 71 119 [3, 5] 50 20 8 47 95 143 [3, 5] 50 40 15
24 72 120 [3, 5] 75 20 8 48 96 144 [3, 5] 75 40 15

All formulations and algorithms were implemented in C++ using Concert Technology and were solved

by CPLEX 10.11. CPLEX was used with the default setting. We have also used CPLEX callbacks to
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Table 2: Parameter values used in the generation of classes 145 to 252.

Class Id / CUB HCC P n m Class Id / CUB HCC P n m

500 1000 2500 500 1000 2500

145 181 217 [1, 3] 0 40 8 163 199 235 [1, 5] 50 60 8
146 182 218 [1, 3] 25 40 8 164 200 236 [1, 5] 75 60 8
147 183 219 [1, 3] 50 40 8 165 201 237 [3, 5] 0 60 8
148 184 220 [1, 3] 75 40 8 166 202 238 [3, 5] 25 60 8
149 185 221 [1, 5] 0 40 8 167 203 239 [3, 5] 50 60 8
150 186 222 [1, 5] 25 40 8 168 204 240 [3, 5] 75 60 8
151 187 223 [1, 5] 50 40 8 169 205 241 [1, 3] 0 80 8
152 188 224 [1, 5] 75 40 8 170 206 242 [1, 3] 25 80 8
153 189 225 [3, 5] 0 40 8 171 207 243 [1, 3] 50 80 8
154 190 226 [3, 5] 25 40 8 172 208 244 [1, 3] 75 80 8
155 191 227 [3, 5] 50 40 8 173 209 245 [1, 5] 0 80 8
156 192 228 [3, 5] 75 40 8 174 210 246 [1, 5] 25 80 8
157 193 229 [1, 3] 0 60 8 175 211 247 [1, 5] 50 80 8
158 194 230 [1, 3] 25 60 8 176 212 248 [1, 5] 75 80 8
159 195 231 [1, 3] 50 60 8 177 213 249 [3, 5] 0 80 8
160 196 232 [1, 3] 75 60 8 178 214 250 [3, 5] 25 80 8
161 197 233 [1, 5] 0 60 8 179 215 251 [3, 5] 50 80 8
162 198 234 [1, 5] 25 60 8 180 216 252 [3, 5] 75 80 8

implement our separation algorithms. Only the MIP optimality gap was strengthened from 10−4 to 10−6.

All computational experiments were performed on a workstation with the lx24-amd64 architecture and 2

GB of memory. We report average values for each class, unless otherwise indicated. Computation times are
reported in seconds. A CPU time limit of two hours (7200 seconds) was imposed for each instance.

Our computational experiments focus on five aspects. First, we compare the different formulations with

each other. Second, we measure the impact of the valid inequalities on the lower bound and the overall

solution time. Third, we compare the uncoordinated approach with the coordinated approach. Fourth, we

study the limit of our exact algorithms by increasing the number of customers while keeping the number of
time periods fixed. Fifth, we examine the performance of the APT heuristic.

7.1 Comparison Between Different Formulations

We begin this section by comparing the different formulations introduced in the paper. These formulations

are: basic, four index facility location, four index shortest path, echelon stock facility location, echelon stock

shortest path, and echelon stock Wagner-Whitin costs. Results are reported in Tables 3 – 9.

In Table 3 each element [j, k] gives the number of times out of 1440 instances that formulation j is at

least 10 percent faster than formulation k, i.e., it holds that CPU j < 0.9×CPUk, where CPU j is CPU time
for formulation j. In each column k the largest number is shown in bold, to point out which formulation j

dominates formulation k the most. From this table we see that FIFL leads to the fastest algorithm for most

of the instances.

In Table 4 each element [j, k] gives the number of times at which Zj > Zk + 0.1 over all the instances,
where Zj is the LP relaxation value of formulation j without generalized subtour elimination constraints

(8) and without additional cuts (LPGSEC relaxation for short). The purpose of using the constant 0.1 is

to eliminate the impact of rounding errors. Similarly, bold elements indicate dominance. From this table

we observe that ZESSP = ZESFL ≥ ZESWW ≥ ZWEAK , which can be shown as follows. Consider the

echelon stock formulations. Each of them contains a set of uncapacitated lotsizing (ULS) subproblems which
are reformulated. It is known that for a single item ULS problem the shortest path, the facility location

reformulation, and the basic formulation together with (l, S) inequalities provide the same lower bound
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(Pochet and Wolsey 2006). Hence, the first equality must hold. As the (l, S,WW ) inequalities are only a

subset of the general (l, S) inequalities, the second relationship must hold. Note that when the lotsizing

problem has Wagner-Whitin costs, the (l, S,WW ) inequalities are sufficient to describe the convex hull of
the single item ULS problem, and the second relationship becomes an equality. The last inequality comes

from the fact that adding (l, S,WW ) inequalities to the formulation will lead to a stronger formulation.

Table 4 also suggests that ZFISP ≥ ZFIFL ≥ ZESFL. Let us consider the one-warehouse multi-retailer

(OWMR) problem. This problem is the special case of the PRP in which routing costs are equal to zero,

i.e., cij = 0 for each edge (i, j). Solyalı and Süral (2009) prove that the LP relaxation value of the FIFL

formulation of the OWMR problem is greater than or equal to the that of ESFL (Theorem 1), and the LP
relaxation value of the FISP formulation of the OWMR problem is greater than or equal to that of FIFL

(Theorem 2). Since the routing part of our formulations is the same, it follows immediately from Theorems

1 and 2 of Solyalı and Süral (2009) that ZFISP ≥ ZFIFL ≥ ZESFL.

Table 3: Each element [j, k] in this table gives the number of times formulation j is at least 10 percent faster
than formulation k over all instances in classes from 1 to 144.

WEAK ESFL ESSP ESWW FIFL FISP

WEAK - 447 628 428 328 520
ESFL 850 - 1009 622 377 675
ESSP 697 169 - 259 183 353

ESWW 867 326 937 - 349 609
FIFL 971 876 1126 925 - 1206

FISP 833 571 898 648 77 -

Table 4: Each element [j, k] in this table gives the number of times formulation j provides the better
LP relaxation value without generalized subtour elimination constraints and without any valid inequalities
compared to formulation k over all instances in classes from 1 to 144.

WEAK ESFL ESSP ESWW FIFL FISP

WEAK - 0 0 0 0 0
ESFL 1438 - 0 123 0 0
ESSP 1438 0 - 123 0 0

ESWW 1438 0 0 - 0 0
FIFL 1438 1385 1385 1385 - 0
FISP 1438 1385 1385 1385 25 -

Tables 5 – 9 show a different comparison among the formulations over the classes from 1 to 144. Due to

limited space, we report aggregate information based on parameter combinations. Combinations are chosen
due to our observation that the holding cost interval parameter is the least important while the number of

customers and time periods are the most important for CPU time.

In Tables 5 – 9 all the columns are the same except the second one. The first column indicates the number

of customers n. In Tables 6 and 7 the second column gives the upper bound (CUB) of the interval from

which the coordinates of nodes are drawn whereas in Tables 8 and 9 it gives the probability of zero demand

(P) of a customer. Column FORM shows the formulation name. The remaining columns, except the last
one, report the average values calculated over the instances with parameters given under n, and CUB or

P. These remaining columns indicate the number of nodes (#N), the number of subtour elimination cuts

(#SC), the number of 2-matching cuts (#2C), the number of comb cuts (#CC), the lower bound without

cuts, i.e., the LP relaxation value calculated at the root node without considering the generalized subtour

elimination constraints and additional cuts (Z ), the lower bound value with cuts (ZC), and the number of
instances solved to optimality (#O). The lower bound with cuts is a lower bound value at the root node after

adding cuts generated by our separation algorithms and cuts generated by CPLEX. Note that CPLEX may
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strengthen the formulation in MIP preprocessing phase before solving the root node. All the lower bound

values are normalized with respect to the optimal value (or the best upper bound value if the optimal value

is not known). For each parameter combination, the best CPU time and lower bound are shown in bold.

Table 5: Comparison between different formulations over instances with 15, 20, 30, and 40 customers.

n FORM CPU #N #SC #2C #CC Z ZC #O

15 WEAK 0.15 0.3 44.8 0.0 0.0 72.92 99.92 360
ESFL 0.15 0.6 44.4 0.3 0.0 91.14 99.71 360
ESSP 0.18 0.7 42.4 0.3 0.0 91.14 99.68 360

ESWW 0.15 0.5 45.3 0.2 0.0 91.14 99.80 360
FIFL 0.09 0.0 26.8 0.3 0.0 92.86 100.00 360
FISP 0.10 0.0 26.8 0.3 0.0 92.86 100.00 360

20 WEAK 2.03 6.5 223.3 0.0 0.0 61.10 99.39 360
ESFL 0.97 4.4 189.7 1.9 0.1 87.72 99.39 360
ESSP 1.36 4.8 188.8 2.0 0.1 87.72 99.35 360

ESWW 1.03 4.0 186.7 1.8 0.1 87.72 99.46 360
FIFL 0.64 0.4 93.0 1.3 0.0 90.49 99.99 360
FISP 0.93 0.5 92.9 1.3 0.0 90.49 99.99 360

30 WEAK 71.32 755.5 1,095.9 0.0 0.0 51.00 98.77 360
ESFL 10.74 22.6 837.5 15.4 0.6 84.85 99.10 360
ESSP 19.16 23.5 832.9 15.1 0.6 84.85 99.09 360

ESWW 13.41 27.6 822.4 14.2 0.7 84.84 99.14 360
FIFL 7.33 20.7 370.9 12.0 0.2 88.26 99.94 360
FISP 9.71 12.9 367.5 11.7 0.3 88.26 99.94 360

40 WEAK 2,370.03 1,970.9 6,845.2 0.0 0.0 38.73 97.33 312
ESFL 308.06 348.7 3,649.5 75.1 3.6 82.56 98.85 358
ESSP 486.76 430.6 3,681.3 75.5 3.9 82.56 98.85 356

ESWW 397.83 373.4 3,635.7 70.3 3.7 82.56 98.87 357
FIFL 296.45 480.9 1,743.9 57.2 2.2 86.21 99.82 356
FISP 364.21 370.2 1,736.8 54.5 2.1 86.21 99.82 356

In order to obtain an overall view, we report the average results for the classes with 15, 20, 30, and 40
customers and 6, 8, 10, and 15 time periods, respectively. Overall results indicate that FIFL is the fastest.

For the more difficult classes (i.e., those having 30 and 40 customers), FIFL provides a speed up of around

a factor 10 compared to WEAK. The second best times are run by FISP for the classes with 15, 20, and

30 customers and by ESFL for the most difficult class. Of the five reformulations, ESSP is the slowest on
average, but substantially better than WEAK, except for the easiest problem class with 15 customers.

We observe that the two four-index formulations need approximately the same number of GSECs. The

three echelon stock reformulations almost double this number, while WEAK needs even more. Also for

the generalized 2-matching and comb inequalities, the echelon stock reformulations need more inequalities

compared to the four index formulations.

The LP relaxation bound LPGSEC of WEAK is 73% for the easiest problem class, but gradually becomes
worse for the more difficult classes. For the most difficult class, with 40 customers and 15 time periods, the

average LP relaxation lower bound is only 39%. For the five reformulations, this lower bound becomes worse

for the more difficult classes. However, the bound for the reformulations is much better compared to that

of WEAK. It varies between 83 and 91% for the echelon stock reformulations and between 86 and 93% for
the four index formulations. Even though the LP relaxation lower bound without any cuts is very bad for

WEAK, the lower bound ZC , i.e., after adding subtour elimination constraints and the cuts generated by

CPLEX, is quite close to that of the strong formulations. For the easiest class, it becomes even better than

the ZC lower bound of the echelon stock reformulations.
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Table 6: Comparison between different formulations over instances with 15 and 20 customers and upper
bound of the coordinates interval being equal to 500, 1000, and 2500.

n CUB FORM CPU #N #SC #2C #CC Z ZC #O

15 500 WEAK 0.26 0.5 68.4 0.0 0.0 64.79 99.72 120
ESFL 0.22 1.1 64.8 0.6 0.0 91.15 99.43 120
ESSP 0.26 1.3 59.8 0.5 0.0 91.15 99.41 120

ESWW 0.21 0.9 65.2 0.5 0.0 91.15 99.59 120
FIFL 0.10 0.0 34.3 0.6 0.0 93.65 100.00 120
FISP 0.12 0.0 33.9 0.5 0.0 93.65 100.00 120

15 1000 WEAK 0.13 0.2 47.1 0.0 0.0 69.69 99.97 120
ESFL 0.17 0.6 50.4 0.2 0.0 89.98 99.62 120
ESSP 0.19 0.7 49.2 0.3 0.0 89.98 99.57 120

ESWW 0.16 0.6 52.0 0.2 0.0 89.98 99.71 120
FIFL 0.10 0.0 31.7 0.2 0.0 92.21 100.00 120
FISP 0.12 0.0 32.1 0.2 0.0 92.21 100.00 120

15 2500 WEAK 0.06 0.1 19.0 0.0 0.0 78.90 99.98 120
ESFL 0.07 0.2 18.1 0.1 0.0 91.89 99.90 120
ESSP 0.08 0.2 18.3 0.1 0.0 91.89 99.87 120

ESWW 0.06 0.1 18.6 0.1 0.0 91.89 99.96 120
FIFL 0.07 0.0 14.5 0.1 0.0 92.90 100.00 120
FISP 0.07 0.0 14.2 0.1 0.0 92.90 100.00 120

20 500 WEAK 3.92 13.9 358.8 0.0 0.0 53.06 98.14 120
ESFL 1.39 7.3 268.2 3.3 0.1 88.52 99.04 120
ESSP 2.06 7.4 269.1 3.5 0.1 88.52 99.04 120

ESWW 1.51 6.6 262.5 3.0 0.2 88.52 99.14 120
FIFL 0.64 0.9 107.7 1.9 0.0 92.12 99.97 120
FISP 1.02 1.1 108.7 2.1 0.1 92.12 99.97 120

20 1000 WEAK 1.76 4.6 224.1 0.0 0.0 57.65 99.45 120
ESFL 1.07 4.7 207.9 1.1 0.0 86.68 99.19 120
ESSP 1.44 5.4 204.3 1.2 0.0 86.68 99.15 120

ESWW 1.12 4.2 205.0 1.1 0.0 86.68 99.30 120
FIFL 0.69 0.2 102.4 0.8 0.0 90.02 99.99 120
FISP 1.02 0.3 102.9 0.8 0.0 90.02 99.99 120

20 2500 WEAK 0.41 1.0 87.1 0.0 0.0 67.07 99.94 120
ESFL 0.45 1.2 93.0 1.3 0.0 88.01 99.67 120
ESSP 0.57 1.5 93.0 1.3 0.0 88.01 99.62 120

ESWW 0.46 1.2 92.7 1.3 0.0 88.01 99.71 120
FIFL 0.57 0.1 68.9 1.1 0.0 90.03 100.00 120
FISP 0.77 0.1 67.2 1.0 0.0 90.03 99.99 120

When considering lower bounds of the strong formulations, we notice that after adding the cuts the gap

decreases substantially since the average ZC values are above 98.8%. The four index formulations provide

the best lower bound in both cases, with and without additional cuts. For the easiest class, the gap for the

four index formulations is nil at the root node and no branching is needed, whereas for the most difficult
class the ZC value is still above 99.8%.

Comparing CPU times of the strong formulations with respect to other parameters, we observe that

FIFL is the best formulation all the time, except for the instances with higher routing costs cij as seen in

Tables 6 and 7. For the larger instances ESFL is the fastest. It is because when the impact of production

decisions increases relative to that of distribution, the reformulations pay off the effort. In the reverse case,
the formulations with less number of variables become suitable. WEAK, ESWW or both are the best for the

small instances because the problem can often be solved at the root node or by exploring just a few nodes.
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Table 7: Comparison between different formulations over instances with 30 and 40 customers and upper
bound of the coordinates interval being equal to 500, 1000, and 2500.

n CUB FORM CPU #N #SC #2C #CC Z ZC #O

30 500 WEAK 174.91 2,159.2 1,722.6 0.0 0.0 43.48 97.03 120
ESFL 15.47 42.0 1,172.3 23.8 1.1 86.21 98.61 120
ESSP 28.26 42.9 1,164.7 24.3 0.9 86.21 98.61 120

ESWW 20.08 56.0 1,138.0 22.2 1.2 86.20 98.65 120
FIFL 7.41 50.0 408.8 18.6 0.5 90.70 99.93 120
FISP 9.71 29.2 398.2 17.8 0.5 90.71 99.92 120

30 1000 WEAK 29.97 88.5 1,063.0 0.0 0.0 47.84 98.60 120
ESFL 11.19 18.1 872.3 15.7 0.5 84.48 98.93 120
ESSP 20.49 19.3 868.9 14.5 0.6 84.48 98.93 120

ESWW 14.22 18.5 845.4 13.9 0.6 84.48 98.97 120
FIFL 7.49 10.0 408.1 12.0 0.2 88.19 99.92 120
FISP 10.86 7.8 407.0 11.7 0.2 88.19 99.91 120

30 2500 WEAK 9.09 18.7 502.0 0.0 0.0 56.36 99.67 120
ESFL 5.57 7.7 468.0 6.5 0.2 84.46 99.43 120
ESSP 8.72 8.2 465.2 6.5 0.2 84.46 99.41 120

ESWW 5.93 8.3 483.9 6.4 0.2 84.46 99.46 120
FIFL 7.10 2.3 295.9 5.6 0.1 87.21 99.96 120
FISP 8.55 1.8 297.2 5.4 0.1 87.21 99.96 120

40 500 WEAK 3,055.84 2,513.9 9,208.5 0.0 0.0 31.72 95.54 101
ESFL 374.30 561.2 4,593.8 88.0 4.6 84.07 98.33 118
ESSP 576.58 556.4 4,628.2 85.2 4.6 84.07 98.34 118

ESWW 442.22 539.2 4,566.0 84.1 4.7 84.07 98.36 118
FIFL 252.29 850.5 1,781.7 62.7 2.5 88.88 99.88 118
FISP 317.38 620.1 1,780.9 56.6 2.1 88.88 99.88 118

40 1000 WEAK 2,406.21 2,404.8 6,452.5 0.0 0.0 36.00 97.14 101
ESFL 380.53 438.0 3,864.1 96.4 4.8 82.48 98.58 120
ESSP 612.87 689.1 3,882.4 100.9 5.6 82.48 98.58 118

ESWW 543.31 538.4 3,870.2 89.9 5.2 82.48 98.60 119
FIFL 413.48 570.6 1,875.3 76.0 3.5 86.35 99.78 118
FISP 496.24 470.7 1,880.2 75.9 3.4 86.35 99.78 118

40 2500 WEAK 1,648.04 994.0 4,874.4 0.0 0.0 43.54 98.23 110
ESFL 169.34 47.0 2,490.5 40.8 1.3 81.94 99.24 120
ESSP 270.83 46.2 2,533.2 40.4 1.4 81.94 99.25 120

ESWW 207.96 42.7 2,470.9 36.8 1.1 81.94 99.26 120
FIFL 223.57 21.5 1,574.8 32.9 0.5 84.95 99.82 120
FISP 279.00 19.7 1,549.2 31.0 0.7 84.95 99.82 120

Results from Tables 8 and 9 show that increasing the probability that a customer demand is equal to zero

usually leads to the easier instances, except the instances with 40 customers and the zero demand probability

equal to 50%. These are on average slightly harder to solve than the instances with 40 customers and the

zero demand probability equal to 0 or 25%.

As it is mentioned at the beginning of this section, it holds that ESWW, ESFL, and ESSP give the same

LPGSEC bound for the cases where the WWC assumption holds. This is also observed in our computational

experiments. When the WWC assumption does not hold, we observe that, in accordance with the theory, in

some cases ESWW gives an inferior LPGSEC bound compared to ESFL and ESSP. However, the differences

are very small, and we observe that the average Z values are the same up to two decimals for the three
formulations, except for a few sets where there is a difference of 0.01. For ESWW we observe that the
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Table 8: Comparison between different formulations over instances with 30 customers and the probability of
zero demand equal to 0, 25, 50 and 75.

n P FORM CPU #N #SC #2C #CC Z ZC #O

30 0 WEAK 139.70 2,325.0 1,348.4 0.0 0.0 44.08 98.37 90
ESFL 13.57 44.0 806.5 26.3 0.9 87.33 99.36 90
ESSP 21.55 45.5 831.1 26.5 0.9 87.33 99.35 90

ESWW 18.34 65.3 800.4 25.4 1.3 87.33 99.46 90
FIFL 12.50 65.4 382.1 22.5 0.5 89.90 99.92 90
FISP 14.97 39.7 374.1 22.6 0.7 89.90 99.92 90

30 25 WEAK 104.27 634.3 1,331.0 0.0 0.0 48.79 98.61 90
ESFL 13.21 21.4 967.5 19.0 0.6 85.41 99.07 90
ESSP 23.98 21.0 921.7 17.4 0.6 85.41 99.06 90

ESWW 17.38 20.5 942.0 16.5 0.6 85.41 99.07 90
FIFL 8.50 12.6 390.3 13.8 0.2 88.98 99.93 90
FISP 10.52 6.9 384.8 12.7 0.3 88.98 99.93 90

30 50 WEAK 30.26 51.2 1,023.1 0.0 0.0 53.97 98.99 90
ESFL 10.72 16.3 898.1 11.6 0.5 82.50 98.82 90
ESSP 20.32 17.3 905.3 11.9 0.6 82.50 98.81 90

ESWW 11.83 15.8 883.0 10.4 0.6 82.50 98.82 90
FIFL 5.19 4.0 367.3 8.4 0.2 86.66 99.95 90
FISP 8.25 4.1 373.8 8.0 0.1 86.66 99.95 90

30 75 WEAK 11.05 11.5 681.0 0.0 0.0 63.92 99.52 90
ESFL 5.47 8.7 678.0 4.5 0.2 82.38 99.06 90
ESSP 10.77 10.2 673.6 4.5 0.2 82.38 99.04 90

ESWW 6.11 8.8 664.5 4.4 0.1 82.37 99.08 90
FIFL 3.13 0.9 344.0 3.5 0.1 86.13 99.95 90
FISP 5.09 1.0 337.2 3.3 0.1 86.13 99.94 90

instances with WWC are easier to solve and take 85.84 seconds while those without WWC take 111.74
seconds on average. For other formulations the difference is smaller.

As a summary we may conclude that FIFL yields in general the best results for our instances. Therefore,

we use FIFL as a reference model in the remaining experiments.

7.2 Impact of Valid Inequalities

The purpose of this section is to investigate the impact of the valid inequalities on the lower bound and

CPU time. Tables 10 and 11 show the results obtained by running FIFL on the basic set (classes from 1 to
144). The first three columns indicate the number of customers, the zero demand probability, and the upper

bound of interval from which the coordinates of the nodes are drawn. The values in the remaining columns

are calculated as average values over classes with parameters shown in the first three columns. Column NC

indicates the value of LPGSEC relaxation Z as a percentage of the upper bound. It is calculated as 100Z/Z

where Z is the upper bound value (which corresponds to the optimal solution value or the best upper bound
value if the optimum is unknown). Column SC shows the amount of gap closed when adding generalized

subtour elimination cuts and cuts generated by CPLEX. It is computed as 100(ZSC − Z )/(Z − Z ) where

ZSC is the lower bound value found after adding GSECs (in addition to cuts generated by CPLEX), called

the subtour lower bound. Note that GSECs are not valid inequalities in the conventional sense since they are
necessary for the formulations. Column 2C and CC indicates the amount of gap between the upper bound

and the subtour lower bound closed when adding the 2-matching inequalities or adding the 2-matching and

comb inequalities, which is computed as 100(Z′ −ZSC)/(Z −ZSC) where Z ′ is the lower bound value found

using the corresponding cuts. The last three columns report the total CPU time to find out the optimal
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Table 9: Comparison between different formulations over instances with 40 customers and the probability of
zero demand equal to 0, 25, 50, and 75.

n P FORM CPU #N #SC #2C #CC Z ZC #O

40 0 WEAK 3,756.05 3,423.6 8,073.1 0.0 0.0 32.27 96.61 63
ESFL 361.93 714.9 3,118.1 89.9 3.6 85.44 99.21 89
ESSP 433.89 724.6 3,150.4 89.7 3.7 85.44 99.21 89

ESWW 469.91 720.7 3,020.5 81.7 3.4 85.44 99.27 89
FIFL 396.71 1,110.1 1,411.7 69.0 2.1 88.16 99.85 89
FISP 442.34 787.1 1,412.3 65.8 2.6 88.16 99.85 89

40 25 WEAK 2,514.01 2,705.6 6,810.8 0.0 0.0 36.36 97.29 79
ESFL 277.00 153.8 3,755.3 78.9 3.2 83.32 98.83 90
ESSP 467.94 133.9 3,768.2 78.8 3.8 83.32 98.83 90

ESWW 358.41 135.2 3,790.5 75.2 3.8 83.32 98.83 90
FIFL 212.25 80.8 1,670.9 58.0 1.6 86.82 99.79 90
FISP 297.52 90.0 1,666.3 54.7 2.0 86.82 99.79 90

40 50 WEAK 2,065.52 1,419.7 6,705.8 0.0 0.0 41.96 97.67 82
ESFL 422.61 482.3 4,162.6 92.3 5.4 80.76 98.57 89
ESSP 740.79 815.3 4,156.4 94.2 6.4 80.76 98.57 87

ESWW 563.44 588.4 4,159.2 87.1 5.2 80.76 98.56 88
FIFL 435.79 716.2 2,057.8 75.0 4.4 85.15 99.81 87
FISP 515.13 589.8 2,038.2 73.3 3.0 85.15 99.81 87

40 75 WEAK 1,144.54 334.6 5,790.9 0.0 0.0 50.82 98.30 88
ESFL 170.68 43.8 3,561.9 39.3 2.0 78.18 98.58 90
ESSP 304.42 48.5 3,650.1 39.3 1.7 78.18 98.58 90

ESWW 199.55 49.4 3,572.7 37.0 2.3 78.18 98.58 90
FIFL 141.03 16.3 1,835.3 26.7 0.5 82.90 99.83 90
FISP 201.83 13.9 1,830.2 24.2 0.7 82.90 99.82 90

solution when using the corresponding cuts. The last row gives the average values over classes presented in
the table.

Tables 10 and 11 show that the integrality gap of the LP relaxation at the root node is quite large for many

instances. When adding generalized subtour elimination cuts (together with cuts generated by CPLEX) this

gap is closed on average by 98 to 99% depending on the size of the instance. The 2-matching inequalities

are able close the remaining gap on average by about 40%. The difference between the 2-matching and comb
inequalities (the comb cut separation algorithm also finds the 2-matching cuts) is rather small. In Table 10

for small instances with 15 and 20 customers additional cuts, the 2-matching and comb inequalities, have

a very small impact on CPU times. However, Table 11 shows that for the larger instances with 30 and 40

customers the use of the 2-matching inequalities decreases the total CPU time by more than 50% compared

to the case in which only the generalized subtour elimination cuts and the cuts generated by CPLEX are
added. The comb inequalities are able to decrease CPU times by another 12% compared to the 2-matching

inequalities, even though they are only marginally better at closing the remaining gap. For some classes the

lower bound value after adding the 2-matching inequalities is higher than after adding the comb inequalities.

The reason is the cut tolerance (which is the difference between the left and right hand sides of an inequality
so that the inequality is considered to be violated) whose values was set to 0.1 to avoid adding too many

cuts.

7.3 Uncoordinated Approach

In this section we compare the uncoordinated approach, which is essentially a heuristic algorithm for solving

the PRP, with the coordinated approach to measure the benefits of simultaneously optimizing production

and distribution decisions. The objective value of the PD approach contains the setup cost from the first
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Table 10: Impact of valid inequalities on the lower bound and the CPU time for FIFL.

Lower Bound CPU Time

n P CUB NC SC 2C CC SC 2C CC

15 0 500 94.82 99.99 33.33 33.33 0.11 0.11 0.11
1000 93.92 99.86 33.33 33.33 0.11 0.11 0.11
2500 94.57 100.00 0.00 0.00 0.09 0.10 0.09

25 500 93.60 99.90 33.33 33.33 0.13 0.13 0.12
1000 93.18 99.96 16.67 16.67 0.11 0.11 0.11
2500 94.96 100.00 0.00 0.00 0.06 0.07 0.06

50 500 93.25 100.00 0.00 0.00 0.10 0.10 0.10
1000 90.70 100.00 0.00 0.00 0.11 0.11 0.11
2500 92.60 100.00 0.00 0.00 0.06 0.07 0.06

75 500 92.40 99.78 33.33 33.33 0.09 0.09 0.09
1000 90.39 99.95 33.33 33.33 0.07 0.07 0.08
2500 87.57 100.00 0.00 0.00 0.05 0.06 0.05

20 0 500 93.03 98.80 26.54 25.36 1.09 0.92 0.90
1000 91.48 99.86 100.00 100.00 0.98 0.96 0.96
2500 90.79 99.56 95.93 95.93 0.88 0.96 0.87

25 500 93.48 99.44 91.11 94.86 0.76 0.72 0.69
1000 90.72 99.65 68.91 68.91 0.81 0.81 0.81
2500 91.51 99.70 55.70 55.70 0.70 0.78 0.70

50 500 91.63 99.36 96.58 96.58 0.52 0.53 0.51
1000 89.23 99.88 82.04 82.04 0.52 0.52 0.52
2500 89.02 99.48 95.76 95.76 0.48 0.53 0.46

75 500 89.26 99.37 10.26 10.26 0.46 0.47 0.45
1000 88.36 99.55 29.77 29.77 0.48 0.49 0.49
2500 88.63 99.47 90.79 94.18 0.27 0.30 0.27

Average 91.63 99.73 42.78 43.03 0.38 0.38 0.36

phase plus the routing and holding costs from the second phase. Figure 2 illustrates the percentage gap over

the best lower bound value found by the exact algorithms for each class from 1 to 144. The gap curve uses

the left y-axis. Percentage values are computed as 100(ZPD−ZBEST )/ZBEST where ZPD is the value found

by the PD approach and ZBEST is the optimal solution value if the instance is solved to optimality, or the
best lower bound at the end of the branch-and-cut algorithm otherwise. Figure 2 also shows CPU times,

where the CPU time curve uses the right y-axis.

The figure clearly indicates that an uncoordinated approach can increase the cost significantly. On average,

the cost increase is 47%, but it can go up to 204.6% (for one instance). The increase is higher for those classes

with higher routing costs. To see this, note that the parameters for classes from 1 to 48, from 49 to 96, and
from 97 to 144 are the same except the upper bound of the coordinates interval of the nodes, which are 500,

1000, and 2500, respectively. The average cost increase for these three classes are 20.14, 38.14, and 82.72%.

In general CPU times for the PD approach are quite short except for some classes. In Table 12 we compare

the PD approach with FIFL. From this table we see that the uncoordinated approach is about 33% faster but
is not able to find the optimal solutions. Apparently, it finds the optimal solution only 10 times in solving

1440 instances.

Once more we would like to point out that this is the first time that a comparison is made using optimal

solutions for both the coordinated and uncoordinated approaches to solve the PRP in the literature. Now

we would like to discuss how our results can be compared with previously obtained results in the literature.
Chandra and Fisher (1994) and Fumero and Vercellis (1999) computationally show that the cost savings

increase if the capacity is not tight. The savings increase if the time horizon is longer, if the number of

customers is large, and if there are more items under consideration. For the case with uncapacitated plant
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Table 11: Impact of valid inequalities on the lower bound and the CPU time for FIFL.

Lower Bound CPU Time

n P CUB NC SC 2C CC SC 2C CC

30 0 500 92.41 97.44 51.85 52.95 148.32 15.91 13.68
1000 89.81 98.15 42.99 42.99 40.61 12.36 11.88
2500 89.06 98.85 57.09 56.16 11.53 14.84 11.94

25 500 90.66 97.99 59.93 60.23 32.79 8.34 7.93
1000 88.18 98.83 43.73 43.73 9.45 9.32 9.28
2500 88.90 98.60 74.12 74.12 8.77 9.99 8.30

50 500 89.78 98.78 52.28 53.01 5.52 5.14 4.97
1000 88.03 98.29 68.97 70.38 7.62 5.10 5.10
2500 84.67 99.34 66.09 66.09 5.55 6.36 5.51

75 500 89.01 99.14 57.17 57.17 3.04 3.12 3.04
1000 85.93 99.26 44.39 44.39 3.74 3.74 3.71
2500 85.52 98.94 69.78 69.78 2.72 2.93 2.65

40 0 500 90.97 97.85 49.07 49.04 843.50 354.76 345.97
1000 88.52 97.33 36.46 36.42 1,759.75 856.47 576.56
2500 86.76 98.00 37.17 37.17 1,000.66 329.93 267.61

25 500 89.70 98.16 35.62 37.00 668.10 131.74 124.12
1000 86.71 97.45 29.12 29.52 1,209.44 308.35 228.15
2500 85.78 97.90 24.83 24.68 681.23 338.46 284.47

50 500 87.18 98.05 26.08 26.96 696.77 385.00 411.31
1000 85.14 97.84 22.18 22.20 915.34 693.79 696.81
2500 84.42 98.48 37.22 37.22 449.14 212.04 199.26

75 500 85.95 99.16 31.71 32.43 124.79 126.18 127.75
1000 83.67 98.52 25.96 25.95 155.72 169.25 152.40
2500 81.51 98.39 31.54 33.72 142.00 147.68 142.93

Average 87.43 98.36 44.81 45.14 371.92 172.95 151.89

and capacitated vehicle, Chandra and Fisher (1994) obtain cost savings ranging from 3 to 20%, whereas

Fumero and Vercellis (1999) report an overall average cost reduction of 10%. Shiguemoto and Armentano

(2010) report that the number of customers has the largest influence, whereas the impact of the number of

time periods and items is rather small. They report cost reductions ranging from 23% for 30 customers to
59% for 100 customers. In our experiments, average cost reductions for the instances with 15, 20, 30, and

40 customers are 23.56, 24.53, 31.68, and 33.42%, respectively. We report cost reductions that are generally

higher than the ones reported in the literature, but these results are in line with observations of Chandra and

Fisher (1994) and Fumero and Vercellis (1999) that the benefit of coordination increases if the production
and vehicle capacity is increased. When considering the cost reductions with respect to other parameters,

we observe that the impact of zero demand probability, ranges from 60.42 to 32.65% for the instances with 0

and 75% zero demand probability, respectively. We also observe that the cost savings decrease if the holding

costs at the customers level is higher.

Table 12: Comparison between PD and FIFL. Numbers are calculated over instances in classes from 1 to
144.

Approach Ave Gap Max Gap Tot CPU time #O

FIFL 0.000 0.147 30.45 h 1436
PD 47.00 204.6 20.34 h 10
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Figure 2: Performance of the PD approach. CPU times are given in seconds and average gaps in percentages
over the best lower bound for each class from 1 to 144.

7.4 Limit of the Exact Algorithm

In order to explore the limits of our exact algorithm in terms of capability in solving larger instances, we solved

all the classes from 145 to 252 using FIFL, which turned out to be the best formulation in our experiments.
In these classes the number of time periods is 8 and the number of customers is either 40, 60, or 80 (see

Table 2). The results are reported in Table 13 whose columns are the same as those in Table 5. The results

indicate that the algorithm is able to solve the problems with up to 80 customers when there are 8 time

periods. We also observe that putting more weight on the distribution decisions makes the problem easier to

solve.

Table 13: Results for classes from 145 to 252 for FIFL.

n CUB CPU #N #SC #2C #CC Z ZC #O

40 500 9.01 45.1 665.1 34.7 1.1 90.00 99.89 120
1000 9.05 12.0 567.0 16.6 0.4 87.46 99.91 120
2500 6.54 3.3 360.4 9.2 0.3 87.48 99.94 120

60 500 275.94 1,243.0 2,731.7 150.6 6.9 89.01 99.83 117
1000 289.69 857.9 2,458.0 137.7 5.2 86.68 99.76 117
2500 53.98 33.3 1,289.9 45.3 0.9 86.53 99.85 120

80 500 2,546.53 2,233.2 9,169.4 408.7 16.6 88.11 99.72 107
1000 1,464.28 483.2 6,442.8 215.9 6.1 85.84 99.73 119
2500 705.62 114.0 3,331.6 93.4 2.4 85.09 99.80 120
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Table 14: Comparison between APT and FIFL. Numbers are calculated over instances in classes from 1 to
252.

Approach Ave Gap Max Gap Tot CPU time #O

FIFL 0.000 0.147 209.14 h 2496
APT 0.334 4.954 1.490 h 1058

APT2 0.774 7.397 1.483 h 725

7.5 Performance of the APT Heuristic

Since the APT heuristic turned out to be very fast, we solved each instance in classes from 1 to 252. The gap

is calculated as 100(ZAPT − ZBEST )/ZBEST , where ZAPT is the solution value found by APT and ZBEST

is the optimal solution value if the instance is solved to optimality, or the best lower bound at the end of

the branch-and-cut algorithm otherwise. Figure 3 depicts the percentage gap. The gap curve uses the left

y-axis. Figure 3 also depicts CPU times in seconds of the APT heuristic for each class. The CPU time curve

uses the right y-axis. The instances with the largest number of time periods have the largest CPU times
while instances with the large number of customers have the largest cost increase. When the zero demand

probability is increased, the average CPU time is decreased but the average gap is increased.

In Table 14 we compare the APT heuristic with FIFL. We report values for the APT heuristic without the

improvement step (APT2) as well. In this improvement step, we optimally solve a TSP over the customers

visited in each time period. The first column indicates the approach used. Columns 2 and 3 give the average

and maximum percentage gaps between the solutions found by the approach and ZBEST , i.e., the best lower

bound. Column 4 indicates the total CPU time in hours needed to solve all the instances. Column 5 gives
the number of instances that were solved to optimality over 2520 test instances in total. These results show

that the APT heuristic performs very well compared to our exact algorithms. The average CPU time is less

than 0.8% of the CPU time of FIFL while the average cost increase is only 0.33%. In addition, 42.4% of

the solutions found by the APT heuristic are the optimal solutions. When comparing the APT and APT2
heuristics we see that the improvement step takes a very short amount of time, on average 0.01s for each

instance, and decreases the remaining gap by 56.8%. We also notice that the APT finds 45.9% more optimal

solutions than the APT2.

8 Conclusion

In this paper we study the production-routing problem, consisting of two well-known subproblems in the

literature, the lotsizing problem and the inventory-routing problem. We introduce several strong formulations

and a branch-and-cut algorithm for the problem.

Our computational experiments show that the four index formulations yield the best lower bounds both

with and without cuts (i.e., the LP relaxation without generalized subtour elimination constraints). Experi-

ments on larger instances indicate that the ESFL formulation provides the shortest CPU times for instances
in which the distribution subproblem has more impact on the solution relative to production subproblem,

whereas FIFL runs the fastest for other instances. The weak formulation is clearly outperformed by the

strong formulations.

The experiments concerning valid inequalities show that the addition of the generalized 2-matching and

generalized comb inequalities improves the lower bound and decreases CPU times significantly. The APT

heuristic finds excellent solutions within a very short amount of time.

In the PRP literature many studies measure the cost savings attainable by a coordinated approach over an

uncoordinated one. Nevertheless, none of them uses an exact algorithm. In this paper we measure the impact

of coordination in the PRP. Our computational experiments reveal that the coordination of the production
and distribution subproblems can lead to very significant savings when compared to the uncoordinated

approach.
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Figure 3: Performance of the APT heuristic. CPU times are given in seconds and average gaps in percentage
over the best known lower bound for each class from 1 to 252.

We may conclude that our strong formulations together with a branch-and-cut algorithm using valid

inequalities make it possible to solve rather large instances (instances with 8 (respectively 15) time periods
and up to 80 (respectively 40) customers) to optimality but larger instances remain a tough challenge.

An interesting topic for future research would be to apply the improved formulations and the APT

heuristic to extensions of the PRP problem such as the multi-vehicle case or the problem with capacity

constraints for the vehicles and for the plant. Another topic of future work would be to generalize other valid

inequalities from the traveling salesman problem such as clique tree and path inequalities.
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