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Abstract

The positive edge is a new pricing rule for the primal simplex: it identifies, with a probability error less
than or equal to 2−30 in single precision binary floating-point format and 2−62 in double precision format,
variables allowing for non-degenerate pivots. These are identified directly from a short calculation on the
original coefficients of the constraint matrix. The complexity is the same as for the computation of the
reduced cost. If such a variable has a negative reduced cost, it strictly improves the objective function
value when entered into the basis.

The preliminary computational experiments made with cplex show its high potential. We designed
a simple algorithm using two external procedures: one identifies variables that allow for non-degenerate
pivots while the other identifies variables with negative reduced cost. These are sent to the primal
simplex algorithm of cplex. It has been tested on fourteen medium-sized aircraft fleet assignment
instances (5000 constraints and 25 000 variables), two large-scale manpower planning problems (100 000
constraints and 450 000 variables), and nine pds instances from the Mittelmann library. All these
problems are highly degenerate. On the first group, our algorithm is 7.4 times faster than cplex on
average and the number of pivots is almost reduced by a factor 2. On the second and third groups,
it is 50% faster and the number of pivots is decreased by 2.4 and 3.6, respectively. It has also been
tested on Fome12 and Fome13 from the Mittelmann library. For these two highly dense problems, our
simple implementation failed. The integration of the positive edge rule within a primal simplex code
should prevent such cases by eliminating the external procedures and taking advantage of partial pricing
strategies.

Key Words: linear programming, primal simplex, degeneracy.

Résumé

Le positive edge est un nouveau critère d’entrée pour l’algorithme primal du simplexe. Il identifie,
avec une probabilité d’erreur d’au plus 2−30 en format point flottant simple précision et 2−62 en format
double précision, les variables donnant lieu à des pivots non dégénérés. Elles sont identifiées directement
à partir d’un calcul simple sur les données originales de la matrice de contraintes. La complexité de calcul
est la même que pour celle du coût réduit. Si une telle variable a un coût réduit négatif, elle améliore
strictement la fonction objectif lorsqu’elle entre dans la base.

Les résultats préliminaires obtenus avec cplex démontre son énorme potentiel. Nous avons élaboré
un algorithme simple faisant appel à deux procédures externes : l’une identifie les variables donnant
lieu à des pivots non dégénérés alors que la seconde identifie les variables de coût réduit négatif. Les
variables choisies sont envoyées au simplexe primal de cplex. Les tests ont été réalisés sur quatorze
problèmes d’affectation d’une flotte d’avions (5000 constraints and 25 000 variables), deux instances
de planification de la main d’oeuvre (100 000 constraints and 450 000 variables), et neuf problèmes
pds de la librairie Mittelmann. Tous ces problèmes possèdent des solutions hautement dégénérées.
Pour le premier groupe, notre algorithe est 7.4 fois plus rapide que cplex en moyenne et le nombre
de pivots est preque réduit par un facteur 2. Pour les second et troisième groupes, notre implantation
est 50% plus rapide et le nombre de pivots est réduit par respectivement 2.4 et 3.6. Nous l’avons
également évaluée sur Fome12 et Fome13 de la librairie Mittelmann. Pour ces deux instances très
denses, notre implantation trop simple n’est pas performante. L’intégration de la règle du positive edge

dans un code de simplexe primal devrait empêcher de telles situations de se produire en élinimant
les deux procédures externes et en prenant avantages des stratégies d’évaluation partielle des coûts réduits.

Mots clés : programmation linéaire, simplexe primal, dégénérescence.
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1 Introduction

Consider the following linear programming problem (LP) in standard form

minimize c⊤x

subject to: Ax = b, x ≥ 0,
(1)

where x ∈ R
n is the vector of decision variables, c ∈ R

n is the cost vector, A ∈ R
m × R

n is the constraint

matrix of full rank, and b ∈ R
m is the right-hand side vector. We are particularly interested in problems for

which the various basic solutions are highly degenerate, that is, for which the number of non-zero variables is
much less than m, the size of the basis. In that case, the primal simplex algorithm (Dantzig, 1949) is likely to

encounter degenerate pivots and possibly to cycle. To avoid cycling, several pivot rules and right-hand side

perturbation methods have been proposed, e.g., Charnes (1952); Wolfe (1963); Bland (1977); Fukuda (1982);

Ryan and Osborne (1988). However, these rules and methods do not strongly improve the performance of
the primal simplex algorithm on degenerate problems. Another way of avoiding degenerate pivots is by using

the steepest edge criterion (Forrest and Goldfarb, 1992). This criterion computes the improvement of the

cost function for possible entering variables, that is, the step size multiplied by the reduced cost. Hence, if

one exists, it selects a variable with a non-degenerate pivot. However, the steepest edge criterion requires a

significant amount of cpu time.

To improve the solution time on degenerate problems, Pan (1998) proposes the use of a reduced problem

with a smaller number of constraints and variables. His method starts with an initial basic solution and

identifies its p non-zero basic variables. Constraints are split in two: set P where the basic variables takes a

positive value and set Z where the basic variables are zero. Variables are also split in two sets. Compatible

variables are those for which all values are zero in the updated simplex tableau for constraint indexes in Z,
other variables are said to be incompatible – formal definitions are given in Section 2. The m− p constraints

in Z are temporarily removed to leave a smaller constraint matrix with only p rows. To preserve feasibility,

incompatible variables are also removed to form the reduced problem. Since the p × p basis of the reduced

problem is non-degenerate, that is, the number of non-zero variables is p, the next pivot is automatically
non-degenerate. The resulting reduced problem is solved to optimality over the compatible variables and

the reduced costs are computed by means of its dual variables. In Pan’s method, dual variables of LP

corresponding to the m − p eliminated constraints are arbitrarily set to zero. Next, incompatible variables

are considered. If such a variable is to become basic, some of the eliminated constraints must be reintroduced

in the reduced problem. When compared to his own implementation of the primal simplex algorithm, Pan
(1998) reports speed-up factors of 4 to 5.

In a column-generation framework (which can be seen as a primal simplex approach), Elhallaoui et al.

(2005) propose a dynamic constraint aggregation (dca) method for the solution of the linear relaxation of set

partitioning problems. Considering only the p non-zero basic variables, the dca method identifies identical

rows (composed of zeros and ones) of the corresponding columns. In the constraint aggregation phase, a single
constraint per row-group remains in the reduced problem. Authors show that, once the reduced problem

has been solved, the dual variable of a kept constraint is equal to the sum of the dual variables of the

corresponding row-group. A full set of dual variables is recovered by distributing adequately the values of the

dual variables of the reduced problem. For set partitioning problems, this is done by solving a shortest-path
problem. These dual variables are used to price out the generated columns, allowing for updates of the

constraint aggregation. To improve their method, the authors developed the multi-phase dynamic constraint

aggregation (mpdca) method (Elhallaoui et al., 2010). The goal of mpdca is to introduce in the reduced

problem the incompatible variables in the order of their so-called incompatibility number. On a set of large-

scale bus driver scheduling problems, mpdca reduces the solution time by a factor of more than 23 over the
classical column-generation method.

The Improved Primal Simplex (ips) method of Elhallaoui et al. (2007) combines ideas from the reduced

problem of Pan (1998) and from dynamic constraint aggregation of Elhallaoui et al. (2005) to solve linear

programming problems. Considering only the p non-zero basic variables, ips identifies a set of p rows that are

linearly independent and removes from the reduced problem all the other m−p constraints. As in Pan (1998),
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the reduced problem is solved using the compatible variables only. Next, a complementary problem is con-

structed and solved to prove that the current solution of the reduced problem is optimal for LP, otherwise it

selects a set of incompatible variables to be introduced into the current reduced problem. Elhallaoui et al.
(2007) show that when the solution of the reduced problem is not optimal for LP, the re-optimization after

adding all the incompatible variables of the chosen set strictly decreases the objective function value. Indeed,

they show that in that case, there exists a convex combination of the selected incompatible variables that

is compatible with respect to the reduced problem, hence with a strictly positive step size. The comple-

mentary problem contains all the incompatible variables and its coefficient matrix is created at the same
time as the reduced problem. As explained in Section 2, the reduced and the complementary problems are

built according to a modification of the original constraint matrix. Indeed, this modified matrix (which is

the result of an updated simplex tableau) is obtained by multiplying A by the current inverse of the basis

matrix. The complexity of computing this modified matrix for the identification of the compatible variables
is O(m2n) (see Section 3). The computational results of Raymond, Soumis, and Orban (2010) show that, on

medium-sized instances (m ≈ 5000, n ≈ 25 000), ips is faster than the primal simplex algorithm of cplex by

factors ranging from 5 to 20. However, on large-scaled problems (m ≈ 100 000, n ≈ 450 000), constructing

the reduced and the complementary problems is too costly compared to the primal simplex algorithm itself.

In this paper, as in ips, priority is given to non-degenerate pivots. However, compatible variables that
form the reduced problem are identified directly from the original constraint matrix A instead of from the

modified matrix obtained by multiplying it by the inverse of the basis. The new criterion is called positive

edge. Determining which variables are compatible is done in O(mn), i.e., O(m) for each variable, the same

complexity as for the reduced cost computation of such a variable. Obviously, as in ips, one might have to

execute some degenerate pivots to reach optimality.

The paper is organized as follows. The next section Section 2 presents the reduced problem and the

compatibility concept of Pan (1998). In Section 3, we elaborate on the positive edge criterion with a new

definition for compatibility and study its complexity. Reliability of it is proven is Section 4. We propose an

integration to the primal simplex algorithm in Section 5 based on a two-dimensional selection rule for negative

reduced cost variables. In Section 6, we propose a simple implementation that uses two external procedures
for the selection of the variables sent to the primal simplex algorithm of a commercial code. Computational

experiments with cplex are reported in Section 7 and show the high potential of the positive edge criterion

for highly degenerate instances. Finally, the conclusion follows in Section 8.

Notation. If x ∈ R
n and C ⊂ {1, . . . , n} is an index set, xC denotes the sub-vector of x indexed by C.

Similarly, if A is an m × n matrix, we denote by AC the m × |C| matrix whose columns are indexed by C.
If I = {1, . . . , n} \ C, then x = (xC, xI) even though the indexes in C and I may not appear in that order.

Similarly, we use an upper index on a matrix to refer to a subset of its rows. Finally, define R0 = R \ {0} to

be the set of non-zero real numbers.

2 The Reduced Problem

In this section, we establish the notation and summarize the construction and the key properties of the
reduced problem proposed by Pan (1998) and largely used for ips in Elhallaoui et al. (2007) and Raymond,

Soumis, and Orban (2010).

Assume m < n and let B ⊂ {1, ..., n} be the index set of the current basic variables, i.e., the basis matrix

for LP is given by AB. Define Q = A−1
B

and let xB = Qb = b̄ be a degenerate feasible solution with 1 ≤ p < m

non-zero variables. Let P = {i ∈ {1, ...,m} | b̄i > 0} be the index set of the p rows where the positive (or
non-degenerate) variables appear as basic and Z = {i ∈ {1, ...,m} | b̄i = 0} be the index set of the m−p rows

where the degenerate basic variables (taking value zero) appear. Make the following partition of the rows of

the inverse of the basis:

Q =

[

QP

QZ

]

,
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where QZ, of size (m− p) ×m, is called the compatibility matrix. Therefore

b̄ =
[

b̄i
]

i∈{1,...,m}
=

[

QPb
QZb

]

=

[

QPb
0

]

,

where QPb > 0 gives the value of the non-degenerate basic variables. Let Aj =
[

aij

]

i∈{1,...,m}
be the jth

column of A. We begin with the following definition.

Definition 1 Variable xj , j ∈ {1, ..., n} is compatible with respect to QZ if and only if QZAj = 0, i.e.,
ĀZ

j = 0.

In other words, a variable xj is compatible with respect to matrix QZ if and only if, in the simplex tableau

obtained by multiplying the original system of constraints by the inverse Q of the basis, all m−p components

of the updated column-vector Āj = QAj ∈ R
m are zero in the row-set Z, that is:

Āj =
[

āij

]

i∈{1,...,m}
=

[

ĀP

j

ĀZ

j

]

=

[

QPAj

QZAj

]

=

[

QPAj

0

]

.

When a variable xj is compatible, a natural extension is to say that its associated column Aj is compatible.

A variable xj for which ĀZ

j = QZAj 6= 0 is said to be incompatible with respect to QZ. Observe that positive

basic variables are compatible whereas all degenerate ones are not.

Consider a non-basic compatible variable xj , j 6∈ B with a negative reduced cost that is selected to enter
into the basis. Because āij = 0, ∀i ∈ Z, the step size given by the usual ratio-test can be computed only on

the row-set P, that is:

mini∈{1,...,m} {
b̄i
āij

|āij > 0} = mini∈P {
b̄i
āij

|āij > 0}.

Since b̄i > 0, ∀i ∈ P, the step size for such a compatible variable xj with a negative reduced cost is greater
than zero and the objective function strictly improves, unless āij ≤ 0, ∀i ∈ P, in which case LP is unbounded.

Let C ⊂ {1, . . . , n} and I = {1, . . . , n} \ C denote the index sets of the compatible and incompatible

variables, respectively. Partition accordingly the vector of variables x = (xC, xI), the cost vector c = (cC, cI),

and the constraint matrix A = (AC, AI). Upon pre-multiplying by Q the system of constraints of LP, we

obtain QAx = Qb, which can be rewritten as

[

QPAx
QZAx

]

=

[

QPACxC +QPAIxI

QZAIxI

]

=

[

QPb
0

]

.

By definition vector xC is compatible with respect to QZ and we have QZAC = 0. Therefore, the original

problem LP can equivalently be rewritten as

minimize c⊤
C
xC + c⊤

I
xI

subject to: QPACxC + QPAIxI = QPb

QZAIxI = 0

xC, xI ≥ 0.

This reformulation of LP is interesting in several aspects. Naturally, its solution is given in terms of
x = (xC, xI), that is, a mix of compatible and incompatible variable values. By definition, compatible

variables xC already satisfy QZAC = 0. Amazingly, incompatible variables xI must also satisfy a similar

expression:

QZ(AIxI) = 0, xI ≥ 0.

Indeed, in any feasible or optimal solution, the column-vector (AIxI), a non-negative combination of incom-

patible columns, is compatible with respect to QZ. This is one of the main properties exploited in ips by
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Elhallaoui et al. (2007) and Raymond, Soumis, and Orban (2010) for taking advantage of degeneracy in linear

programming. Upon imposing xI = 0, we obtain the reduced problem (RP):

minimize c⊤
C
xC

subject to: QPACxC = QPb, xC ≥ 0.
(2)

RP contains p constraints and is potentially much smaller than LP in terms of the number of rows.

Moreover it only depends on the compatible variables xC. Any compatible variable can enter into a basis for

RP without violating the constraints of LP that have been omitted. This is why we also say that a variable

xj or its column-vector Aj , compatible [incompatible] with respect to QZ, is compatible [incompatible] with
respect to the reduced problem RP.

Finally, note that by construction, if xC is feasible for RP, then x = (xC, 0) is also feasible for LP.

Obviously, one might have to consider the incompatible variables xI and execute some degenerate pivots to

reach optimality of LP.

3 The Positive Edge Criterion

The identification of all the compatible variables using Definition 1 has a complexity O(m2n) since one needs

to compute QZA, see Section 3.2. For large-scale problems, this method may be more costly, in terms of cpu

time, than the solution of LP with the simplex algorithm.

To identify all the non-basic variables that are compatible with respect to QZ, we developed the positive

edge criterion. The proposed rule allows to know almost surely if a variable xj can enter the basis with a
positive value without explicitly computing neither QZAj nor the step size given by the ratio-test. If such a

variable has a negative reduced cost, the objective function of LP strictly decreases when it enters into the

basis since its step size computed over the index set P is greater than zero. In the following, we show how

the positive edge criterion identifies compatible variables directly from a short calculation on the original

coefficients of the constraint matrix A.

3.1 A Compatibility Definition Based on a Scalar Product

From Definition 1, we know that non-degenerate basic variables are compatible with respect to QZ. Let

v ∈ R
m−p
0 be a vector of m − p non-zero components and compute w⊤ = v⊤QZ, a row-vector in R

m. If a

non-basic variable xj , j 6∈ B is compatible with respect to QZ, i.e., ĀZ

j = 0, then necessarily v⊤ĀZ

j = 0 ∈ R,

hence the scalar product between w and the original column-vector Aj is also null:

v⊤ĀZ

j = v⊤QZAj = w⊤Aj = 0.

Can we choose w, in fact v with the appropriate properties, such that this simple scalar product condition

becomes sufficient on the original data columns? That is, if w⊤Aj = 0 then ĀZ

j = 0 and variable xj , j 6∈ B

is compatible with respect to QZ, or equivalently, if ĀZ

j 6= 0 then w⊤Aj 6= 0 and variable xj , j 6∈ B is

incompatible with respect to QZ. To answer this question, consider a new definition of compatibility based
on w⊤Aj .

Definition 2 Let v ∈ R
m−p
0 and w⊤ = v⊤QZ. A non-basic variable xj , j 6∈ B is compatible with respect to

v⊤QZ if and only if w⊤Aj = 0.

In Section 4, we show that almost surely, when choosing v with specific random properties, if a non-basic

variable xj is incompatible with respect to v⊤QZ, then it is also incompatible with respect to QZ. Indeed,
if w⊤Aj 6= 0, j 6∈ B then ĀZ

j 6= 0 with a probability error smaller than or equal to 2−30 in single precision

binary floating-point format and 2−62 in double precision format.
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3.2 Computational Complexity of the Positive Edge

In the following, we discuss the computational complexity of the positive edge criterion versus that of Pan’s

method. Let λA be the density of the constraint matrix A and ℓ be the number of basic computer cycles
needed for a multiplication and an addition. To identify all the non-basic compatible variables with respect

to QZ with Pan’s method, we need to compute QAj , ∀j 6∈ B. This requires the multiplication of the m×m

inverse basis matrix Q by the n −m column-vectors Aj , j 6∈ B. For each coefficient of the resulting vector

QAj, a row of Q is multiplied by column Aj . This uses ℓλAm basic computer cycles. To compute the
m(n−m) coefficients, we get m(n−m)ℓλAm = O(m2n).

To identify all the non-basic compatible variables with respect to v⊤QZ, we only compute w⊤Aj , ∀j 6∈ B.

Let λQZ be the percentage of the non-zero coefficients in the compatibility matrix QZ. Firstly, we need to

compute the m-dimensional vector w⊤ = v⊤QZ, that is, to multiply a vector v of m−p non-zero components

by the (m−p)×m matrix QZ: this takes mℓλQZ(m−p) basic cycles. Secondly, we compute the n−m values
w⊤Aj , j 6∈ B, that is, we multiply the m-vector w by n−m columns of A: it takes (n−m)ℓλAm basic cycles.

The total complexity is therefore [mℓλQZ(m − p)] + [(n − m)ℓλAm] = O(mn). Determining if a non-basic

variable xj is compatible or not with respect to v⊤QZ can be done in O(m), i.e., the same complexity as

for the reduced cost computation of that variable, i.e., c̄j = cj − π⊤Aj , j 6∈ B, where π is the vector of dual

variables for LP.

On large-scale instances (m ≈ 100 000, n ≈ 450 000), we compared the cpu time needed to identify all

the compatible variables with Pan’s method and with the positive edge criterion. Pan’s method requires 2500

seconds; the positive edge criterion needs only 0.5 seconds.

4 Reliability of the Positive Edge Criterion

In this section we study the reliability of the positive edge criterion to identify non-basic compatible and
incompatible column-vectors. Essentially, our proposition on the identification of compatible columns with

respect to v⊤QZ could be stated as follows: Assume ĀZ

j 6= 0, j 6∈ B. If Vi, i ∈ Z are independently and

identically distributed (i.i.d.) random variables, then

P [
∑

i∈Z

āijVi = 0 | ĀZ

j 6= 0] = 0,

that is, the conditional probability that an incompatible variable be identified as a compatible one is null.

For random variables with continuous cumulative distribution functions, this is an obvious result. Indeed
∑

i∈Z āijVi is a continuous random variable for which the probability of an atomic event is null. However,
with binary representation of real numbers on a computer, one has to make use of discrete probability

distributions. The above result becomes almost true with a small probability error. In this section, we

measure the size of this error.

Before proving our main propositions, we discuss properties of bit-addition and multiplication of floating-

point numbers. We start with the following lemma on bits i.i.d. Bernoulli(0.5), denoted Bern(0.5). Recall
that bits are numbered from right to left, the first being numbered zero.

Lemma 1 Let d be a positive integer. Consider the addition of d-bit numbers n1 and n2. Assume that the

bits of n1 are i.i.d. Bern(0.5) whereas the probability distributions of the bits of n2 are unknown. The sum

n1 + n2 is a (d+ 1)-bit number for which the d right-most bits are i.i.d. Bern(0.5) whereas the left-most bit

has an unknown probability distribution.

Proof. Observe that the largest value for a d-bit number is 2d − 1 so that the largest value for n1 + n2

is 2 × (2d − 1) = 2d+1 − 2 which requires d + 1 bits. Let 0 ≤ α0 ≤ 1 be the probability of bit zero of

n2 of being equal to 1. The probability that the right-most bit of the sum n1 + n2 of being equal to 1 is
1

2
α0 + 1

2
(1 − α0) = 1

2
. Therefore, bit zero is distributed Bern(0.5).
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For bits numbered from 1 to d − 1, we must also consider the binary carry-in. Let 0 ≤ αi ≤ 1, i ∈
{1, ..., d− 1} be the probability of the right-most bit of the sum of the ith binary carry-in plus the ith bit of

n2 of being equal to 1. Therefore, the probability that this right-most bit plus the ith bit of n1 of being equal
to 1 is again 1

2
αi + 1

2
(1 − αi) = 1

2
, ∀i ∈ {1, ..., d− 1}. Hence, bits zero up to d− 1 of n1 + n2 are identically

distributed as Bern(0.5). Finally, there only remains to consider bit d. If there is a carry-out at bit d − 1,

which becomes a binary carry-in for bit d, then it takes value 1 with an unknown probability value αd.

We now show that the probability distributions of bits zero up to d − 1 are also independent. The bits

of n1 are i.i.d. Bern(0.5) so that there are 2d possible configurations, for values 0 ≤ n1 ≤ 2d − 1, each one
with probability 2−d. Adding n2 to n1 results in again 2d equiprobable configurations, either

n2 ≤ n1 + n2 ≤ 2d − 1 or 2d ≤ n1 + n2 ≤ 2d + n2 − 1.

In the first case, bit d takes value 0 whereas it takes value 1 in the second case. However, observe that the

range of bits zero up to d−1 is the same as for the bits of n1, but not in the same order, that is, configurations

from n2 to 2d − 1 followed by those from 0 to n2 − 1, each one with probability 2−d. Hence these right-most
d bits are also i.i.d. Bern(0.5) whereas the probability distribution of bit d is unknown, as stated above.

Using IEEE Standard 754 floating-point (Stallings, 2009), real numbers on computers are represented

with three components: the binary sign-bit S, the exponent E-field, and the mantissa M or significand, the
length of it determines the precision to which numbers can be represented. In single (32-bit) precision, a

floating-point real number F is given by

F = (−1)S ×































2−126 × ( M
223 ) if E = 0

2E−127 × (1 + M
223 ) if 1 ≤ E ≤ 254

∞ if E = 255,M = 0
NaN if E = 255,M > 0

where value 127 (=27 − 1) is called the bias. The 23-bit mantissa M takes values from 0 to 223 − 1. Value
1 in (1 +M2−23) when 1 ≤ E ≤ 254 is called the hidden bit as it is not explicitly represented. The E-field

with 8 bits (0 ≤ E ≤ 28 − 1 = 255) can represent both positive and negative exponents. An exponent of zero

means that 127 is stored in the E-field. A stored value of E = 90 indicates an exponent of -37. If E = 0

and M = 0, than F = ±0, the signed zeros. Plus infinity and minus infinity are obtained with E = 255 and

M = 0 and the appropriate sign-bit S. Finally, when E = 255 and M > 0, the NaN (Not a Number) does
not represent a real number.

Consider now the multiplication of two non-zero floating-point numbers F1 and F2. This type of operation

appears in the computation of non-zero components of the scalar product of two vectors. For practical reasons,

assume that both numbers F1 and F2 are of a reasonable size, that is, neither too small nor too large. To

prevent under- and over-flow situations, we chose the following parameters:

F1 = (−1)S1 × 2E1−127 × (1 +
M1

223
), S1 binary, 64 ≤ E1 ≤ 191,M1 ≥ 0,

F2 = (−1)S2 × 2E2−127 × (1 +
M2

223
), S2 binary, 64 ≤ E2 ≤ 189,M2 ≥ 0.

The range of floating-point numbers F1 and F2 is approximately ± (10−19 to 1019). Note that in simplex

codes, numbers smaller in absolute value than 10−19 are already set at zero. Moreover, if an overflow
could occur at some point within the multiplication w⊤Aj , j 6∈ B, it means that this could also occur at

each iteration within the computation of the reduced cost c̄j . Hence, as shown bellow, the result F of the

multiplication F1F2 is a finite non-zero floating-point number

F = (−1)S × 2E−127 × (1 +
M

223
), S binary, 1 ≤ E ≤ 254,M ≥ 0.
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Essentially, the multiplication of F1 by F2 is based on bit-additions. The sign-bit S = S1 + S2 modulo 2.

The M -field comes from the multiplication of (1 + M1

223 )(1 + M2

223 ) that can be seen as a series of additions

which results in a number truncated to 23 bits and a binary carry, denoted EM, used in the computation of
E = E1 + E2 + EM − 127. Indeed, consider the (kind of generic) example of Figure 1 for the multiplication

of a 23-bit mantissa M1 by 1.11010.

1. d22 d21 · · · d2 d1 d0

× 1. 1 1 0 1 0

0 0 0 · · · 0 0 0
+ 1 d22 d21 · · · d2 d1 d0

+ 0 0 0 · · · 0 0 0
+ 1 d22 d21 · · · d2 d1 d0

+ 1 d22 d21 · · · d2 d1 d0

+ 1 d22 d21 · · · d2 d1 d0 – truncated area –

= 1. m22 m21 · · · m2 m1 m0 without a carry
1 m23. m22 · · · m3 m2 m1 m0 with a carry

1. m23 m22 · · · m3 m2 m1 with a carry, but shifted

Figure 1: Mantissas multiplication

First, observe the presence of the hidden bit 1. for both mantissa fields, where d22...d0 are the mantissa-

bits of M1. The hidden bit also appears in the final result, where m23...m0 are the possible mantissa-bits of

M . It appears as 1. if there is no carry on the hidden bit of M or as 1 m23. if there is one. In the latter case,

the number is shifted one position to the right, that is, the new number 1.m23m22...m1 must be multiplied
by 2, hence a value EM = 1 to be added to the E-field. Therefore, with the above assumptions on the values

of E1, E2, and EM , we have 64 ≤ E2 +EM ≤ 190, that is, this sum can be written using the 7 right-most bits

of the E-field, i.e., 1 ≤ E1 + E2 + EM − 127 ≤ 254. Therefore, F = F1F2 is a finite non-zero floating-point

number.

Definition 3 A floating-point number with distribution SEM32 is a single precision number F , where the

sign-bit S, the E-field, and the M -field are independent and follow the discrete uniform distributions S ∼
U [0, 1], E ∼ U [64, 191], and M ∼ U [0, 223 − 1].

Lemma 2 Let F1 ∼ SEM32. Except for the 8th bit of E1, all other 31 bits of F1 are i.i.d. Bern(0.5).

Proof. S1 ∼ Bern(0.5) and from the proof of Lemma 1, the 23 bits of M1 are i.i.d. Bern(0.5). Given

E1 ∼ U [64, 191], there are 128 equiprobable configurations written on a 8-bit binary vector. These can be

written from 26 to 27 − 1 followed by 27 + 0 up to 27 + 26 − 1. In the first half, the 8th bit is 0 whereas it

takes value 1 for the second half. Therefore, the 128 possible configurations over the 7 right-most bits are
present, each one with probability 2−7. From the proof of Lemma 1, these bits are i.i.d. Bern(0.5). Finally

note that the 8th bit of E1 is dependent on the 7th bit since it is equal to its binary complement. From the

independence of S1, E1, and M1, 31 bits of F1 are independent, with the same Bern(0.5) distribution.

We are now in position to state the properties of the product F = F1F2 of two single precision floating-
point numbers.

Lemma 3 Assume that the two numbers F1 and F2 are independent. Moreover the probability distributions

for the bits of F2 are unknown and F1 ∼ SEM32 Then, the product F = F1F2 is a finite non-zero floating-

point number such that, except for the 8th bit of E and the 23th bit of M , all remaining 30 bits of F are i.i.d.
Bern(0.5).

Proof. Because 1 ≤ E ≤ 254, F is a finite non-zero number. The sign-bit S = S1 + S2 modulo 2, and one

can verify that Pr[S = 1] = 1

2
, i.e., S ∼Bern(0.5). Regarding the E-field, we are adding E2 +EM of unknown

bit distributions to E1. By Lemma 2, the 7 right-most bits of E1 are i.i.d. Bern(0.5). By Lemmas 1, the 7
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right-most bits of the sum E1 + (E2 + EM) are i.i.d. Bern(0.5) (the subtraction of the constant value 127

does not change the bit distributions) whereas the 8th bit of this sum is of unknown probability distribution.

As for the M -field, observe that the series of additions (refer to Figure 1) can be decomposed in two

parts. Firstly, add all but the last row: this is a 24-bit vector (including the hidden bit) of unknown bit
distributions. Secondly, add this sum to the last row 1.d22...d0 where d22...d0 are the bits of M1 i.i.d.

Bern(0.5). By Lemma 1, m22...m0 are i.i.d. Bern(0.5) but m23 is of unknown distribution, being the sum

of a carry to 1. Since m23 can appear in the final result, the 22 right-most bits are i.i.d. Bern(0.5) and the

23th (m22 if there is no carry on the hidden bit, m23 otherwise) is of unknown distribution. The final result
on the 30 bits i.i.d. Bern(0.5) follows from the independence of the S, E, and M fields.

Proposition 1 Let Aj , j 6∈ B be a non-basic incompatible column (i.e., ĀZ

j 6= 0) and let v be a row vector of

(m− p) components, each of which being a floating-point number vi ∼ SEM32, i ∈ Z. If there is no overflow

nor NaN situations, then the conditional probability that v⊤ĀZ

j = 0 is less than or equal to 2−30, that is,

P [v⊤ĀZ

j = 0 | ĀZ

j 6= 0] ≤
1

230
.

Proof. Let āZ

ikj 6= 0 for k ∈ K, where 1 ≤ |K| ≤ m− p is the number of non-zero coefficients of ĀZ

j . For the

ease of the presentation, we do not write the conditional event ĀZ

j 6= 0 in the probability expressions.

If |K| = 1, then P [v⊤ĀZ

j = 0] = P [vi1 ā
Z

i1j = 0 | vi1 6= 0, āZ

i1j 6= 0] = 0. If |K| ≥ 2, then

P [v⊤ĀZ

j = 0] = P [
∑

k∈K

vik
āZ

ikj = 0] = P [vi1 ā
Z

i1j = −
∑

k≥2

vik
āZ

ikj ].

Let W = −
∑

k≥2
vik
āikj . Define Ω to be the set of all possible 32-bit values for W and assume that ω ∈ Ω

is a finite floating-point number. Hence,

P [v⊤ĀZ

j = 0] = P [vi1 ā
Z

i1j = W ] =
∑

ω∈Ω

P [W = ω] × P [vi1 ā
Z

i1j = ω].

Since vi1 ā
Z

i1j 6= ±0, define Ω0 = Ω \ {±0}. From Lemma 3, 30 bits of vi1 ā
Z

i1j are i.i.d. Bern(0.5) while

the two other bit-distributions are unknown. From probability theory, recall that for two events E1 and E2,

P [E1 ∩ E2] ≤ P [Ei], i ∈ {1, 2}. Hence, the probability that P [vi1 ā
Z

i1j = ω], ω ∈ Ω0 is the probability of being

identical on each of the 32 bits which is less than or equal to the probability of being identical on the 30 bits

i.i.d. Bern(0.5). Therefore P [vi1 ā
Z

i1j = ω] ≤ 2−30, ω ∈ Ω0. Consequently

P [v⊤ĀZ

j = 0] =
∑

ω∈Ω0

P [W = ω] × P [vi1 ā
Z

i1j = ω] ≤ 2−30
∑

ω∈Ω0

P [W = ω] ≤ 2−30.

In conclusion, if a non-basic variable is incompatible, it might be wrongly identified as compatible with a

probability error less than or equal to 2−30.

Similar results can be derived for a 64-bit computer words. A floating-point number with distribution

SEM64 is a double precision number F , where the sign-bit S, the 11-bit E-field, and the 52-bit M -field

are independent and follow the discrete uniform distributions S ∼ U [0, 1], E ∼ U [512, 1535], and M ∼
U [0, 252 − 1].

Proposition 2 Let Aj , j 6∈ B be a non-basic incompatible column (i.e., ĀZ

j 6= 0) and let v be a row vector of

(m− p) components, each of which being a floating-point number vi ∼ SEM64, i ∈ Z. If there is no overflow

nor NaN situations, then P [v⊤ĀZ

j = 0 | ĀZ

j 6= 0] ≤ 2−62.
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5 A Two-dimensional Reduced Cost Criterion for the Primal Sim-

plex

There are several ways to integrate the positive edge criterion in a primal simplex algorithm. One is presented

in the following paragraphs. It uses two dimensions; one for the usual reduced cost, the other to indicate if

a variable is compatible or not. The first computes c̄j = cj − π⊤Aj , j 6∈ B, where π is the vector of dual
variables for LP whereas the second needs a similar computation, that of w⊤Aj , j 6∈ B. The positive edge

identifies Cw = {j 6∈ B|w⊤Aj = 0}, the index set of non-basic compatible variables with respect to v⊤QZ

and the index set of incompatible ones, i.e., those in Iw = {j 6∈ B|w⊤Aj 6= 0}.

Let c̄jmin
be the smallest reduced cost for a non-basic variable indexed by jmin 6∈ B and let c̄jw

be the

smallest reduced cost for a non-basic variable compatible with respect to v⊤QZ and indexed by jw ∈ Cw.
Observe that jmin ∈ Cw∪Iw. The stopping rule for optimality remains the same, that is, the current solution

is optimal if c̄jmin
≥ 0. Hence initialize both c̄jmin

and c̄jw
at zero. Therefore we have the following relations:

c̄jmin
≤ c̄jw

≤ 0.

With the positive edge criterion, compatible variables with negative reduced cost should be preferred to

enter the basis such that non-degenerate pivots are executed, yielding a strict improvement of the objective
function value. This is done in priority except if c̄jmin

is much smaller than c̄jw
. This can be controlled with

the threshold parameter ψ > 1, e.g., ψ = 5. Hence the selection rule becomes:

if c̄jmin
< 0 and ψc̄jw

< c̄jmin
, then select xjw

else xjmin
.

Note that as long as compatible variables enter into the basis, the status of a variable of being in Cw or

not remains unchanged. One can benefit from that by keeping track of the compatible variables, updating

their reduced costs, and verifying if one has a negative value. Naturally, the above rule can be used in the
context of partial pricing. It can also be combined with the steepest edge criterion to compute the value of

the step size for compatible variables.

Finally, the consequence of selecting an incompatible variable identified as compatible (which has only a

one-in-a-billion chance of occurring) is the same as in the context of the primal simplex algorithm, that is, a

degenerate pivot.

6 An External Algorithm

Computational experiments were made with cplex (http://www-01.ibm.com/software/integration/

optimization/cplex-optimizer/). Since we do not have access to the source code of ibm ilog to fully

integrate the positive edge criterion in the primal simplex algorithm of cplex, this section proposes a simple

implementation called the External Algorithm to evaluate the potential of this new criterion. A series of
partial problems, each composed of a subset of the original variables, are used for solving LP. Two external

procedures are utilized: the first identifies non-basic compatible variables with respect to v⊤QZ while the

second computes and identifies negative reduced cost variables.

The External algorithm is stated as Algorithm 6.1. The algorithm starts at Step 0 with a feasible basis

AB. If the solution is non degenerate, then it directly solves LP at Step 1 and stops. Otherwise, it makes the
partition of the rows of LP and of the inverse Q of the basis according to sets P and Z at Step 3. A phase I

can be used to identify such an initial basis, or as shown in Elhallaoui et al. (2007), the partition of Q can be

done if a solution with p < m non-degenerate variables is known, e.g., from a heuristic solution. At Step 4,

a random vector v is selected and vector w⊤ = v⊤QZ ∈ R
m is computed. At Step 5, an external procedure

uses the positive edge criterion to determine Cw and Iw.

The External algorithm does not work with the (fully) reduced problem RP. Actually, the partial problem

LPCw Īw
defined in (3) contains only the current basic variables xB and the non-basic compatible variables

http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
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xCw
but it considers all rows of A, keeping up to date the m-dimensional vector π of the dual variables of LP:

minimize c⊤
B
xB + c⊤

Cw
xCw

subject to: ABxB + ACw
xCw

= b, xB, xCw
≥ 0.

(3)

Indeed, the use of the reduced problem RP would need to add a third external procedure for computing

the dual variables associated with the eliminated rows. Working with LPCw Īw
, the reduced costs of the

incompatible variables are easier to obtain at the price of a larger basis and a higher computing time per

iteration.

At Step 6, construct the partial problem LPCw Īw
and solve it at Step 7 until optimality is reached or

⌈σm⌉ pivots are performed (0 < σ < 1). At Step 8, externally compute the reduced cost of all non-basic

incompatible variables xj , j ∈ Iw using the vector π of the dual variables of LPCw Īw
and let Īw={j ∈ Iw|c̄j < 0}

be the index set of the negative reduced cost variables.

Optimality is tested at Step 9: if Īw = ∅ and the partial problem is optimal, then no variables have a

negative reduced cost, and the current solution of LPCw Īw
is also optimal for LP. If Īw = ∅ but LPCw Īw

is not

optimal, return to Step 7 to carry on the process of solving the partial problem.

At Step 10, Īw 6= ∅. Add all these |̄Iw| negative reduced cost incompatible variables to the partial problem

to form LPCw Īw
, an augmented partial problem (4), stated as follows:

minimize c⊤
B
xB + c⊤

Cw
xCw

+ c⊤
Īw
xĪw

subject to: ABxB +ACw
xCw

+AĪw
xĪw

= b, xB, xCw
, xĪw

≥ 0.
(4)

At the final step, the augmented problem LPCw Īw
is solved to optimality or until ⌈δm⌉ pivots are performed

(0 < δ < 1). Then the method identifies a new basis by returning to Step 0.

Algorithm 6.1 External Algorithm

Step 0. Identify a basis AB for LP with p ≤ m non-degenerate basic variables. Let Q = A−1

B
.

Step 1. If p = m, then solve LP and stop.

Step 2. Otherwise, let b̄ = Qb, P = {i ∈ {1, ...,m} | b̄i > 0} and Z = {i ∈ {1, ..., m} | b̄i = 0}.

Step 3. Partition LP and Q according to row-sets P and Z.

Step 4. Select a random vector v and compute the m-vector w⊤ = v⊤QZ.

Step 5. Let Cw [Iw] be the set of non-basic compatible [incompatible] variables with respect to v⊤QZ.

Step 6. Construct LPCw Īw
by removing from LP the non-basic incompatible variables in Iw .

Step 7. Solve LPCw Īw
until ⌈σm⌉ pivots are performed or optimality is reached.

Step 8. Let Īw = {j ∈ Iw|c̄j < 0} be the index set of the negative reduced cost incompatible variables.

Step 9. If Īw = ∅, then stop if LPCw Īw
is optimal or go to Step 7 if LPCw Īw

is not optimal.

Step 10. Otherwise, construct LPCw Īw
by appending the |̄Iw| negative reduced cost variables to LPCw Īw

.

Step 11. Solve LPCw Īw
until ⌈δm⌉ pivots are performed or optimality is reached. Go to Step 0.

If we could have access to the information of the LU -factorization of the basis (Bazaraa, Jarvis, and Sherali,

2010), it would be possible to work with the reduced problem RP that contains only p rows. Having the

inverse L−1 and the row-permutation matrix of this factorization, it would be possible to completely reduce

the problem since we would know the row associations and the permutations to do on the A and Q matrices,
which means that we could solve RP. Then we could compute the dual variables by adding the eliminated

rows and the basic variables associated with each of these rows. In Section 7, we present the results of the

External algorithm (denoted External-LPCw
in the Tables) and we also provide the computational results

of the so-called External-RP algorithm, that is, of what we could obtain if we knew the LU -factorization

information. To estimate the time of the External-RP algorithm, we construct and solve the first reduced
problem RP encountered and we compare its solution time to that of the first partial problem LPCw Īw

. Then,

we extrapolate the total time of the External-RP algorithm by using this time ratio.
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7 Computational Experiments

This section presents computational experiments conducted with the External algorithm. We begin with

medium-sized aircraft fleet assignment (fa) instances, followed by large-scale manpower planning problems

(mpp). We complete the tests with some Mittelmann’s instances used for the benchmarking of commercial
LP solvers.

Tests were performed on a 2.8GHz PC running Linux and comparisons are made with cplex 12.1 with

default settings (hybrid reduced-cost and Devex pricing). The External algorithm uses SEM32 random
variables and two parameters, σ and δ, that are related to the problem size. More precisely, σ = 0.2 if m ≤
10 000, σ = 0.1 if 10 000 < m ≤ 25 000, σ = 0.05 if 25 000 < m ≤ 75 000, σ = 0.02 if 75 000 < m ≤ 400 000,

and σ = 0.01 if m > 400 000. The value of δ is set to 2σ.

The algorithm starts with an initial basis obtained from a phase I computed by cplex. In all tables of

results, the columns denoted pivots represent the number of pivots executed by the primal simplex algorithm

of cplex while the column loops represents the number of loops executed by the External algorithm, i.e., the

number of times the inverse basis Q is identified at Step 0. The column factor corresponds to the reduction
factor of the total computational time (i.e., the ratio of the primal cplex cpu time to the time estimation

provided by the External-RP algorithm). All computational times are given in seconds. Finally note that the

number of pivots and the number of loops are identical for both External-LPCw
and External-RP algorithms.

7.1 FA Instances

Airline fleet assignment instances fa consist in maximizing the profits of assigning an aircraft type to each

flight segment over a one-week planning horizon. The routing must respect maintenance requirements and

aircraft type availability. The instances are generated from real data with 2505 flight segments and four
types of aircraft. The variables are flight sequences between maintenance bases. These problems have a set

partitioning constraint per flight segment, an availability constraint per aircraft type, and a flow conservation

constraint between flight sequences at maintenance bases. Some variables are also bounded from above. These

problems are typical master problem instances that need to be solved at each iteration of a branch-and-price

algorithm. Additionally, these instances were used in Raymond, Soumis, and Orban (2010). Table 1 gives
the number of constraints and variables for these medium-sized instances along with the average proportion

of degenerate variables encountered in the solution process with ips (Raymond, Soumis, and Orban, 2010).

Note that the degeneracy difficulties depend more on the path taken by an algorithm rather than on the

optimal values of the variables. The number of constraints is approximatively 5000, the number of variables
close to 25 000, and the average number of degenerate variables about 65%.

Table 1: Characteristics of the fa instances

instance constraints variables degeneracy instance constraints variables degeneracy

FA 6 5067 17 594 68% FA13 5159 25 746 65%
FA 7 5159 20 434 59% FA14 5159 22 641 71%
FA 8 5159 21 437 65% FA15 5182 23 650 63%
FA 9 5159 23 258 66% FA16 5182 23 990 64%
FA10 5159 24 492 66% FA17 5182 24 282 65%
FA11 5159 24 812 66% FA18 5182 24 517 65%
FA12 5159 24 645 66% FA19 5182 24 875 65%

Table 2 presents the results for the fa instances. On average, the Primal Simplex of cplex finds an

optimal solution in 473 seconds compared to only 72 seconds for the External algorithm executing nine loops.

The estimation given by the External-RP algorithm is slightly faster at 69 seconds and, on average, it is

more than 7 times faster than cplex. Moreover, the number of pivots of the simplex algorithm is almost two

times greater with cplex compared to the simple implementation. It should be emphasized that the cpu

savings become very significant when thousands of such problems need to be solved during a branch-and-price

algorithm.
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Table 2: Computational results for the fa instances

cplex external-lpCw
external-rp

primal algorithm algorithm

instance pivots time loops pivots time time factor

FA 6 63 409 257 8 28 204 36 35 7.34
FA 7 65 689 289 8 28 589 40 39 4.90
FA 8 61 180 260 8 43 607 60 59 4.19
FA 9 81 806 387 10 43 440 63 62 4.35
FA10 97 234 528 8 57 138 91 89 5.03
FA11 103 465 538 8 72 672 110 105 9.28
FA12 91 175 471 9 37 955 60 58 5.35
FA13 100 014 561 10 66 763 102 88 7.79
FA14 114 632 584 12 52 771 76 72 5.78
FA15 103 076 528 11 73 004 104 101 9.26
FA16 82 797 420 8 43 687 59 57 5.38
FA17 122 634 670 8 46 401 80 78 9.44
FA18 121 050 671 9 53 818 74 71 11.77
FA19 87 201 469 8 42 516 58 57 13.40

AVG 92 525 473 9 49 326 72 69 7.38

7.2 MPP Instances

Manpower planning problems (MPP) are two instances provided by the Montreal based company ad opt,

a division of kronos. These instances have approximately 99 000 constraints and 450 000 variables. The

average proportion of degenerate variables in the basis at Step 7 of the solution of the partial problem LPCw Īw

in the External algorithm is 80% in both cases.

Two tables are shown. On the one hand, Table 3 presents the results when an initial basis is already
available, as in a column generation scheme for solving a series of master problems. A Phase I, solved by

cplex, is used to construct this initial basis but its cpu time and its number of pivots are not taken into

account in Table 3. On the other hand, the cpu time and the number of pivots involved in the solution of

the Phase I are added to the External algorithm results in Table 4 whereas the number of loops remains the
same. This second situation is kind of worst case: the computing time of the External algorithm includes

Phase I time while cplex starts its solution process with its well-tuned presolve.

Table 3: Results for the mpp instances – Initial basis available

cplex external-lpCw
external-rp

primal algorithm algorithm

instance pivots time loops pivots time time factor

MPP1 725 200 2337 188 193 614 432 365 6.40
MPP2 734 438 1884 158 148 144 372 321 5.87

AVG 729 819 2110 173 170 879 402 343 6.14

When an initial basis is available (Table 3), cplex needs on average 2110 seconds to find an optimal
solution whereas the External algorithm requires 402 seconds with 173 loops. The External-RP algorithm is

15% faster at 343 seconds and, on average, it is more than 6 times faster than cplex. Note that the External

algorithm decreases the number of pivots from 729 819 pivots for cplex to only 170 879.

When no initial basis is available (Table 4), cplex is much faster as its presolve procedure followed by the

Primal Simplex only needs 537 seconds on average compared to the previous 2100 seconds displayed in Table 3.
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Table 4: Results for the mpp instances – No initial basis available

cplex external-lpCw
external-rp

primal algorithm algorithm

instance pivots time loops pivots time time factor

MPP1 437 453 540 188 194 975 443 375 1.44
MPP2 387 871 533 158 149 253 385 332 1.61

AVG 412 662 537 173 172 114 414 353 1.52

However, the External algorithm (including the Phase I cpu time) is still faster at 414 seconds, estimated
at 353 seconds by the External-RP algorithm. In this worst case scenario, our simple implementation is

therefore 52% faster than cplex. Observe also that the proposed algorithm decreases the number of pivots

by a factor of 2.39, that is, on average, from 412 662 pivots for cplex versus 172 114 for the External

algorithm. Therefore, even though both algorithms start from scratch, the positive edge criterion is very
efficient in the reduction of the number of pivots, an illustration of its potential.

7.3 Mittelmann’s Instances

The instances of this section are available at http://plato.asu.edu/ftp/lpcom.html and are benchmark

instances for commercial linear programming solvers. We chose these large-scale problems because they

are highly degenerate. Table 5 gives the number of constraints and variables of each instance along with

the average proportion of degenerate variables in the basis at Step 7 of the solution of the partial problem
LPCw Īw

in the External algorithm. One can observe that there are two types of instances: the proportion of

degenerate variables for the PDS instances is about 83% while it is close to 50% for Fome12 and Fome13.

Table 5: Characteristics of Mittelmann’s instances

instance constraints variables degeneracy instance constraints variables degeneracy

PDS-20 33 874 108 175 82% PDS-80 129 181 434 580 84%
PDS-30 49 944 158 489 82% PDS-90 142 823 475 448 84%
PDS-40 66 844 217 531 81% PDS-100 156 243 514 577 84%
PDS-50 83 060 274 814 82%
PDS-60 99 431 336 421 83% Fome12 24 285 48 920 54%
PDS-70 114 944 390 005 83% Fome13 48 569 97 840 46%

The computational results are presented in Table 6 for the PDS instances and in Table 7 for the two
Fome problems. At the start, no initial basis is available for these problems. This means that cplex uses

its presolve procedure whereas in the External algorithm the Phase I cpu time and its additional number of

pivots are included in the presented results.

Regarding the computational time, the presolve procedure followed by the Primal Simplex of cplex is

slightly faster on the two smallest PDS problems (in cpu time, 10 and 27 versus 12 and 32 seconds). However,
on average for the nine instances, it needs 631 seconds compared to the External algorithm requiring 451

seconds with 49 loops, estimated at 361 seconds by the External-RP algorithm. The simple implementation

is 55% faster than cplex. Observe again that the proposed algorithm decreases the number of pivots by a

factor of 3.57, that is, on average, from 515 676 pivots for cplex versus 144 521 for the External algorithm.

For the two Fome instances of Table 7, the External algorithm did not perform well. cplex is about ten
times faster, the number of loops is quite large on both Fome12 and Fome13 (212 and 423 loops, respectively),

hence the total number of pivots.

http://plato.asu.edu/ftp/lpcom.html
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Table 6: Results for Mittelmann’s PDS instances – No initial basis available

cplex external-lpCw
external-rp

primal algorithm algorithm

instance pivots time loops pivots time time factor

PDS-20 51 419 10 18 15 420 14 12 0.83
PDS-30 106 854 27 21 30 365 39 32 0.84
PDS-40 281 419 135 35 73 294 121 95 1.42
PDS-50 517 983 406 48 135 094 267 212 1.92
PDS-60 614 014 631 59 185 970 402 324 1.95
PDS-70 708 011 859 60 224 745 564 447 1.92
PDS-80 756 449 1060 64 288 567 788 630 1.68
PDS-90 803 204 1350 70 329 942 911 727 1.86
PDS-100 801 739 1202 64 317 294 952 773 1.55

AVG 515 676 631 49 144 521 451 361 1.55

Table 7: Results for Mittelmann’s Fome instances – No initial basis available

cplex external-lpCw
external-rp

primal algorithm algorithm

instance pivots time loops pivots time time factor

Fome12 135 604 361 212 954 216 2 342 2 239 0.16
Fome13 267 605 1214 423 2 054 351 13 370 12 900 0.09

AVG 201 605 788 318 1 504 284 7876 7570 0.13

7.4 Limitations of the External Algorithm and Possible Improvements

As mentioned previously, the External algorithm used to show the potential of the positive edge criterion is a

simple implementation. On the Fome12 and Fome13, and the two smallest pds instances, it did not improve
on the performance time of cplex. We now investigate its behavior and propose ways to improve upon the

simple implementation.

From Table 5, we observe that the percentage of degeneracy of Fome12 (54%) and Fome13 (46%) is less

than the average values for fa (65%), mpp (80%), and pds (83%) instances. Indeed, considering the reduced

problem RP, there is a big difference on the size of the p× p basis if the percentage of degenerate variables is
50% rather than 80%. For the same number m of constraints, the number of entries in the reduced basis is

(0.5m)2 in the first case whereas it is (0.2m)2 in the second, that is, 0.25m2 compared to 0.04m2, a factor of

6.25 larger. As the positive edge criterion is essentially appropriate for highly degenerate problems, a part

of the poor results can be explained by that.

Table 8 provides two additional informations: the density λA of the constraint matrix A and the average

proportion |Cw|/n of non-basic compatible variables in LPCw Īw
compared to the total number of variables

in LP for mpp, pds and Fome instances. The instances for which the External algorithm did not perform

better than cplex appear in boldface characters. We observe that either the density λA or the relative size
to LP of the partial problem LPCw Īw

is significantly higher in comparison to the other instances.

Higher density can largely increase the number of pivots required to solve a linear program. This can be

seen from Table 9 where we analyze the behavior of the Primal Simplex algorithm of cplex. In this Table,

we can compare PDS-20 to Fome12 and PDS-30 to Fome13. Consider PDS-20 and Fome12, a similar analysis

can be done for the other pair. Although PDS-20 is larger in size compared to Fome12 in terms of the number
of constraints (33 874 vs. 24 285) and variables (108 175 vs. 48 920) and, moreover, is much more degenerate

(82% vs. 54%), the solution time for Fome12 (361 seconds) is 36.1 larger than for PDS-20 (10 seconds). The
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Table 8: Density λA of the matrix A and proportion |Cw |/n of compatible variables in LPCw Īw

density |Cw|/n density |Cw|/n
instance λA (%) instance λA (%)

MPP1 2.6e-5 26% PDS-70 1.9e-5 31%
MPP2 2.6e-5 27% PDS-80 1.7e-5 31%
PDS-20 6.3e-5 32% PDS-90 1.5e-5 31%
PDS-30 4.3e-5 32% PDS-100 1.4e-5 31%
PDS-40 3.2e-5 32%
PDS-50 2.6e-5 32% Fome12 11.0e-5 55%

PDS-60 2.1e-5 31% Fome13 6.0e-5 55%

increase of the number of pivots (51 419 vs. 135 604) by a factor 2.64 is not due to degeneracy (which should

have the inverse effect in that case) but to the density of the columns of A: 11.0e-5 for Fome12 compared to

6.3e-5 for PDS-20. Degeneracy is not the main issue, density of A is.

Table 9: Comparisons with cplex of PDS-20 and PDS-30 to Fome12 and Fome13

cplex time density cplex pivot
instance constraints variables degeneracy time ratio λA pivots ratio

PDS-20 33 874 108 175 82% 10 6.3e-5 51 419
Fome12 24 285 48 920 54% 361 36.10 11.0e-5 135 604 2.64

PDS-30 49 944 158 489 82% 27 4.3e-5 106 854
Fome13 48 569 97 840 46% 1214 71.41 6.0e-5 267 605 2.50

It is also well known that algorithms that use an oracle to add variables to a master problem need more
iterations when the density of the constraint matrix is high. An example of that is the tailing-off effect in

column generation approaches, see Jones et al. (1993); Lübbecke and Desrosiers (2005), and Oukil et al.

(2006). Entering in the basis a high density column-vector may result in a small ratio-test with a higher

probability, hence a small improvement of the objective function value. Finally observe also that for the
Fome instances, 55% of the variables are compatible compared to about 30% for the other instances. This

means that in each loop (212 for Fome12 and 423 for Fome13), both problems LPCw Īw
and LPCw Īw

are solved

with more than half of the total number n of variables, both being each time difficult to solve because of the

high density of the constraint matrix.

Improvements could be done to the External algorithm, the most important one being a full integration
of the positive edge criterion within a primal simplex code. This would eliminate the two external procedures

and the tailing-off effect. An integration would also take advantage of partial pricing and some other strategies

based on the accumulation of various informations during the solution process. Finally, remember that the

positive edge identifies variables with positive step size but does not provide its value. A combination of it

with the steepest edge could increase its performance, especially for dense instances.

8 Conclusion

In this paper, we propose a new pricing criterion for the primal simplex algorithm: the positive edge identifies,

with a probability error less than or equal to 2−30 in single precision binary floating-point format and 2−62

in double precision format,, variables allowing for non-degenerate pivots. Its computational complexity is

O(m) per variable, the same as for the computation of the reduced cost.

The preliminary computational results show the high potential of this new pricing rule. Comparisons

are made with the primal simplex algorithm of cplex. We designed a very simple algorithm that uses two
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external procedures for the selection of the variables that are send to cplex: the first identifies variables

that allow for non-degenerate pivots, the second computes negative reduced costs. It has been tested on

fourteen medium-sized aircraft fleet assignment instances, two large-scale manpower planning problems, and
nine pds instances from the Mittelmann library. All these problems are highly degenerate. On the first group

of instances, our simple implementation is 7 times faster than cplex on average and the number of pivots is

almost reduced by a factor 2. On the second and third groups, it is more than 50% faster and the number

of pivots is decreased by 2.39 and 3.57, respectively.

It has also been tested on two additional problems, Fome12 and Fome13, from the Mittelmann library. For
these highly dense problems, our simple implementation failed. The integration of the positive edge criterion

within a primal simplex code should prevent such situations by eliminating the two external procedures, by

working directly with the reduced problem, and by also taking advantage of strategies such as the partial

pricing. Since the positive edge does not compute the value of the step size, a combination of it with the

steepest edge should increase the performance of this new pricing rule, especially for highly degenerate and
dense instances.
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