
Les Cahiers du GERAD ISSN: 0711–2440

The XGame Solver Software:

Equilibria Enumeration and

Refinement in Game Theory

S. Belhaiza

G–2010–35

mai 2010

Les textes publiés dans la série des rapports de recherche HEC n’engagent que la responsabilité de leurs auteurs. La publication

de ces rapports de recherche bénéficie d’une subvention du Fonds québécois de la recherche sur la nature et les technologies.

The XGame Solver Software: Equilibria

Enumeration and Refinement in Game Theory

Slim Belhaiza

GERAD & École Polytechnique de Montréal

and King Fahd University of Petroleum and Minerals

Department of Mathematics and Statistics

Dhahran, 31261, Saudi Arabia

slimb@kfupm.edu.sa

mai 2010

Les Cahiers du GERAD

G–2010–35

Copyright c© 2010 GERAD

Les Cahiers du GERAD G–2010–35 v

Abstract

In this paper we present the implementation of the EEE and EχMIP algorithms with exact arith-
metics in a user friendly application with interfaces named XGame Solver, using both QT and C + +
languages. We describe how this software can be used to solve bimatrix games, polymatrix games and
sequential forms of two-persons extensive games.

Key Words: XGame, enumeration, bimatrix game, polymatrix, sequential, extensive.

Résumé

Dans ce travail nous présentons l’implantation des deux algorithmes EEE et EχMIP dans une appli-
cation conviviale avec des interfaces dans le cadre d’une application nommée XGame Solver, en utilisant
les langages QT et C + +. Nous décrivons comment ce logiciel peut être utilisé afin de résoudre des jeux
bimatriciels, polymatrciels et la forme séquentielle de jeux étendus à deux joueurs.

Mots clés : XGame, énumération, jeu bimatriciel, polymatrciel, séquentiel, étendu.

Acknowledgments: Author would like to thank Alexandre Dzimi Mve for his contributions to the
development of the XGame Solver Software.

Les Cahiers du GERAD G–2010–35 1

1 Introduction

Different formulations were proposed in order to solve Bimatrix games, Polymatrix games or Sequential forms
of two persons extennsive games. While most of the papers studied these games just by defining methods or

algorithms to find a Nash equilibrium, few papers used an enumeration approach in order to obtain a complete

view of the solutions sets. We used mathematical programming in order to enumerate all Nash extreme

equilibria of Bimatrix games, Polymatrix games and Sequential forms of two persons extensive games. While

the enumeration algorithm EEE [1] was esentially based on bilevel programming and enumerated bimatrix
games extreme Nash equilibria, our work consisted in modeling games as 0 − 1 mixed linear programs by

linearizing complementarity conditions and introducing well defined parameters. Based on this different

approach, EχMip algorithm [2, 4] was proposed and implemented to enumerate extreme Nash equilibria of

bimatrix games, three persons Polymatrix games and Sequential forms of two persons extensive games. Both
of the algorithms were first implemented using Cplex callable libraries. This state of art software helped

increasing the size of the problems that could be solved to 29 × 29 for bimatrix games.

In order to improve the precision and the independance of our algorithms we reimplemented these algo-

rithms using exact arithmetics libraries. We also implemented a maximal cliques enumeration algorithm and

proposed some automatic refinements procedures of all extreme Nash equilibria for Bimatrix games in [3, 5].
To make the scientific community benefit from our work, we gathered our latest implementations of our

algrithms and refinements procedures into a Software package called XGame Solver.

This papers is organized as follows. In the first section we recall the different formulations we have used

in order to enumerate extreme Nash equilibria of bimatrix games,Polymatrix games and Sequential forms

of two persons extensive games. The second section presents the pseudo-codes of the EEE and EχMip
algorithms adapated to these games. Section three describes the XGame Solver software and the different

icons and options it provides to the user.

2 Formulations

This section recalls the different formulations we proposed in order enumerate all extreme Nash equilibria

for bimatrix games, three persons Polymatrix games and Sequential forms of two persons extensive games.

2.1 Bimatrix Games

A bimatrix game, or two-person nonzero-sum game in strategic form, may be stated as follows: given a

pair of m × n payoff matrices A and B, Player I attempts to maximize his payoff xtAy by selecting the

probability vector x in R
m, and simultaneously, Player II attempts to maximize his payoff xtBy by choosing

the probability vector y in R
n.

It is well known that there is always at least one equilibrium point (Nash [11]) in such a game, i.e., a pair
of strategies (x̂, ŷ) that simultaneously solve the two parameterized linear programs

(P1)

max
x

xtAŷ

s.t. xt1 = 1,
x ≥ 0,

and (P2)

max
y

x̂tBy

s.t. 1ty = 1,
y ≥ 0,

where 0 and 1 respectively denote vectors whose components are all equal to zero and one. The strategy x̂

is a best response to ŷ, as it is an optimal solution of (P1); and ŷ is a best response to x̂, as it is an optimal
solution of (P2). At an equilibrium point neither player has an incentive to change his strategy unless the

other player does so.

Linear programming duality theory yields the following equivalent dual programs

(D1)
min

α
α

s.t. 1α ≥ Aŷ,
and (D2)

min
β

β

s.t. β1t ≥ x̂tB.

2 G–2010–35 Les Cahiers du GERAD

where α and β are dual variables in R.

There are two classical and equivalent necessary and sufficient optimality conditions in linear programming

theory. In our framework, these conditions are expressed as the equilibrium conditions. Both conditions
require primal and dual feasibility: the pair of strategies (x̂, ŷ) together with scalars α̂ and β̂ must satisfy

(x̂, β̂) ∈ X = {(x, β) ∈ R
m+1 : xtB ≤ β1t, xt1 = 1, x ≥ 0},

(ŷ, α̂) ∈ Y = {(y, α) ∈ R
n+1 : Ay ≤ 1α, 1ty = 1, y ≥ 0}.

The first optimality condition consists in the equality of primal and dual objective function values

x̂tAŷ = α̂ and x̂tBŷ = β̂. (1)

Which means that the values of the dual variables must be equal to the payoffs. The second optimality

condition is the complementary slackness condition

x̂t(1α̂ − Aŷ) = 0 and (β̂1t − x̂tB)ŷ = 0. (2)

Equivalence of optimality conditions (1) and (2) appears when substituting x̂t1 and 1tŷ by 1.

There may be one, many, or an infinity of equilibrium points. Indeed, for a given strategy ŷ, the set of

optimal responses of Player I, i.e., the set of optimal solutions of (P1), denoted X(ŷ), is either a singleton or

a polytope. The symmetric observation holds for (P2), where the set of optimal solutions is denoted Y (x̂).

In fact, the set E of all equilibrium points is the union of a finite number of polytopes called maximal Nash

subsets [10]. We have shown [3] that all maximal Nash subsets can be enumerated using a maximal cliques

enumeration algorithm.

2.1.1 EEE on bimatrix games

With EEE algorithm Enumeration of all extreme equilibria is achieved through exploration of a search tree.

To each node of the tree correspond two linear subprograms whose feasible regions are derived from X and

Y . They differ through conversion of inequalities into equalities. Two types of branching rules define these
conversions.

The first type of rule relies on an equivalent formulation of the complementary slackness condition (2).

At an equilibrium point, the feasibility conditions insure that the vectors x̂ and ŷ are nonnegative, and that

x̂tB ≤ β̂1t and Aŷ ≤ 1α̂. Therefore, condition (2) can be written through the m+n complementary slackness
conditions

x̂i = 0 or Ai·ŷ = α̂ and ŷj = 0 or x̂tB·j = β̂, (3)

where Ai· denotes the ith row of A, and B·j the jth column of B for i = 1, 2, . . . , m and j = 1, 2, . . . , n. The

first type of branching rule splits the current node of the tree through two branches: in one branch, a pure

strategy is forced to be played with probability zero (a variable is fixed to zero), and in the second, a pure

strategy is forced to have maximum payoff, so it is a best response a slack variable is fixed to zero). This
rule is invoked by the algorithm until all complementary slackness conditions (3) are forced to be satisfied,

and thus for all nodes whose depth in the search tree is less than or equal to m + n.

When the depth of the current node exceeds m + n, the second type of branching rule is used. At

such a node, all complementary slackness conditions (3) are guaranteed to be satisfied by the first type of
branching rule, and thus any solution of the current converted equalities is necessarily an equilibrium point.

This branching rule consists in splitting the current node through as many branches as there are strictly

positive variables and slack variables of X and Y corresponding to the equilibrium point. In each branch the

variable or slack variable is fixed to zero. All degenerate solutions are reached, possibly several times, and

thus elimination of duplicates is required.

Backtracking occurs when conversion of inequalities into equalities reduces the feasible region to the empty

set. Let us now introduce more formal definitions in order to fully describe the algorithm.

Les Cahiers du GERAD G–2010–35 3

As discussed above, every new branch is obtained by converting a single inequality of X or Y to an equality.

In order to efficiently select which inequality to take, we introduce the following linear programming problems,

parameterized in the objective functions:

P (y) ≡ max
(x,β)∈X

xtAy − β,

Q(x) ≡ max
(y,α)∈Y

xtBy − α.

Problem P (y) is an aggregation of the primal and dual problems (P1) and (D2), and Q(x) is an aggregation

of (P2) and (D1). Indeed, the constraints appearing in the definition of X and Y are those of the primal and
dual problems. Moreover, the objective functions xtAy−β and xtBy−α are the sum of the primal and dual

objective functions. Therefore, it is likely that an optimal solution of P (y) solves (P1) and (D2), and one of

Q(x) solves (P2) and (D1). The search for equilibria is done through the feasible regions X and Y , and thus

any objective functions could be used. The intuitive motivation behind this choice of objective functions, is
to guide the algorithm toward equilibrium points.

At each node of the search tree is associated a pair of current subproblems P̃ and Q̃, that are identical

to P and Q, except that some of the inequality constraints or nonnegativity constraints are converted to

equalities. The depth of the root node is 1. At each node, one of the three following cases occurs:

i- either P̃ or Q̃ is infeasible;
ii- both P̃ and Q̃ are feasible but there is not enough information to obtain an equilibrium point (depth

of the current node is less than or equal to m + n);
iii- both P̃ and Q̃ are feasible and there is sufficient information to deduce an extreme equilibrium point

(depth of the current node is greater than m + n).

In the first case, the current node is discarded. In the two other cases, the current node is split into others

through new branches. The subproblems of the new nodes are identical to the current ones except for one

additional constraint converted into an equality in either P̃ or Q̃, chosen according to the branching rules.

Thus for each new branch, only one of the two subproblems needs to be checked for feasibility.

In the first type of branching rule, the selected pair of complementary inequalities to be converted
into equalities corresponds to the largest complementary product xi(α − Ai·y) or (β − xtB·j)yj , where

i = 1, 2, . . . , m and j = 1, 2, . . . , n. Of course, the pair of inequalities must be chosen among those that

were not already converted in P̃ or Q̃.

A node is not only characterized by the pair of current subproblems P̃ and Q̃. One of the two vectors x

or y is also associated to each node. This vector describes a feasible strategy for the current subproblem that
does not differ from its predecessor in the tree. We now introduce the notation that specifies which constraint

is converted. This notation will be used when formally defining both types of branching rule. Given the

current subproblems P̃ and Q̃, we define:

P i to be P̃ in which the constraint xi ≥ 0 is converted to xi = 0,
Pj to be P̃ in which the constraint xtB·j ≤ β is converted to xtB·j = β,

Qj to be Q̃ in which the constraint yj ≥ 0 is converted to yj = 0,

Qi to be Q̃ in which the constraint Ai·y ≤ α is converted to Ai·y = α,

where i ∈ {1, 2, . . . , m} and j ∈ {1, 2, . . . , n}.

2.1.2 EχMip on bimatrix games

Complementary slackness conditions were stated as xi(1α − Ai·y) = 0, and (1β − xtB·j)yj = 0, for i ∈
{1, 2, . . . , m} and for j ∈ {1, 2, . . . , n}, or in matrix form

xt(1α − Ay) = 0, and (β1t − xtB)y = 0. (4)

Pairs of solutions (x, α) or (y, β) feasible for the primal and the dual, and satisfying the complementarity

slackness conditions are optimal. If this holds simultaneously for the programs of both players, the solution

(x, y) is a Nash equilibrium.

4 G–2010–35 Les Cahiers du GERAD

Linearization of these complementary slackness conditions is made possible through the use of 0 − 1

variables (Júdice and Mitra [7] and Audet et al. [1])

(1α − Ay) ≤ L1u, and (β1t − xtB) ≤ L2v, (5)

x + u ≤ 1, and y + v ≤ 1, (6)

u ∈ {0, 1}n, and v ∈ {0, 1}m, (7)

where L1 and L2 are some large constants. Making sure that the constants L1 and L2 are large enough is
often problematic. Fortunately, in our case, the following result shows how we can easily obtain some valid

values.

L1 = max
i, j

aij − min
i, j

aij , L2 = max
i, j

bij − min
i, j

bij .

The set of bimatrix game Nash equilibria is the set of pairs of mixed strategies (x, y) ∈ R
m×R

n for which

there exists vectors (u, v) ∈ {0, 1}m × {0, 1}n, satisfying

xt1 = 1, 1ty = 1,
xtB − β1t ≤ 0, Ay − α1 ≤ 0,
(1α − Ay) − L1u ≤ 0, (β1t − xtB) − L2v ≤ 0,
x + u ≤ 1, y + v ≤ 1,
x ≥ 0, y ≥ 0,
u ∈ {0, 1}m v ∈ {0, 1}n.

Complete enumeration of all bimatrix game extreme equilibria can be done through complete enumeration

of all extreme feasible solutions of a mixed 0−1 linear problem (i.e., extreme feasible solutions for each feasible

0 − 1 vector), with any linear objective function.

EχMIP is designed to generate a branching tree where at each node a dichotomous branching over one
of the binary variables is done. The exploring tree generated contains a principal tree and many secondary

trees.

The principal tree is designed to detect all binary variables combinations involved in one or more extreme

equilibria. A secondary tree is generated from every principal tree node offering a feasible solution, i.e.

an extreme equilibrium. Hence, each binary variable combination involved in an extreme equilibrium is

completely explored in order to find all extreme equilibria that could be obtained from it. To avoid repetitive
exploration of the same binary variables combination, an eliminating constraint is added once secondary

exploration is achieved. These constraints are often redundant and could be eliminated in part to reduce the

problem size.

At each node of the principal tree, a mixed 0 − 1 linear program is solved. This program is composed of

the original program with some binary variables fixing constraints and some combination of binary variables

eliminating constraints.

Each secondary tree node represents the solution of a linear problem, composed of the original problem

with some binary variable fixing constraints, some combination of binary variables eliminating constraints
and some continuous variables fixing constraints.

2.2 Sequential form of two-persons extensive games

The use of sequences of moves instead of pure strategies is possible in order to compute equilibria for extensive

form games. As the extensive game is represented by a tree, there exists a unique path linking the root node

to any node of such a tree. This path defines a sequence of moves for player i. Assuming that each player
i has perfect recall means that each pair of nodes in an information set h in Hi correspond to the same

sequence for player i.

Les Cahiers du GERAD G–2010–35 5

In most papers, a sequence of moves is denoted σh and the set of move sequences is denoted Si for each

player i. Any sequence of moves σ ∈ Si can either be equal to the empty sequence ∅ or only given by its last

move at the information set h ∈ Hi, which means that σσhc. This leads to the following definition

Si = {∅} ∪ {σhc | h ∈ Hi, c ∈ Ch}.

Following this definition, each player will have a number of sequences that does not exceed the number of

nodes in the tree. The sequence form of an extensive game is similar to its strategic form reduction. The only

difference between these two conversions is that the sequence form uses sequences instead of pure strategies

which leads to a more compact description of the original game.

For a given player i, a behavior strategy β is obtained by probabilities β(c) for his moves c ∈ Ch such
that β(c) ≥ 0 and

∑

c∈Ch
β(c) = 1 for each h ∈ Hi. Behavior strategy’s definition can be extended to the

sequences σ ∈ Si simply by the following formulation

β [c] =
∏

c∈σ

β(c).

In this context, a pure strategy π for a given player is a kind of behavior strategy with π(c) ∈ {0, 1} for

all moves c, which means that π [σ] ∈ {0, 1} for each σ ∈ Si. Thus, a mixed strategy µ corresponds to a
probability µ(π) to every pure strategy π of a player i. The realization probabilities of playing the sequences

σ ∈ Si are defined as follows

µ [σ] =
∑

∀π

µ(π)π [σ] .

For a player i, a realization plan of µ is then denoted x(σ) = µ [σ] for σ ∈ Si. For a given player i, xi is
the realization plan of a mixed strategy if and only if the following conditions are satisfied

x(∅) = 1,
∑

c∈Ch

x(σhc) = x(σh), h ∈ Hi,

x(σ) ≥ 0, ∀σ ∈ Si.

Koller and Megiddo [8] refer to these conditions using realization probabilities of the game tree. Denoting

xi = (xσ)σ∈Si
, these conditions can be reformulated for each player i as follows

xi ≥ 0, (8)

Eixi = ei, (9)

where Ei is a well chosen matrix and ei = (1, 0..., 0)t, both with 1 + |Hi| rows.

Koller and Megiddo [8] show that two mixed strategies µ and µ′ of player i are realization equivalent if

and only if they have the same realization plan, i.e. µ [σ] = µ′ [σ] for all σ ∈ Si.

Moreover, Kuhn [9] show that for a player with perfect recall, any mixed strategy is realization equivalent

to a behavioral strategy. Furthermore, Romanovskii [12] and von Stengel [13] demonstrate that the equilibria

of a two person game in extensive form with perfect recall are simultaneous solutions of the following pair of

parametrized linear programs

max
x1

xt
1Ax2 and maxx2

xt
1Bx2 (10)

s.t. E1x1 = e1, s.t E2x2 = e2,
x1 ≥ 0, x2 ≥ 0.

6 G–2010–35 Les Cahiers du GERAD

Where E1 and E2 are matrices with all elements equal to 1, 0 or −1. Each matrix E1 or E2, has as many

columns as the number of sequences of play and as many lines as the number of linked sequences sets, for

the corresponding player. The single columns e1 and e2 have the same number of lines as E1 and E2, with
the first element equal to 1 and all other elements equal to 0.

The dual formulations of linear programs (10) are expressed as follows

min
α1

et
1α1 and minα2

et
2α2 (11)

s.t. Et
1α ≥ Ax2, s.t. αt

2E2 ≥ xt
1B.

The complementarity constraints obtained from (10) and (11) are

xt
1(E

t
1α1 − Ax2) = 0 and (αt

2E2 − xt
1B)x2 = 0. (12)

Using these complementarity conditions, von Stengel et al. [14] define an algorithm able to compute normal

form perfect equilibria for two-person games.

By introducing two binary vectors u1 and u2 as detailed with bimatrix games, with u1 and u2 having as
many lines as the number of sequences of the corresponding player, the complementarity onditions can be

linearized as follows, with (10) and (11) satisfied

xt
1(E

t
1α − Ax2) = 0 ⇔

x1 + u1 ≤ 11,
Et

1α − Ax2 ≤ L1u1,
(13)

and

(αt
2E2 − xtB)x2 = 0 ⇔

x2 + u2 ≤ 11,
αt

2E2 − xt
1B ≤ L2u2.

(14)

where 11 is a vector with all elements equal to one, and L1 and L2 are small scalars equal to the difference
between the largest and the least element of each payoff matrix, as described in [2]. On one hand, observe

that for any player i, if its ith binary variable is equal to 1 then its ith continuous variable is equal to 0 and

the complementary slackness condition associated is satisfied. On the other hand, if its ith binary variable is

equal to 0 then the complementary slackness condition associated is also satisfied.

We proposed to achieve the enumeration of all extreme Nash equilibria of the sequence form of a two-

persons extensive game by enumerating all extreme points of a set Q defined by the following conditions

E1x1 = e1, E2x2 = e2,
Et

1α1 ≥ Ax2, αt
2E2 ≥ xt

1B,
x1 + u1 ≤ 11, x2 + u2 ≤ 11,
Et

1α − Ax2 ≤ L1u1, αt
2E2 − xt

1B ≤ L2u2,
x1 ≥ 0, x2 ≥ 0,
u1 ∈ {0, 1} u2 ∈ {0, 1} .

(15)

Let n1 and n2 be the number of sequences of players 1 and 2, respectively. It follows that each binary

combination of u1 and u2 defines a polytope and that Q is the set of all these disjoint polytopes.

2.3 Polymatrix Games

The confrontation of n players (n ≥ 2) in a normal and noncooperative context is a polymatrix game if payoffs

are sums of values for each player and all other ones pairwise. Let now N = {1, ..., n} be the set of all players
and each player i ∈ N have a finite set of pure strategies Si = {s1

i ,, s
mi

i } with |Si| = mi.

If player i chooses his strategy sk
i and player j chooses his strategy sl

j , a partial payoff aij(s
k
i , sl

j) is

assigned for player i. For any pure strategic choice (sk
1 , ..., sl

n) of the n players, the overall player i payoff at
the end of the game is

Ai(s
k
1 , ..., sl

n) =
∑

j 6=i

aij(s
k
i , sl

j).

Les Cahiers du GERAD G–2010–35 7

The mi×mj matrix Aij = (akl
ij) is defined as player i’s partial payoff matrix relative to player j’s strategic

decisions. Thus, player i’s payoff relative to player j’s decisions is not correlated with any of the remaining

players’ choices.

As in bimatrix games, each polymatrix game player i attempts to maximize his own overall payoff by

selecting a probability vector Xi over his set of pure strategies. The mixed strategy vector Xi is such that

(Xi)
T = (x1

i ,, x
mi

i), where for all k ∈ {1, ..., mi}, xk
i is the relative frequency, or probability, with which

player i plays his strategy sk
i ∈ Si. Hence player i’s mixed strategies belong to the set

S̃i = {Xi : etXi = 1 , Xi ≥ 0}.

The overall payoff of player i at the end of a polymatrix game is

Ri(X) = (Xi)
T

∑

j 6=i

AijXj =
∑

j 6=i

mi
∑

k=1

mj
∑

l=1

akl
ijx

k
i xl

j .

A n-tuple X∗ = (X∗
1 , ..., X∗

n) of mixed strategies is called a Nash equilibrium, in a polymatrix game, if

and only if for any other n-tuple X = (X∗
1 , .., X∗

i−1, Xi, X
∗
i+1, .., X

∗
n) the following inequality is satisfied

(X∗
i)T

∑

j 6=i

AijX
∗
j ≥ (Xi)

T
∑

j 6=i

AijX
∗
j , for i ∈ N. (16)

i.e., player i’s payoff relative to all other players is simultaneously maximized for i ∈ N . It again follows from

Nash’s [11] that a polymatrix game has at least one equilibrium.

For a set of mixed strategies X1, ..., Xn and for i ∈ N , let

αi = (X∗
i)T

∑

j 6=i

AijXj. (17)

Considering an (mi × 1) column ei
r with its rth element equal to 1 and all other elements equal to 0 and

using the fact that inequality (16) holds for all Xi, even for Xi = ei
r (r = 1, ..., mi), (17) holds only if

αie
i ≥

∑

j 6=i

AijXj , for i ∈ N, (18)

where ei is an (mi × 1) column with all elements equal to 1. This leads to the statement

(X∗
i)T αie ≥ (X∗

i)T
∑

j 6=i

AijXj =⇒ (X∗
i)T





∑

j 6=i

AijX
∗
j − αie



 = 0. (19)

This last result implies that each αi, i ∈ N , corresponds to the overall payoff of player i at an equilibrium.

The relation (19) is a first complementarity condition.

Similarly, define

Yi = αie −
∑

j 6=i

AijXj and µi = eT X∗
i − 1, for i ∈ N.

Using (17), (18) and (19) with the fact that X∗
i is a probability vector, the following conditions could be

stated

Xi ≥ 0, Yi ≥ 0, (X∗
i)T Yi = 0, for i ∈ N, 11) (20)

µi ≥ 0, αi ≥ 0, µiαi = 0, for i ∈ N. (21)

8 G–2010–35 Les Cahiers du GERAD

Considering player i’s primal multiparametric linear program in a polymatrix game

maxXi
Xi

∑

j 6=i AijXj

s.t. et
mi

Xi = 1,
Xi ≥ 0.

and player i’s dual program

min αi

s.t.
αie

i ≥
∑

j 6=i AijXj ,

linearization of all complementary slackness conditions (19) can again be achieved using binary variables.

This leads to a mixed 0 − 1 linear formulation of a polymatrix game.

For i ∈ N , the complementary slackness conditions are written

(Xi)
T



αie
i −

n
∑

j=1,j 6=i

AijXj



 = 0 ⇐⇒
αie

i −
n
∑

j=1, j 6=i

AijXj − LiUi ≤ 0,

Xi + Ui ≤ e.

Selection of Li can again be done by simple arithmetic. Li is of the same order of magnitude that the input:

Li =

n
∑

j=1, j 6=i

Γij , for i ∈ N,

where Γij is the difference between the largest and the smallest elements of Aij .

The problem of enumerating extreme Nash equilibria for a polymatrix game can then be stated through

mixed integer programming. In fact, the set of polymatrix game equilibria is the set of mixed strategies

vectors (X1, X2, ..., Xn) ∈ R
m1 × R

m2 × ... × R
mn such that for i ∈ N















































Xt
i e = 1,

Xi + Ui ≤ e,

αie
i −

n
∑

j=1, j 6=i

AijXj ≥ 0,

αie
i −

n
∑

j=1, j 6=i

AijXj − LiUi ≤ 0,

Xi ≥ 0,
Ui ∈ {0, 1}mi.

Moreover, the use of mixed integer programming allows a flexibility in the selection of an objective

function.

3 Algorithms

This section regroups the pseudo-codes of the EEE and EχMip algorithms used in order to enumerate

all the extreme Nash equilibria of bimatrix games, three persons polymatrix games and sequential forms of

two-persons extensive games. Complete proofs of effiency of these algorithms were presented in [1, 2, 4].

3.1 EEE Algorithm

We adapted the structure of the EEE algorithm to both models obtained from bimatrix games and sequential
forms of two persons extensive games. This section presents the pseudo-codes of the EEE algorithm on these

kind of games.

3.1.1 EEE on Bimatrix games

The algorithm EEE applied to bimatrix games is now briefly stated.

Step a. Initialization.

Initialize the set of nodes to be explored to T = {(x, P, Q)} where x is set to an arbitrary feasible value

Les Cahiers du GERAD G–2010–35 9

(typically x = (1
m

, 1
m

, . . . , 1
m

)). Go to Step b.

Step b. Selection of a Node.

If the set T of nodes to be explored is empty, then stop. Otherwise, choose and remove a node N from T .
Either N = (x, P̃ , Q̃) or N = (y, P̃ , Q̃). In the first case go to Step c; in the second case, go to Step d.

Step c. Direct Feasibility Test (Q̃).

If Q̃(x) is infeasible then go to Step b; otherwise choose (ỹ, α̃) that solves Q̃(x) and (x̃, β̃) that solves P̃ (ỹ).

If the depth of the current node is not greater than m + n, go to Step e; otherwise go to Step f.

Step d. Direct Feasibility Test (P̃).
If P̃ (y) is infeasible then go to Step b; otherwise choose (x̃, β̃) that solves P̃ (y) and (ỹ, α̃) that solves Q̃(x̃).

If the depth of the current node is not greater than m + n, go to Step e; otherwise go to Step f.

Step e. Dichotomous Branching. Let

τi =







x̃i(α − Ai·ỹ) if the variable xi of P̃ is not forced to be null, and

the constraint Ai·y ≤ α of Q̃ is not fixed at equality,
−1 otherwise,

πj =







(β − x̃tB·j)ỹj if the variable yj of Q̃ is not forced to be null,

the constraint xtB·j ≤ β of P̃ is not fixed at equality,
−1 otherwise,

then select the indices ı̃ and ̃ that maximize the values τi and πj (ties are broken arbitrarily) for i = 1, 2, . . . , m

and j = 1, 2, . . . , n. In the case where τı̃ ≥ π̃, add

(ỹ, P ı̃, Q̃) and (x̃, P̃ , Qı̃),

to T and in the case where τı̃ < π̃, add

(x̃, P̃ , Q̃) and (ỹ, P̃, Q̃).

to T . Go to Step b.
Step f. Polychotomous Branching. The solution (x̃, ỹ) is an equilibrium strategy since the complemen-

tary slackness conditions are satisfied. Record it on the list of equilibria if not already there, and add to T

all nodes corresponding to a strictly positive variable or slack variable. These nodes are in the four sets

{(ỹ, P i, Q̃) : x̃i > 0}, {(x̃, P̃ , Qi) : Ai.ỹ < α}

{(x̃, P̃ , Qj) : ỹj > 0}, and {(ỹ, Pj , Q̃) : x̃tB.j < β}.

Go to Step b.

3.1.2 EEE Pseudo-Code on Sequential form of two persons extersive game

This section illustrates the new implementation of the EEE algorithm based on the sequential form of a two-

person extensive game. We propose an implicit enumeration algorithm to determine all extreme equilibria
by enumerating all vertices of X1 and X2 that satisfy the complementarity conditions xt

1(E1α1 −Ax2) = 0

and (αt
2E2 − xt

1B)x2 = 0, where

(x̂1, α̂2) ∈ X1 = {(x1, α2) ∈ R
m+1 : xt

1B ≤ α2E
t
2, xt

11 = 1, x1 ≥ 0},
(x̂2, α̂1) ∈ X2 = {(x2, α1) ∈ R

n+1 : Ax2 ≤ E1α1, 1tx2 = 1, x2 ≥ 0}.

Consider the parametrized linear programs:

P (x2) ≡ max
(x1,α1)∈X1

xt
1Ax2 − αt

2e2, and Q(x1) ≡ max
(x2,α2)∈X2

xt
1Bx2 − et

1α1.

Indeed, the constraints appearing in the definition of X1 and X2 are those of the primal and dual problems.

Again, the objective functions xt
1Ax2 − αt

2e2 and xt
1Bx2 − et

1α1 are gaps between primal and dual objective

functions.

The structure of the algorithm presented for the strategic form almost directly applies. Given the problems

P̃ and Q̃, we redefine:

10 G–2010–35 Les Cahiers du GERAD

P i to be P̃ in which the constraint x1i ≥ 0 is replaced by x1i = 0,

Pj to be P̃ in which the constraint xt
1iB·j ≤ αt

2E2·j is replaced by xt
1B·j = αt

2E2·j ,

Qj to be Q̃ in which the constraint x2j ≥ 0 is replaced by x2j = 0,
Qi to be Q̃ in which the constraint Ai·x2 ≤ E1i· α1 is replaced by Ai·x2 = E1i· α1.

We here state the pseudo code of the algorithm EEE applied to Sequential form of two persons extersive

game.

a. Initialization. Initialize the set of nodes to be explored to T = {(x1, P, Q)} where x1 is set to an

arbitrary value (typically x1 = (1
m

, 1
m

, . . . , 1
m

)). Go to step b.

b. Selection of a Node. If the set T of nodes to be explored is empty, then stop. Otherwise, choose and
remove a node N from T . If N = (x1, P̃ , Q̃) then go to step c, otherwise N = (x2, P̃ , Q̃) and go to step d.

c. Direct Feasibility Test (Q). If Q̃(x1) is infeasible then go to step b, otherwise choose (x2, α1) that

optimizes Q̃(x1), update (x1, α2) that optimizes P̃ (x2) and then go to step e.

d. Direct Feasibility Test (P). If P̃ (x2) is infeasible then go to step b, otherwise choose (x1, α2) that
optimizes P̃ (x2), update (x2, α1) that optimizes Q̃(x1) and then go to step e.

e. Branching. Branch on the variable associated to the largest complementarity product x1i(E1α1−Ai·x2)

or (αt
2E2 − xt

1B·j)x2j :

either T = T ∪ {(x2, P
i, Q̃), (x1, P̃ , Qi)}

or T = T ∪ {(x1, P̃ , Qj), (x2, Pj , Q̃)}.
In the case where all complementarity product are already forced to be null, (x1, x2) is an equilibrium strategy:
let T = T ∪ {(x2, P

i, Q̃) : x1i > 0} ∪ {(x1, P̃ , Qi) : Ai.x2 < α1}

∪ {(x1, P̃ , Qj) : x2j > 0} ∪ {(x2, Pj , Q̃) : xt
1B.j < α2}.

Go to step b.

Steps c and d are the backtracking steps. In each of them, only one problem P̃ or Q̃ is checked for

feasibility as only one differs from its father. When this problem is feasible, these steps end with feasible

strategies x1 and x2 which are vertices of X1 and X2. Step e creates new nodes in the tree. When the depth

of the current node is less than or equal to n + m, two new sons are created. Otherwise,the corresponding
solution defines equilibrium strategies since all the complementarity conditions are satisfied, and feasibility

is insured by Steps c and d; a new son is created for each strictly positive variable or slack variable.

3.2 EχMIP Algorithm

The EχMIP algorithm is based on a 0− 1 mixed linear formulation of a bimatrix game, a polymatrix game

or the sequential form of a two-persons extensive game. EχMIP enumerates all extreme Nash equilibria of

these kind of games.

3.2.1 EχMIP Pseudo-Code

Step 0: Initialization

Set the following objects as:

- P ; 0 − 1 mixed linear master program.

- X ; Set of coninuous variables in P .

- U ; Set of binary variables in P .

- NE = ∅; Set of Extreme Nash Equilibria.
- N = 0; Depth level in the principal branching tree.

- R; Root node of the principal branching tree, with P as current program.

- C; Current node.

- xq
i , uq

i ; Continuous and binary variables representing the qth strategy (q = 1, 2, .., mi) of player i (i = 2, .., n).
Set C = R and Go to Step 1.

Step 1: Solving and Memorizing

If N ≤ |X |, Solve the current node’s program.

If the prorgam is infeasible Go to Step 3.

Else: If a solution ê is found: If ê /∈ NE, add ê to NE and Go to step 2.

Les Cahiers du GERAD G–2010–35 11

Step 2: Secondary Branching

If the current node is on the principal branching tree, set the binary variables to û (û ∈ U) there values in ê

and ∀ xq
i ∈ X , such as x̂q

i > 0: Add the branch xq
i = 0 on a new secondary branching current node and Go

to step 1.

Step 3: Principal Branching

If the current node is on the principal tree, then this node will not lead to any equilibrium. STOP.

Else, go back to the father node on the principal branching tree and add aconstraint to eliminate the com-

bination û of binary variables in ê.
Choose a binary variable uq

i ∈ U , to branch on, such as no branching was already set on this variable on the

preeding nodes and such as xq
i has the colest value to 0.5 (choose arbitrarily in case of equality).

Set p = N + 1 :

If p ≤ |X | set N = p and:
- Add the branch uq

i = 0,

If ûq
i = 1 in û: delete the elimination constraint on û,

Go to step 1.

- Add the branch uq
i = 1,

If ûq
i = 0 in û: delete the elimination constraint on û,

Go to Step 1.

Else Go to Step 4.

Step 4: END

Display |NE| and all extreme equilibria in NE.

4 XGame-Solver Desciption

At the beginning of our project our main goal was to design a set of algorithms allowing enumeration of

all extreme Nash equilibria of some games and to propose some automatic refinement methods for these

enumerated equilibria. We tried first of all an enumeration based on the interaction between our algorithms

and Cplex optimization software. Importance of numerical precision increased when we tried to have our own
implementation of the Simplex algorithm. In fact, implementing exact arithmetics appeared to be problematic

without the use of libraries. For our Xgame-Solver Software we decided to use an exact arithmetics library

that is simple to implement and very efficient. We found a large number of implementations available for the

use of the scientific community. While some of them appeared to be difficult or impossible to use with our

implementation of the Simplex algorithm, Matt McCutchen’s Big Integer Library in C++ proved to be very
efficient and fitted perfectly to our project needs.

4.1 Exact Arithmetics Implmentation

In our implementation of exact arithmetic, data is always stored using rationals. A rational is a pair of

integers, a numerator and a denominator. The exact arithmetic classes consist of, a BigInteger class, a

Rational class, a Simplex class and a Node class.

The BigInteger class defines the new type of integers to be used during the enumeration of the extreme

equilibria. This class also overloads the elementary operators for these big integers. During the implementa-

tion of EEE and EχMIP we observed that it may happen, that the numerator or denominator of a rational

exceeds the value of the largest representable integer INTMAX. There is no doubt that the use of this class

increases the overall enumeration time. However, the use of exact arithmetics represented a very interesting
challenge which made computing time not be considered as the main objective of this work.

The Rational class is based on the Biginteger class. A rational consists of two big integers, a numerator

and a denominator. After overloading the elementary operations for these rationals, a Greatest Common

denominator function is applied. The Simplex class defines a Dictionary [6] and the set of simplex algorithm

(Dantzig, 1951) operations that will be applied to this dictionary in order to find an extreme equilibrium.
A dictionary contains an array of rationals. These rationals represent the coefficients of the variables in the

dictionary.

12 G–2010–35 Les Cahiers du GERAD

The Node class defines a framework for the EEE and EχMIP algorithms. Each node contains the current

dictionary and a pointer to its father. This class contains branching methods that permits to obtain a certain

number of sons nodes from a father node. In general, EEE can be used to enumerate alle xtreme equilibria of
a bimatrix game or a two person extensive game. The EχMIP algorithm can be used in order to enumerate

all extreme equilibria of a bimatrix game, a three person polymatrix game, or the sequence form of a two

person extensive game. The XGame Solver software uses this implementation of the EχMIP algorithm and

is available on its site http://www.XGame-Solver.net for free download.

4.2 Main User Interface

To enable the scientific community benefit from our work we tried to develop a user oreinted application that

is very easy to understand and to use. Figure 1 presents the Main interface of the XGame-Solver software.

Figure 1: XGame main interface

First of all, one can notice that users can choose to load any existing game file with ”.xga” (XGame)

extension or create a new game file. Once a game file is open, users may choose to edit the content of the

payoff matrices before solving.

4.3 Create New Game

Users may decide to create their own game files using the Create new game icon. This icon calls an interface

to be used to define the kind of game to create and the different size parameters.

4.4 Create and Explore Library

Users may create their own game library or explore an existing one using the File menu and then the Library

menu.

4.5 Edit Solvers

User may also view and edit the set of algorithms assigned to each type of games. This interface contains

also a brief definition of each kind of game to help beginners find the best answers to their needs.

Les Cahiers du GERAD G–2010–35 13

Figure 2: Create new game

Figure 3: Explore library

Our intention is also to extend the range of abilities of XGame Solver by implementing other algorithms

solving Bimatrix games and other kinds of games. We believe that it would be very helpfull for the scientific

community.

Concerning bimatrix games and sequential forms of two person extensive games, users may choose to enu-
merate all extreme Nash equilibria using EEE or EχMip. One can notice also that users may solve bimatrix

games, sequential forms of two person extensive games and polymatrix games simultaneously. Several runs

of the algorithms could be launched on different examples at the same time. Users have also the possibility

to stop any running process during its execution using the Red X icon.

4.6 Edit Icons

In addition to the classical edition icons: Copy, Cut, Paste, we added some other icons to the edit menu:

Add row above, Add row below, Add column left, Add column right, Remove rows, Remove columns. There is

also a possibility to apply a predefined mathematical tranformation on a matrix using: Transpose, Identity,

Factor.

4.7 Output window

Once an enumeration process is executed the output of the chosen algorithm appears in the bottom window.
Users have the possibility to hide or show this window. They can also enlarge this window and scroll up and

down or change its font. Finally, users have the possibility to save the output giving a name of their choice

to the ouput file.

14 G–2010–35 Les Cahiers du GERAD

Figure 4: Edit solvers

Figure 5: Tool bar

Figure 6: Output window

Les Cahiers du GERAD G–2010–35 15

4.8 Post Processing

XGame provides three post-processings by default: Nash Subsets, Quasi-Strong and Perfect. Nash Subset
post-processing identifies maximal Nash subsets of bimatrix games. Quasi-Strong post-processing detects

extreme quasi-strong equilibria and Perfect post-processing detects extreme perfect Nash equilibria.

Figure 7: Solver bar

5 Conclusion

The XGame Solver software contains EEE and EχMIP algorithms implementations with exact arithmetics.

We look forward to make the scientific community benefit from this package. Future extensions of our
application may include implementing other equilibrium computation algorithms and other kinds of games.

Users may also implement their own solvers and define their own games to be incorporated using plugins to

the XGame Solver Software.

References

[1] Audet C., Hansen P., Jaumard B., Savard G.: (2001), “Enumeration of all extreme equilibrium strategies
of bimatrix games”, SIAM Journal on Scientific Computing, Vol. 23, No. 1, 323–338.

[2] Audet C., Belhaiza S. Hansen P.: (2006), “Enumeration of all Extreme Equilibria in Game Theory: Bimatrix
and Polymatrix Games”, Journal Of Optimization Theory and Applications, Vol. 129, No. 3, June.

[3] Audet C., Belhaiza S. Hansen P.: (2007), “Perfect and Proper refinements of all extreme Nash equilibria for
Bimatrix games”, Les Cahiers du GERAD, G–2007–85, November.

[4] Audet C., Belhaiza S. Hansen P.: (2009), “A new sequence form approach for the enumeration and refinement
of all extreme Nash equilibria for extensive form games”, International Game Theory Review, Vol. 11, No. 4.

[5] Audet C., Belhaiza S. Hansen P.: (2010), “A note on Bimatrix Game Maximal Selten Subsets”, Les Cahiers

du GERAD, G–2010–03, January.

[6] Chvátal,V.: (1998), “Linear programming,” New York, Freeman.

[7] Júdice J.J., Mitra G.: (1988), “Reformulations of mathematical programming problems as linear complemen-
tarity problems and investigation of their solution methods”, Journal of Optimization Theory and Applications,
Vol. 57, 123–149.

[8] Koller D., Megiddo N.: (1992), “The complexity of two-person zero-sum games in extensive form”, Games

and Economic Behavior, 4, 528–552.

[9] Kuhn H.W.: (1953), “Extensive games and the problem of information”, in: Contributions to the theory of

Games II, H.W. Kuhn and A. Tucker (eds.), Annals of Mathematics Studies, 28, Princeton Univ. Press, 193–216.

[10] Millham C.B.: (1974), “On Nash Subsets of Bimatrix Games”, Naval Research Logistics Quarterly, Vol. 21,
No. 2, 307–317.

[11] Nash J.F.: (1950), “Equilibrium Points in n-Person Games”, Proceedings of the National Academy of Sciences,
Vol. 36, No. 1, 48–49.

[12] Romanovskii I.V.: (1962), “Reduction of a game with complete memory to a matrix game”, Soviet Mathematics,
3, 678–681.

[13] von Stengel B.: (1996), “Efficient computation of behavior strategies”, Games and Economic Behavior, 14,
220–246.

[14] von Stengel B., van den Elzen A., Talman D.: (2002), “Computing normal form perfect equilibria for
extensive two-person games”, Econometrica, Vol. 70, No. 2, 693–715.

	Introduction
	Formulations
	Bimatrix Games
	EEE on bimatrix games
	E Mip on bimatrix games

	Sequential form of two-persons extensive games
	Polymatrix Games

	Algorithms
	EEE Algorithm
	EEE on Bimatrix games
	EEE Pseudo-Code on Sequential form of two persons extersive game

	E MIP Algorithm
	E MIP Pseudo-Code

	XGame-Solver Desciption
	Exact Arithmetics Implmentation
	Main User Interface
	Create New Game
	Create and Explore Library
	Edit Solvers
	Edit Icons
	Output window
	Post Processing

	Conclusion

