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Abstract

In this paper, we introduce the notion of dynamic copulas to model serial dependence as well as in-
terdependence between several time series. The proposed methodology is totally different from the usual
time-varying copula modeling of time series in which only the dependence between the serially indepen-
dent innovations is taken into account and time series must be modeled individually. Here no modeling of
univariate time series in necessary and we tackle at the same time serial dependence and interdependence.
We discuss issues related to parameter estimation as well as tests of goodness-of-fit. We treat in greater
detail two families, specifically the meta-elliptic copulas and Archimedean copulas. The methodology is
then applied to model the dynamic dependence between the Canadian/US exchange rate and value of oil
futures during the last ten years.

Key Words: Copulas, Markov processes, multivariate time series, serial dependence.

Résumé

Dans cet article, nous introduisons la notion de copule dynamique pour modéliser la dépendance sérielle
ainsi que l’interdépendance entre plusieurs séries chronologiques. La méthodologie proposée est totale-
ment différente de celles habituellement proposée, où la copule varie dans le temps et modélise seulement
l’interdépendance entre les bruits blancs de séries chronologiques, chacune devant être modélisée. Ici, au-
cun modèle n’est nécessaire pour les chroniques univariées et nous modélisons à la fois l’interdépendance
et la dépendance sérielle. Nous abordons aussi l’estimation et les tests d’adéquation de ces modèles.
Deux types de copules retiennent notre attention, soient les copules méta-elliptiques et les copules
archimédiennes. La méthodologie est ensuite appliquée à la modélisation de la dépendance dynamique
entre le taux de change Canada/US et la valeur de contrats à terme sur le pétrole, pour les dix dernières
années.

Acknowledgments: Funding in partial support of this work was provided by the Natural Sciences
and Engineering Research Council of Canada, the Fonds québécois de la recherche sur la nature et les
technologies, and the Institut de finance mathématique de Montréal. The first author thanks the faculty
and staff at the Department of Finance at Singapore Management University for their hospitality.
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1 Introduction

The understanding and proper modeling of dependence between financial assets is an important issue. The
2008 crisis, and specifically the structured products that were collateralized by pools of sub-prime mortgages,

provided us with a very tangible example of the devastating financial and economic repercussions that can

result from overly naive and simplistic assumptions about default ”contagion”. Given that financial insti-

tutions were clearly more concerned with generating fees that calculating risk, a better understanding of

dependence might not necessarily have been enough to avert the recent crisis. Nonetheless, as market recover
from the recent debacle and we move forward, it is fundamental that we develop tools that can help mitigate

the possibility of a similar future meltdown.

Dependence is not just an “academic” fantasy, and is by no means limited to complex financial products.

Let’s consider the following question, which was recently posted by a reader of the financial section of the

Globe and Mail:

The Canadian dollar always seems to go up [with respect to the US dollar] when oil prices rise.

Is there a direct correlation between the two?

Although the reader probably assumed there would be a simple answer to his question, the reality is

that there are many factors that drive the relationship between the two variables. The journalist’s response1

identified several economic and financial factors underlying the apparent relationship between the two vari-
ables. These included the simple fact that an increase demand for a commodity naturally leads to an increase

demand for the currency of the country that produces the commodity. However, citing the economist Dale

Orr, he also indicated that the causal relation can go the other way: weakness in the US dollar can lead to

demand for commodities such as oil as a hedge against exchange rate risk, pushing up oil prices. Another
theory suggests that countries that purchase oil will buy more when the U.S. dollar is down, because oil is

priced in U.S. currency.

Irrespective of the economic or financial factors underlying the relationship, can we at least prove that

the answer to this question is yes? In order to provide a clear answer, we need to analyze the relationship

from a quantitative perspective. The mathematical translation of our reader’s question can be stated as
follows: Given two time series Xt and Yt, does there exist a positive dependence between their returns

RXt = log(Xt/Xt−1) and RYt = log(Yt/Yt−1)? And perhaps even more importantly, what is the strength and

stability of this relationship?

There is a plethora of articles in Economics, Finance and Actuarial sciences literature dealing with

dependence between time series that can help address these questions. One thing that is certain, however,
is that one cannot simply rely on the traditional (Pearson) correlation measure. After all, it is well-known

that outside the realm of Gaussian models, correlation is a poor measure of dependence; see e.g., Embrechts

et al. (2002). In fact, the best way to measure or quantify dependence between two variables is the so-

called copula (also called dependence function). As opposed to the fully parametric approaches which model

the marginal distributions along with the dependence, the semi-parametric copulas (a precise definition of
copula will be presented in the next section) focus exclusively on the dependence. The major advantage,

therefore, in using copulas is that one does not require information about the marginal distributions of the

variables in order to study the dependence. After all, the marginal distributions provide no useful information

regarding the dependence and are simply nuisance parameters. Erroneous assumptions as to the nature of
the distributions as well as estimation errors of their parameters will feed through to the estimation of the

dependence. Eliminating the marginal distributions from the analysis renders the study of the dependence

much more reliable and robust.

When copulas are used, they are usually fitted to observations or even to residuals of time series (e.g.,

GARCH models). The next issue is the evaluation of the goodness-of-fit. This can be of paramount im-
portance in certain fields of applications, such as in credit risk modeling, where the incorrect choice of the

1Richard Blackwell: “Do oil and loonie share the same flight?”, The Globe and Mail, June 03, 2009. A copy of the complete
article is available at http://www.stockhouse.com/blogs/ViewDetailedPost.aspx?p=92442
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dependence model can have disastrous consequences. The importance of choosing the right model was em-

phasized in a number of papers prior to recent financial crisis, e.g. Berrada et al. (2006). However the topic

of goodness-of-fit for copulas is only at its early stages of development and there is almost no rigorous method
of goodness-of-fit available using residuals. Even the recent literature of goodness-of-fit for copulas based on

serially independent observations contains many errors. See, e.g., Genest et al. (2009) for a review.

Perhaps even more important is the fact that in most articles, the (possible) serial dependence is ignored

or treated separately from interdependence, when modeling dependence between several time series. And

when serial dependence is considered, it is done so by modeling the individual series, while interdependence
is modeled through a copula associated with the (serially independent) innovations. See, e.g., van den

Goorbergh et al. (2005) or Chen and Fan (2006). See also Yi and Liao (2010) for a similar structure of

dependence. However, the use of residuals of parametric models without any modification to the inference

procedure leads, in general, to incorrect results. There is always a price to pay when parameters are estimated;

see e.g., Ghoudi and Rémillard (2004) for examples of applications involving time series. Furthermore, there
is no formal tests of goodness-of-fit yet for these models. It is easy to see that the parametric bootstrap

approach proposed by Genest and Rémillard (2008) do not extend to innovations. For more details, see

Rémillard (2010).

The introduction of dynamic copulas represents an important step in attempting to fill the gap of modeling

intra/interdependence. That idea generalizes the introduction of copulas for modeling serial dependence in
a univariate time series, as proposed in Darsow et al. (1992). However the authors never discussed inference

procedures. In addition to serial dependence of each time series, dynamic copulas models interdependence,

i.e., dependence between time series. To illustrate the concept, consider two Markovian (stationary) time

series X and Y . Usually, one models the interdependence, that is, the dependence between Xt and Yt.
Since the time series are stationary, that dependence is not time-varying. The idea behind dynamic copulas

is to model the dependence between the four variables Xt−1, Yt−1, Xt and Yt, taking into account both

interdependence and serial dependence.

Modeling using dynamic copulas is quite different from the concept of time-varying copulas proposed in

van den Goorbergh et al. (2005), and extended in Chen and Fan (2006). In these papers, copulas are only
used to model the interdependence between serially independent innovations and this dependence may vary

over time. First, the individual time series must be modeled, and then the resulting residuals are used to

estimate the parameters of the time-varying copulas of the innovations. The approach of Patton (2006) is a

little bit different since he defines conditional copulas, but when it comes to implementing them, he basically

does the same thing as van den Goorbergh et al. (2005) and Chen and Fan (2006), by letting the parameters
of a given copula family depend on lagged values of the series. The approach of Yi and Liao (2010) is closely

related to the one of Patton (2006), but instead of dealing with innovations, they use a Rosenblatt’s transform

and add a copula for interdependence. Although the notion of time-varying dependence is quite appealing,

there are many sensitive issues to address. These include that fact that the inference is very delicate, the
time-series are not stationary, and the relationship between the parameters and exogenous variables is, to

say the least, far from obvious and quite subjective.

In this paper we also use conditional copulas, however they occur naturally when the serially dependent

time series are simulated due to the Markovian nature of the variables. Working with dynamic copulas is

much less complicated, and the inference is relatively straightforward, even if it is a little more involved than
for serially independent time series. The cost, however, is the need to assume stationarity and a Markovian

structure. Fortunately, the main advantage is that one does not need to model the individual time series or

calculate their residuals, which is the case of the time-varying approach of van den Goorbergh et al. (2005),

Chen and Fan (2006) and Patton (2006). Note that Harvey (2010) proposes an interesting approach of

detecting changes in dependence between time series without having to model them. Since our methodology
is based on stationarity, one should always apply such tests before using dynamic copulas. The approach of

Harvey (2010) is different from that of Rémillard and Scaillet (2009) where the time of change must be given.

Finally, it is worth mentioning that Guégan and Zhang (2010) also propose a method of detecting changes

in a copula using kernel estimates of copulas and residuals. Their setting is similar to the one of van den
Goorbergh et al. (2005) and Chen and Fan (2006) since the time-varying copulas are fitted to residuals. The
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ideas are interesting but no rigorous proof whatsoever is given that their methodology works since they use

residuals. Giacomini et al. (2009) is also closely related to van den Goorbergh et al. (2005) and Guégan and

Zhang (2010) and discuss the problem of change-point detection.

The remainder of the paper is structured as follows. In Section 2, we recall some results on known

families of copulas (meta-elliptic and Archimedean) and introduce dynamic copulas. Section 3 is dedicated

to estimation of parameters and tests of goodness-of-fit. Finally, in Section 4 we give an example of application

of the methodology with a data set consisting of oil futures and Canada/US exchange rate, answering the

question about positive dependence between these two economic variables. Appendices B and A contains
results useful for implementations, while the main results are proved in Appendix C.

2 Dynamic copulas

In this section, we start by recalling the definition of a copula. Then we give some examples of families of

copulas that exist for any dimension. Finally we define dynamic copulas and provide some examples.

If H is a d-dimensional distribution function with continuous marginal distributions F1, . . . , Fd, then

according to Sklar (1959), there exists a unique distribution function C with uniform margins over [0, 1] such

that
H(x1, . . . , xd) = C{F1(x1), . . . , Fd(xd)}, (1)

for all x = (x1, . . . , xd) ∈ Rd. It follows that for any random vector X = (X1, . . . , Xd) having distribution

function H , denoted X ∼ H , then U = (U1, . . . , Ud), with Uj = Fj(Xj), j = 1, . . . , d, has distribution
function C. Note that each component of U is uniformly distributed over [0, 1]. One can easily check that

the variables X1, . . . , Xd are independent if and only if C = C⊥, the independence copula, defined by

C⊥(u1, . . . , ud) =

d
∏

j=1

uj, for all u = (u1, . . . , ud) ∈ [0, 1]d.

An interesting property of copulas is their invariance under increasing transformations of the components.

More precisely, if Yj = Tj(Xj), where each function Tj is increasing, j = 1, . . . , d, then the copula of Y is the
same as the copula of X .

With the exception of the Pearson’s correlation (which does not exists if one of the two variables has an

infinite second moment), almost all known measures of dependence between pairs of random variables depend

only on the copula. For instance, Spearman’s rho can be expressed as ρS = 12
∫ 1

0

∫ 1

0 {C(u1, u2)−u1u2}du1du2,

while Kendall’s tau is defined as τ = −1+4
∫ 1

0

∫ 1

0
C(u1, u2)dC(u1, u2). In comparison, Pearson’s correlation,

provided it exists, can be expressed as

ρP =

∫ ∞

−∞

∫ ∞

−∞
[C{F1(x1), F2(x2)} − F1(x1)F2(x2)] dx1dx2.

It is then obvious that by varying the marginal distribution functions F1, F2, leaving the copula unchanged,

one changes in general the value of ρP , except of course when C is the independence copula C⊥. For more

details on copulas and measures of dependence, one can refer to Nelsen (2006), Joe (1997), and Cherubini
et al. (2004).

2.1 Archimedean copulas

Archimedean copulas were first defined by Genest and MacKay (1986). A copula C is said to be Archimedean
(with generator φ) when it can be expressed in the form

C(u1, . . . , ud) = φ−1 {φ(u1) + · · · + φ(ud)} ,

where φ : (0, 1] → [0,∞), is a bijection such that φ(1) = 0 and

(−1)i
di

dxi
φ−1(x) > 0, 1 ≤ i ≤ d.
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Note that the generator is unique up to a constant.

If the generator yields a copula for any d ≥ 2, then φ−1 is necessarily the Laplace transform of a non-

negative random variable ξ (Marshall and Olkin, 1988), i.e., φ−1(s) = E
(

e−sξ
)

, for all s ≥ 0 .

Moreover, if Ũ1, . . . , Ũd are independent and uniformly distributed on [0, 1], then defining

Ui = φ−1
{

− log(Ũi)
ξ

}

, with i = 1, . . . , d, and setting U = (U1, . . . , Ud), it follows that U ∼ C. As a

consequence, these Archimedean copulas can be seen as special cases of one-factor models.

Table 1 gives the generators for three well-known Archimedean copulas: Clayton, Frank, and Gumbel-

Hougaard families. These three classes share the interesting property that the copula exists for any dimension,

for the values of parameters listed in the table. See Joe (1997) and Nelsen (2006) for further examples on
copulas.

Table 1: Multivariate Archimedean copulas and domain of parameter.

Family φ(t) Range of θ Kendall’s tau

Clayton (t−θ − 1)/θ (0,∞) θ/(θ + 2)

Frank − log

(

1 − θt

1 − θ

)

(0, 1) log(θ)2+4 log(θ)+4dilog(θ)
log(θ)2

Gumbel-Hougaard | log t|1/θ (0, 1) 1 − θ

Here, dilog(x) =
R x
1

log t
1−t

dt stands for the dilog function.

For the Clayton family of parameter θ ∈ (0,∞), the associated ξ has Gamma distribution with parameters
(1/ξ, 1) since E

(

e−sξ
)

= (1 + s)−1/θ. For the Frank family with parameter θ ∈ (0, 1), the associated ξ is

discrete and has a logarithmic series distribution given by P (ξ = k) = 1
log(1/θ)

(1−θ)k

k , k = 1, 2, . . ., since

E
(

e−sξ
)

= log
{

1 − (1 − θ)e−s
}

/ log(θ) =
1

log(1/θ)

∞
∑

k=1

(1 − θ)k
e−ks

k
.

Finally, for the Gumbel-Hougaard family with parameter θ ∈ (0, 1), ξ has a positive stable distribution

of parameter θ, since E
(

e−sξ
)

= e−s
θ

.

2.2 Meta-elliptic copulas

Meta elliptic-copulas are simply copulas associated with elliptic distributions through relation (1), and they

are quite popular in the Finance literature, specially the Student copula and the (now infamous) Gaussian

copula.2 Recall that a vector Y has an elliptic distribution with generator g and parameters µ and (positive

definite symmetric matrix) Σ, denoted Y ∼ E(g, µ,Σ), if its density h is given by

h(y) =
1

|Σ|1/2 g
{

(y − µ)⊤Σ−1(y − µ)
}

, y ∈ R
d,

2Felix Salmon:“Recipe for disaster: The formula that killed Wall Street”, Wired Magazine, March 2009. Available at
http://www.wired.com/techbiz/it/magazine/17-03/wp quant
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where
πd/2

Γ(d/2)
r(d−2)/2g(r) (2)

is a density on (0,∞).3 In fact it is the density of ξ = (Y − µ)⊤Σ−1(Y − µ).

In order to generate Y , simple set Y = µ+ξ1/2A⊤S, where A⊤A = Σ, ξ has density (2) and is independent

of S, and S is uniformly distributed over the d-dimensional sphere Sd = {y ∈ Rd; ‖y‖ = 1}.

It is easy to check that if Y ∼ E(g, µ,Σ) then Z = ∆−1(Y − µ) ∼ E(g, 0, R), where ∆ is the diagonal

matrix such that ∆ii =
√

Σii and R is the correlation matrix associated with Σ. It follows that the underlying

copula depends only on g and R, since a copula is invariant by increasing transformations.

Here are some general families of elliptic distributions.

Table 2: Generators of some d-dimensional elliptic distributions.

Family Generator

Gaussian g(r) =
1

(2π)d/2
e−r/2

Pearson type II g(r) =
Γ(α + d/2)

πd/2Γ(α)
(1 − r)α−1, where 0 < r < 1 and α > 0

Pearson type VII g(r) =
Γ(α+ d/2)

(πν)d/2Γ(α)
(1 + r/ν)−α−d/2, where α, ν > 0

Remark 1 The case α = ν/2 for the Pearson type VII corresponds to the multivariate Student, while if

α = 1/2 and ν = 1, it corresponds to the multivariate Cauchy distribution.

Suppose that X =

(

X1

X2

)

∼ E(g, 0,Σ), where Σ =

[

Σ11 Σ12

Σ21 Σ22

]

.

It is easy to check that X1 ∼ E(g1, 0, R11), where

g1(r) =

∫

Rd2

g(‖x2‖2 + r)dx2 =
2πd2/2

Γ(d2/2)

∫ ∞

0

sd2−1g(s2 + r)ds. (3)

Similarly, X2 ∼ E(g2, 0, R22), where

g2(r) =

∫

Rd1

g(‖x1‖2 + r)dx1 =
2πd1/2

Γ(d1/2)

∫ ∞

0

sd1−1g(s2 + r)ds. (4)

As a consequence, the density of any marginal distribution of a d-dimensional elliptic distribution with

generator g and parameters (0, R) is

f(x) =
π(d−1)/2

Γ(d−1
2 )

∫ ∞

0

s(d−3)/2g(s+ x2)ds, x ∈ R. (5)

For example, if g is the generator of the d-dimensional Pearson type VII with parameters (α, ν), then gi
is the generator of the di-dimensional Pearson type VII with parameters (α, ν), i = 1, 2. One can also show

that if g is the generator of the d-dimensional Pearson type II with parameter α, then gi is the generator of

the di-dimensional Pearson type II with parameter α+ d3−i, i = 1, 2.

3For any positive continuous function f ,
R

Rd f(‖x‖2)dx = κd

R

∞

0
f(r)rd/2−1dr, where κd = πd/2/Γ(d/2).
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In particular, the marginal distributions of a Pearson type VII is a Pearson type VII, with density

f(x) =
Γ(α+ 1/2)

(πν)1/2Γ(α)
(1 + x2/ν)−α−1/2.

For the Pearson type VII, E(ξp) <∞ if and only if p < α. Moreover, W = ξ/(ξ + ν) ∼ Beta(d/2, α).

2.3 Dynamic copulas

Our aim here is to present a framework for the modeling of dependence for d-dimensional time series {Xt}nt=0

using copulas. That framework is much more general than the one considered in Yi and Liao (2010).

Too often in actuarial and financial applications, serial dependence is not taken into account when model-

ing dependence between several time series using copulas. To try to fill that gap, we propose to use dynamic

copulas.

Here we do not assume any structure for the time series nor do we need to introduce innovations. All
we assume is that the process X is Markovian, stationary, has continuous marginal distributions F1, . . . , Fd
(not time-dependent due to stationarity) and that C(u, v) is the (dynamic) copula associated with the 2d-

dimensional vector (Xt−1, Xt). It follows that the copula D(u) = C(u,1) of Xt−1 is the same as the copula

of Xt, i.e., D(v) = C(1, v). Writing F the transformation x = (x1, . . . , xd) 7→ F (x) = {F1(x1), . . . , Fd(xd)},
then one can define Ut = F (Xt) and U is a d-dimensional time series so that (Ut−1, Ut) ∼ C, and Ut ∼ D.

Note that because F is not known, the (natural scale)4 Markovian stationary time series U is not observable.

To estimate parameters of the dynamic copula or to simulate observations for the process Ut, one needs

to compute the conditional distribution of Ut given Ut−1. With this conditional distribution is associated

what we call the conditional copula. In a univariate time series context, this would correspond to the copula
associated to serial dependence. See, e.g. Fermanian and Wegkamp (2004).

In what follows, we study the properties and construction of the conditional copula in a general context.

It is then applied to multivariate time series.

2.3.1 The conditional copula

Let H(x, y) be cumulative function of the joint distribution of the d1-dimensional random vector X and

d2-dimensional random vector Y , both having continuous marginal distributions F1, . . . , Fd1 and G1, . . . , Gd2
respectively. Invoking Sklar’s theorem (Sklar, 1959), we know that there exists a unique (d1+d2)-dimensional

copula C so that
H(x, y) = C {F1(x1), . . . , Fd1(xd1), G1(y1), . . . , Gd2(yd2)} . (6)

Assuming that the densities fi of Fi, gi of Gi and c of C exist, the density of H is

h(x, y) = c(F1(x1), . . . , Fd1(xd1), G1(y1), . . . , Gd2(yd2)) ·
d1
∏

i=1

fi(xi) ·
d2
∏

j=1

gj(yj), (7)

where c is the density of the copula C.

Using (6) and (7), the distribution function HX of X is

HX(x) = C(F1(x1), . . . , Fd1(xd1), 1, . . . , 1),

with density

fX(x) = cX(F1(x1), . . . , Fd1(xd1))

d1
∏

j=1

fj(xj).

4The term “natural scale”is used because the marginal distributions of the components of Ut are uniformly distributed over
[0, 1].
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Hence, setting u = F (x) = {F1(x1), . . . , Fd1(xd1)} and v = G(y) = {G1(y1), . . . , Gd2(yd2)}, one can write the

conditional density fY |X of Y given X = x as

fY |X(y;x) =
f(x, y)

fX(x)
= cV |U (v;u)

d2
∏

j=1

gj(yj), (8)

where

cV |U (v;u) =
c(u, v)

cU (u)
(9)

is the conditional density of V = G(Y ) given U = F (X) = u. Note that it is not the density of a copula in

general. However the associated (unique) copula is called the conditional copula. This is consistent with the

definition given in Patton (2006). In that article, a result similar to the following proposition was called an

extension of Sklar’s Theorem.

Proposition 2 The density in (9) is the density of V = {G1(Y1), . . . , Gd2(Yd2)} given U = {F1(X1), . . . ,

Fd1(Xd1)} = u. Therefore the conditional copulas of V given U and Y given X are the same.

Here are some examples of applications.

2.3.2 Dynamic Gaussian copula

Suppose that

X =

(

X1

X2

)

∼ Nd1+d2

([

µ1

µ2

]

,Σ =

[

Σ11 Σ12

Σ21 Σ22

])

,

so that X1 ∼ Nd1(µ1,Σ11) and X2 ∼ Nd2(µ2,Σ22) are both Gaussian multivariate random vectors. The

associated copula is the so-called Gaussian copula with parameter R, denoted CGd1+d2,R, where R is the

correlation matrix defined corresponding to Σ.

Further set Ω = Σ22 − Σ21Σ
−1
11 Σ12, and B = Σ21Σ

−1
11 . Then, it is well-known that the conditional

distribution of X2 given X1 = x1 is Gaussian, with mean µ2 + B(x1 − µ1) and covariance matrix Ω. Note

also that |Σ| = |Σ11||Ω|.

Let γ =
{

Φ−1(u1), . . . ,Φ
−1(ud1)

}

and ζ =
{

Φ−1(v1), . . . ,Φ
−1(vd2)

}

, where Φ is the distribution function

of a standard Gaussian variable. It follows that (9) becomes

cV |U (v;u) =

1
(2π)d2

× 1√
|Ω̃|

exp
{

− 1
2 (ζ −Bγ)⊤Ω̃−1(ζ −Bγ)

}

d2
∏

i=1

1√
2π

exp
(

− 1
2ζ

2
i

)

=
1

√

|Ω̃|
exp

{

−1

2
(ζ −Bγ)

⊤
Ω̃−1 (ζ −Bγ) +

1

2
ζ⊤ζ

}

, (10)

where (Ω̃)ij =
Ωij√
ΩiiΩjj

, i, j ∈ {1, . . . , d2}, is the correlation matrix associated with Ω.

Since the conditional Gaussian distribution is Gaussian, the conditional copula is Gaussian as well. These

results are summarized in the following lemma.

Lemma 3 Let R =

[

R11 R12

R21 R22

]

be a correlation matrix and suppose that (U, V ) ∼ Cd1+d2,R. Then the

conditional copula of V given U = u, i.e. the copula associated with the conditional distribution of V given

U = u ∈ (0, 1)d1 , is the Gaussian copula with correlation matrix Ω̃.

Using the previous calculations, one can propose an algorithm for generating a Markovian time series

having a dynamic Gaussian copula CG2d,R.
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Algorithm 1 (Dynamic Gaussian copula) To generate a times series {Ut}nt=0 with stationary distribu-

tion Cd,R11
and joint distribution of (Ut−1, Ut) ∼ CG2d,R, with R =

[

R11 R12

R21 R11

]

, do the following steps:

• Generate X0 = (X01, . . . , X0d) ∼ Nd(0, R11) and set U0 = {Φ(X01), . . . ,Φ(X0d)};
• For t = 1 to n,

– Generate Vt ∼ Nd(0,Ω);

– Set Xt = Vt +B ×Xt−1 and Ut = (Φ(Xt1), . . . ,Φ(Xtd)).

2.3.3 Dynamic meta-elliptic copulas

Suppose now that X =

(

X1

X2

)

∼ E(g, 0, R), with correlation matrix R =

[

R11 R12

R21 R22

]

.

As before set Ω = R22 −R21R
−1
11 R12, and B = R21R

−1
11 . Then, |R| = |R11||Ω|, and

x⊤R−1x = (x2 −Bx1)
⊤Ω−1(x2 −Bx1) + x⊤1 R

−1
11 x1,

so X1 ∼ E(g1, 0, R11), and the conditional distribution of X2 given X1 = x1 is E(g2, Bx1,Ω) where g1 is given

by (3) and

g2(r) = g(r + x⊤1 R
−1
11 x1)/g1(x

⊤
1 R

−1
11 x1). (11)

Lemma 4 Let R =

[

R11 R12

R21 R22

]

be a correlation matrix and suppose Cg,R is the copula associated with

the elliptic distribution E(g, 0, R). Then the conditional copula of V given U = u is Cg2,Ω̃, where Ω̃ is the

correlation matrix built from Ω = R11 −R12R
−1
22 R21, and g2 is defined by (11).

For example, if g is the generator of the d-dimensional Pearson type VII with parameters (α, ν), then

g1 is the generator of the d1-dimensional Pearson type VII with parameters (α, ν), and g2 is the generator

of the d2-dimensional Pearson type VII with parameters (α′, ν′), with α′ = α + d1
2 and ν′ = ν + x⊤1 R

−1
11 x1.

In particular, if the joint distribution of (X1, X2) is Student with parameters (ν,R), then the conditional

distribution of X2, given X1 = x1, is E
(

g,Bx1,
(

ν+x⊤

1
R−1

11
x1

ν+d1

)

Ω
)

where g is the generator of a Student with

ν + d1 degrees of freedom. It follows that the conditional copula of a Student with parameters (ν,R) is a
Student with parameters (ν + d1, Ω̃).

Using Lemma 4, we propose an algorithm for generating Markovian time series having a dynamic meta-

elliptic copula. To that end, suppose that F1 is the distribution function associated with density (5).

Algorithm 2 (Dynamic meta-elliptic copula) Let g be the generator of a 2d-dimensional elliptic dis-

tribution. To generate a times series {Ut}nt=0 with stationary distribution Cg1,R1
and joint distribution of

(Ut−1, Ut) ∼ Cg,R, with R =

[

R1 R12

R21 R1

]

, do the following steps:

• Generate X0 = (X01, . . . , X0d) ∼ E(g, 0, R1) and set U0 = {F1(X01), . . . , F1(X0d)};
• For t = 1 to n,

– Generate Vt ∼ E(g2, 0,Ω);

– Set Xt = Vt +B ×Xt−1 and Ut = (F (Xt1), . . . , F (Xtd)).

2.3.4 Dynamic Archimedean copulas

Suppose C is a (d1 + d2)-dimensional Archimedean copula with generator φ. Set

hd1(s) = (−1)d1
dd1

dsd1
φ−1(s).
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Then, by hypothesis, for any j = 0, . . . , d2, (−1)j d
j

dtj hd1 ≥ 0.

Set Au = C(u,1). Then the conditional distribution function Hu of V given U = u, is

Hu(v) = P (V ≤ v|U = u) =

(−1)d1 dd1

dsd1
φ−1(s)

∣

∣

∣

s=φ(A)+
Pd2

j=1
φ(vj)

(−1)d1 dd1

dsd1
φ−1(s)

∣

∣

∣

s=φ(Au)

=
hd1

{

φ(Au) +
∑d2

j=1 φ(vj)
}

hd1 {φ(Au)}
.

It follows that the margins of Hu are given, for any t ∈ (0, 1], by

Fj,u(t) = P (Vj ≤ t|U = u) =
hd1 {φ(Au) + φ(t)}

hd1 {φ(Au)}

and the quantile function is

Qu(s) = φ−1
[

h−1
d1

[shd1{φ(Au)}] − φ(Au)
]

.

Hence, the copula associated with the conditional distribution of V given U = u is

Cu(v) = Hu {Qu(v1), . . . , Qu(vd)}

=
hd

[

−(d− 1)φ(Au) +
∑d

i=1 h
−1
d [vjhd{φ(Au)}]

]

hd{φ(Au)}

= ψ−1
u







d
∑

j=1

ψu(vj)







,

where

ψ−1
u (s) =

hd1{s+ φ(Au)}
hd1{φ(Au)}

and ψu(t) = h−1
d1

[thd1{φ(Au)}] − φ(Au).

It is easy to check that ψu is a generator so Cu is an Archimedean copula.

Therefore, we have proven that the conditional copula of an Archimedean copula is also Archimedean.

Lemma 5 If (U, V ) ∼ Cd1+d2,φ, then the conditional copula, i.e. the copula associated with the conditional

distribution of V given U = u ∈ (0, 1)d1 is Archimedean with generator

ψu(t) = h−1
d1

[thd1{φ(Au)}] − φ(Au), t ∈ (0, 1], (12)

where Au = Cd1+d2,φ(u,1) = Cd1,φ(u) and hd1(s) = (−1)d1 dd1

dsd1
φ−1(s).

Remark 6 For most interesting families, it is quite easy to evaluate hd. For the Frank and Gumbel-Hougaard

families, see Appendices A and B. As for the Clayton family with generator φθ(t) = t−θ−1
θ , one gets

hd(s) = (1 + sθ)−d−1/θ
d−1
∏

j=0

(1 + jθ), s ≥ 0. (13)

Using the previous calculations and Lemma 5, we are able to propose a general algorithm to simulate a

Markovian time series with dynamic copula C2d,φ.

Algorithm 3 (Dynamic Archimedean copula) To generate a Markov chain {Ut}nt=0 with stationary

distribution Cd,φ and joint distribution of (Ut−1, Ut) ∼ C2d,φ, do the following:
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• Generate U0 ∼ Cd,φ;

• For t = 1 to n,

– Set AUt−1
= C2d,φ(Ut−1,1) = Cd,φ(Ut−1);

– Generate Vt ∼ Cd,ψUt−1
, where ψu is defined by (12);

– Set Ut = (Ut,1, . . . , Ut,d), where Ut,j = QUt−1
(Vt,j), j = 1, . . . , d.

Example 7 (Dynamic Clayton copula) For the Clayton family with generator φθ(t) = t−θ−1
θ , it is easy

to check that

Fj,u(t) = P (Vj ≤ t|U = u) = A−(1+d1θ)
u

(

A−θ
u + v−θj − 1

)−1/θ−d1
,

where Au = C(u,1) =
(

∑d1
i=1 u

−θ
i − d1 + 1

)−1/θ

. Setting a = θ/(1 + d1θ), one obtains, for all t ∈ (0, 1),

Qu(t) = F−1
j,u (t) =

(

1 −A−θ
u + t−aA−θ

u

)−1/θ
.

Moreover ψ−1
u (s) =

(

1 + s
1+φ(Au)

)−1/a

for any u ∈ (0, 1] and s ≥ 0, so the conditional copula is the Clayton

copula with parameter a = θ/(1 + d1θ). To our knowledge, this is the only Archimedean family having that
property.

Remark 8 (Special Archimedean families) Suppose that φ−1 is completely monotone, i.e., φ−1 is the

Laplace transform of a non-negative random variable ξ with law µ. These include the Clayton, Frank, and

Gumbel-Hougaard families. In that case, based on Lemma 5,

hd(s) = E
(

ξde−sξ
)

, s > 0,

so since φ(Au) > 0 for any 0 < Au < 1, and it turns out that

ψ−1
u (s) =

hs{s+ φ(Au)}
hs{φ(Au)}

=
E
[

ξde−{s+φ(Au)}ξ]

E
{

ξde−φ(Au)ξ
}

is the Laplace transform of the law νu with density with respect to µ proportional to the bounded function

xde−φ(Au)x. Hence variables having law νu can be easily simulated by the rejection method if one can generate
ξ ∼ µ.

2.4 p-Dynamic copulas

In many applications, a process Xt can depend not just on the previous observation Xt−1, but also of a given

finite number, leading to p-Markov processes. Recall that Xt is a p-Markov process if Yt = (Xt−p+1, . . . , Xt)

is a Markov process. Of course, a 1-Markov process is a Markov process.

The notion of dynamic copula can be easily extended to cover the case of p-Markov processes. One says

that C is a p-dynamic copula if C is the copula associated with (Yt−1, Xt) = (Xt−p, . . . , Xt), whenever X is

a p-Markov process. It follows that for any v ∈ [0, 1]pd, one has D(v) = C(v,1) = C(1, v).

Using the results in Section 2.3, it is then easy to check that if C is meta-elliptic, then the conditional
copula of Up given Vp−1 = (U1, . . . , Up−1) is also meta-elliptic. Similarly, if C is Archimedean, then the

conditional copula of Up given Vp−1 is Archimedean. Furthermore, the results of the next section, stated for

dynamic copulas, extends to p-dynamic copulas.
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3 Estimation and goodness-of-fit

Start with a time series of d-dimensional vectors Xt = (Xt,1, . . . , Xt,d), t = 1, . . . , n, where Cθ is the copula

associated with (Xt−1, Xt). The goal is to estimate θ belonging to a subset O of Rs, without any prior
knowledge of the margins.

First, since the margins are unknown, replace Xt,j by its rank Rt,j among X1,j , . . . , Xn,j . Next, define

the sequence Ût = Rt

n+1 of normalized ranks (pseudo-observations). In doing so, these pseudo-observations

are close to be uniformly distributed over [0, 1], when n is large enough.

Set Dθ(u) = C(u,1) and recall that

Cθ(1, v) = Dθ(v), v ∈ [0, 1]d. (14)

3.1 Estimation by the pseudo maximum likelihood method

An obvious extension of the pseudo maximum likelihood method (Genest et al., 1995) to the Markovian case
consists is maximizing

n
∑

t=2

log







cθ

(

Ût−1, Ût

)

dθ

(

Ût−1

)







(15)

with respect to θ, where cθ is the density of Cθ, assumed to be non vanishing on (0, 1)2d, and dθ is the

density of Dθ. Note that (15) is the logarithm of the conditional density of U2, . . . , Un, given U1, evaluated

at Û1, . . . , Ûd.
5

If cθ is smooth enough as a function of θ (thrice continuously differentiable) and the sequence Ut is ergodic,

then the maximum likelihood estimator obtained by maximizing

n
∑

t=2

log

{

cθ (Ut−1, Ut)

dθ (Ut−1)

}

(16)

with respect to θ behaves nicely. In fact, n1/2 (θn − θ) Θ ∼ Np
(

0, I−1
)

, where

I =

∫

(0,1)2d

ċθ(u, v)ċθ(u, v)
⊤

cθ(u, v)
dudv −

∫

(0,1)d

ḋθ(u)ḋθ(u)
⊤

dθ(u)
du,

where ḟ denotes the gradient with respect to θ.

That follows from the fact that

∆Mt = Gθ(Ut−1, Ut) =
ċθ(Ut−1, Ut)

cθ(Ut−1, Ut)
− ḋθ(Ut−1)

dθ(Ut−1)

form a martingale difference sequence, i.e., E(∆Mt|Ut−1, . . . , U1) = 0, so the central limit theorem for

martingales (Durrett, 1996) applies to yield n−1/2
∑n

t=2 ∆Mt  Np (0, I), if the chain is ergodic, which is

true because cθ(u, v) > 0 for all u, v ∈ (0, 1)d. See Robert and Casella (2004) for more details.

Mimicking the proof in Genest et al. (1995) or using the pseudo-observations methodology developed in
Ghoudi and Rémillard (2004), one can prove that

n1/2
(

θ̂n − θ
)

 Θ + Θ̃ ∼ Np (0, J) ,

5In the case of a p-dynamic copula, one needs to maximize
Pn

t=p+1 log



cθ(V̂t−1,Ût)
dθ(V̂t−1)

ff

, where V̂t =
“

Ût−p+1, . . . , Ût

”

, and

dθ(v) is the density of the copula Cθ(v, 1), v ∈ (0, 1)pd.
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for some covariance matric J , if Gθ(u, v) is continuously differentiable with respect to (u, v) and if (F1,n, . . . ,

Fd,n) (F1, . . . ,Fd) in the Skorohod space D([0, 1])⊗d, where

Fj,n(uj) = n1/2 (Fj,n(uj) − uj) , Fj,n(uj) =
1

n

n
∑

t=1

I(Uj,t ≤ uj),

for all j = 1, . . . , d, and if Θ̃ can be expressed as a linear function of F1, . . . ,Fd. In fact,

Θ̃ = I−1

∫

∇uGθ(u, v){F1(u1), . . . ,Fd(ud)}⊤dCθ(u, v)

+I−1

∫

∇vGθ(u, v){F1(v1), . . . ,Fd(vd)}⊤dCθ(u, v).

See Ghoudi and Rémillard (2004) for details.

The proof of the convergence of (F1,n, . . . ,Fd,n) (F1, . . . ,Fd) in D([0, 1])⊗d is done in Appendix C.

Example 9 (Dynamic Gaussian Copula) The pseudo maximum likelihood estimator of the density in

(10) is written as follows: Let ζ̂j,t = Φ−1
(

Ûj,t

)

, j = 1, . . . , d. Then

L(θ) =

n
∏

t=2

1
√

|Ω|
exp

{

−1

2

(

ζ̂t −Bζ̂t−1

)⊤
Ω−1

(

ζ̂t −Bζ̂t−1

)

+
1

2
ζ̂⊤t ζ̂t

}

, (17)

where θ = (B,Ω); recall that B = R21R
−1
11 and Ω = R11 −R21R

−1
11 R12 = R11 −BR11B

⊤.

We need to find B̂ and Ω̂ that maximize equation (17), which in turn is equivalent to minimize

−2l(θ) = −2 logL(θ) = n ln |Ω| +
n
∑

t=2

(

(ζt −Bζt−1)
⊤Ω−1(ζt −Bζt−1)

)

.

For the theory of multivariate regression, the solution is known to be

B̂ =

(

n
∑

t=2

ζ̂tζ̂
⊤
t−1

)(

n
∑

t=2

ζ̂t−1ζ̂
⊤
t−1

)−1

, Ω̂ =
1

n− 1

n
∑

t=2

(

ζ̂t − B̂ζ̂t−1

)(

ζ̂t − B̂ζ̂t−1

)⊤
.

It is easy to show that these estimators are consistent. However, since one needs to estimate R11, which is a
correlation matrix, one can set ξt = ∆̂ζ̂t, where ∆̂ is the diagonal matrix so that R̂11 = 1

n−1

∑n−1
t=1 ξtξ

⊤
t is a

correlation matrix. In fact it is the so-called van der Waerden estimator of R11. Then simply set

R̂21 =
1

n− 1

n
∑

t=2

ξtξ
⊤
t−1, B̂ = R̂21

(

R̂11

)−1

, Ω̂ = R̂11 − B̂R̂11B̂
⊤.

Note that these estimates can be obtained by using the van der Waerden estimator of R through the pseudo-

observations

(

Ût−1

Ût

)

, for t = 2, . . . , n.

3.1.1 Dynamic meta-elliptic copulas

Due to the large number of constraints in the parameters (R11, B,Ω) when writing the likelihood function

corresponding to a dynamic meta-elliptic copula, e.g., for the Pearson type VII associated copula, it is
preferable to use a mix of moment matching and pseudo maximum likelihood. For meta-elliptic copulas,

the obvious choice is Kendall’s tau because of its relation with the correlation matrix R. More precisely, if

τ =

[

τ11 τ12
τ21 τ11

]

is the matrix of Kendall’s tau associated with the random vector

(

Ut−1

Ut

)

, thenR = sin(πτ/2),

where the transformation is applied pointwise.
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Let τ̂ =

[

τ̂11 τ̂12
τ̂21 τ̂11

]

be the empirical Kendall’s tau matrix calculated from the pseudo-sample

(

Ût−1

Ût

)

, for

t = 2, . . . , n. Then τ̂ converges in probability to the theoretical τ =

[

τ11 τ12
τ21 τ11

]

associated with the random

vector

(

Ut−1

Ut

)

. In fact, using the methodology developed in Ghoudi and Rémillard (2004) together with the

convergence of the process Cn defined in Appendix C, one can show that n1/2(τ̂ − τ) converges in law to a

centered Gaussian random variable.

It then follows that sin(πτ̂/2) is a consistent estimator of R. However the latter is not necessarily positive

definite, so maybe it has to be transformed into non-degenerate correlation matrix R̂. Then, simply set

B̂ = R̂21

(

R̂11

)−1

and Ω̂ = R̂11 − B̂R̂11B̂
⊤. The remaining parameters can then be estimated using pseudo

maximum likelihood. This approach is particularly well-suited for the dynamic Student copula.

3.1.2 Dynamic Archimedean copulas

Suppose C(u, v) = C2d,φ(u, v) and recall that hk(s) = (−1)k dk

dsk φ
−1(s). It follows that

cV |U (v;u) =
h2d {φ ◦ C2d,φ(u, v)}
hd {φ ◦ Cd,φ(u)}

∣

∣

∣

∣

∣

∣

d
∏

j=1

φ′(vj)

∣

∣

∣

∣

∣

∣

.

Example 10 (Dynamic Clayton copula) In the Clayton case, it is easy to check that one simply needs

to maximize

l(θ) =

n
∑

t=2







2d−1
∑

j=d

ln (1 + jθ) −
d
∑

k=1

(θ + 1) ln (uk,t)







−
(

1

θ
+ 2d

n
∑

t=2

)

ln

{

d
∑

k=1

(

u−θk,t−1 + u−θk,t

)

− 2d+ 1

}

+

(

1

θ
+ d

) n
∑

t=2

ln

(

d
∑

k=1

u−θk,t−1 − d+ 1

)

.

3.2 Goodness-of-fit

As mentioned previously, there exists almost no formal test of goodness-of-fit for copulas in a serially de-

pendent context. Even for serially independent observations, the literature is quite recent, one of the first
formal test being Genest et al. (2006), using the parametric bootstrap methodology to compute approximate

p-values. It was followed by several other articles, including Kole et al. (2007) in the Finance literature.

Although they also proposed goodness-of-fit tests using the parametric bootstrap technique, they provide no

evidence as to the validity of their methodology, which is far from obvious (see Genest and Rémillard (2008)

for more detail). Furthermore, the tests proposed in Kole et al. (2007) have been shown to be either incorrect
(Anderson-Darling type tests) or not powerful (Kolmogorov-Smirnov type tests). For an exhaustive review of

tests of goodness-of-fit for copula models in the context of serially independent time series, see Genest et al.

(2009).

Based on recent results in Genest et al. (2009), we propose to use goodness-of-fit tests constructed from

the Rosenblatt’s transform (Rosenblatt, 1952), which were almost always the more powerful. Recall that
the Rosenblatt’s mapping of a d-dimensional copula C is the mapping R from (0, 1)d → (0, 1)d so that for

u = (u1, . . . , ud) 7→ R(u) = (e1, . . . , ed) with e1 = u1 and
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ei =
∂i−1C(u1, . . . , ui, 1, . . . , 1)

∂u1 · · ·∂ui−1

/∂i−1C(u1, . . . , ui−1, 1, . . . , 1)

∂u1 · · ·∂ui−1
, (18)

i = 2, . . . , d.

The main property of Rosenblatt’s transform is that U ∼ C if and only if E = R(U) ∼ C⊥, i.e., E is

uniformly distributed on [0, 1]d. It also follows that by inverting the mapping, one can generate U ∼ C viz.
U = R−1(E), by generating E according to the d-dimensional independence copula.

In a univariate time series context, the use of the Rosenblatt’s transform was suggested by Diebold et al.

(1998). However the authors never took into account the fact that the parameters were estimated, leading

to a defective test of goodness-of-fit. A corrected version based on parametric bootstrap was proposed in

Rémillard and Papageorgiou (2008) for a multivariate regime-switching Gaussian model.

In the present context, recall that (Ut) is a stationary Markov process so that (Ut−1, Ut) ∼ C.

The goal here is to test the null hypothesis H0 that C belongs to a given parametric family, more precisely

that C = Cθ for some θ ∈ O. Denote by Rθ(u, v) =
{

R(1)
θ (u),R(2)

θ (u, v)
}

the Rosenblatt’s transform

associated with the 2d-dimensional copula Cθ, where R(1)
θ is the Rosenblatt’s transform associated with the

d-dimensional copula Dθ, with Dθ(u) = Cθ(u,1) for all u ∈ [0, 1]d.

It then follows that under the null hypothesis H0, the d-dimensional time observations E1 = R(1)
θ (U1)

and Et = R(2)
θ (Ut−1, Ut), t ≥ 2 are independent and uniformly distributed over [0, 1]d.

Because θ is unknown, and also because the Ut are not observable, θ must be estimated and Ut have to

be replaced by the pseudo-observation Ût. Suppose that θ̂ is a “regular” estimator of θ based on the pseudo

sample Û1, . . . , Ûn, and set Ê1 = R(1)

θ̂

(

Û1

)

and Êt = R(2)

θ̂

(

Ût−1, Ût

)

, t ≥ 2.

Under the null hypothesis H0, the empirical distribution function

Gn(u) =
1

n

n
∑

i=1

I

(

Êi ≤ u
)

, u ∈ [0, 1]d,

should be “close” to C⊥, the d-dimensional independence copula. Based on the results in Genest et al. (2009),
to test H0, one proposes to use the Cramér-von Mises type statistic

Sn = T (Gn) =

∫

[0,1]d
G

2
n(u)du =

∫

[0,1]d
{Gn(u) − C⊥(u)}2 du (19)

=
n

3d
− 1

2d−1

n
∑

i=1

d
∏

k=1

(

1 − Ê2
ik

)

+
1

n

n
∑

i=1

n
∑

j=1

d
∏

k=1

{

1 −max
(

Êik, Êjk

)}

,

where Gn = n1/2(Gn − C⊥).

Using the tools described in Ghoudi and Rémillard (2004) together with the convergence results of the

empirical processes described in the previous section, one can determine that Gn converges to a (complicated)

continuous centered Gaussian processes G. That leads to the weak convergence of Sn = T (Gn) to T (G), T

being a continuous functional on D
(

[0, 1]d
)

.

Regarding goodness-of-fit, the results of Genest and Rémillard (2008) can be adapted to a Markovian

setting, showing that P-values for tests of goodness-of-fit based on the empirical copula or the Rosenblatt’s
transform can be estimated by Monte Carlo methods. The proof of the validity of that approach is given in

the companion paper Rémillard (2010).

3.2.1 Dynamic meta-elliptic copulas

Because the conditional distributions of an elliptic vector are elliptic, to compute the Rosenblatt’s transform

RC of the associated copula C, it if preferable to compute the Rosenblatt’s transform RH of the underlying
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joint distribution function H and then transform it by inverting the marginal distributions. More precisely,

if C and H related through

H(x) = C {F1(x1, . . . , Fd(xd)} ,
where F1, . . . , Fd are the marginal distributions, then

RH(x) = RC {F1(x1, . . . , Fd(xd)} . (20)

This method of computing the Rosenblatt’s transform is particularly well-suited for the dynamic Gaussian

and Student copulas.

3.2.2 Dynamic Archimedean copulas

From (18), it follows easily that if C = C2d,φ, then for all j = 1, . . . , d, and all u, v ∈ (0, 1)d,

R(1)
j (u) =

hj−1

{

∑j
k=1 φ(uk)

}

hj−1

{

∑j−1
k=1 φ(uk)

} , R(2)
j (u, v) =

hd+j−1

{

φ(Au) +
∑j
k=1 φ(vk)

}

hd+j−1

{

φ(Au) +
∑j−1
k=1 φ(vk)

} ,

with φ(Au) = φ ◦D(u) = φ ◦ C(u,1) =
∑d

k=1 φ(uk).

Example 11 (Rosenblatt’s transform for the dynamic Clayton copula) In that case, using the for-

mula (13), one obtains, for j = 1, . . . , d,

R(1)
j (u) =

(

1 − j +
∑j
k=1 u

−1/θ
k

)−1/θ−(j−1)

(

2 − j +
∑j−1
k=1 u

−1/θ
k

)−1/θ−(j−1)

and

R(2)
j (u, v) =

(

1 − d− j +
∑d

k=1 u
−1/θ
k +

∑j
k=1 v

−1/θ
k

)−1/θ−(d+j−1)

(

2 − d− j +
∑d

k=1 u
−1/θ
k +

∑j−1
k=1 v

−1/θ
k

)−1/θ−(d+j−1)
.

3.3 Ignoring serial dependence

What would then be the consequences of ignoring serial dependance? Although most of the resulting esti-

mators would still converge, they might not be regular in the sense of Genest and Rémillard (2008). As a
result, tests of goodness-of-fit would not be applicable.

An important first step in the inference procedure would be to test for serial dependence, using e.g.,

Genest and Rémillard (2004). That methodology, together with tests of goodness-of-fit proposed by Genest

and Rémillard (2008), has been recently generalized and implemented by Yan and Kojadinovic (2009) for

the free statistical package R.6

4 Example of application

We now attempt to address the reader’s question concerning the dependence between the returns of the

Can/US exchange rate and oil prices (NYMEX Oil Futures) by examining the daily returns data of the two

variables over the last 10 years. We investigate three overlapping periods of 2, 5 and 10 years respective.

These periods correspond to data from 2008 and 2009 (493 returns), 2005–2009 (1225 returns), and 2000–2009
(2440 returns).

6See http://www.r-project.org



16 G–2010–18 Les Cahiers du GERAD

The returns for both series over the entire 10-year period are plotted in Figure 1.

The first step, as previously suggested, is to test for the presence of serial dependence in the univariate

time series (for the three periods), using the statistics In and I⋆n defined in Genest et al. (2007). For lags up

to p = 6, the tests based on In almost never reject the null hypothesis of independence (at the 5% level),
while all tests based on I⋆n reject the same hypothesis.

According to Genest et al. (2007), it seems that both series might exhibit time-dependent conditional

variance, e.g.,like in GARCH models. Note that usual tests of independence based on the Ljung-Box statistics

did not reject the null hypothesis of independence for the exchange rate returns for any of the three periods,

while rejecting the null hypothesis each time for the oil futures returns.

Having identified serial dependence in the time-series of both variables, the next step is to attempt to

fit a dynamic copula model. We choose to test the adequacy to 4 families: Clayton, Frank, Gaussian and

Student.

The small p-values (calculated with N=100 iterations) for the dynamic Clayton and Frank indicate that

both copula are rejected for every time period, t. The corresponding results for the dynamic Gaussian and
Student copulas appear in Table 3. First, for each period, the dynamic Student copula systematically exhibits

the largest p-value, much larger than those of the dynamic Gaussian copula, which is rejected at the 5% level

for the 10-year period.
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Figure 1: Plot of the returns for both series from 2000 to 2009.
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Table 3: Results of the estimation and goodness-of-fit for the dynamic Gaussian and Student copulas, using
N = 100 iterations.

Period Gaussian Student

2008-2009 ρ̂ = .435, p-value = 12% ρ̂ = .444, ν̂ = 3.51, p-value = 71%
2005-2009 ρ̂ = .350, p-value = 53% ρ̂ = .345, ν̂ = 5.60, p-value = 78%
2000-2009 ρ̂ = .236, p-value = 1% ρ̂ = .220, ν̂ = 16.7, p-value = 58%

Table 4: Results of the estimation and goodness-of-fit for the Student copulas, for the non-overlapping
periods, using N = 100 iterations.

Period Student

2005-2007 ρ̂ = .228, ν̂ = 39.60, p-value = 31%
2000-2004 ρ̂ = .086, ν̂ = ∞, p-value = 37%

Therefore the best model, for each period, is the dynamic Student model and it allows us to conclude that

there is positive dependence between the returns of the two series. However, the strength seems to increase

as the length of the period decreases. That may be due to a lack of stationary for these periods, meaning

that the dependence changed between 2000 and 2005 and between 2005 and 2007. Figure 1 supports such
this hypothesis, at least for the last two years.

To verify the hypothesis of three different regimes corresponding to the periods I: 2000-2004 (1215 returns),

II: 2005-2007 (732 returns) and III: 2008-2009 (493 returns), the same analysis is performed using only the

dynamic Student copula. The results are given in Table 4. They confirm the impression that the dependence

was different during the three non-overlapping periods, the dependence being much stronger over the last two
years. However, the surprising result is that for the first period, from 2000 to the end of 2004, the dependence

is best modeled by a dynamic Gaussian copula (corresponding to a Student copula with an infinite number of

degrees of freedom). The results clearly indicate that the dependence between the Cad/USD exchange rate

and the price of oil has become stronger over time. Furthermore, during periods of economic and financial
stress, as witnessed over the last two years of the sample, the dependence becomes even more pronounced.

5 Conclusion

In this paper, we introduce an innovative approach, specifically the dynamic copula, to model the interde-

pendence and serial dependence structure between variables. Contrary to the so-called time-varying copulas

approach, we do not have to model individual time series. We discuss the issues related to parameter esti-
mation as well as introduced goodness-of-fit tests for model selection. Finally, we implement the approach

to investigate the relationship between the Cad/USD exchange rate and the price of oil.

Appendix

A A family of polynomials related to the Frank copula

Based on the formulas in Barbe et al. (1996), it is easy to check that

hk,θ(s) = (−1)k
dk

dsk
log
{

1 − (1 − θ)e−s
}

/ log(θ) = pk

(

(1 − θ)e−s

1 − (1 − θ)e−s

)

/ log(1/θ), (21)

where the sequence of polynomials pk is defined by p1(x) = x and

pk+1(x) = x(1 + x)p′k(x), k ≥ 1. (22)
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Thus pk is a polynomial of degree k. For example, p2(x) = x(1 + x), p3(x) = x(1 + x)(1 + 2x), p4(x) =

x(1 + x)(1 + 6x+ 6x2) and p5(x) = x(1 + x)(1 + 2x)(1 + 12x+ 12x2).

Since log {1 − (1 − θ)e−s} / log(θ) is completely monotone, and because of representation (21), it follows

that for all x > 0, pk(x) > 0.

Furthermore,

pk(x) =
k
∑

j=1

ak,jx
j ,

and it follows from (22) that for any k ≥ 1,







ak+1,1 = ak,1,
ak+1,k+1 = kak,k,
ak+1,j = jak,j + (j − 1)ak,j−1, j = 2, . . . , k.

(23)

Note that (23) proves that all coefficients of the polynomials are non-negative and the leading term is positive,

reinforcing the observation that pk(x) > 0 for all x > 0.

Note that ξ can be generated by

ξ =

⌊

1 +
log(W2)

log (1 − θW1 )

⌋

, (24)

where W1,W2 ∼ Unif(0, 1) are independent and ⌊x⌋ stands for the integer part of x.

To generate U ∼ C, first generate S following (24). Then generate E1, . . . , Ed ∼ Exp(1), and set

Ui = φ−1(Ei/ξ) = log
{

1 − (1 − θ)e−Ei/ξ
}

/ log(θ), 1 ≤ i ≤ d.

B A family of polynomials related to the Gumbel copula

Based on the formulas in Barbe et al. (1996), it is easy to check that

hk,θ(s) = (−1)k
dk

dsk
e−s

θ

=
pk,θ(s

θ)

sk
e−s

θ

, k ≥ 0, (25)

where the sequence of polynomials pk,θ is defined by p0,θ ≡ 1 and

pk+1,θ(x) = kpk,θ(x) + θx{pk,θ(x) − p′k,θ(x)}, k ≥ 0. (26)

For example, p1,θ(x) = θx, p2,θ(x) = θ(1 − θ)x+ θ2x2, p3,θ(x) = θ(1 − θ)(2 − θ)x+ 3θ2(1 − θ)x2 + θ3x3, etc.

Since e−s
θ

is completely monotone, and because of representation (25), it follows that for all x > 0,

pk,θ(x) > 0.

Furthermore,

pk,θ(x) =

k
∑

j=1

ak,j,θx
j ,

and it follows from (26) that for any k ≥ 1,







ak+1,1,θ = (k − θ)ak,1,θ,
ak+1,k+1,θ = θak,k,θ,
ak+1,j,θ = (k − jθ)ak,j,θ + θak,j−1,θ , j = 2, . . . , k.

(27)

Note that (27) proves that all coefficients of the polynomials are non-negative and the leading term is positive,

reinforcing the observation that pk,θ(x) > 0 for all x ∈ (0, 1].
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C Convergence of the empirical processes

First note that (F1,n, . . . ,Fd,n)  (F1, . . . ,Fd) in D([0, 1])⊗d holds true if Fn  F in D
(

[0, 1]d
)

, where

Fn = n1/2 (Fn −Dθ) and

Fn(u) =
1

n

n
∑

t=1

I(Ut ≤ u),

since F1,n, . . . , Fd,n are the marginal distributions of Fn.

By hypothesis (14), the Markov chain Ut is reversible, so one can apply the results in Kipnis and Varadhan

(1986) to obtain that Fn  F in D
(

[0, 1]d
)

, where F is a continuous centered Gaussian process with covariance

function

Γ(u, v) = Cθ(u, v) −Dθ(u)Dθ(v) + 2

∞
∑

t=1

{P (U0 ≤ u, Ut ≤ v) −Dθ(u)Dθ(v)} .

Remark 12 As a by-product one gets the convergence of the empirical copula based on the pseudo-
observations Ût. More precisely, if

Gn(u) =
1

n

n
∑

t=1

I

(

Ût ≤ u
)

then Gn = n1/2(Gn −Dθ) G in D
(

[0, 1]d
)

, where

G(u) = F(u) −
d
∑

j=1

∂uj
Dθ(u)Fj(uj),

provided ∂uj
Dθ(u) is continuous on [0, 1] for all j = 1, . . . , d. The proof follows closely the one of Lemma 3

in Genest et al. (2007) or the proof in Doukhan et al. (2009).

Based on the convergence of n1/2(Hn − Cθ) to H, where

Hn(u, v) =
1

n

n
∑

t=2

I (Ut−1 ≤ u, Ut ≤ v) ,

which follows again from the reversibility condition and the convergence result in Kipnis and Varadhan
(1986), it is possible to show the convergence of Cn = n1/2(Cn − Cθ) C in D

(

[0, 1]d
)

, where

Cn(u, v) =
1

n

n
∑

t=2

I

(

Ût−1 ≤ u, Ût ≤ v
)

.

That time, one has to use the results of Ghoudi and Rémillard (2004) to get the representation of the limiting

process C.

References

Barbe, P., Genest, C., Ghoudi, K., and Rémillard, B. (1996). On Kendall’s process. J. Multivariate Anal., 58(2):197–
229.

Berrada, T., Dupuis, D. J., Jacquier, E., Papageorgiou, N., and Rémillard, B. (2006). Credit migration and derivatives
pricing using copulas. J. Comput. Fin., 10:43–68.

Chen, X. and Fan, Y. (2006). Estimation and model selection of semiparametric copula-based multivariate dynamic
models under copula misspecification. Journal of Econometrics, 135(1-2):125–154.

Cherubini, U., Luciano, E., and Vecchiato, W. (2004). Copula Methods in Finance. Wiley Finance. Wiley, New York.

Darsow, W. F., Nguyen, B., and Olsen, E. T. (1992). Copulas and Markov processes. Illinois J. Math., 36(4):600–642.

Diebold, F. X., Gunther, T. A., and Tay, A. S. (1998). Evaluating density forecasts with applications to financial risk
management. International Economic Review, 39(4):863–883.

Doukhan, P., Fermanian, J.-D., and Lang, G. (2009). An empirical central limit theorem with applications to copulas
under weak dependence. Stat. Inference Stoch. Process., 12(1):65–87.



20 G–2010–18 Les Cahiers du GERAD

Durrett, R. (1996). Probability: theory and examples. Duxbury Press, Belmont, CA, second edition.

Embrechts, P., McNeil, A. J., and Straumann, D. (2002). Correlation and dependence in risk management: properties
and pitfalls. In Risk management: value at risk and beyond (Cambridge, 1998), pages 176–223. Cambridge Univ.
Press, Cambridge.

Fermanian, J. and Wegkamp, M. (2004). Time dependent copulas. Technical report, CREST Working Paper.

Genest, C., Ghoudi, K., and Rémillard, B. (2007). Rank-based extensions of the Brock Dechert Scheinkman test for
serial dependence. J. Amer. Statist. Assoc., 102:1363–1376.

Genest, C., Ghoudi, K., and Rivest, L.-P. (1995). A semiparametric estimation procedure of dependence parameters
in multivariate families of distributions. Biometrika, 82:543–552.

Genest, C. and MacKay, R. J. (1986). Copules archimédiennes et familles de lois bidimensionnelles dont les marges
sont données. The Canadian Journal of Statistics, 14(2):145–159.

Genest, C., Quessy, J.-F., and Rémillard, B. (2006). Goodness-of-fit procedures for copula models based on the
integral probability transformation. Scand. J. Statist., 33:337–366.

Genest, C. and Rémillard, B. (2004). Tests of independence or randomness based on the empirical copula process.
Test, 13:335–369.

Genest, C. and Rémillard, B. (2008). Validity of the parametric bootstrap for goodness-of-fit testing in semiparametric
models. Ann. Inst. H. Poincaré Sect. B, 44:1096–1127.
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