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Abstract

A challenge in many applications of non-parametric curve estimation is that the function must satisfy
some (lower and/or upper) variable order constraints (for example, a density is constrained to lie between
two functions). At the same time the spatially inhomogeneous smoothness of the function is modelled by
Besov and Triebel-type smoothness constraints. Donoho and Johnstone (1998) and Delyon and Juditsky
(1996) studied minimax rates of convergence for wavelet estimators with thresholding, while Lepski et al.
(1997) proposed a variable bandwidth selection for kernel estimators that achieved optimal rates over
the scale of Besov spaces. Here we show how to construct estimators that satisfy the variable order con-
straints and also achieve minimax rates over the appropriate smoothness class. This generalizes results
of Dechevsky and MacGibbon (1999) for the case of constant constraints. The parameters of the new
constrained estimator (when the constraints are functions) are shown here to depend on the regularity of
the constraint functions, except when the lower constraint function is convex and/or the upper constraint
function is concave. A preliminary announcement of some of the results of the present work (without
proofs) was made in Dechevsky (2007) as a part of a survey on the state of the art and ongoing research
in shape-preserving wavelet approximation.

Résumé

Le défi dans plusieurs applications de l’estimation non-paramétrique des fonctions est représenté par
le fait que les fonctions doivent également satisfaire des contraintes variables d’ordre (par exemple, une
fonction de densité doit se situer entre deux fonctions). En même temps, le lissage spatialement non-
homogène de la fonction est modélisé par les contraintes de lissage de type Besov et Triebel. Donoho
and Johnstone (1998) and Delyon and Juditsky (1996) ont étudié le taux de convergence minimax pour
les estimateurs d’ondelettes avec des seuils, alors que Lepski et al. (1997) ont proposé une sélection de
fenêtre variable pour un estimateur à noyau qui atteint un taux optimal sur l’échelle des espaces de
Besov. Dans ce travail nous démontrons comment construire des estimateurs qui satisfont des contraintes
variables d’ordre et aussi atteignent le taux minimax sur des classes de lissage appropriées. Ces résultats
généralisent ceux de Dechevsky and MacGibbon (2010) pour le cas où les contraintes d’ordre sont des
constantes. Les paramètres de ces nouveaux estimateurs dépendent de la régularité des fonctions de
contrainte, sauf dans le cas où la borne inférieure est convexe et/ou la borne supérieure est concave. Une
annonce préliminaire (sans démonstration) des résultats a été faite dans Dechevsky (2007) dans un survol
de la recherche récente de l’approximation par ondelettes qui conservent la forme.
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for Mathematical Modelling, Numerical Simulation and Computer Visualization at Narvik University
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1 Introduction

The spatially inhomogeneous smoothness of nonparametric methods is often modelled by Besov and Triebel-

type smoothness constraints. For such problems, Donoho and Johnstone (1998) and Delyon and Juditsky

(1996) studied minimax rates of convergence for wavelet estimators with thresholding, while Lepski et al.

(1997) proposed a variable bandwidth selection for kernel estimators that achieved optimal rates over Besov
classes. However, a second challenge in many applications of non-parametric curve estimation is that the

function must also satisfy some (lower and/or upper) variable order constraints (for example, a density

must be non-negative or a density is constrained to lie between two functions). Here we show how to

construct estimators under order constraints that satisfy these constraints and also achieve minimax rates
over the appropriate smoothness class. In the preprint Dechevsky and MacGibbon (1999), recently published

in Dechevsky and MacGibbon (2009), we studied the case when the lower and/or upper constraints are

constants; in the present article, which follows closely the exposition of the previously unpublished preprint

Dechevsky and MacGibbon (2001), we consider the general case when these constraints are functions. The

parameters of the new constrained estimator are shown here to depend on the regularity of the constraint
functions, except when the lower constraint function is convex and/or the upper constraint function is concave.

Our goal is to develop a general method yielding estimators which are asymptotically minimax-rate opti-

mal for non-parametric density and regression-function estimation when faced with this problem of spatially

inhomogeneous smoothness in the presence of variable order constraints. This method works in the univariate

case, as well as in the multivariate case.

For density estimation, Penev and Dechevsky (1997) and Pinheiro and Vidakovic (1997) have obtained

results using wavelet-based estimators which preserve positivity, perform well on moderate samples, and are

relatively computationally inexpensive. However, they are narrowly specialized to preserve only a one-sided

constraint, and this constraint has to be a constant (typically, a lower bound v(x) ≡ 0). Moreover, asymptotic

results are limited to the Hellinger metric. Our study of the general problem showed that already the case
where both lower and upper constraints of the form, v(x) ≡ c0 and w(x) ≡ c1 with known constants c0 < c1,

are given, is essentially more difficult; its study is not amenable to these previously published techniques.

In Dechevsky and MacGibbon (1999, 2009) we constructed and studied the properties of a new constrained

estimator for this latter case.

In the present article we extend the definition of the constrained estimator from Dechevsky and MacGib-
bon (1999, 2009) to the general case when v and/or w are non-constant functions: v = v(x), w = w(x). More

precisely, for an unknown density or regression function f(x) whose graph is a priori known to be bounded

by those of v(x) and/or w(x), given a rate-optimal estimator f̂ whose graph need not obey the bound(s),

we construct a sufficiently smooth estimator f̂+(x) whose graph obeys the bounds and achieves the same
asymptotic rate as f̂(x), with respect to the same metric (and with the constant factor associated with the

rate for f̂+(x) depending only on the factor for f̂(x) and the chosen metric).

The standard unconstrained d-dimensional non-parametric regression-function estimation problem is to

estimate an unknown function f(x) on the basis of a sample of N (not necessarily uncorrelated) noisy

observations
Yi = f(ti) + σεi, i = 1, . . . , N, (1)

where σ and εi represent the variance and error terms respectively. The points ti may belong to a (uniform

or non-uniform) deterministic design (ti = xi, i = 1, . . . , N), or to a random design (ti = Xi, i = 1, . . . , N)

where Xi, i = 1, . . . , N , are (not necessarily uncorrelated) d-dimensional random vectors from a cumulative
distribution function (c.d.f.) FN : IRNd → [0, 1]. In the case of density estimation, it is assumed in addition

that there exists an absolutely continuous density, with Radon-Nikodym derivative f = F ′, and the problem

is to estimate the density f based on the sample Xi, i = 1, . . . , N . In many applications, it is often assumed

that the samples, {Xi} and {εi} each consist of independent, identically distributed (i.i.d.) random variables
and the Yi’s are independent (cf., e.g., Delyon and Juditsky (1996); Lepski et al. (1997)).
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There are many different approaches to these estimation problems but we will concentrate on two of
them which are known to yield asymptotically optimal results when the regularity of the estimated function

is measured in terms of the Besov class to which it belongs. These classes contain the well-known Hölder

(or “Lipschitz-α”) classes. In addition, classes of spatially inhomogeneous functions with bounded Jordan

and Wiener-Young variation, as well as Triebel-Lizorkin classes (including the well-known Sobolev spaces),
are sandwiched between two Besov spaces and asymptotic optimality results can also be deduced for these

classes (cf. Donoho and Johnstone (1998); Donoho et al. (1995)). Donoho and Johnstone (1998); Delyon and

Juditsky (1996) studied minimax rates for wavelet estimators with thresholding while Lepski et al. (1997)

proposed a variable-bandwidth selector for kernel estimators. Both types of estimators achieve optimal rates

over Besov classes. For each of these rate-optimal unconstrained estimators f̂ our method allows us to
construct a constrained estimator f̂+ which is also rate-optimal. When f̂ is the kernel estimator from Lepski

et al. (1997) (which is ideally spatially adaptive, but may be non-smooth and even discontinuous at some

points, i.e., need obey neither the upper/lower bounds nor the smoothness constraints), the corresponding

f̂+ does obey all constraints.

Here we will outline our method in the case of constant order constraints (cf. Dechevsky and MacGibbon

(1999, 2009)), as follows. Consider the case of a d-variate function satisfying the order constraints v ≤ f ≤ w

(or v ≤ f , or f ≤ w), with v ≡ c0, w ≡ c1 ( c0 and c1 constants with c0 ≤ c1). Let f̂ denote an estimator

that satisfies the smoothness criteria, but not necessarily the order constraints. Clearly,

f̂+(x) := min
{

w, max
{
v, f̂(x)

}}
, x ∈ IRd, (2)

(or f̂+(x) := max
{

v, f̂(x)
}

, or f̂+(x) := min
{

w, f̂(x)
}

, respectively) will satisfy the order constraints

but not necessarily the smoothness constraints. In Dechevsky and MacGibbon (1999, 2009) we achieved
simultaneous matching of both types of constraints by proposing the following.

Definition 1.1 The constrained ε-smooth of f̂ , denoted by f̂+,ε is,

f̂+,ε(x) := Φε ∗ f̂+(x), x ∈ IRd, (3)

where ∗ denotes the convolution of f̂+ with a “suitably smooth” approximate identity Φε; that is,

Φε(x) :=
1

εd
Φ
(x

ε

)
, x ∈ IRd, ε > 0,

where Φ is a “suitably smooth” compactly supported symmetric non-negative Lebesgue-measurable function

with integral on IRd equal to one and with the diameter of its support = CΦ (see the Appendix for details and
references).

Remark 1.1 Because v ≤ w, min {w, max{v, t}} = max {v, min{w, t}} holds for any t ∈ IR.

In Dechevsky and MacGibbon (1999, 2009) it was shown that this “constrained ε-smooth” of f̂ , with a

suitable selection of ε, can be chosen to be the estimator with the desired smoothness properties for the case

of constant constraints v and w. Here, the underlying property on which the simultaneous achievement of
rate optimality, smoothness and bounded order is founded is that if v and w are constants and v ≤ f̂+ ≤ w,

then v ≤ Φε ∗ f̂+ ≤ w also holds. What happens, however, if in (2) the bounds v = v(x), w = w(x) are

variable ? Then, it can be shown that, for any ε > 0,

v(x) ≤ f̂+(x) ≤ w(x) for all x ∈ IRd, (4)

does not imply, in general,

v(x) ≤ Φ̂ε ∗ f̂+(x) ≤ w(x) for all x ∈ IRd. (5)

However, there is an important special case of variable v(x), w(x) (also including the case of constant v

and w), when (4) does imply (5). This is the first important new observation in the present paper, and we

summarize it as follows.
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Definition 1.2 Using the same assumptions as in Definition 1.1, let us suppose more generally, that v = v(x)
and w = w(x) in (2) are (non-constant) functions such that the lower bound v(x) is convex, and the upper

bound w(x) is concave.

As it will be shown in Lemma 2.1 below, under the more general assumptions of Definition 1.2, (4) does

imply (5) which permits us to extend essentially all the results of Dechevsky and MacGibbon (1999, 2009)
to the more general case of non-constant v(x) and w(x) as given in Definition 1.2.

In the general case of variable, not necessarily convex, v = v(x), and variable, not necessarily concave,

w = w(x), in order to ensure that (4) implies (5), we need to modify the definition of f̂+ as follows.

Definition 1.3 Under the assumptions of Definition 1.1, suppose that v = v(x) and w = w(x) are non-

constant functions, Φ is compactly supported and that, for any ε > 0, f̂+(x) = f̂ε
+(x) is defined by

f̂ε
+(x) := min

{
I(w, x; 2CΦε), max

{
S(v, x; 2CΦε), f̂(x)

}}
, x ∈ IRd, (6)

where: I(w, x; 2CΦε) is the lower Baire function of w at x, with step 2CΦε; S(v, x; 2CΦε) is the upper Baire

function of v at x, with step 2CΦε (see the Appendix); CΦ = diam supp Φ.

As we shall see, the results of Dechevsky and MacGibbon (1999, 2009) do extend even to this very general

case about variable order constraints v(x) and w(x). The new element here is the more complex theory of
the selection of the optimal range for ε in (3) which now reads

f̂+,ε(x) := Φε ∗ f̂ε
+(x), x ∈ IRd, (7)

and where, in order to achieve simultaneously rate-optimality, sufficient smoothness, and bounded order, the

selection of ε depends not only on the regularity of f , but also on the regularity of v and w.

The paper is organized as follows. This introduction constitutes Section 1. The extension of the results
of Dechevsky and MacGibbon (1999, 2009) to the case of convex variable lower bound v(x) and/or concave

variable upper bound w(x) is given in Section 2. Section 3 treats the case of general variable order constraints.

In Section 4 our methods are applied to the wavelet and kernel estimators considered by Delyon and Juditsky

(1996) and Lepski et al. (1997), respectively. Section 5 contains the proofs. Some concluding remarks are

collected in Section 6. Preliminary notation and definitions which are not explained in the main text can be
found in the Appendix.

Some of the main results in Dechevsky and MacGibbon (2001) and the present paper were previously

announced, without proofs or details, as part of Dechevsky (2007), a survey paper on the state of the art and

ongoing research in shape-preserving wavelet-based approximation.

2 Convex lower and concave upper constraints

The results of Dechevsky and MacGibbon (1999, 2009) are valid for a lower constraint v ≡ c0 and/or an

upper constraint w ≡ c1, where c0and c1 are constants such that c0 ≤ c1 holds. In this section we shall

extend the main results of Dechevsky and MacGibbon (1999, 2009) to the case of variable lower bound v(x)

and/or upper bound w(x) with v(x) ≤ w(x), x ∈ IRd, and such that v is convex and w is concave. The key

fact allowing for this extension is given in the following Lemma 2.1.

For the closed subset A ⊂ IRd, let Aconv be its convex hull, i.e.,

Aconv =
{
y ∈ IRd : y=(1− α)x1 + αx2, x1, x2 ∈ A, α ∈ [0, 1]

}
.
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Let D(f, f̂) =
(
supp f ∪ supp f̂

)conv

and let, for ε > 0, D(f, f̂ ; ε) be the closed CΦ
ε
2 -neighbourhood of

D(f, f̂); i.e.,

D(f, f̂ ; ε) =

{
y ∈ IRd :

(
∃x ∈ D(f, f̂ ) : |y− x| ≤

1

2
CΦε

)}
,

where CΦ = diam supp Φ.

Lemma 2.1 Let v(x) and w(x) be Lebesgue-measurable functions defined for every x ∈ IRd, with v(x) ≤

w(x), and let v be convex and w be concave on D(f, f̂ ; ε), with ε as in (5). Then, (4) implies (5).

Now we are in a position to extend the main result of Dechevsky and MacGibbon (1999, 2009) (Theorem 2.1)

as follows.

Theorem 2.1 Let f : IRd → IR be such that there exists on IRd a Lebesgue-measurable function v = v(x) with

v(x) ≤ f(x), x ∈ IRd, and/or there exists on IRd a Lebesgue-measurable function w = w(x) with f(x) ≤ w(x),

x ∈ IRd, such that v is convex, and w is concave, on D(f, f̂ ; ε), where f̂ and ε will be specified below.

Assume also that W is a (quasi-) Banach space such that

W →֒ Lp1(IR
d) + Ẇ2

p1
(IRd),

and such that there exist δ0 > 0, β ∈ Ω(δ0) (cf. Appendix), such that the integral modulus of smoothness (cf.

Appendix) satisfies

ω2(g; δ)Lp1
≤ β(δ)‖g‖W , ∀g ∈W∀δ ∈ (0, δ0]. (8)

Let us also assume that f ∈ Lp1(IR
d) ∩W and ‖f‖W ≤ L for some L ∈ (0,∞), p1 : 1 ≤ p1 ≤ ∞. Let

f̂ = f̂N ∈ Lp

(
IRd, Lp1(IR

d)
)ρ

,(0 < ρ < ∞) depend on either the observations {Xi}
N
i=1 or {(Xi, Yi)}

N
i=1,

where {Xi}
N
i=1 are discussed in the Appendix, while {Yi}

N
i=1 are given in formula (1).

Let us also assume that there exists α ∈ Ω(δ0), k = k(ρ1, ρ, W, L, α) ∈ (0,∞) and N0 = N0(p1, ρ, W, L, α) ∈

(0,∞), such that E‖f − f̂N‖
ρ
Lp1
≤ Kα

(
1
N

)
, ∀N > N0.

Now let us consider f̂+,ε, as defined in Formulas (2)–(5).

Then,

E‖f − f̂+,ε‖
ρ
Lp1
≤ 2ρ1

(
3 + 2

ρ
ρ1

)ρ1

Kα

(
1

N

)
, ∀N > N0, ∀ε ∈ (0, εN ], (9)

where ρ1 = max{1, ρ}, and

εN = β−1

(
2

L

(
3 + 2

ρ
ρ1

) ρ1
ρ

K
1
ρ α

(
1

N

) 1
ρ

)
. (10)

3 General variable order constraints

In this section the lower bound v(x) and the upper bound w(x) are Lebesgue-measurable functions defined

everywhere on IRd, with v(x) < w(x) for x ∈ IRd. (Note that here it will be essential that this inequality is
strict.) In fact, we will even require the stronger condition:

S(v, x; 2CΦε) ≤ I(w, x; 2CΦε), ∀x ∈ supp f ⊂ IRd. (11)

We note that if supp f is compact and if v and w are continuous, then v(x) < w(x) |supp f implies that there

exists ε′ = ε′(f, v, w) such that, for every ε ∈ (0, ε′], Formula (11) holds true.

The analogue of Lemma 2.1 in this general situation is:
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Lemma 3.1 Under the conditions of Lemma 2.1, without the assumption about convexity of v or concavity
of w, suppose that (11) holds. Then, the following analogue of Formula (5) holds

v(x) ≤ Φε ∗ f̂ε
+(x) ≤ w(x), x ∈ IRd. (12)

Now we can formulate the analogue of Theorem 2.1 which will be valid for general variable order con-

straints, as follows.

Theorem 3.1 Under the conditions of Theorem 2.1, assume, more generally, that v is not necessarily convex
on D(f, f̂ ; ε) and/or that w is not necessarily concave on D(f, f̂ ; ε).

Assume also that W− and/or W+ is a (quasi-) Banach space, such that W− →֒ Lp1(IR
d), and/or W+ →֒

Lp1(IR
d) and such that there exists γ− ∈ Ω(δ0), and/or γ+ ∈ Ω(δ0), satisfying

τ1(v; δ)Lp1
≤ γ−(δ)‖v‖W− , and/or τ1(w; δ)Lp1

≤ γ+(δ)‖w‖W+ , ∀δ ∈ (0, δ0]. (13)

Consider f̂+,ε, as defined in Formulas (6) and (7).

Then, the inequality (9) of Theorem 2.1 holds true, with the factor 2ρ1 in the RHS of (9) being replaced

by 4ρ1 , and with (10) replaced by

εN = min

{
β−1

(
2

L

(
3 + 2

ρ
ρ1

) ρ1
ρ

K
1
ρ α

(
1

N

) 1
ρ

)
, (14)

1

CΦ
γ−1
−

(
2

‖v‖W−

(
3 + 2

ρ
ρ1

) ρ1
ρ

K
1
ρ α

(
1

N

) 1
ρ

)
,

1

CΦ
γ−1
+

(
2

‖w‖W+

(
3 + 2

ρ
ρ1

) ρ1
ρ

K
1
ρ α

(
1

N

) 1
ρ

)}
.

Remark 3.1 If in Theorem 3.1 one of the order constraints v(x) ≤ f(x) or f(x) ≤ w(x) is absent, then the

factor 4ρ1 in the new version of (9) can be replaced by 3ρ1 , and the corresponding term in the RHS of (14)

can be omitted.

In the remaining part of this section, we provide explicit computation of the rates β(δ), γ−(δ) and γ+(δ)

when the spaces W , W− and W+ are Besov spaces, Triebel-Lizorkin spaces, A-spaces, or spaces with bounded

Wiener-Young p-variation. For the case of β(δ), this computation was made in Dechevsky and MacGibbon

(1999, 2009), and here we only list the corresponding results.

In the first lemma, W is a Besov space.

Lemma 3.2 (see Lemma 2.1 in Dechevsky and MacGibbon (1999, 2009)) Assume that d ∈ N, 1 ≤

p1 ≤ ∞, 1 ≤ p ≤ ∞, 0 < q ≤ ∞, d
(

1
p −

1
p1

)

+
< s <∞.

Assume further that, for p ≤ p1, W = Bs
pq(IR

d), and for p1 < p there exists R : 0 < R <∞, such that

W = WR =
{
f ∈ Bs

pq(IR
d), supp f ⊂

{
x ∈ IRd; |x| ≤ R

}}

and WR is endowed with the (quasi-) norm of Bs
pq(IR

d).

Then, there exists

K1 =

{
K1(p, q, s, d) ∈ (0,∞), p ≤ p1

K1(p, q, s, d, R) ∈ (0,∞), p > p1,
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such that (8) is fulfilled for any δ0 ∈ (0, 1], and

β(δ) ≤ K1 ·






δ
min{2,s−d( 1

p
− 1

p1
)+}

, s 6= 2 + d
(

1
p −

1
p1

)

+
,

δ2
(
ln 1

δ

)(1−min{p,2}
q

)+
, s = 2 + d

(
1
p −

1
p1

)

+
, p <∞

δ2
(
ln 1

δ

)(1− 1
q
)+

, s = 2 + d
(

1
p −

1
p1

)

+
, p =∞

(15)

In the next lemma, W is a Triebel-Lizorkin space.

Lemma 3.3 (see Lemma 2.2 in Dechevsky and MacGibbon (1999, 2009)) Under the conditions of
Lemma 3.2, assume that, for 1 ≤ p ≤ p1 <∞, W = F s

pq(IR
d), and, for 1 < p1 < p <∞,

W = WR =
{
f ∈ F s

pq(IR
d), supp f ⊂

{
x ∈ IRd; |x| ≤ R

}}
,

endowed with the (quasi-) norm in F s
pq(IR

d), where 0 < s < r, 0 < q ≤ ∞.

Then, the conclusion of Lemma 3.2 holds, with

β(δ) ≤ K1 ·





δ
min{2,s−d( 1

p
− 1

p1
)+}

, s 6= 2 + d
(

1
p −

1
p1

)

+
, 0 < q <∞,

δ2, s = 2 + d
(

1
p −

1
p1

)

+
, 0 < q ≤ 2.

(16)

The next lemma is restricted to the case d = 1, and W is (essentially) the space TV k
p , 1 ≤ p <∞, k = 0, 1,

of functions f whose k-th derivative f (k) is with bounded Wiener-Young p-variation.

Remark 3.2 It is possible, in principle, to extend the definition of the space TV k
p (hence, also the range of

validity of the next lemma) for any dimension d ∈ N, however, for a function of several variables the concept
of variation can be extended in several essentially diverse ways, thus leading to a diversity of rates in the

next lemma. Because of this, and in order to keep the exposition of the present study sufficiently concise and

focused on the essentials, here we restrict the consideration of the space TV k
p only to the case d = 1.

Lemma 3.4 (see Lemma 2.3 in Dechevsky and MacGibbon (1999, 2009)) Under the conditions of

Lemma 3.2, assume that d = 1, k = 0, 1. Assume further that for 1 ≤ p ≤ p1 <∞,

W = Lp x
(
TV k

p

) 1
p ,

and, for 1 ≤ p1 ≤ p <∞,

W = WR =
{
f ∈W k

p ∩ TV k
p , supp f ⊂ [−R, R]

}

and W is endowed with the norm in W k
p x

(
TV k

p

) 1
p .

Then, the conclusion of Lemma 3.2 holds, with

β(δ) = δ
k+ 1

max{p,p1} . (17)

Remark 3.3 Some important details about the results in Lemmas 3.2–3.4 and their proofs are given in

Remarks 2.1–2.4 in Section 2 of Dechevsky and MacGibbon (1999, 2009).

The computation of the rate γ−(δ) depending on W−, and of γ+(δ) depending on W+, is essentially the

same (cf. Formula (13), so it suffices to compute γ+(δ) for suitable spaces W+.

In the next lemma W+ is an A-space.
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Lemma 3.5 Assume that d ∈ N, 1 ≤ p1 ≤ ∞, 1 ≤ p ≤ ∞, 0 < q ≤ ∞, d
(

1
p −

1
p1

)

+
< s <∞.

Assume further that, for p ≤ p1, W+ = As
pq(IR

d), and for p1 < p there exists R : 0 < R <∞, such that

W+ = W+,R =
{
w ∈ As

pq(IR
d), supp w ⊂

{
x ∈ IRd; |x| ≤ R

}}

and W+,R is endowed with the (quasi-)norm of As
pq(IR

d).

Then, there exists

K ′
1 =

{
K ′

1(p, q, s, d) ∈ (0,∞), p ≤ p1

K ′
1(p, q, s, d, R) ∈ (0,∞), p > p1,

such that (13) is fulfilled for w for any δ0 ∈ (0, 1] and

γ+(δ) ≤ K ′
1 ·





δ
min{1,s−d( 1

p
− 1

p1
)+}

, s 6= 1 + d
(

1
p −

1
p1

)

+
,

δ
(
ln 1

δ

)(1− 1
q
)+

, s = 1 + d
(

1
p −

1
p1

)

+
.

(18)

In the next three lemmas, we refine the rates, obtained under the assumptions of Lemma 3.5, for the
particular case d = 1.

In the next lemma W+ is a Besov space.

Lemma 3.6 Under the conditions of Lemma 3.5, assume that d = 1 and that, when p1 = 1, 0 < q ≤ 1 holds.

Impose on s the stronger restriction max

{
1
p1

,
(

1
p −

1
p1

)

+

}
< s < ∞ where p1 > 1, and 1 ≤ s < ∞ when

p1 = 1.

Assume that, for p ≤ p1, W+ = Bs
pq(IR), and for p1 < p there exists R : 0 < R <∞, such that

W+ = W+,R =
{
w ∈ Bs

pq(IR), supp w ⊂ [−R, R]
}

,

endowed with the (quasi-) norm of Bs
pq(IR).

Then, the conclusion of Lemma 3.5 holds in the following more refined form:

γ+(δ) ≤ K ′′
1 ·






δ
min{1,s−( 1

p
− 1

p1
)+}

, s 6= 1 +
(

1
p −

1
p1

)

+
,

δ
(
ln 1

δ

)(1−min{p,2}
q

)+
, s = 1 +

(
1
p −

1
p1

)

+
, p <∞,

δ
(
ln 1

δ

)(1− 1
q
)+

, s = 1 +
(

1
p −

1
p1

)

+
, p =∞.

(19)

In the next lemma W+ is a Triebel-Lizorkin space.

Lemma 3.7 Under the conditions of Lemma 3.5, assume that d = 1 and that

max

{
1
p1

,
(

1
p −

1
p1

)

+

}
< s <∞.

Assume also that, for 1 ≤ p ≤ p1 <∞, W+ = F s
pq(IR), and for 1 < p1 < p <∞,

W+ = W+,R =
{
w ∈ F s

pq(IR), supp w ⊂ [−R, R]
}

,

endowed with the (quasi-) norm in F s
pq(IR), where 0 < s < r, 0 < q ≤ ∞.

Then, the conclusion of Lemma 3.5 holds, with

γ+(δ) ≤ K ′′
1 ·





δ
min{1,s−( 1

p
− 1

p1
)+}

, s 6= 1 +
(

1
p −

1
p1

)

+
, 0 < q <∞,

δ, s = 1 +
(

1
p −

1
p1

)

+
, 0 < q ≤ 2.

(20)
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Finally, in the next lemma W+ is (essentially) the space TV 0
p , 1 ≤ p <∞.

Lemma 3.8 Under the conditions of Lemma 3.5, assume that d = 1.

For 1 ≤ p ≤ p1 <∞, let

W+ = Lp y
(
TV 0

p

) 1
p ,

and for 1 ≤ p1 ≤ p <∞, let

W+ = W+,R =
{
w ∈ Lp ∩ TV 0

p , supp w ⊂ [−R, R]
}

,

endowed with the norm in Lp y
(
TV 0

p

) 1
p .

Then, the conclusion of Lemma 3.5 holds, with

γ+(δ) = δ
1

max{p,p1} . (21)

4 Applications

The range of application of our results is very general. One aspect of this broad range of applicability is that
our method permits achieving rate-optimal constrained estimators of curves, surfaces and manifolds not only

when the data consists of i.i.d. random vectors, but also for time series and trajectories of more general, not

necessarily Markovian, stochastic processes. Another aspect of the generality of the method is that it can be

applied to any kind of regression-function or density estimator (spline, kernel, wavelet estimator, etc.). All
that is needed for the method to work for a given estimator f̂ is to provide the (global) risk estimation rate

for f̂ .

Several authors have also considered the problem of hazard rate estimation with censored data and have

established rate-optimal estimators when the function was assumed to belong to certain smoothness classes
(cf. Huber and MacGibbon (2004); Liang et al. (2005); Li (2004); Li et al. (2008) have also obtained wavelet

estimators which are optimal over a large range of Besov function classes for nonparametric regression with

censored data. In some applied problems it is quite conceivable that variable upper and lower constraints

(possibly based on historical studies) could be found for the hazard function. The resulting constrained
estimation problem would be amenable to our methods presented here.

Here we shall only consider some applications of our results to the wavelet and kernel estimators, as

considered in Delyon and Juditsky (1996) and Lepski et al. (1997), respectively. In both cases the observations

are i.i.d., but we shall not be relying on this fact. The results obtained can be considered as refinement,
generalization and extension of the results in Section 3 of Dechevsky and MacGibbon (1999, 2009).

The rates α
(

1
N

)
for the estimator f̂ and Delyon and Juditsky (1996) and Lepski et al. (1997) are, as

follows:

• for the wavelet (density or regression-function) estimator from Delyon and Juditsky (1996), for the

d-dimensional case, with 1 ≤ p ≤ p1 ≤ ∞, d
p < s, ρ = 2, θ = s

p1
− d

2

(
1
p −

1
p1

)
,

α

(
1

N

)
=






(
1
N

)2 s
2s+d , p1 <∞, θ > 0,

(
lnN
N

)2
s−d( 1

p
− 1

p1
)

2(s− d
p )+d (lnN)2(1−

2p
qp1

)+ , p1 <∞, θ = 0,

(
lnN
N

)2
s−d( 1

p
− 1

p1
)

2(s− d
p )+d

, p1 <∞, θ < 0,

(
lnN
N

)2
s− d

p

2(s− d
p)+d

, p1 =∞,

(22)

where f ∈ Bs
pq(IR

d) with q = min{2, p1};
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• for the kernel (regression-function) estimator from Lepski et al. (1997), with d = 1, p, p1, s and θ as in
(22), ρ = p1 <∞,

α

(
1

N

)
=






(
1
N

)p1
s

2s+1 , θ > 0,

(
1
N

)p1

s−( 1
p
− 1

p1
)

2(s− 1
p )+1 (lnN)

p1(
1
2 ·

s−( 1
p
− 1

p1
)

2(s− 1
p )+1

+ 1
p1

)

, θ = 0,

(
1
N

)p1

s−( 1
p
− 1

p1
)

2(s− 1
p )+1 (lnN)

p1
2 ·

s−( 1
p
− 1

p1
)

2(s− 1
p)+1

, θ < 0,

(23)

assuming that f ∈ Bs
pq(IR), with q = p1.

In Section 3 of Dechevsky and MacGibbon (1999, 2009) we used the rates (22), (23) for α
(

1
N

)
and the

constrained rates (15)–(17) for β(δ) to develop asymptotic theory for the respective wavelet and kernel-based

estimators f̂+,ε in the case of constant lower and/or upper bounds v, w, by computing the range (0, εN ]

of admissible values of ε. Our first new observation here is that all results in Section 3 or Dechevsky and

MacGibbon (1999, 2009) automatically extend to the case of convex variable v = v(x) and/or concave variable
w = w(x), as follows.

Corollary 4.1 In the context of Section 3 of Dechevsky and MacGibbon (1999, 2009), assume, more gen-

erally, that v = v(x) is a convex function, and w = w(x) is a concave function, on D(f, f̂ ; ε). If f̂ is the

wavelet estimator from Delyon and Juditsky (1996), then Corollaries 1–11 in Subsection 3.1 of Dechevsky
and MacGibbon (1999, 2009) continue to hold true. If f̂ is the kernel estimator from Lepski et al. (1997),

then Corollaries 1, 2 in Subsection 3.2 of Dechevsky and MacGibbon (1999, 2009) continue to hold true.

The results from Section 3 of Dechevsky and MacGibbon (1999, 2009) can also be extended to the general

case of non-convex v(x) or non-concave w(x), and the proof of this extension is similar to the proof of
Corollary 4.1, where the rates (18)–(21) for γ+ and γ− must now also be taken into consideration. It should

be noted that, due to the logarithmic factors in the rates for α
(

1
N

)
, β(δ), γ+ and γ−, it is not always possible

to give explicitly the corresponding rates for εN in terms of elementary functions. That is why here we shall

present the rate for εN not in the case when f̂+,ε achieves exactly the same rates as f̂ , but rather when f̂+,ε

achieves these rates within the “asymptopia” convention (see Donoho et al. (1995)), i.e., up to a logarithmic
factor. Under this convention, it is possible to ignore the logarithmic factors in the rates (15)–(23) and work

instead only with the polynomial factors in these rates. Now the rates for εN are polynomial in all cases,

and can be given explicitly, as follows.

Corollary 4.2 Under the assumptions of Theorem 3.1, let f̂ be the wavelet estimator from Delyon and
Juditsky (1996), with α

(
1
N

)
satisfying (22), p1 ≤ ∞, ρ = 2, or let f̂ be the kernel estimator from Lepski

et al. (1997), with α = 1, α
(

1
N

)
satisfying (23), p1 < ∞, ρ = p1. Assume further that W = Bs

pq

(
IRd
)
,

W− = W+ = As′

p′q′

(
IRd
)
, where 1 ≤ p ≤ p1, 0 < q ≤ ∞, d

p < s < r, 1 ≤ p′ ≤ ∞, 0 < q′ ≤ ∞,

d
(

1
p′ −

1
p1

)

+
< s′ ≤ r, r ≥ 2. Suppose also that f̂ ∈ Cr

0

(
IRd
)

and Φ ∈ Cr
0

(
IRd
)
. Then,

(A) if v = v(x) (w = w(x)) is convex (concave) on D(f, f̂ ; ε), and if f̂+,ε is defined via (2), (3) (i.e.,

in the sense of Theorem 2.1), then f̂+,ε attains the rate of f̂ within the “asymptopia” convention if εN has

the following rate:

εN = O

(
N

− 1

2(s− d
p)+d

)
, (24)

for d
p1

< s− d
(

1
p −

1
p1

)
≤ min

{
2, p1d

(
1
2 −

1
p1

)(
1
p −

1
p1

)}
;

εN = O

(
N

− s

(2s+d)(s−d( 1
p
− 1

p1
))
)

, (25)
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for max
{

d
p1

, p1d
(

1
2 −

1
p1

)(
1
p −

1
p1

)}
< s− d

(
1
p −

1
p1

)
≤ 2;

εN = O



N
−

s−d( 1
p
− 1

p1
)

2(2(s− d
p)+d)



 , (26)

for max
{

d
p1

, 2
}

< s− d
(

1
p −

1
p1

)
≤ min

{
r − d

(
1
p −

1
p1

)
, p1d

(
1
2 −

1
p1

)(
1
p −

1
p1

)}
;

εN = O
(
N

− s
2(2s+d)

)
, (27)

for max
{

d
p1

, 2, p1d
(

1
2 −

1
p1

)(
1
p −

1
p1

)}
< s− d

(
1
p −

1
p1

)
.

(B) if v = v(x) (w = w(x)) is not necessarily a convex (concave) function on D(f, f̂ ; ε), and if f̂+,ε is

defined via (6), (7) (i.e., in the sense of Theorem 3.1), then f̂+,ε attains the rate of f̂ within the “asymptopia”

convention, if εN has the following rate:

εN = O

(
N

− 1

2(s− d
p)+d

)
, (28)

for d
p1

< s− d
(

1
p −

1
p1

)
≤ min

{
1, p1d

(
1
2 −

1
p1

)(
1
p −

1
p1

)
, s′ − d

(
1
p′ −

1
p1

)

+

}
;

εN = O

(
N

− s

(2s+d)(s−d( 1
p
− 1

p1
))
)

, (29)

for max
{

d
p1

, p1d
(

1
2 −

1
p1

)(
1
p −

1
p1

)}
< s− d

(
1
p −

1
p1

)
≤ min

{
1, s′ − d

(
1
p′ −

1
p1

)

+

}
;

εN = O



N
−

s−d( 1
p
− 1

p1
)

2(s− d
p )+d

·max

(
1, 1

s′−d( 1
p′ − 1

p1
)+

)

 , (30)

for max

{
d
p1

, min

{
1, s′ − d

(
1
p′ −

1
p1

)

+

}}
< s− d

(
1
p −

1
p1

)
≤ p1d

(
1
2 −

1
p1

)(
1
p −

1
p1

)
;

εN = O



N
− s

2s+d
·max

(
1, 1

s′−d( 1
p′ − 1

p1
)+

)

 , (31)

for max

{
d
p1

, p1d
(

1
2 −

1
p1

)(
1
p −

1
p1

)
, min

{
1, s′ − d

(
1
p′ −

1
p1

)

+

}}
< s− d

(
1
p −

1
p1

)
.

As seen from Corollary 4.2, the rates in the case of general variable constraints (see (28)–(31)) achieve
the rates in the special case of convex lower and concave upper order constraints (see (24)–(27)) (and are

independent of the regularity of the order constraints) only when the order constraints v(x), w(x) are “more

regular” than f(x) itself, in the sense that s− d
(

1
p −

1
p1

)
≤ min

{
1, s′ − d

(
1
p′ −

1
p1

)

+

}
must hold.
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Remark 4.1 In Corollary 4.2 we considered the case W = Bs
pq

(
IRd
)

and W− = W+ = As′

p′q′

(
IRd
)
, where

for the rates we use Lemmas 3.2 and 3.5. Under different restrictions for the regularity parameters, we can

use each of Lemmas 3.2–3.4 for W versus each of Lemmas 3.5–3.8 for W− = W+ to obtain analogous results

to those of Corollary 4.2 for all possible couples of space classes (W , W− = W+) (Besov spaces, A-spaces,

Triebel-Lizorkin spaces, spaces of functions with bounded Wiener-Young p-variation). Details will not be
provided here.

Remark 4.2 Using the rates in parts A and B of Corollary 4.2 (and its analogues discussed in Remark 4.1)

it is possible to obtain the (generally, faster) sharp rates for εN under which f̂+,ε attains the rates of f̂ (within

the “asymptopia”) uniformly in (some, or all of) the regularity parameters s, s′, p1, p, p′, q, q′ in the whole

of their respective ranges of admissibility. We note that even in the simplest case of constant v and w, these
“uniform” results constitute sharpening of the respective results in Section 3 of Dechevsky and MacGibbon

(1999, 2009) (for the case of “asymptopia”). We omit the technical elaboration of the details here.

5 Proofs

Proof of Lemma 2.1. By the definition of Φε, the integral in (3) is a convergent limit of convex combina-

tions of values of f̂+(x) at some points xl ∈ IRd where Formula (4) is satisfied. At the same time, again by
definition of Φε, the same convex combinations of the points xl themselves converge to the centre of mass

with coordinates

x0,i =

∫

IRd

Φε(x− ξ)ξi dξ, i = 1, . . . , d.

From this and from the symmetry of Φ and
∫
IRd Φ(ξ) dξ = 1 it follows that x0,i = xi, i = 1, . . . , d, where

(x1, . . . , xd)
T = x.

This, together with (4), the convexity of v, and the concavity of w, implies (5).

Proof of Theorem 2.1. This follows the lines of the proof of Theorem 2.1 in Dechevsky and MacGibbon

(1999, 2009) where, in the last stage (invoking the lattice property), one now uses Lemma 2.1 instead.

Proof of Lemma 3.1. By the properties of the lower and upper Baire functions, it follows from (6) that,
for any x ∈ IRd,

(P1) S(v, x; CΦε) ≤ S(v, ξ; 2CΦε) ≤ f̂ε
+(ξ) ≤ I(w, ξ; 2CΦε) ≤ I(w, x; CΦε)

holds for any ξ : |x − ξ| ≤ CΦε. Multiplying (P1) by Φ(x − ξ) ≥ 0, using the fact that supp Φε(x − ·) ⊂

{ξ : |x− ξ| ≤ CΦε)}, and that
∫
IRd Φ(y) dy = 1, we obtain after integrating in ξ and using the properties of

the lower and upper Baire functions once again

(P2) v(x) ≤ S(v, x; CΦε) ≤ Φε ∗ f̂ε
+(x) ≤ I(w, x; CΦε) ≤ w(x),

which is the desired analogue (12) of (5).

Proof of Theorem 3.1. To avoid misunderstanding of the notation in this proof, we stress here that in the

present Theorem 3.1 f̂+,ε has the meaning of (7), which means that f̂+,ε =
(
f̂ε
+

)

ε
with f̂ε

+ defined in (6). In

contrast to this (and with slight abuse of notation), in Theorem 2.1 f̂+,ε has the meaning of (3), i.e., there

f̂+,ε =
(
f̂+

)

ε
, where f̂+ is defined in (2). (In the context of the current Theorem 3.1 there is no special

notation for the quantity
(
f̂+

)

ε
.) With this in mind, we obtain
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(P3)

(
E
∥∥∥f − f̂+,ε

∥∥∥
ρ

Lp1

) 1
ρ1

=

(
E
∥∥∥f −

(
f̂ε
+

)

ε

∥∥∥
ρ

Lp1

) 1
ρ1

=

(
E
∥∥∥f −

(
f̂+

)

ε
+
(
f̂+

)

ε
−
(
f̂ε
+

)

ε

∥∥∥
ρ

Lp1

) 1
ρ1

≤

(
E
∥∥∥f −

(
f̂+

)

ε

∥∥∥
ρ

Lp1

) 1
ρ1

+

(
E
∥∥∥
(
f̂+

)

ε
−
(
f̂ε
+

)

ε

∥∥∥
ρ

Lp1

) 1
ρ1

= J1 + J2.

The evaluation of J1 now goes on in exactly the same way as the proof of Theorem 2.1 (In fact, it is
the same proof and we shall not discuss it here in detail). For the evaluation of J2 we use consecutively

Lemmas A.3 and A.4 in Dechevsky and MacGibbon (1999, 2009) to obtain:

(P4) J2 =

(
E
∥∥∥
(
f̂+ − f̂ε

+

)

ε

∥∥∥
ρ

Lp1

) 1
ρ1

≤

(
E
∥∥∥f̂+ − f̂ε

+

∥∥∥
ρ

Lp1

) 1
ρ1

and, by (P4) and Lemma P1 (given immediately after this proof),

(P1) J2 ≤
(
E ‖max {ω1(v, ·; CΦε), ω1(w, ·; CΦε)}‖

ρ
Lp1

) 1
ρ1

≤
(
E ‖ω1(v, ·; CΦε) + ω1(w, ·; CΦε)‖

ρ
Lp1

) 1
ρ1

≤ τ1 (v; CΦε)
ρ

ρ1

Lp1
+ τ1 (w; CΦε)

ρ
ρ1

Lp1
= J21 + J22.

(If one of the order constraints is absent, then so is the corresponding term on the RHS of (P5) also absent.)

Requiring now that the contribution of each of J21 and/or J22 does not exceed
(
3 + 2

ρ
ρ1

)
K

1
ρ1 α

(
1
N

) 1
ρ1 (cf.

Formula (10) in Dechevsky and MacGibbon (1999, 2009)), after simple computations, we obtain (14).

The following lemma has been used in the proof of Theorem 3.1.

Lemma P1 For any ε > 0, it is true that

(P6)
∣∣∣f̂+ − f̂ε

+

∣∣∣ ≤ max {ω1(v, x; CΦε), ω1(w, x; CΦε)} , ∀x ∈ IRd.

If one of the order constraints is absent, then so is absent the corresponding term in the RHS of (P6).

Proof of Lemma P1. Denote a = v(x), a1 = S(v, x; CΦε), b = w(x), b1 = I(w, x; CΦε), where, by the

assumptions made in the beginning of Section 3, especially Formula (11), a ≤ a1 ≤ b1 ≤ b holds. Denote also
λ = f̂(x). Then,

(P7)
∣∣∣f̂+ − f̂ε

+

∣∣∣ =






a1 − a, λ ≤ a ≤ a1 ≤ b1 ≤ b,

λ− a1 ≤ a1 − a, a ≤ λ ≤ a1 ≤ b1 ≤ b,

0, a ≤ a1 ≤ λ ≤ b1 ≤ b,

b1 − λ ≤ b− b1, a ≤ a1 ≤ b1 ≤ λ ≤ b,

b− b1, a ≤ a1 ≤ b1 ≤ b ≤ λ

and, by the definitions of the lower and upper Baire functions and the local modulus of smoothness, a1−a =

|a1 − a| ≤ ω1(v, x; CΦε), b− b1 = |b− b1| ≤ ω1(w, x; CΦε), and the lemma follows from (P7).

Lemmas 3.2–3.4 have been proved in Dechevsky and MacGibbon (1999, 2009).

Proof of Lemma 3.5. Consider first the case p = p1. If s ∈ (0, 1), we have

(P8) τ1(w; δ)Lp
≤ c1δ

s‖w‖As
p∞
≤ c2δ

s‖w‖As
pq

.

If 1 < s < r <∞, then (P8) follows from the Marchaud-type inequality of second type for τ -moduli, with

k = [r] + 1
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(P9) τ1(w; δ)Lp
≤ c′3τk(w; δ)Lp

+ c′′3δ‖w‖Lp
+ c′′′3 δ

∫ 1

δ
ξ−2ωk(w; ξ)Lp

dξ

(see Dechevski (1988a), Subsection 1.3, Theorem 2, part (a), or case (i) of Theorem 5 in the R&D Report

Dechevsky (2008) or its published version Dechevsky (2007a)), and the embedding A1
p1 ←֓ As

pq, 1 ≤ p ≤ ∞,

0 < q ≤ ∞, s > 1.

If s = 1, 1 ≤ p ≤ ∞ and 0 < q ≤ 1, then (P8) follows from (P9) and the embedding A1
p1 ←֓ A1

pq.

If s = 1, 1 ≤ p ≤ ∞ and 1 < q ≤ ∞, then a simple upper bound of the RHS of (P9) gives, by also using
Hölder’s inequality for q =∞,

(P10) τ1(w; δ)Lp
≤ c4δ

(
‖w‖Lp

+
∫ 1

δ
ξ−2τk(w; ξ)Lp

dξ
)
≤

c5δ
(
‖w‖Lp

+
(∫ 1

δ
dξ
ξ

)
·
[
supξ>0

(
ξ−1τk(w; ξ)Lp

)])
≤

c5δ
(
‖w‖Lp

+ c6

(
ln 1

δ

)
‖w‖A1

p∞

)
≤ c7δ

(
ln 1

δ

)
· ‖w‖A1

p∞
,

where for the last inequality the embedding Lp ←֓ A1
p∞ was used. (P10) proves (18) in the case s = 1,

1 ≤ p ≤ ∞, q = ∞. Let us consider now the case 1 < q < ∞. Since τ1(·; δ)Lp
is an equivalent semi-

norm in the space Ap,δ + Ẇ 1
p,δ with the semi-norm K

(
δ, ·; Ap,δ, Ẇ

1
p,δ

)
, we can apply the real interpolation

method between (P8) (for q = 1) and (P10). (For the relevant details about the use of the real interpolation

method in this context, see Dechevski (1988,a); Dechevsky (2008, 2007a) and Theorem 6.4.5 (2) in Bergh
and Löfström (1976), valid also for A-spaces.) Namely, we apply the real (η, q)-method, η ∈ (0, 1), q ∈ (1,∞)

where η = 1− 1
q ∈ (0, 1), so that 1

q = 1−η
1 + η

∞ = 1− η. As a result, we obtain

τ1(w; δ) ≤ c8δ

(
ln

1

δ

)1− 1
q

‖w‖A1
pq

,

i.e., Formula (18) for s = 1, 1 ≤ p ≤ ∞, 1 < q < ∞. Thus, Lemma 3.5 is completely proven in the case

p1 = p.

For p < p1 we use the Sobolev-type embedding As
pq →֒ A

s−d( 1
p
− 1

p1
)

p1q , 0 < p ≤ p1 ≤ ∞, 0 < q ≤ ∞,

s > d( 1
p −

1
p1

)+, (which can be proved similarly to the proof of the analogous Sobolev-type embedding for

Besov spaces). In this way, we reduce the consideration of the case p < p1 to the already proven case p = p1.

Finally, let p > p1. It is easy to verify that, by Hölder’s inequality,

τ1(w; δ)Lp1
≤ c(d, p, p1)R

“
1

p1
− 1

p

”
d
τ1(w; δ)Lp

,

which once again reduces the consideration to the case p = p1.

Proof of Lemma 3.6 (outline). Let p1 = p first. Then, since d = 1 and s > 1
p for p > 1, the isomorphism

As
pq ⇋ Bs

pq holds for any p : 1 ≤ p ≤ ∞, 0 < q ≤ ∞. When p = 1, there is also the isomorphism As
1q ⇋ Bs

1q,

s ≥ 1, 0 < q ≤ 1. Now the proof follows (with respective modifications) the proof of Lemma 3.2 (Lemma 1
in Section 2 of Dechevsky and MacGibbon (1999, 2009)).

Proof of Lemma 3.7 (outline). Let p1 = p. Since d = 1 and s > 1
p , τ1(w; δ)Lp1

≤ c9δ
s‖w‖F s

p2
holds for

s ∈ ( 1
p , 1). The rest of the proof is similar to the proof of Lemma 3.3 (Lemma 2 in Section 2 of Dechevsky

and MacGibbon (1999, 2009)).

Proof of Lemma 3.8 (outline). Again let p1 = p. Since d = 1, τ1(w; δ)Lp1
≤ (δVpw)

1
p holds. The rest of

the proof is similar to the proof of Lemma 3.4 (Lemma 3 in Section 2 of Dechevsky and MacGibbon (1999,
2009)).
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Proof of Corollary 4.1 (outline). The proof follows the lines of the proofs of the corresponding results in
Section 3 of Dechevsky and MacGibbon (1999, 2009) where, instead of Theorem 1 in Section 2 of Dechevsky

and MacGibbon (1999, 2009), we use the more general Theorem 2.1 of the present paper.

Proof of Corollary 4.2. Since, by the “asymptopia” convention, the rates for f̂ and f̂+,ε have to coincide

only up to the logarithmic factor, in the place of α
(

1
N

)
, β(δ), and γ−(δ) = γ+(δ), we may consider their

main, polynomial-factor, rate

(P11) α̃
(

1
N

)
=






(
1
N

)ρ s
2s+d , θ > 0,

(
1
N

)ρ
s−d( 1

p
− 1

p1
)

2(s− d
p )+d

, θ ≤ 0,

(P12) β̃(δ) = δ
min{2,s−d( 1

p
− 1

p1
)}.

(P13) γ̃−(δ) = γ̃+(δ) = δ
min{1,s′−d( 1

p′ −
1

p1
)+}

,

in view of Formulas (22), (23), (15) and (18). Now we can compute β̃−1 and γ̃−1 explicitly from (P12) and
(P13):

(P14) δ = β̃−1(β̃(δ)) = β̃
max

(
1
2 , 1

s−d( 1
p
− 1

p1
)

)

,

(P15) δ = γ̃−1
+ (γ̃+(δ)) = γ̃

max

(
1, 1

s′−d( 1
p′ − 1

p1
)+

)

.

Then, in part A of the corollary the rate for εN is O
(
β̃−1

(
α̃
(

1
N

) 1
ρ

))
, and in part B the rate for εN is the

higher of the rates O
(
β̃−1

(
α̃
(

1
N

) 1
ρ

))
and O

(
γ̃−1
+

(
α̃
(

1
N

) 1
ρ

))
.

Consider part A first. We have four cases depending on whether θ ≤ 0 or θ > 0 and on whether

s− d
(

1
p −

1
p1

)
≤ 2 or s− d

(
1
p −

1
p1

)
> 2. After computations, using (P11) and (P14), we obtain (24)–(27).

The proof of part A is complete.

Consider now part B. We now have eight cases, depending on the signs of the quantities in part A

and, additionally, on whether s′ − d
(

1
p′ −

1
p1

)

+
≤ 1 or s′ − d

(
1
p′ −

1
p1

)

+
> 1. In the analysis of these

eight cases, using (P11), (P14) and (P15), we note that some of the cases, when min

{
1, s′ − d

(
1
p′ −

1
p1

)

+

}

≤ min
{
2, s− d

(
1
p −

1
p1

)}
, can be united, and also that two of the cases, when min

{
2, s− d

(
1
p −

1
p1

)}

> min
{

1, s′ − d
(

1
p′ −

1
p1

)}
, are void. After computation, this leads to (28)–(31), which completes the proof

of part B.

6 Concluding remarks

Here we provide the concluding remarks given in Section 6 of Dechevsky and MacGibbon (2001), together
with some recent updates.

Remark 6.1 In the proof of Theorems 2.1 and 3.1 (the evaluation of J1), the lattice property plays an

essential role (see the proof of Theorem 1 in Section 2 of Dechevsky and MacGibbon (1999, 2009) for the

details). This means that (unlike the rates in the Bs1
p1q1

-metric, (s1 > 0) for f̂ as in Delyon and Juditsky

(1996)) for f̂+,ε the Lp1-norm in the risk in Theorems 2.1 and 3.1 cannot be replaced by a Bs1
p1q1

-norm for
any s1 > 0.
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Remark 6.2 We note that f̂ , as defined in Lepski et al. (1997), may be nonsmooth, and even discontinuous
at some points. Thus, in this case f̂ may violate both the order and the smoothness constraints, while f̂+,ε

obeys all of these constraints.

Remark 6.3 Due to the regularization effect of the convolution with Φε in the definition of f̂+,ε, Gibbs

phenomenon with f̂+,ε is much reduced compared to that of f̂ .

Remark 6.4 In Dechevsky et al. (2001) and in the forthcoming Dechevsky and MacGibbon (2010) we study

the properties of the estimators obtained by replacing the convolution integral in the definition of f̂+,ε with

quadrature formulae. These new estimators of kernel type preserve the order constraints just as f̂+,ε, and they

have the same regularity as the kernel Φ ∈ Cr
0 (see Appendix 0). These quadrature-based kernel estimators

depend on ε and also on the parameters of the quadrature formula. As with ε, an optimal range can be found

for each of these additional parameters, so that the new estimators retain asymptotic-minimax optimality. In
the case when spline-wavelets, spline-kernels and a B-spline kernels Φ are used, it is possible, at least for d = 1,

to compute the integral explicitly, in closed form, which can be obtained manually or by automatic symbolic

integration (for more details, see Dechevsky et al. (2001), the end of Section 3). The use of quadrature

formulae in this case also leads to the exact value of the integral, as long as the quadrature formulae are
chosen to be exact of order not less than the order of the spline. In the case of density estimation, it can also

facilitate normalization. In the forthcoming paper Dechevsky and MacGibbon (2010) we consider the problem

in the case of general variable constraints, and make use of the results of Theorems 2.1 and 3.1 of the present

work.

Remark 6.5 Besov spaces have been widely used in recent years to model the smoothness constraints in

nonparametric density and regression-function estimation. Here we would like to stress that, in our opinion,

Besov spaces are a natural space scale for these types of estimation problems only for density estimation and

when the regression problem is with random design. The natural space scale for regression problems with

deterministic design are A-spaces. In this context Besov spaces appear only as far as Bs
pq ⇋ As

pq for s > d
p

(see Dechevsky et al. (1999), Appendix B, B12 for further details, as well as Appendix 0).

Remark 6.6 It would be interesting to develop analogues of the results of Delyon and Juditsky (1996) and

Lepski et al. (1997) in terms of homogeneous Besov, Sobolev, etc., spaces. For instance, this would allow a

better assessment of the role of the density’s tail weight versus its regularity, where interesting new results
can be expected in the case of densities with non-compact support (see also Remark 2.2.4 in Dechevsky and

Penev (1997)).

Remark 6.7 For density estimation, a natural lower bound for f is v ≡ 0 (or, eventually, v(x) ≥ 0 with∫
IRd v(x) dx < 1). In this case it is desirable that the estimator also integrates to 1 on IRd, i.e., is a

density itself. If there is no upper constraint w(x), it suffices to normalize the estimator f̂+,ε by a factor

c = 1R
IRd

bf+,ε(x) dx
. However, if there is also an upper bound w, it may happen that cf̂+,ε(x) > w(x) for some

x. This difficulty can be overcome by a modification in the definition of f̂+ in (2) and f̂ε
+ in (6), as follows.

• In the special case of convex/concave lower/upper constraints:

f̂c,+(x) = min
{

w(x), c ·max
{

0, f̂(x)
}}

,

when v ≡ 0 (is convex non-negative), w(x) ≥ 0 is concave on D(f, f̂ ; ε), with
∫
IRd w(x) dx > 1.

• In the general case of variable constraints:

f̂ε
c,+(x) = min

{
I(w, x, 2CΦε), c ·max

{
S(v, x; 2CΦε), f̂(x)

}}
,

for the case of general variable constraints 0 ≤ v(x) < w(x) with (11),
∫
IRd v(x) dx < 1, and∫

IRd w(x) dx > 1.
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The value for c is the only solution of
∫
IRd f̂c,+(x) dx = 1, respectively

∫
IRd f̂ε

c,+(x) dx = 1. Convolving with

Φε (which is a density) ensures that Φε ∗ f̂c,+, respectively Φε ∗ f̂ε
c,+ is a density itself, too.

Remark 6.8 If the parameter ε = ε(x) for x ∈ IRd in the definition of f̂+,ε were made space-dependent, the

estimator f̂+,ε can be made not only rate-optimal as f̂ , but also ideally spatially adaptive for moderate sam-

ples, if f̂ is such itself. (Both the wavelet estimator from Delyon and Juditsky (1996) and the kernel estimator

from Lepski et al. (1997) enjoy such ideal spatial adaptivity.) For example, let us consider the adaptive kernel

estimator f̂(x) = f̂bh(x)(x) of Lepski et al. (1997), with variable bandwidth ĥ(x). Denote ĥmin = minx ĥ(x) (by

the construction of ĥ(x) in Lepski et al. (1997) it follows that ĥmin always exists and is strictly positive, when

f is compactly supported). One simple data-adaptive choice of ε can be ε = min
{bhmin

2 , εN

}
; a more refined

choice, involving variable bandwidth ε(x) is ε(x) = min
{bh(x)

2 , εN

}
. Further improvement of the adaptivity

of f̂+,ε(·)(·) can be achieved, if we make use of the fact that the ideas of the proofs of Theorems 2.1, 3.1

and Lemmas 3.2–3.8 can be modified for local pointwise estimates. (In fact, tracing our proofs shows that
obtaining local estimates for f̂+,ε and f̂ε

+,ε is an intermediate stage of these proofs; when there is a local

pointwise rate available for f̂(x), this stage is sufficient; when only global rate in Lp1-metric is known for f̂ ,

then this stage has to be followed by a stage of Lp1-global averaging of the local rates for f̂+,ε, as is the case

with Theorems 2.1 and 3.1.) In the case of local rates available for f̂(x) the variable bandwidth can be defined

by ε̄(x) = min
{bh(x)

2 , εN (x)
}
. At this point it should be recalled that the method of defining ĥ(x) in Lepski

et al. (1997) generates piecewise continuous ĥ(x) which is a step function. To obtain sufficiently smooth

varying bandwidth ε̃(x), it now suffices to smooth ε̄, e.g., by using the kernel Φ(x) and bandwidth
bhmin

2 . This

would guarantee that f̂+,ε̃(·)(·) ∈ W .

Remark 6.9 The papers Dechevsky and Penev (1997, 1998); Penev and Dechevsky (1997); Pinheiro and
Vidakovic (1997); Dechevsky et al. (1999); Dechevsky and MacGibbon (1999); Dechevsky et al. (2000, 2001);

Dechevsky and MacGibbon (2001) appeared between 1997 and 2001; in the period since then several new

publications relevant to shape-preserving approximation/estimation have appeared. Here we shall mention

explicitly the following ones.

1. In his Nobel Lecture McFadden (2000), McFadden noted the need for extending the results of Anastassiou
and Yu (1992); Dechevsky and Penev (1997) to high-dimensional shape-preserving approximation.

2. Mammen et al. (2001) proposed a general projection framework for constrained smoothing, the emphasis

being on preserving monotonicity and related topics. The topic of positivity constraints (i.e., constant

lower and/or upper constraints) is mentioned very briefly in the concluding section, where a reference
to Dechevsky and MacGibbon (1999); Dechevsky et al. (2000) is provided. Clearly, at that time the

authors have been unaware of the more general results in Dechevsky and MacGibbon (2001) which treat

also the case of variable lower and/or upper constraints. Another highly relevant previous study which

has not been considered in Mammen et al. (2001) is Appendix B in Dechevsky et al. (1999).

3. Cosma et al. (2007) developed a multivariate extension of the results in Dechevsky and Penev (1997,

1998), thereby partially filling the gap indicated by McFadden (2000). The results in Cosma et al.

(2007) are, however, valid only for a compactly supported density/c.d.f. To the best of our knowledge,

a full-scale extension of the results Dechevsky and Penev (1997, 1998) (involving also assessment of the
role of the tailweights of a density/c.d.f. with non-compact support) has not been achieved yet.

4. The survey article Dechevsky (2007) provided a relatively recent overview (as of the end of 2007) of the

state of the art and ongoing research in shape-preserving wavelet-based approximation, giving references

to, among others, Anastassiou and Yu (1992); Dechevsky and Penev (1997, 1998); Penev and Dechevsky
(1997); Pinheiro and Vidakovic (1997); Dechevsky et al. (1999); Dechevsky and MacGibbon (1999);

Dechevsky et al. (2000, 2001); McFadden (2000); Mammen et al. (2001); Cosma et al. (2007), providing

also a preliminary announcement (without proofs or details) of some of the main results Dechevsky
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and MacGibbon (2001), and reporting the ongoing research in the forthcoming paper Dechevsky and
MacGibbon (2010).

In conclusion, our estimator f̂+,ε and its various modifications considered here seem to be ideally suited

to preserving optimal estimation rates over a broad variety of smoothness classes, while also obeying order

constraints of a quite general kind.

Appendix: Preliminaries and notation

For the relevant facts, definitions and standard notation related to the theory of function spaces, we cite as

a general reference Bergh and Löfström (1976).

[τ ] – integer part of τ (for τ > 0).

x+ = max{0, x}.

Ω(δ0) = {ω : [0, δ0]→ [0,∞); ω(t1) > ω(t2), t1 > t2; ∃ lim
t→0+

ω(t) = ω(0+) = 0; ω(0) = 0}.

Quasi-norm (see Bergh and Löfström (1976), Dechevsky and Penev (1997)) : ∃c ≧ 1; ‖a + b‖ ≦ c(‖a‖+ ‖b‖).

Semi-norm : the norm property ‖a‖ = 0⇔ a = 0 is not necessarily fulfilled.

A – quasi(semi)-normed abelian group – see Bergh and Löfström (1976).

A – quasi-Banach space, if A is a complete quasi–normed abelian group, a linear space, and the quasi-norm

is homogeneous: ‖αa‖A = |α|‖a‖A.

Aρ = {a ∈ A : ‖a‖Aρ := ‖a‖ρA <∞}, ρ ∈ (0,∞).

ρA = {a ∈ A : ‖a‖ρA := ρ‖a‖A <∞}, ρ ∈ (0,∞).

A →֒ B : continuous embedding of A in B (for quasi-normed abelian groups) – see Bergh and Löfström
(1976).

A ⇋ B : A →֒ B and A ←֓ B. In this case ‖.‖A and ‖.‖B are equivalent – denoted by ‖a‖A ∼ ‖a‖B.

A y B = {a ∈ A ∩B : ‖a‖AyB := max {‖a‖A, ‖a‖B}.

A + B : A, B – quasi-normed abelian groups: ‖a‖A+B = inf
a=α+β

{‖α‖A + ‖β‖B} (see Bergh and Löfström

(1976)).

The K-functional: K(t, a; A, B) = inf
a=α+β

(
‖α‖A + t‖β‖B

)
, 0 < t <∞, plays an important role in this paper.

(It should be noted that the K-functional is one possible equivalent quasinorm on A + B (see Bergh and

Löfström (1976), Johnen and Scherer (1977) for details and properties).

We use the following notation for function spaces:

Lp = Lp(R
d), 1 ≦ p ≦ ∞ – Lebesgue spaces over R

d with respect to the Lebesgue measure in R
d

(notations as in Bergh and Löfström (1976)).

W k
p = W k

p (Rd), Ẇ k
p = Ẇ k

p (Rd), 1 ≦ p ≦ ∞, k = 0, 1, . . . – the inhomogeneous and homogeneous
Sobolev spaces, respectively (see Adams (1975), Bergh and Löfström (1976), Johnen and Scherer (1977),

Triebel (1983), Triebel (1992)).

Bs
pq = Bs

pq(R
d), Ḃs

pq = Ḃs
pq(R

d) – the inhomogeneous and homogeneous Besov spaces, 0 < p ≦ ∞,

0 < q ≦∞, s ∈ R – see Bergh and Löfström (1976), Triebel (1983), Triebel (1992) (we shall be dealing with

the case 1 ≦ p ≦∞, s > 0).

F s
pq = F s

pq(R
d), Ḟ s

pq = Ḟ s
pq(R

d) – the inhomogeneous and homogeneous Triebel-Lizorkin spaces, respec-

tively, 0 < p ≦∞, 0 < q ≦∞, s ∈ R ( see Bergh and Löfström (1976), Triebel (1983), Triebel (1992)).
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For more details on the properties of Bs
pq and F s

pq we refer to Bergh and Löfström (1976), Triebel (1983),
Triebel (1992).

The integral modulus of smoothness of f ∈ Lp(Rd) is defined, for δ > 0, as:

ωk(f ; δ)Lp(Rd) = sup
|h|≦δ

‖∆k
hf‖Lp(Rd),

where k ∈ N, h ∈ R
d, ∆k

hf(x) is the k-th finite difference with step h at x:

∆k
hf(x) =

k∑

ν=0

(
ν

k

)
(−1)k+νf(x + νh) and ∆k

hf(x) = ∆1
h∆k−1

h f(x).

A very important property of ωk(f ; δ)Lp
which we use is its equivalence to a K-functional (see Johnen

and Scherer (1977)): ωk(f ; δ)Lp
∼ K(δk, f, Lp, Ẇ

k
p ), δ > 0, with equivalence constants independent of δ.

Throughout, (X1, . . . , XN ) will denote the random vector of N (not necessarily uncorrelated) observations

which has a cumulative distribution function FN . The error measures in which the risk will be measured,

are the quasi-norms on (0 < p ≦ ∞, 0 < ρ ≦ ∞), Lρ(R
d, Lp(R

d)), which is the complete quasi-normed
abelian group of trajectories of stochastic processes G(x), x ∈ R

d, based on measurable transformations of

the random vector (X1, . . . , XN ) of N (not necessarily uncorrelated) random variables from a cumulative

distribution function (c.d.f.) FN : R
dN → [0, 1] and

‖G‖Lρ(Lp) =
(
EF N

(∫

Rd

|G(x)|p dx
)ρ/p)1/ρ

;

Lp(R
d,Lρ(R

d)) is the complete quasi-normed abelian group of functions g(x), defined on R
d, taking random

values depending on the random vector (X1, . . . , XN) and and

‖g‖Lp(Lρ) =
(∫

Rd

(
EF N |g(x)|ρ

)p/ρ

dx
)1/p

.

(In the definitions of Lρ(Lp) and Lp(Lρ) for p = ∞ the integral over R
d is replaced by Lebesgue-ess sup,

x ∈ R
d.) By Fubini’s theorem Lp(R

d, Lp(R
d)) and Lp(R

d,Lp(R
d)) are isometric and for ρ < p and ρ > p

there are respective embeddings based on the generalized Minkowski inequality, see, e.g., Nikol’skǐı (1975).
(These embeddings are discussed, e.g., in the preliminaries of Dechevsky and Penev (1998).) For this reason

here we restrict the consideration to Lp(R
d, Lp(R

d)) in its slightly generalized form Lρ(R
d, Lp(R

d))ρ, where

ρ ∈ (0,∞). This is convenient in order to present all results in Section 3 and applications in Section 4 in a

unified way. In this generalized form Lρ(Lp)
ρ is still a complete quasi-normed abelian group. We note that

it has the lattice property, i.e., from |G(x)| ≦ G1(x) Lebesgue a.e. on R
d, with G1 ∈ Lρ(Lp)

ρ, it follows
G ∈ Lρ(Lp)

ρ and ‖G‖Lρ(Lp)ρ ≦ ‖G1‖Lρ(Lp)ρ .

Let Ψ ∈ L1(R
d), Ψ ≧ 0 Lebesgue-a.e. on R

d, the support of Ψ, supp Ψ ⊂ {x ∈ R
d : |x| ≦ 1},

Ψ(−x) = Ψ(x), x ∈ R
d. By considering

Φ(x) :=
Ψ(x)∫

Rd

Ψ(t) dt
,

we obtain a function Φ which enjoys all the above properties and, additionally,
∫

Rd

Φ(x) dx = 1.

Define the approximate identity (cf. Reed and Simon (1975))

Φε(x) :=
1

εd
Φ
(x

ε

)
, x ∈ R

d.
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Clearly, ∫

Rd

Φε(x) dx = 1, ∀ε > 0.

For ways to define Φ in such a way that Φ ∈ C∞
0 (IRd) and Φ is symmetric with respect to the origin, see

the Appendix in Dechevsky and MacGibbon (1999, 2009).

Next we consider functions with bounded total variation on IR, d = 1. Let ω ∈ Ω(∞). Define

T∨ω = {f : IR→ IR, ∨ωf <∞}

where

∨ωf = sup

{
n∑

ν=1

ω (|f(xν)− f(xν−1)|) : −∞ < x1 < . . . < xn <∞, n ∈ N

}

is the ω-variation of f on IR in the sense of Young (1937). The case ω = ω(t) = t corresponds to the usual

Jordan variation, while the case ω = ω(t) = tp, 1 ≤ p <∞, corresponds to p-variation in the sense of Wiener

(1924).

To define the local and averaged moduli of smoothness, let us first consider the case d = 1.

For ε > 0, 0 < p ≤ ∞, (see Dechevski (1988,a); Dechevsky (2008, 2007a)) consider

Ap,ε(IR) = {f : IR→ IR, ‖f‖Ap,ε(IR) <∞},

where

‖f‖Ap,ε(IR) = ‖S(ε, |f |; ·)‖Lp(IR) ,

S(ε, f ; x) = sup{f(y) : y ∈ [x− ε, x + ε]},

where S is often called an upper Baire’s function.

The local modulus of smoothness is a generalization of S
(

ε
2 , |f |; x

)
) (which corresponds to r = 0):

ωr(f, x; ε) = sup
{
|∆r

θf(y)| : y, y + rθ ∈ [x−
rε

2
, x +

rε

2
]
}

(see Sendov and Popov (1988); Petrushev and Popov (1987); Dechevski (1988,a); Dechevsky (2008, 2007a)).

The averaged modulus of smoothness (or τ -modulus) of f : IR → IR, of order r, in Lp(IR), 0 < p ≤ ∞,

with step ε > 0, is defined by

τr(f ; ε)p = τr(f ; ε) = ‖ω(f, ·, ε)‖Lp(IR)

(see Sendov and Popov (1988); Petrushev and Popov (1987); Dechevski (1988,a); Dechevsky (2008, 2007a)).

An equivalent norm in Bs
pq(IR) can be defined via integral moduli of smoothness

‖f‖Bs
pq(IR) ∼ ‖f‖Lp(IR) +

[∫ c0

0

(
ξ−sωr(f ; ξ)Lp(IR)

)q dξ

ξ

] 1
q

,

0 < s < r, 1 ≤ p ≤ ∞, where c0 : 0 < c0 ≤ ∞ (the constants of equivalence depend on c0; note that c0 =∞

is an admissible value). The so-called A-spaces As
pq have been defined by V. A. Popov analogously to the

above definition of Bs
pq; the quasi-norm As

pq(IR), 0 < s < r, 0 < p ≤ ∞ is defined by

‖f‖As
pq(IR) = ‖f‖Lp(IR) +

[∫ c0

0

(
ξ−sτr(f ; ξ)Lp(IR)

)q dξ

ξ

] 1
q

,

(see, e.g., Dechevski (1988,a); Dechevsky (2008, 2007a)). In Dechevski (1988a), Section 1.4 (see also Dechevski

(1988), or Section 4.2 in Dechevsky (2008, 2007a)), it has been proved that

As
pq(IR) ⇌ Bs

pq(IR), 0 < p ≤ ∞, 0 < q ≤ ∞, s >
1

p
.
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(It can also be proved that this isomorphism continues to hold true for s = 1
p , q = min{1, p}.) As well as

integral moduli, averaged moduli can also be defined in the multivariate case d > 1; the above isomorphism

between Besov- and A-spaces continues to hold with 1
p being replaced by d

p .

For a general reference on all considered types of moduli of smoothness, see Sendov and Popov (1988);

Petrushev and Popov (1987). Additional relevant information can be found in Dechevski (1988,a); Dechevsky

et al. (1999); Johnen and Scherer (1977); Dechevsky and MacGibbon (1999, 2009); Dechevsky (2008, 2007a).

In the multivariate case integral, local and averaged moduli of smoothness can all be defined by finite

differences, too, but it is somehow more convenient to work with the equivalent K-functionals most of

the time. For the integral moduli and their equivalent K-functionals in the multivariate case, see Johnen

and Scherer (1977). These K-functionals are between Lp-spaces and the homogeneous Sobolev spaces Ẇ k
p .

The analogous K-functionals for local moduli are just the previous moduli for L∞ and Ẇ k
∞ over local

neighbourhoods, rather than the whole domain. As for the averaged moduli, their equivalent K-functionals

are in terms of the spaces Ap,ε and Ẇ k
p,ε (where the quasinorm in Ẇ k

p,ε is obtained by replacing the Lp-

quasinorm with the Ap,ε-quasinorm. There follow the detailled definitions in the case of local and averaged
moduli.

Denote B̄d(x; ε) =
{
ξ ∈ IRd, ‖x− ξ‖ ≤ ε

}
, x ∈ IRd, ε > 0, where ‖ · ‖ is an arbitrary , henceforward

fixed, norm in IRd. (The definitions, given below, are equivalent for different choices of ‖·‖. For concreteness,

let ‖ · ‖ be the usual Hilbert norm |x| =
∑d

i=1 x2
i .)

Let Ω ⊂ IRd be open, simply connected set, or the closure of such a set. The local modulus of smoothness

of f : Ω→ IR of order k ∈ N, with step ε, at x ∈ IRd (or, rather, the equivalent K-functional to this modulus)
is defined by

ωk(f, x; ε) = K
(
εk, f ; L∞

(
B̄d(x; ε) ∩ Ω

)
, Ẇ k

∞

(
B̄d(x; ε) ∩ Ω

))
.

The upper Baire function of f , with step ε, at x ∈ IRd :

S(f, x; ε) = sup
{
f(ξ) : ξ ∈ B̄d(x; ε) ∩ Ω

}
.

The lower Baire function of f , with step ε, at x ∈ IRd :

I(f, x; ε) = inf
{
f(ξ) : ξ ∈ B̄d(x; ε) ∩Ω

}
.

For 0 < p ≤ ∞, ε > 0

Ap,ε(Ω) = {f : Ω→ IR, f is bounded and measurable, ‖f‖Ap,ε(Ω) <∞},

where
‖f‖Ap,ε(Ω) = ‖S(|f |, ·; ε)‖Lp(Ω).

For k ∈ N, 0 < p ≤ ∞, ε > 0,

Ẇ k
p,ε(Ω) = {(f : Ω→ IR) : ‖f‖Ẇk

p,ε(Ω) <∞},

where

‖f‖Ẇ k
p,ε(Ω) =

∑

|ν|=k

‖Dνf‖Ap,ε(Ω),

where ν is a multiindex.

The averaged modulus of smoothness (together with its equivalent K-functional) of f : Ω→ IR, of order

k ∈ N, metric Lp, 0 < p ≤ ∞, and step ε > 0 :
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τk(f ; ε)Lp(Ω) := ‖ωk(f, ·; ε)‖Lp(Ω) ∼ K
(
εk, f ; Ap,ε(Ω), Ẇ k

p,ε(Ω)
)

, k ∈ N,

τ0(f ; ε)Lp(Ω) := ‖f‖Ap,ε(Ω).

The definitions of Besov and A-spaces in terms of the integral with respect to the Haar measure dt
t , given

above for d = 1, extends to any d ∈ N. For properties of the moduli, as well as for the Marchaud-type

inequalities, we refer to Sendov and Popov (1988); Petrushev and Popov (1987); Johnen and Scherer (1977)

and Dechevski (1988a); Dechevsky (2008, 2007a), as well as the lemmas in Appendix 0 of Dechevsky and
MacGibbon (1999, 2009).
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