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HEC Montréal
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Abstract

In this article, we construct a Malliavin derivative for functionals of a square-integrable Lévy process.
The Malliavin derivative is defined via chaos expansions involving mixed stochastic integrals with respect
to the Brownian motion and the Poisson random measure. Some properties of this derivative are studied
and a Clark-Ocone formula is derived. The construction and the results extend those for Brownian motion
and pure-jump Lévy processes. Moreover, the explicit martingale representation of the maximum of a
Lévy process is computed.

Key Words: Malliavin calculus; Malliavin derivative; Clark-Ocone formula; martingale representation;
chaotic representation; Lévy process.

Résumé

Dans cet article, nous construisons une dérivée de Malliavin pour des fonctionnelles d’un processus
de Lévy de carré intégrable. La dérivée de Malliavin est définie à l’aide d’une expansion en chaos faisant
intervenir des intégrales stochastiques mixtes par rapport à un mouvement brownien et à une mesure de
Poisson. On étudie ensuite certaines propriétés de cette dérivée où l’on étend la fameuse formule de Clark-
Ocone. Cette construction et les résultats subséquents généralisent les résultats déjà obtenus dans le cas
du mouvement brownien ou des processus de Lévy sans composante gaussienne. Comme application, nous
donnons une représentation explicite de la représentation martingale du maximum d’un processus de Lévy.
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sité de Montréal under the supervision of Bruno Rémillard. We would like to thank Wim Schoutens, the
thesis external referee, for his careful reading, and also Manuel Morales for bringing [21] to our attention.
We also thank Martin Goldstein for fruitful comments.

Partial funding in support of this work was provided by a doctoral scholarship of the Institut de
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1 Introduction

If W = (Wt)t∈[0,T ] is a Brownian motion, then the Wiener-Itô chaos expansion of a square-integrable Brow-

nian functional F is given by

F = E[F ] +
∑

n≥1

∫ T

0

. . .

∫ T

0

fn(t1, . . . , tn)W (dt1) . . .W (dtn), (1)

where (fn)n≥1 is a sequence of deterministic functions. This chaotic representation can be obtained by
iterating Itô’s representation theorem and can then be used to define the classical Malliavin derivative in the

following way: if the chaos expansion of F satisfies an integrability condition, then F is Malliavin-differentiable

and its Malliavin derivative DF is given by

DtF = f1(t) +
∑

n≥1

(n+ 1)

∫ T

0

. . .

∫ T

0

fn+1(t1, . . . , tn, t)W (dt1) . . .W (dtn), (2)

for t ∈ [0, T ]. This derivative operator is equal to a weak derivative on the Wiener space; the close connection
between Hermite polynomials and Brownian motion is at the hearth of that equivalence. See for instance

Nualart [18].

Quite recently, Løkka [14] developed similar results for a square-integrable pure-jump Lévy process L =

(Lt)t∈[0,T ] given by

Lt =

∫ t

0

∫

R

z(µ− π)(ds, dz),

where µ− π is the compensated Poisson random measure associated with L. In this setup, by mimicking the

steps of the Wiener-Itô expansion, Løkka obtained a chaos representation property for the pure-jump Lévy
process L just as in Equation (1) and then defined the corresponding Malliavin derivative as in Equation (2).

Later on, Benth et al. [4] introduced chaos expansions and a Malliavin derivative for more general Lévy

processes, i.e. Lévy processes with a Brownian component. However, in the latter, neither proofs nor

connections with the classical definitions are given.

Our first goal is to provide a detailed construction of a chaotic Malliavin derivative leading to a Clark-

Ocone formula for Lévy processes. We extend the definitions of the Malliavin derivatives for Brownian motion

and for pure-jump Lévy processes to general square-integrable Lévy processes. Secondly, we derive additional

results that are useful for computational purposes. The definition of the directional Malliavin derivatives is

different from those of Benth et al. [4] and extends the one in Løkka [14]. The main idea is to obtain a
chaotic representation property (CRP) by iterating a well-chosen martingale representation property (MRP)

and then defining directional Malliavin derivatives as in Ma et al. [16]. However, in the context of a general

square-integrable Lévy process, one has to deal with two integrators and therefore must be careful with the

choice of derivative operators in order to extend the classical definitions. This choice will be made with the
so-called commutativity relationships in mind and in the spirit of León et al. [13]. In the Brownian motion

setup, the commutativity relationship between Malliavin derivative and Skorohod integral is given by

Dt

∫ T

0

usW (ds) = ut +

∫ T

t

DtusW (ds), (3)

when u is an adapted process. See Theorem 4.2 in Nualart and Vives [20] for the corresponding formula in

the Poisson process setup.

We will get the MRP using a denseness argument involving Doléans-Dade exponentials. Our path toward
the CRP is different from that of Itô [9] and Kunita and Watanabe [12] who used random measures; see also

the recent formulation of that approach given by Kunita [11] and Solé et al. [25]. It is known that the CRP

usually implies the MRP and that in general a Lévy process does not possess the MRP nor a predictable

representation property. However, we show that the CRP and our well-chosen MRP are equivalent for square-

integrable Lévy processes. Finally, just as in the Brownian and pure-jump Lévy setups, a Malliavin derivative



2 G–2009–67 Les Cahiers du GERAD

and a Clark-Ocone formula are derived. As an application, we compute the explicit martingale representation
for the maximum of a Lévy process.

This approach to Malliavin calculus for Lévy processes is different from the very interesting contributions

of Nualart and Schoutens [19], León et al. [13] and Davis and Johansson [6]. They developed in sequence a

Malliavin calculus for Lévy processes using different chaotic decompositions based on orthogonal polynomials.

Their construction also relies on the fact that all the moments of their Lévy process exist. Many other chaos
decompositions related to Lévy processes have been considered through the years: see for example the papers

of Dermoune [7], Nualart and Vives [20], Aase et al. [1] and Lytvynov [15].

On the other hand, Kulik [10] developed a Malliavin calculus for Lévy processes in order to study the

absolute continuity of solutions of stochastic differential equations with jumps, while Bally et al. [2] estab-

lished an integration by parts formula in order to give numerical algorithms for sensitivity computations in
a model driven by a Lévy process; see also Bavouzet-Morel and Messaoud [3]. Finally, in a very interesting

paper, Solé et al. [25] constructed a Malliavin calculus for Lévy processes through a suitable canonical space.

While finishing this paper, the work of Petrou [21] was brought to our attention. In that paper, a similar

methodology is applied to obtain a Malliavin derivative and a Clark-Ocone formula. We think that there are
gaps at crucial steps of the construction in that paper. Our goal is to give a thorough and detailed treatment

of a Malliavin calculus for square-integrable Lévy processes. Moreover, apart from its own interest, our result

on the explicit martingale representation for the maximum of a Lévy process shows the tractability of the

theory.

The rest of the paper is organized as follows. In Section 2, preliminary results on Lévy processes are
recalled. In Sections 3 and 4, martingale and chaotic representations are successively obtained. Then, in

Section 5, the corresponding Malliavin derivative is constructed in order to get a Clark-Ocone formula.

Finally, in Section 6, we apply this Clark-Ocone formula to compute the martingale representation of the

maximum of a Lévy process.

2 Preliminary results on Lévy processes

Let T be a strictly positive real number and let X = (Xt)t∈[0,T ] be a Lévy process defined on a probability
space (Ω,F ,P), i.e. X is a process with independent and stationary increments, is continuous in probability

and starts from 0 almost surely. We assume that X is the càdlàg modification and that the probability

space is equipped with the completed filtration (Ft)t∈[0,T ] generated by X . We also assume that the σ-field

F is equal to FT . This filtration satisfies les conditions habituelles and, for any fixed time t, Ft− = Ft.
Consequently, the filtration is continuous. This fact is crucial in the statement of our Clark-Ocone formula.

The reader not familiar with Lévy processes is invited to have a look at the books of Bertoin [5], Protter

[22] and Schoutens [23]. From the Lévy-Itô decomposition (see Theorem 42, p.31, [22]), we know that X can

be expressed as

Xt = αt+ σWt +

∫ t

0

∫

|z|≥1

z N(ds, dz) +

∫ t

0

∫

|z|<1

z Ñ(ds, dz) (4)

where α is a real number, σ is a strictly positive real number, W is a standard Brownian motion and Ñ is the

compensated Poisson random measure associated with the Poisson random measure N . The Poisson random
measure N is independent of the Brownian motion W . Its compensator measure is denoted by λ× ν, where

λ is Lebesgue measure on [0, T ] and ν is the Lévy measure of X , i.e. ν is a σ-finite measure on R such that

ν({0}) = 0 and ∫

R

(1 ∧ z2) ν(dz) <∞.

Therefore the compensated random measure Ñ is defined by

Ñ([0, t] ×A) = N([0, t] × A) − tν(A).
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This measure is equal to the measure µ− π mentioned in the introduction.

Finally, let P be the predictable σ-field on [0, T ] × Ω and B(R) the Borel σ-field on R. We recall that a

process ψ(t, z, ω) is Borel predictable if it is (P × B(R))-measurable.

2.1 Square-integrable Lévy processes

When the Lévy process X is square-integrable, it can also be expressed as

Xt = µt+ σWt +

∫ t

0

∫

R

z Ñ(ds, dz), (5)

where µ = E[X1]. Indeed, in Equation (4) we have that

α = E

[
X1 −

∫ 1

0

∫

|z|≥1

z N(dt, dz)

]
,

so E[X2
t ] is finite if and only if

∫

R

z2ν(dz) = E



(∫ 1

0

∫

|z|≥1

z N(dt, dz)

)2



is finite. Note that in general µ 6= α.

The next lemma is a consequence of Itô’s formula; its main interest is the idea of its proof rather than

the result itself.

Lemma 2.1 If h belongs to L2([0, T ], λ), if g belongs to L2([0, T ] × R, λ × ν) and if eg − 1 belongs to

L1([0, T ] × R, λ× ν), define Z = (Zt)t∈[0,T ] by

Zt = exp

{∫ t

0

h(s)W (ds) −
1

2

∫ t

0

h2(s) ds+

∫ t

0

∫

R

g(s, z)N(ds, dz)

−

∫ t

0

∫

R

(
eg(s,z) − 1

)
ν(dz)ds

}
. (6)

The process Z is a square-integrable martingale if and only if eg − 1 is an element of L2([0, T ]× R, λ× ν).

Proof. From the assumptions, we have that Z is a well-defined positive local martingale, hence a super-

martingale. Then, if E[ZT ] = 1, it is a martingale. From Itô’s formula, we also have that Z is the solution
of

dZt = Zt− h(t)W (dt) + Zt−

∫

R

(eg(t,z) − 1) Ñ(dt, dz), Z0 = 1.

Let (τn)n≥1 be the fundamental sequence of stopping times of Z. Since W and N are independent,

E[Z2
t∧τn

] = 1 + E

[∫ t∧τn

0

Z2
s h

2(s) ds

]
+ E

[∫ t∧τn

0

Z2
s

∫

R

(eg(s,z) − 1)2 ν(dz)ds

]
,

for every n ≥ 1. Taking the limit when n goes to infinity yields

E[Z2
t ] = 1 +

∫ t

0

E[Z2
s ]h2(s) ds+

∫ t

0

E[Z2
s ]

∫

R

(eg(s,z) − 1)2 ν(dz)ds. (7)

If we define G(t) = h2(t) +
∫

R
(eg(t,z) − 1)2 ν(dz), then the function t 7→ E[Z2

t ] is the solution of

F ′(t) = G(t)F (t), F (0) = 1.
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Hence,

E[Z2
t ] = exp

{∫ t

0

h2(s) ds+

∫ t

0

∫

R

(eg(s,z) − 1)2 ν(dz)ds

}
(8)

and the statement follows.

For h ∈ L2([0, T ], λ) and eg − 1 ∈ L2([0, T ]×R, λ× ν), the process Z is the Doléans-Dade exponential of

the square-integrable martingale (M t)t∈[0,T ] defined by

M t =

∫ t

0

h(s)W (ds) +

∫ t

0

∫

R

(eg(s,z) − 1) Ñ(ds, dz).

In the literature, this is often denoted by Z = E(M), the stochastic exponential of M .

2.2 A particular choice for g

If g is an element of L2([0, T ] × R, λ × ν), then eg − 1 is not necessarily square-integrable. One way to

circumvent this problem is to introduce the bijection γ : R → (−1, 1) defined by

γ(z) =

{
ez − 1 if z < 0,

1 − e−z if z ≥ 0.
(9)

Note that γ is bounded. Hence, if h is square-integrable on [0, T ] and if g is of the form g(t, z) = ḡ(t)γ(z),

where ḡ ∈ C([0, T ]), i.e. ḡ is a continuous function on [0, T ], then Z is square-integrable by Lemma 2.1. One
can prove that the process (Nt)t∈[0,T ] defined by

Nt =

∫ t

0

∫

R

z Ñ(ds, dz) (10)

and the process (N̂t)t∈[0,T ] defined by

N̂t =

∫ t

0

∫

R

γ(z) Ñ(ds, dz)

generate the same filtration. Since

FX
t = FW

t ∨ FN
t

for every t ∈ [0, T ] (see Lemma 3.1 in [25]), we have the following lemma.

Lemma 2.2 For every t ∈ [0, T ],

FX
t = FW

t ∨ FN
t = FW

t ∨ F
bN

t .

As a consequence, F = FW
T ∨ F

bN
T .

This means that the processes Xt = µt+ σWt +Nt and X̂t = µt+ σWt + N̂t both generate the filtration

(Ft)t∈[0,T ].

3 Martingale representations

Assumption 3.1 For the rest of the paper, we suppose that X is a square-integrable Lévy process with a

decomposition as in Equation (5).
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In general, a Lévy process does not possess the classical predictable representation property (PRP), i.e.
an integrable random variable F (even with finite higher moments) can not always be expressed as

F = E[F ] +

∫ T

0

ut dXt,

where u is a predictable process and where the stochastic integral is understood as an integral with respect

to a semimartingale. However, a martingale representation property exists for square-integrable functionals

of X . It is a representation with respect to W (dt) and Ñ(dt, dz) simultaneously. This result can be found

as far back as the paper of Itô [9]. In this section, we will provide a different proof. But first, here is a
preparatory lemma.

Lemma 3.2 The linear subspace of L2(Ω,F ,P) generated by

{
Y (h, g) | h ∈ L2([0, T ], λ), g ∈ C([0, T ])

}
,

where the random variables Y (h, g) are defined by

Y (h, g) = exp

{∫ T

0

h(t)W (dt) +

∫ T

0

∫

R

g(t)γ(z) Ñ(dt, dz)

}
, (11)

is dense.

Proof. Let X be a square-integrable random variable such that

E [XY (h, g)] = 0

for every h ∈ L2([0, T ], λ) and g ∈ C([0, T ]). Let W (h) =
∫ T

0
h(t)W (dt) and Ñ(g) =

∫ T

0

∫
R
g(t)γ(z) Ñ(dt, dz).

Hence,

E

[
X exp

{
n∑

i=1

(
aiW (hi) + biÑ(gi)

)}]
= 0

for any n ≥ 1, any {a1, . . . , an, b1, . . . , bn} ⊂ R and any (sufficiently integrable) functions {h1, . . . , hn, g1, . . . ,

gn}. Then, for a fixed n and fixed functions {h1, . . . , hn, g1, . . . , gn}, the Laplace transform of the signed

measure on B(Rn) × B(Rn) defined by

(A,B) 7→ E

[
XIA

(
W (h1), . . . ,W (hn)

)
IB

(
Ñ(g1), . . . , Ñ(gn)

)]
,

is identically 0. Consequently, the measure on F = FT defined by E 7→ E [XIE ] vanishes on every rectangle

A×B if it is a pre-image of the R2n-dimensional random vector

(
W (h1), . . . ,W (hn), Ñ(g1), . . . , Ñ(gn)

)
.

By linearity of the stochastic integrals, this is also true for random vectors of the form

(
W (h1), . . . ,W (hn), Ñ(g1), . . . , Ñ(gm)

)
,

when m and n are different. Since F is generated by those random vectors, the measure is identically zero
and X = 0.

We now state and prove a Martingale Representation Theorem with respect to the Brownian motion and

the Poisson random measure simultaneously.
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Theorem 3.3 Let F ∈ L2(Ω,F ,P). There exist a unique Borel predictable process ψ ∈ L2(λ× ν × P) and a

unique predictable process φ ∈ L2(λ× P) such that

F = E[F ] +

∫ T

0

φ(t)W (dt) +

∫ T

0

∫

R

ψ(t, z) Ñ(dt, dz). (12)

Proof. For h ∈ L2([0, T ], λ) and g ∈ C([0, T ]), we know from the proof of Lemma 2.1 that

Yt = exp

{∫ t

0

h(s)W (ds) −
1

2

∫ t

0

h2(s) ds+

∫ t

0

∫

R

g(s)γ(z) Ñ(ds, dz)

−

∫ t

0

∫

R

(
eg(s)γ(z) − 1 − g(s)γ(z)

)
ν(dz)ds

}

is a solution of

Yt = 1 +

∫ t

0

Ys−h(s)W (ds) +

∫ t

0

∫

R

Ys−

(
eg(s)γ(z) − 1

)
Ñ(ds, dz) (13)

on [0, T ]. Hence, YT admits a martingale representation as in Equation (12) with φ(t) = Yt−h(t) and

ψ(t, z) = Yt−

(
eg(t)γ(z) − 1

)
. These two processes are predictable. Note that

YT = Y (h, g)e−θT (h,g)

where

θT (h, g) =
1

2

∫ T

0

h2(t) dt+

∫ T

0

∫

R

(
eg(t)γ(z) − 1 − g(t)γ(z)

)
ν(dz)dt.

Since θT (h, g) is deterministic, Y (h, g) also admits a martingale representation as in Equation (12) but this

time with

φ(t) = Yt−h(t)e
θT (h,g) and ψ(t, z) = Yt−

(
eg(t)γ(z) − 1

)
eθT (h,g).

Therefore, the first statement follows by a denseness argument. Indeed, from Lemma 3.2, since F is square-

integrable, there exists a sequence (Fn)n≥1 of square-integrable random variables such that Fn tends to F in
the L2(Ω)-norm when n goes to infinity. Moreover, the Fn’s are linear combinations of some Y (h, g)’s. Then,

for each term in this sequence there exist φn and ψn such that

Fn = E[Fn] +

∫ T

0

φn(t)W (dt) +

∫ T

0

∫

R

ψn(t, z) Ñ(dt, dz).

Also, since

E[Fn − Fm]2 = E

[
E[Fn − Fm] +

∫ T

0

(φn(t) − φm(t))W (dt) +

∫ T

0

∫

R

(ψn(t, z) − ψm(t, z)) Ñ(dt, dz)

]2

= (E[Fn − Fm])
2
+

∫ T

0

E[φn(t) − φm(t)]2 dt+

∫ T

0

∫

R

E[ψn(t, z) − ψm(t, z)]2 ν(dz)dt,

we get that (φn)n≥1 and (ψn)n≥1 are Cauchy sequences. It follows that there exist predictable processes

ψ ∈ L2(λ× ν × P) and φ ∈ L2(λ× P) for which the representation of Equation (12) is verified.

We now prove the second statement. If F admits two martingale representations with φ1, φ2, ψ1, ψ2 (these

have nothing to do with the previous sequences), then by Itô’s isometry

0 = ‖φ1 − φ2‖
2
L2(λ×P) + ‖ψ1 − ψ2‖

2
L2(λ×ν×P)

and then φ1 = φ2 in L2(λ × P) and ψ1 = ψ2 in L2(λ × ν × P).

Remark 3.4 From now on, we will refer to this martingale representation property of the Lévy process X

as the MRP.
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4 Chaotic representations

We now define multiple integrals with respect to W (dt) and Ñ(dt, dz) simultaneously and define Lévy chaos

as an extension of Wiener-Itô chaos. Then, we show that any square-integrable Lévy functional can be
represented by a chaos expansion. We refer the reader to the lecture notes of Meyer [17] for more details on

multiple stochastic integrals.

4.1 Notation

In the following, we unify the notation of the Poisson random measure and the Brownian motion. Thus, the

superscript (1) will refer to Brownian motion and the superscript (2) to the Poisson random measure. This

is also the notation in [4].

Let X = [0, T ]× R. We introduce two (projection) operators Π1 : X → [0, T ] and Π2 : X → X defined by

Π1(t, z) = t and Π2(t, z) = (t, z). Consequently, Π1 ([0, T ]× R) = [0, T ] and Π2 ([0, T ]× R) = [0, T ]× R.

For n ≥ 1, t ∈ [0, T ] and (i1, . . . , in) ∈ {1, 2}n, we also introduce the following notations:

Σn(t) = {(t1, . . . , tn) ∈ [0, T ]n | t1 < · · · < tn ≤ t} ; (14)

and

Σ(i1,...,in)([0, t] × R) = {(x1, . . . , xn) ∈ Πi1 (X ) × · · · × Πin
(X ) | Π1(x1) < · · · < Π1(xn) ≤ t} .

Consequently, Σn(T ) = Σ(i1,...,in)(X ) when ik = 1 for each k = 1, 2, . . . , n. If f is a function defined on

Πi1(X ) × · · · × Πin
(X ), we write f(x1, . . . , xn), where xk ∈ Πik

(X ) for each k = 1, 2, . . . , n. If η1 = λ and

η2 = λ × ν, let L2
(
Σ(i1,...,in)(X )

)
be the space of square-integrable functions defined on Σ(i1,...,in)(X ) and

equipped with the product measure ηi1 × · · · × ηin
defined on Πi1(X ) × · · · × Πin

(X ).

4.2 Multiple integrals and Lévy chaos

Fix n ≥ 1 and (i1, . . . , in) ∈ {1, 2}n. We define the iterated integral J(i1,...,in)(f), for f in L2
(
Σ(i1,...,in)(X )

)
,

by

J(i1,...,in)(f) =

∫

Πin ([0,T ]×R)

. . .

∫

Πi1([0,t2−]×R)

f(x1, . . . , xn)M (i1)(dx1) . . .M
(in)(dxn)

where M (j)(dx) equals W (dt) if j = 1 and equals Ñ(dt, dz) if j = 2. The i1 in J(i1,...,in) stands for the

innermost stochastic integral and the in stands for the outermost stochastic integral. For example, if n = 3

and (i1, i2, i3) = (1, 1, 2), then

J(1,1,2)(f) =

∫ T

0

∫

R

[∫ t3−

0

(∫ t2−

0

f(t1, t2, (t3, z3))W (dt1)

)
W (dt2)

]
Ñ(dt3, dz3).

As n runs through N and (i1, . . . , in) runs through {1, 2}n, the iterated integrals generate orthogonal

spaces in L2(Ω) that we would like to call Lévy chaos. Indeed, since

∫

Πi([0,T ]×R)

f(x)M (i)(dx)

and ∫

Πj([0,T ]×R)

g(x)M (j)(dx)

are independent if i 6= j and both have mean zero, using Itô’s isometry iteratively, we get the following
proposition.
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Proposition 4.1 If f ∈ L2(Σ(i1,...,in)(X )) and if g ∈ L2(Σ(j1,...,jm)(X )), then

E
[
J(i1,...,in)(f)J(j1,...,jm)(g)

]
=

{
(f, g)L2(Σ(i1 ,...,in)(X )) if (i1, . . . , in) = (j1, . . . , jm);

0 if not.

We end this subsection with a definition.

Definition 4.2 For n ≥ 1 and (i1, . . . , in) ∈ {1, 2}n, the (i1, . . . , in)-tensor product of a function h defined

on [0, T ] with a function g defined on [0, T ]× R is a function on Πi1 (X ) × · · · × Πin
(X ) defined by

(
h⊗(i1,...,in) g

)
(x1, . . . , xn) =

∏

1≤k≤n

h (Π1(xk))
2−ik g (Π2(xk))

ik−1
.

For example, (
h⊗(1,1) g

)
(s, t) = h(s)h(t)

is a function defined on [0, T ]× [0, T ] and

(
h⊗(1,2,1) g

)
(r, (s, y), t) = h(r)h(t)g(s, y)

is a function defined on [0, T ]× ([0, T ]× R) × [0, T ].

4.3 Chaotic representation property

For the rest of the paper, we will assume that
∑

(i1,...,in) means
∑

(i1,...,in)∈{1,2}n .

Recall that Z = (Zt)t∈[0,T ] was defined in Equation (6) by

Zt = exp

{∫ t

0

h(s)W (ds) −
1

2

∫ t

0

h2(s) ds+

∫ t

0

∫

R

g(s, z)N(ds, dz) −

∫ t

0

∫

R

(
eg(s,z) − 1

)
ν(dz)ds

}
.

The next lemma is at the core of our construction. We therefore give a precise and detailed proof.

Lemma 4.3 Let h belongs to L2([0, T ], λ) and let both g and eg − 1 belong to L2([0, T ] × R, λ × ν). Then,

ZT admits the following chaotic representation:

ZT = 1 +
∞∑

n=1

∑

(i1,...,in)

J(i1,...,in)

(
h⊗(i1,...,in) (eg − 1)

)
. (15)

Proof. We know from the proof of Lemma 2.1 that ZT is square-integrable and that

ZT = 1 +

∫ T

0

Zt−h(t)W (dt) +

∫ T

0

∫

R

Zt−(eg(t,z) − 1) Ñ(dt, dz). (16)

Let φ(1)(t) = Zt−h(t) and φ(2)(t, z) = Zt−(eg(t,z) − 1). We now iterate Equation (16). Consequently,

ZT = 1 +

∫ T

0

f (1)(t)W (dt) +

∫ T

0

∫

R

f (2)(t, z) Ñ(dt, dz)

+

∫ T

0

∫ t−

0

Zs−h(s)h(t)W (ds)W (dt)

+

∫ T

0

∫ t−

0

∫

R

Zs−(eg(s,y) − 1)h(t) Ñ(ds, dy)W (dt)

+

∫ T

0

∫

R

∫ t−

0

Zs−h(s)(e
g(t,z) − 1)W (ds) Ñ(dt, dz)
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+

∫ T

0

∫

R

∫ t−

0

∫

R

Zs−(eg(s,y) − 1)(eg(t,z) − 1) Ñ(ds, dy) Ñ(dt, dz)

where f (1)(t) = h(t) =
(
h⊗(1) (eg − 1)

)
(t) and f (2)(t, z) = eg(t,z) − 1 =

(
h⊗(2) (eg − 1)

)
(t, z). Then, after

n iterations, we get

ZT = 1 +

n−1∑

k=1

∑

(i1,...,ik)

J(i1,...,ik)(f
(i1,...,ik))

+
∑

(i1,...,in)

∫

Πin ([0,T ]×R)

. . .

∫

Πi1([0,t2−]×R)

φ(i1,...,in) (x1, . . . , xn)

M (i1)(dx1) . . .M
(in)(dxn)

where f (i1,...,ik) = h⊗(i1,...,ik) (eg − 1) and where φ(i1,...,in) = Z−(h⊗(i1,...,in) (eg − 1)). This means that we

can define a sequence (ψn)n≥2 in L2(Ω) by

ψn =
∑

(i1,...,in)

∫

Πin ([0,T ]×R)

. . .

∫

Πi1 ([0,t2−]×R)

φ(i1,...,in) (x1, . . . , xn)M (i1)(dx1) . . .M
(in)(dxn).

From Proposition 4.1,

E[Z2
T ] = 1 +

n−1∑

k=1

∑

(i1,...,ik)

‖f (i1,...,ik)‖2
L2(Σ(i1,...,ik)(X )) + E[ψ2

n]

for each n ≥ 2. Hence we get that

∞∑

n=1

∑

(i1,...,in)

J(i1,...,in)(f
(i1,...,in))

is a square-integrable series and that there exists a square-integrable random variable ψ such that ψn tends to

ψ in the L2(Ω)-norm. Consequently, it is enough to show that ψ = 0. Since f (i1,...,in) = h⊗(i1,...,in) (eg − 1),
using Proposition 4.1 once again, we get that

∑

(i1,...,in)

E

[(
J(i1,...,in)(f

(i1,...,in))
)2
]

=

n∑

k=0

∑

(i1,...,in)

|i|=k

‖h⊗(i1,...,in) (eg − 1)‖2
L2(Σ(i1,...,in)(X )),

where |i| = |(i1, . . . , in)| =
∑n

j=1(2− ij) stands for the number of times the function h appears in the tensor

product. Note that when |i| = k there are
(
n
k

)
terms in the innermost summation. Since h2⊗(i1,...,in) (e

g −1)2

is a (i1, . . . , in)-tensor product, the function given by

∑

(i1,...,in)

|i|=k

h⊗(i1,...,in) (eg − 1)

is symmetric on Πi1(X ) × · · · × Πin
(X ). Consequently,

∑

(i1,...,in)

E

[(
J(i1,...,in)(f

(i1,...,in))
)2
]

=

n∑

k=0

∫

Σ(i1 ,...,in)(X )

[ ∑

(i1,...,in)

|i|=k

h2 ⊗(i1,...,in) (eg − 1)2
]
dηi1 . . . dηin
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=
1

n!

n∑

k=0

∫

Πi1(X )×···×Πin (X )

[ ∑

(i1,...,in)

|i|=k

h2 ⊗(i1,...,in) (eg − 1)2
]
dηi1 . . . dηin

=
1

n!

n∑

k=0

(
n

k

)
‖h‖2k

L2(λ)‖e
g − 1‖

2(n−k)
L2(λ×ν)

=
1

n!

(
‖h‖2

L2(λ) + ‖eg − 1‖2
L2(λ×ν)

)n

.

From Equation (8), we know that

E[Z2
T ] = exp

{
‖h‖2

L2(λ) + ‖eg − 1‖2
L2(λ×ν)

}
.

This means that ψ = 0 and the statement follows.

We are now ready to state and prove the chaotic representation property of the Lévy process X . The

previous lemma and the idea of its proof will be of great use.

Theorem 4.4 Let F ∈ L2(Ω,F ,P). There exists a unique sequence

{
f (i1,...,in);n ≥ 1, (i1, . . . , in) ∈ {1, 2}n

}
,

whose elements are respectively in L2
(
Σ(i1,...,in)(X )

)
, such that

F = E[F ] +

∞∑

n=1

∑

(i1,...,in)

J(i1,...,in)

(
f (i1,...,in)

)
. (17)

Consequently,

E[F 2] = E2[F ] +

∞∑

n=1

∑

(i1,...,in)

‖f (i1,...,in)‖2
L2(Σ(i1,...,in)(X )). (18)

Proof. From Theorem 3.3, we know there exist a predictable process φ(1) ∈ L2(λ×P) and a Borel predictable

process φ(2) ∈ L2(λ× ν × P) such that

F = E[F ] +

∫ T

0

φ(1)(t)W (dt) +

∫ T

0

∫

R

φ(2)(t, z) Ñ(dt, dz).

Using Itô’s isometry, it is clear that

‖φ(1)‖2
L2(λ×P) + ‖φ(2)‖2

L2(λ×ν×P) ≤ E[F 2].

For almost all t ∈ [0, T ], φ(1)(t) ∈ L2(Ω,Ft,P) and then from Theorem 3.3 there exist processes φ(1,1) and

φ(1,2) such that

φ(1)(t) = E[φ(1)(t)] +

∫ t

0

φ(1,1)(t, s)W (ds) +

∫ t

0

∫

R

φ(1,2)(t, s, y) Ñ(ds, dy).

Similarly, for almost all (t, z) ∈ [0, T ]× R, φ(2)(t, z) ∈ L2(Ω,Ft,P) and

φ(2)(t, z) = E[φ(2)(t, z)] +

∫ t

0

φ(2,1)(t, z, s)W (ds) +

∫ t

0

∫

R

φ(2,2)(t, z, s, y) Ñ(ds, dy).

Consequently,
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F = E[F ] +

∫ T

0

g(1)(t)W (dt) +

∫ T

0

∫

R

g(2)(t, z) Ñ(dt, dz)

+

∫ T

0

∫ t−

0

φ(1,1)(t, s)W (ds)W (dt)

+

∫ T

0

∫ t−

0

∫

R

φ(1,2)(t, s, y) Ñ(ds, dy)W (dt)

+

∫ T

0

∫

R

∫ t−

0

φ(2,1)(t, z, s)W (ds) Ñ(dt, dz)

+

∫ T

0

∫

R

∫ t−

0

∫

R

φ(2,2)(t, z, s, y) Ñ(ds, dy) Ñ(dt, dz).

where g(1)(t) = E[φ(1)(t)] and g(2)(t, z) = E[φ(2)(t, z)]. After n steps of this procedure, i.e. after n iterations

of Theorem 3.3, we get as in the proof of Lemma 4.3 that

F = E[F ] +
n−1∑

k=1

∑

(i1,...,ik)

J(i1,...,ik)(f
(i1,...,ik)) + ψn

where f (i1,...,ik) ∈ L2
(
Σ(i1,...,ik)(X )

)
, for each 1 ≤ k ≤ n− 1 and (i1, . . . , ik) ∈ {1, 2}k, where

ψn =
∑

(i1,...,in)

∫

Πin ([0,T ]×R)

. . .

∫

Πi1 ([0,t2−]×R)

φ(i1,...,in) (x1, . . . , xn)M (i1)(dx1) . . .M
(in)(dxn),

and where φ(i1,...,in) ∈ L2 (ηi1 × · · · × ηin
× P), for each (i1, . . . , in) ∈ {1, 2}n.

From Proposition 4.1,

E[F 2] = E[F ]2 +

n−1∑

k=1

∑

(i1,...,ik)

‖f (i1,...,ik)‖2
L2(Σ(i1 ,...,ik)(X )) + E[ψ2

n],

for each n ≥ 2 and
∞∑

n=1

∑

(i1,...,in)

J(i1,...,in)(f
(i1,...,in))

is a square-integrable series. Consequently, we know that there exists a square-integrable random variable ψ
such that ψn tends to ψ in the L2(Ω)-norm. It is enough to show that ψ = 0. Using the argument leading to

Proposition 4.1, i.e. the fact that two iterated stochastic integrals of different order are orthogonal, we get

that for a fixed n ≥ 2, (
J(i1,...,ik)(f

(i1,...,ik)), ψn

)
L2(Ω)

= 0

for every 1 ≤ k ≤ n− 1, (i1, . . . , ik) ∈ {1, 2}k and f (i1,...,ik) ∈ L2(Σ(i1,...,ik)(X )). Thus,

(
J(i1,...,in)(f

(i1,...,in)), ψ
)

L2(Ω)
= 0 (19)

for every n ≥ 1, (i1, . . . , in) ∈ {1, 2}n and f (i1,...,in) ∈ L2(Σ(i1,...,in)(X )).

We now assume that g = ḡγ where ḡ belongs to C([0, T ]). Using Equation (19), we have that ψ is

orthogonal to each random variable Y (h, g) defined in Equation (11) since from Lemma 4.3 they each possess
a chaos decomposition. We also know from Lemma 3.2 that these random variables are dense in L2(Ω,F ,P),

so ψ = 0. This means that every square-integrable Lévy functional can be express as a series of iterated

integrals. The statement follows.

Remark 4.5 From now on, we will refer to the chaotic representation property of Theorem 4.4 as the CRP.
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Remark 4.6 As mentioned before, in general the CRP implies the MRP. Indeed, if F is a square-integrable

Lévy functional with chaos decomposition

F = E[F ] +

∞∑

n=1

∑

(i1,...,in)

J(i1,...,in)

(
f (i1,...,in)

)
,

then

F = E[F ] +

∫ T

0

φ(t)W (dt) +

∫ T

0

∫

R

ψ(t, z) Ñ(dt, dz),

with

φ(t) = f (1)(t) +

∞∑

n=1

∑

(i1,...,in)

J(i1,...,in)

(
f (i1,...,in,1)(·, t)IΣn(t)

)
,

ψ(t, z) = f (2)(t, z) +
∞∑

n=1

∑

(i1,...,in)

J(i1,...,in)

(
f (i1,...,in,2)(·, (t, z))IΣn(t)

)
.

4.4 Explicit chaos representation

In the next proposition, we compute the explicit chaos representation of a smooth Lévy functional.

Proposition 4.7 Let f be a smooth function with compact support in Rk, i.e. let f ∈ C∞
c (Rk), and let tj

belong to [0, T ] for each j = 1, . . . , k. Then,

f(Xt1 , . . . , Xtk
) = E[f(Xt1 , . . . , Xtk

)] +

∞∑

n=1

∑

(i1,...,in)

J(i1,...,in)(f
(i1,...,in)),

where

f (i1,...,in)(Πi1 (s1, w1), . . . ,Πin
(sn, wn)) =

∫

Rk

f̂(y)φ̂(−y)
∏

1≤j≤n

(iσξt,y
sj

)2−ij (e
iwjξt,y

sj − 1)ij−1 dy.

with

φ(x) dx = P{Xt ∈ dx},

where Xt = (Xt1 , . . . , Xtk
), and with

ξt,y
s = y1I[0,t1](s) + · · · + ykI[0,tk](s),

for t = (t1, . . . , tk) and y = (y1, . . . , yk).

Proof. Let

f̂(x) = (2π)−k/2

∫

Rk

f(y)e−i〈x,y〉 dy

be the Fourier transform of f , where 〈x, y〉 denotes the scalar product in Rk of x = (x1, . . . , xk) and y =

(y1, . . . , yk). Then, by the Fourier inversion formula, we have

f(x) = (2π)−k/2

∫

Rk

f̂(y)ei〈x,y〉 dy.

Note also that with this definition of the Fourier transform, we have (f̂ ∗ g)(x) = (2π)k/2f̂(x)ĝ(x). For

convenience, let φ−(x) = φ(−x). If we define F (x) = E [f(Xt1 + x1, . . . , Xtk
+ xk)], then, using the inversion

formula, we get that

F (x) = (φ− ∗ f)(x) =

∫

Rk

f̂(y)φ̂−(y)ei〈x,y〉 dy.
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Therefore, we have the following equality:

E[f(Xt1 , . . . , Xtk
)] =

∫

Rk

f̂(y)φ̂−(y) dy.

Again from the inversion formula, we have that

f(Xt1 , . . . , Xtk
) = (2π)−k/2

∫

Rk

f̂(y)ei〈Xt,y〉 dy

= (2π)−k/2

∫

Rk

f̂(y)eiµ〈t,y〉Y t,y dy

where

Y t,y = exp

{∫ T

0

iσξt,y
s W (ds) +

∫ T

0

∫

R

izξt,y
s Ñ(ds, dz)

}
.

Hence,

f(Xt1 , . . . , Xtk
) = (2π)−k/2

∫

Rk

f̂(y)eiµ〈t,y〉Zt,yE[Y t,y] dy (20)

where

Zt,y = exp

{∫ T

0

iσξt,y
s W (ds) +

1

2
σ2

∫ T

0

(ξt,y
s )2 ds+

∫ T

0

∫

R

izξt,y
s N(ds, dz) −

∫ T

0

∫

R

(eizξt,y
s − 1) ν(dz)ds

}
.

From Lemma 4.3, we know that

Zt,y = 1 +

∞∑

n=1

∑

(i1,...,in)

J(i1,...,in)

(
(iσξt,y) ⊗(i1,...,in) (eizξt,y

− 1)
)
.

On the other hand,

E[Y t,y] = e−iµ〈t,y〉E

[
ei〈Xt,y〉

]

= (2π)k/2e−iµ〈t,y〉φ̂−(y)

Then, using Equation (20) and by Lebesgue’s dominated convergence theorem,

f(Xt1 , . . . , Xtk
)

=

∫

Rk

f̂(y)φ̂−(y) dy +

∫

Rk

f̂(y)φ̂−(y)

×

∞∑

n=1

∑

(i1,...,in)

J(i1,...,in)

(
(iσξt,y) ⊗(i1,...,in) (eizξt,y

− 1)
)
dy

= E[f(Xt1 , . . . , Xtk
)] +

∞∑

n=1

∑

(i1,...,in)

J(i1,...,in)(f
(i1,...,in)).

where

f (i1,...,in)(Πi1(s1, w1), . . . ,Πin
(sn, wn)) =

∫

Rk

f̂(y)φ̂−(y)
(
(iσξt,y) ⊗(i1,...,in) (eizξt,y

− 1)
)
dy.

The statement follows from Definition 4.2.
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5 Malliavin derivatives and Clark-Ocone formula

Before defining the Malliavin derivatives, we introduce a last notation: for n ≥ 1 and 1 ≤ k ≤ n+ 1, define

Σk
n(t) = {(t1, . . . , tn) ∈ [0, T ]n | t1 < · · · < tk−1 < t < tk < · · · < tn} ,

i.e. t is at the k-th position between the tj ’s, where t0 = 0 and tn+1 = T . Note that Σn+1
n (t) = Σn(t), where

the latter was defined earlier in Equation (14). In a multi-index (i1, . . . , in), we will use îk to denote the

omission of the k-th index.

We want to define two directional derivative operators in the spirit of León et al. [13]: one in the direction

of the Brownian motion and one in the direction of the Poisson random measure. If F = J(i1,...,in)(f), then

we would like to define D
(1)
t F and D

(2)
t,zF as follows:

D
(1)
t F =

n∑

k=1

I{ik=1}J(i1,...,bik,...,in)

(
f( . . .︸︷︷︸

k−1

, t, . . .︸︷︷︸
n−k

)IΣk
n−1(t)

)

and

D
(2)
t,zF =

n∑

k=1

I{ik=2}J(i1,...,bik,...,in)

(
f( . . .︸︷︷︸

k−1

, (t, z), . . .︸︷︷︸
n−k

)IΣk
n−1(t)

)

where J(bi )(f) = f .

Definition 5.1 Let D1,2 = D(1) ∩D(2), where if j = 1 or if j = 2, D(j) is the subset of L2(Ω,F ,P) consisting

of the random variables F with chaotic representation

F = E[F ] +

∞∑

n=1

∑

(i1,...,in)

J(i1,...,in)

(
f (i1,...,in)

)

such that
∞∑

n=1

∑

(i1,...,in)

n∑

k=1

I{ik=j}

∫

Πj(X )

∥∥f (i1,...,in)(·, x, ·)IΣk
n−1(t)

∥∥2
ηj(dx) <∞,

where the inside norm is the L2(Σ(i1,..., bik,...,in)(X ))-norm.

From Theorem 4.4, it is clear that D1,2 is dense in L2(Ω), since every random variable with a chaos

representation given by a finite sum belongs to D1,2.

Definition 5.2 The Malliavin derivatives D(1) : D(1) → L2 ([0, T ]× Ω) and D(2) : D(2) → L2 ([0, T ]× R × Ω)

are defined by

D
(1)
t F = f (1)(t) +

∞∑

n=1

∑

(i1,...,in)

n∑

k=1

I{ik=1}J(i1,...,bik,...,in)

(
f (i1,...,in)( . . .︸︷︷︸

k−1

, t, . . .︸︷︷︸
n−k

)IΣk
n−1(t)

)

and

D
(2)
t,zF = f (2)(t, z) +

∞∑

n=1

∑

(i1,...,in)

n∑

k=1

I{ik=2}J(i1,...,bik,...,in)

(
f (i1,...,in)( . . .︸︷︷︸

k−1

, (t, z), . . .︸︷︷︸
n−k

)IΣk
n−1(t)

)

if F = E[F ] +
∑∞

n=1

∑
(i1,...,in) J(i1,...,in)

(
f (i1,...,in)

)
is in D(1) or D(2).

Remark 5.3 For an iterated integral, the Malliavin derivatives have a property similar to the classical com-

mutativity relationship. Indeed, if F = J(i1,...,in)(f), then

D
(2)
t,zF =

∫ T

t

D
(2)
t,z J(i1,...,in−1)

(
f(·, s)IΣn−1(s)

)
W (ds)
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if in = 1 and

D
(2)
t,zF = J(i1,...,in−1)

(
f(·, (t, z))IΣn−1(t)

)
+

∫ T

t

∫

R

D
(2)
t,z J(i1,...,in−1)

(
f(·, (s, y))IΣn−1(s)

)
Ñ(ds, dy)

if in = 2. A similar result holds for D(1)F .

Remark 5.4 If F = E[F ] +
∑∞

n=1 Jn(fn), where Jn = J(1,...,1) is the iterated Brownian stochastic integral

of order n, then

D
(1)
t F = f1(t) +

∞∑

n=2

n∑

k=1

Jn−1

(
fn(·, t, ·)IΣk

n−1(t)

)

= f1(t) +

∞∑

n=2

Jn−1(fn(·, t)),

because
∑n

k=1 IΣk
n−1(t)

= I[0,T ](t). This is the classical Brownian Malliavin derivative of F . The same

extension clearly holds for the pure-jump case if the 1’s are replaced by 2’s.

The definitions of D(1) and D(2) come from the fact that we want the codomains of D(1) and D(2) to be

L2 ([0, T ]× Ω) and L2 ([0, T ]× R × Ω) respectively. We finally define a norm for DF = (D(1)F,D(2)F ) in

the following way:

‖DF‖2 = ‖D(1)F‖2
L2(λ×P) + ‖D(2)F‖2

L2(λ×ν×P).

This is a norm on the product space L2(λ× P) × L2(λ× ν × P).

5.1 Properties and interpretation of the Malliavin derivatives

We begin this section with a result concerned with the continuity of D. It is an extension of Lemma 1.2.3 in

Nualart [18]. The proof is given in Appendix A.

Lemma 5.5 If F belongs to L2(Ω), if (Fk)k≥1 is a sequence of elements in D1,2 converging to F in the

L2(Ω)-norm and if supk≥1 ‖DFk‖ < ∞, then F belongs to D1,2 and (DFk)k≥1 converges weakly to DF in

L2(λ × P) × L2(λ× ν × P).

There is a similar and stronger result stated in [14] (Lemma 6), but we think that there is a gap in its

proof.

The choice for the definitions of the Malliavin derivative operators was made to extend the classical

Brownian Malliavin derivative as well as the Poisson random measure Malliavin derivative in a wider sense

than Remark 5.4. As mentioned in the introduction, the classical Brownian Malliavin derivative can be
defined by chaos expansions and as a weak derivative. In Nualart and Vives [20], it is proven that for the

Poisson process there is an equivalence between the Malliavin derivative defined with chaos decompositions

and another one defined by adding a mass with a translation operator. This last result was extended by Løkka

[14] to Poisson random measures. But now we will follow an idea of León et al. [13] to prove that our derivative

operators are extensions of the classical ones. Their method relies on the commutativity relationships between
stochastic derivatives and stochastic integrals and on quadratic covariation for semimartingales; consequently,

it is easily adaptable to our more general context. The details are given in Appendix B.

Theorem 5.6 On D(1) the operator D(1) coincides with the Brownian Malliavin derivative and on D(2) the

operator D(2) coincides with the Poisson random measure Malliavin derivative.

Hence, if F ∈ D(1), all the results about the classical Brownian Malliavin derivative, such as the chain

rule for Lipschitz functions, can be applied to D(1)F ; see Nualart [18] for details. But this is also true for

the Poisson random measure Malliavin derivative. For example, if F = g(Xt1 , . . . , Xtn
) ∈ D(2) and

(t, z) 7→ g
(
Xt1 + zI[0,t1](t), . . . , Xtn

+ zI[0,tn](t)
)
− g (Xt1 , . . . , Xtn

)
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belongs to L2(λ× ν × P), then

D
(2)
t,zF = g

(
Xt1 + zI[0,t1](t), . . . , Xtn

+ zI[0,tn](t)
)
− g (Xt1 , . . . , Xtn

) .

This is the adding a mass formula. Consequently, it also applies in the context of a square-integrable Lévy

process.

5.2 A Clark-Ocone formula

We now state and prove a Clark-Ocone type formula. This formula gives explicitly the integrands in the
martingale representation of Theorem 3.3 for a Malliavin-differentiable Lévy functional. It is interesting to

note that no particular property of the directional derivatives are needed.

Theorem 5.7 If F belongs to D1,2, then

F = E[F ] +

∫ T

0

E
[
D

(1)
t F | Ft

]
W (dt) +

∫ T

0

∫

R

E
[
D

(2)
t,zF | Ft

]
Ñ(dt, dz).

Proof. Suppose that F has a chaos expansion given by

F = E[F ] +

∞∑

n=1

∑

(i1,...,in)

J(i1,...,in)

(
f (i1,...,in)

)
.

If for example we consider the derivative operator D(2), then from Remark 4.6 we have to show that

E
[
D

(2)
t,zF | Ft

]
= f (2)(t, z) +

∞∑

n=1

∑

(i1,...,in)

J(i1,...,in)

(
f (i1,...,in,2)(·, (t, z))IΣn(t)

)
. (21)

If ik = 2, then

E
[
J(i1,...,bik,...,in)

(
f (i1,...,in)(·, (t, z), ·)IΣk

n−1(t)

)∣∣Ft

]

=

{
0 if k = 1, 2, . . . , n− 1;

J(i1,...,in−1)

(
f (i1,...,in−1,2)(·, (t, z))IΣn−1(t)

)
if k = n,

because when k = 1, 2, . . . , n−1 the outermost stochastic integral in the iterated integral J(i1,...,bik,...,in) starts

after time t. By the definition of D
(2)
t,zF , this implies that Equation (21) is satisfied. The same argument

works for the derivative operator D(1) and thus the result follows.

6 Martingale representation of the maximum

Our main goal was to provide a detailed construction of a chaotic Malliavin derivative and a Clark-Ocone

formula. Now, to illustrate the results, we compute the explicit martingale representation of the maximum
of the Lévy process X .

For 0 ≤ s < t ≤ T , define Ms,t = sups≤r≤tXr and Mt = M0,t. If E[MT ] <∞, then one can show that

E[MT | Ft] = Mt +

∫ ∞

Mt−Xt

F̄T−t(z) dz, (22)

where F̄s(z) = P{Ms > z}; see Shiryaev and Yor [24] and Graversen et al. [8]. We will use this equality to
prove the next proposition.
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Proposition 6.1 If X a square-integrable Lévy process with Lévy-Itô decomposition

Xt = µt+ σWt +

∫ t

0

∫

R

z Ñ(ds, dz),

then its running maximum admits the following martingale representation:

MT = E[MT ] +

∫ T

0

φ(t)W (dt) +

∫ T

0

∫

R

ψ(t, z) Ñ(dt, dz)

with φ(t) = σF̄T−t(a) and ψ(t, z) = E

[
(MT−t + z − a)

+
]
−
∫∞

a
F̄T−t(x) dx, where a = Mt −Xt.

Proof. Since X is a square-integrable martingale with drift, from Doob’s maximal inequality we have that

MT is a square-integrable random variable; see Theorem 20 in Protter [22]. Let (tk)k≥1 be a dense subset of
[0, T ], let F = MT and, for each n ≥ 1, define Fn = max{Xt1, . . . , Xtn

}. Clearly, (Fn)n≥1 is an increasing

sequence bounded by F . Hence, Fn converges to F in the L2(Ω)-norm when n goes to infinity.

We want to prove that each Fn is Malliavin differentiable, i.e. that each Fn belongs to D1,2 = D(1) ∩D(2).

This follows from the following two facts. First, since

(x1, . . . , xn) 7→ max{x1, . . . , xn}

is a Lipschitz function on Rn and since D(1) behaves like the classical Brownian Malliavin derivative on the

Brownian part of Fn, we have that

0 ≤ D
(1)
t Fn =

n∑

k=1

σI{t≤tk}IAk
≤

n∑

k=1

σIAk
= σ,

where A1 = {Fn = Xt1} and Ak = {Fn 6= Xt1 , . . . , Fn 6= Xtk−1
, Fn = Xtk

} for 2 ≤ k ≤ n. This implies that

supn≥1 ‖D
(1)Fn‖

2
L2([0,T ]×Ω) ≤ σ2T . Secondly, since D(2) behaves like the Poisson random measure Malliavin

derivative on the Poisson part of Fn, we have that

0 ≤
∣∣D(2)

t,zFn

∣∣ =
∣∣max

{
Xt1 + zI{t<t1}, . . . , Xtn

+ zI{t<tn}

}
− Fn

∣∣ ≤ |z|,

where the equality is justified by the following inequality:

∥∥max
{
Xt1 + zI{t<t1}, . . . , Xtn

+ zI{t<tn}

}
− Fn

∥∥2

L2([0,T ]×R×Ω)
≤ T

∫

R

z2 ν(dz).

Indeed, if z ≥ 0, then
0 ≤ max

{
Xt1 + zI{t<t1}, . . . , Xtn

+ zI{t<tn}

}
− Fn ≤ z,

and, if z < 0, then

0 ≤ Fn − max
{
Xt1 + zI{t<t1}, . . . , Xtn

+ zI{t<tn}

}

= Fn + min
{
−Xt1 + |z|I{t<t1}, . . . ,−Xtn

+ |z|I{t<tn}

}

= min
{
Fn −Xt1 + |z|I{t<t1}, . . . , Fn −Xtn

+ |z|I{t<tn}

}

≤ |z|.

This implies that supn≥1 ‖D
(2)Fn‖

2
L2([0,T ]×R×Ω) ≤ T

∫
R
z2 ν(dz).

Consequently, supn≥1 ‖DFn‖
2 ≤ T (σ2 +

∫
R
z2 ν(dz)) and by Theorem 5.6 we have that F is Malliavin

differentiable. By the uniqueness of a weak limit, this means that taking the limit of D
(1)
t Fn when n goes to

infinity yields

D
(1)
t F = σI[0,τ ](t),
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where τ is the first random time when the Lévy processX (not the Brownian motionW ) reaches its supremum
on [0, T ], and

D
(2)
t,zF = sup

0≤s≤T

(
Xs + zI{t<s}

)
−MT .

Hence,

E

[
D

(1)
t F | Ft

]
= σP {Mt < Mt,T | Ft}

= σP {MT−t > a} ,

where a = Mt − Xt. Since Mt,T − Xt is independent of Ft and has the same law as MT−t, then using

Equation (22) we get that

E

[
D

(2)
t,zF | Ft

]
= E

[
sup

0≤s≤T

(
Xs + zI{t<s}

)
−MT | Ft

]

= E [max{Mt,Mt,T + z} | Ft] − E [MT | Ft]

= Mt + E

[
(Mt,T + z −Mt)

+
| Ft

]
− E [MT | Ft]

= E

[
(MT−t + z − a)+

]
−

∫ ∞

a

F̄T−t(x) dx.

where a = Mt−Xt. The martingale representation follows from the Clark-Ocone formula of Theorem 5.7.

This result extends the martingale representation of the running maximum of Brownian motion.

A Proof of Lemma 5.5

We have that

sup
k≥1

‖D(1)Fk‖L2([0,T ]×Ω) <∞

and

sup
k≥1

‖D(2)Fk‖L2([0,T ]×R×Ω) <∞.

Since L2([0, T ] × Ω) and L2([0, T ] × R × Ω) are reflexive Hilbert spaces, there exist a subsequence (kj)j≥1,

an element α in L2([0, T ] × Ω) and an element β in L2([0, T ] × R × Ω) such that D(1)Fkj
converges to α in

the weak topology of L2([0, T ] × Ω) and D(2)Fkj
converges to β in the weak topology of L2([0, T ]× R × Ω).

Consequently, for any h ∈ L2([0, T ]), g ∈ L2([0, T ]× R) and f ∈ L2(Σ(i1,...,in)(X )), we have that

〈
D(1)Fkj

, h⊗ J(i1,...,in)(f)
〉

L2([0,T ]×Ω)
−→

〈
α, h⊗ J(i1,...,in)(f)

〉
L2([0,T ]×Ω)

and 〈
D(2)Fkj

, g ⊗ J(i1,...,in)(f)
〉

L2([0,T ]×R×Ω)
−→

〈
β, g ⊗ J(i1,...,in)(f)

〉
L2([0,T ]×R×Ω)

when j goes to infinity.

Let F = E[F ] +
∑∞

n=1

∑
(i1,...,in) J(i1,...,in)(f

(i1,...,in)) and Fkj
= E[Fkj

] +
∑∞

n=1

∑
(i1,...,in) J(i1,...,in)

(f
(i1,...,in)
kj

) be the chaos representations of F and Fkj
. By definition, we have that

D
(1)
t Fkj

= f
(1)
kj

(t) +

∞∑

n=1

∑

(i1,...,in)

n∑

k=1

I{ik=1}J(i1,...,bik,...,in)

(
f

(i1,...,in)
kj

(·, t, ·)IΣk
n−1(t)

)
. (23)

By the linearity of the iterated integrals, the convergence of Fkj
toward F implies that
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∥∥∥∥∥∥

∞∑

n=1

∑

(i1,...,in)

J(i1,...,in)

(
f (i1,...,in) − f

(i1,...,in)
kj

)
∥∥∥∥∥∥

L2(Ω)

=
∞∑

n=1

∑

(i1,...,in)

∥∥∥f (i1,...,in) − f
(i1,...,in)
kj

∥∥∥
2

L2(Σ(i1 ,...,in)(X ))

goes to 0 when k tends to infinity. Consequently, it implies that each f
(i1,...,in)
kj

converges to f (i1,...,in) when j

goes to infinity. So, using Proposition 4.1 and the expression of the derivative in Equation (23), we get that

〈
D(1)Fkj

, h⊗ J(i1,...,in)(f)
〉

L2([0,T ]×Ω)

=
n+1∑

k=1

∫ T

0

E
[
J(i1,...,in)

(
f

(i1,...,ik−1,1,ik,...,in)
kj

(·, t, ·)IΣk
n(t)

)
J(i1,...,in)(f)

]
h(t) dt

=
n+1∑

k=1

∫ T

0

〈
f

(i1,...,ik−1,1,ik,...,in)
kj

(·, t, ·)IΣk
n(t), f

〉
L2(Σ(i1,...,in)(X ))

h(t) dt

and, as j goes to infinity, this quantity tends to

n+1∑

k=1

∫ T

0

〈
f (i1,...,ik−1,1,ik,...,in)(·, t, ·)IΣk

n(t), f
〉

L2(Σ(i1,...,in)(X ))
h(t) dt.

This holds for any multi-index (i1, . . . , in) and functions h and f . Consequently,

α(t) = f (1)(t) +
∞∑

n=1

∑

(i1,...,in)

n∑

k=1

I{ik=1}J(i1,...,bik,...,in)

(
f (i1,...,in)(·, t, ·)IΣk

n−1(t)

)

and F belongs to D(1) with D(1)F = α by the unicity of the weak limit. Moreover, for any weakly convergent

subsequence the limit must be equal to D(1)F and this implies the weak convergence of the whole sequence.

The same argument works to prove that F belongs to D(2) and that (D(2)Fk)k≥1 converges weakly to D(2)F

in L2(λ× ν × P).

B Proof of Theorem 5.6

We consider the product probability space

(ΩW × ΩN ,FW ×FN ,PW × PN)

which is the product of the canonical space of the Brownian motion W and the canonical space of the

pure-jump Lévy process

Nt =

∫ t

0

∫

R

z Ñ(ds, dz)

previously defined in Equation (10); see Solé et al. [25] for more details on this last canonical space. Since

L2(ΩW × ΩN ) is isometric to L2(ΩW ;L2(ΩN )) and to L2(ΩN ;L2(ΩW )) as Hilbert spaces, we will use the

theory of the Brownian Malliavin derivative and the Poisson random measure Malliavin derivative for Hilbert-

valued random variables (see [18] and [20]). This is possible because both operators are closable.

The Brownian Malliavin derivative for Hilbert-valued random variables will be denoted by DW and the
Poisson random measure Malliavin derivative for Hilbert-valued random variables by DN . If we define

W̃ = (W̃t)t∈[0,T ] on ΩW × ΩN by

W̃t(ω, ω
′) = ω(t)
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and Ñ = (Ñt)t∈[0,T ] by

Ñt(ω, ω
′) = ω′(t),

then the process X̃t = µt+σW̃t+Ñt has the same distribution as our initial Lévy processXt = µt+σWt+Nt.
For notational simplicity, in what follows we will write Wt(ω) and Nt(ω

′) instead of W̃t(ω, ω
′) and Ñt(ω, ω

′)

respectively.

We will proceed by induction. If F =
∫ T

0 f(t)W (dt), then clearly

D
(1)
t F = DW

t F = f(t) and D
(2)
t,zF = DN

t,zF = 0,

while if G =
∫ T

0

∫
R
g(t, z) Ñ(dt, dz), then

D
(1)
t G = DW

t G = 0 and D
(2)
t,zG = DN

t,zG = g(t, z).

Thus, for a fixed n ≥ 1, we assume that D(1) and DW coincide for any random variable with chaos

expansion of order n. First, let F be of the form

F = J(i1,...,in,1)(f1 ⊗ · · · ⊗ fn ⊗ fn+1) =

∫ T

0

g(s)fn+1(s)W (ds),

where

g(s) = J(i1,...,in)

(
f1 ⊗ · · · ⊗ fn IΣn(s)

)
. (24)

To ease the notation, J(i1,...,in)(f1 . . . fn) will mean J(i1,...,in)(f1 ⊗ · · · ⊗ fn). Using the commutativity rela-

tionship of Remark 5.3 and the hypothesis of induction, we have that

D
(1)
t F = fn+1(t)g(t) +

∫ T

t

fn+1(s)D
(1)
t g(s)W (ds)

= fn+1(t)g(t) +

∫ T

t

fn+1(s)D
W
t g(s)W (ds),

which is exactly DW
t F , by the classical commutativity relationship of Equation (3).

Secondly, now let F be of the form

F = J(i1,...,in,2)(f1 ⊗ · · · ⊗ fn ⊗ fn+1) =

∫ T

0

∫

R

g(s−)fn+1(s, z) Ñ(ds, dz).

We will use of the integration by parts formula for semimartingales, that is

[
Y (1), Y (2)

]
t
= Y

(1)
t Y

(2)
t −

∫ t

0

Y
(1)
s− dY (2)

s −

∫ t

0

Y
(2)
s− dY (1)

s

if Y (1) and Y (2) are semimartingales; see Protter [22] for details. If Y
(1)
t = g(t) and Y

(2)
t =

∫ t

0

∫
R
fn+1(s, z)

Ñ(ds, dz), we get that

F = g(T )

∫ T

0

∫

R

fn+1(s, z) Ñ(ds, dz)

−

∫ T

0

∫ t−

0

∫

R

fn+1(s, z) Ñ(ds, dz)dg(t)

−

[
g(·),

∫ ·

0

∫

R

fn+1(s, z) Ñ(ds, dz)

]

T

.
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We now consider the two cases where in = 1 and in = 2 separately. We have that

g(t) =

{∫ t

0 h(s)fn(s)W (ds) if in = 1;∫ t

0

∫
R
h(s−)fn(s, z) Ñ(ds, dz) if in = 2,

where h(s) = J(i1,...,in)

(
f1 ⊗ · · · ⊗ fn−1 IΣn−1(s)

)
. If in = 1, then

F = g(T )

∫ T

0

∫

R

fn+1(t, z) Ñ(dt, dz) −

∫ T

0

[∫ t

0

∫

R

fn+1(s, y) Ñ(ds, dy)

]
h(t)fn(t)W (dt).

If in = 2, then

F = g(T )

∫ T

0

∫

R

fn+1(t, z) Ñ(dt, dz)

−

∫ T

0

∫

R

[∫ t−

0

∫

R

fn+1(s, y) Ñ(ds, dy)

]
h(t−)fn(t, z) Ñ(dt, dz)

−

∫ T

0

∫

R

h(t−)fn(t, z)fn+1(t, z)N(dt, dz).

Note that the last term is an iterated integral of order n (with respect to N(dt, dz) for the outermost integral,

not Ñ(dt, dz)) since h is an iterated integral of order n−1. So, by the hypothesis of induction, D(1) and DW

agree for this functional. This is also true for g(T ).

Consequently, we repeat the previous steps backward with D(1). If in = 1, then

DW
t F =

(
DW

t g(T )
) ∫ T

0

∫

R

fn+1(s, y) Ñ(ds, dy)

− h(t)fn(t)

∫ t

0

∫

R

fn+1(s, y) Ñ(ds, dy)

−

∫ T

t

[∫ s

0

∫

R

fn+1(r, y) Ñ(dr, dy)

] (
DW

t h(s)
)
fn(s)W (ds)

=
(
D

(1)
t g(T )

)∫ T

0

∫

R

fn+1(s, y) Ñ(ds, dy)

− h(t)fn(t)

∫ t

0

∫

R

fn+1(s, y) Ñ(ds, dy)

−

∫ T

t

[∫ s

0

∫

R

fn+1(r, y) Ñ(dr, dy)

] (
D

(1)
t h(s)

)
fn(s)W (ds)

= D
(1)
t

(
g(T )

∫ T

0

∫

R

fn+1(s, y) Ñ(ds, dy)

)

−D
(1)
t

∫ T

0

[∫ s

0

∫

R

fn+1(r, y) Ñ(dr, dy)

]
h(s)fn(s)W (ds)

= D
(1)
t

(
g(T )

∫ T

0

∫

R

fn+1(s, y) Ñ(ds, dy)

−

∫ T

0

[∫ s

0

∫

R

fn+1(r, y) Ñ(dr, dy)

]
dg(s)

)

= D
(1)
t F,

and if in = 2, then the same steps are valid since DW and D(1) coincide on the extra term.

The equivalence between D(1) and DW follows from the following fact: for a fixed n ≥ 1 and a fixed

multi-index (i1, . . . , in), the linear subspace of L2(Σ(i1,...,in)(X )) generated by functions of the form

f1 ⊗ · · · ⊗ fn, (25)



22 G–2009–67 Les Cahiers du GERAD

is dense. Indeed, for f ∈ L2(Σ(i1,...,in)(X )), there exists a sequence (fn)n≥1, whose elements are finite sums
of functions as in Equation (25), that converges to f . We know that D(1) and DW are equal for each fn.

Since D(1) and DW are continuous (see Lemma 5.5), they also coincide for f .

We can apply the same machinery to show that DN and D(2) are the same.
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Applications, (72):75–92, 2006.

[11] H. Kunita. Representation of martingales with jumps and applications to mathematical finance. In Stochastic
analysis and related topics in Kyoto, pages 209–232. Math. Soc. Japan, 2004.

[12] H. Kunita and S. Watanabe. On square integrable martingales. Nagoya Math. J., 30:209–245, 1967.
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