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Abstract

The proximity π of a graph G is the minimum average distance from a vertex of G to all others.
Similarly, the remoteness of G is the maximum average distance from a vertex to all others. The girth
g of a graph G is the length of its smallest cycle. In this paper, we provide and prove sharp lower and
upper bounds, in terms of the order n of G, on the difference, the sum, the ratio and the product of the
proximity and the girth. We do the same for the remoteness and the girth, except for the lower bound
on ρ/g, for which a conjecture is given.

Key Words: Proximity, remoteness, girth, extremal graph.

Résumé

La proximité π d’un graphe G est le minimum de la distance moyenne d’un sommet de G à tous les
autres. Semblablement, l’éloignement ρ de G est le maximum de la distance moyenne d’un sommet de G
à tous les autres. La maille g de G est la longueur du plus petit cycle de G, s’il y en a. Dans cet article,
nous donnons et prouvons des bornes inférieures et supérieures serrées pour la différence, la somme, le
rapport et le produit de la proximité et de la maille. Nous faisons de même pour l’éloignement et la
maille, à l’exception de la borne inférieure sur ρ/g, pour laquelle nous formulons une conjecture.

Mots clés : proximité, éloignement, maille, graphe extrême.
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1 Introduction

Let G = (V, E) denote a simple and connected graph, with vertex set V and edge set E, containing n = |V |
vertices and m = |E| edges. The distance between two vertices u and v in G, denoted by d(u, v), is the length

of a shortest path between u and v. The average distance between all pairs of vertices in G is denoted by l.

The eccentricity e(v) of a vertex v in G is the largest distance from v to another vertex of G. The minimum

eccentricity in G, denoted by r, is the radius of G. The maximum eccentricity of G, denoted by D, is the

diameter of G. The average eccentricity of G is denoted ecc. That is

r = min
v∈V

e(v), D = max
v∈V

e(v) and ecc =
1

n

∑

v∈V

e(v).

The girth g of the graph G is the length of its smallest cycle, if any. The proximity π of G is the minimum

average distance from a vertex of G to all others. Similarly, the remoteness of G is the maximum average

distance from a vertex to all others. The two last concepts were recently introduced in [1, 3]. They are close

to the concept of transmission t(v) of a vertex v, which is the sum of the distances from v to all others.

Indeed,

π = min
v∈V

t̃(v) = min
v∈V

t(v)

n − 1
and ρ = max

v∈V
t̃(v) = max

v∈V

t(v)

n − 1
.

Proximity and remoteness appear to be more convenient than minimum and maximum transmissions in

comparisons with other metric invariants, such as the diameter, radius, average eccentricity and average

distance, as they have the same order of magnitude when viewed as functions of the order n of G. Indeed, it

follows from the definitions that

π ≤ r ≤ ecc ≤ D, π ≤ l ≤ ρ ≤ D and l =
1

n(n − 1)

∑

v∈V

t(v).

In [5], π and ρ were compared with r, D, ecc and l, as well as with the independence number α and the

matching number µ. The purpose of the present paper is to compare π and ρ with another metric invariant,

i.e., the girth g of G. In the next section, we provide and prove the eight inequalities of the form:

l(n) ≤ π ⊕ g ≤ u(n)

where ⊕ denotes one of the four operations −, +, /,×, and l(n) and u(n) are best possible lower and upper

bounding functions depending only on the order n of G. We also characterize extremal graphs, i.e., those for

which the bounds are attained.

In Section 3, we provide and prove seven of the eight inequalities of the form

l(n) ≤ ρ ⊕ g ≤ u(n)

and propose a conjecture for the last one. Again, we characterize extremal graphs. For that prupose, we

need the following two definitions.

A lollipop Ln,g is the graph obtained from a cycle Cg and a path Pn−g by adding an edge between an

endpoint of Pn−g and a vertex of the cycle Cg. For a lollipop Ln,g, we have

ρ(Ln,g) =

{

n
2 − g(g−2)

4(n−1) if g is even
n
2 − g(g−2)+1

4(n−1) if g is odd.

A turnip Tn,g, with n ≥ g ≥ 3, is the graph obtained from a cycle Cg by attaching n − p pending edges to

one vertex from the cycle. If g = n, the turnip Tn,g = Tn,n is the cycle Cn. For a turnip Tn,g, we have

π(Tn,g) =

{

g2−4g+4n−1
4(n−1) if g is odd

g2−4g+4n

4(n−1) if g is even.
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Note that these two series of inequalities were first obtained with the system AGX [2, 7, 6]. Relations of

Nordhaus–Gaddum type for proximity π and for remoteness ρ are given in [4].

2 The proximity and the girth

In this section, we prove all lower and upper bounds on π − g, π + g, π/g and π · g in terms of n, the order

of G. We also characterize all the corresponding families of extremal graphs. To prove the lower bound on

π/g, we need the following lemma.

Lemma 1 Let G be a connected graph on n ≥ 3 vertices with girth g.

(i) If g = 3, then π ≥ 1 with equality if and only if G contains at least n edges and a dominating vertex.

(ii) If g = 4, then π ≥ 1 + 2/(n − 1) with equality if and only if G contains the turnip Tn,4 as a spanning

subgraph and is a spanning subgraph of the complete bipartite graph Kn−2,2.

(iii) If g ≥ 5, then π ≥ π(Tn,g) with equality if and only if G is the turnip Tn,g.

Proof.

(i) This case is trivial.

(ii) Let u1u2u3u4u1 be a cycle in G. Assume without loss of generality that t̃(u1) ≤ t̃(u2) ≤ t̃(u3) ≤ t̃(u4),

then

t̃(u1) ≥
(n − 1) + 2

n − 1
= 1 +

2

n − 1

with equality if and only if u1v ∈ E for all v ∈ V \ {u1, u2, u3, u4}.
If u ∈ V \ {u1, u2, u3, u4}, then u is adjacent to at most two vertices from {u1, u2, u3, u4}. Thus

t̃(u) ≥ (n − 2) + 4

n − 1
= 1 +

3

n − 1
> 1 +

2

n − 1
.

Therefore

π = t̃(u1) ≥ 1 +
2

n − 1

with equality if and only if u1 is adjacent to all vertices in {u1, u2, u3, u4}, i.e., the turnip Tn,4 is a spanning

subgraph of G, also G may contain any edges between u3 and any vertex from V \ {u1, u2, u3, u4} but none

of the other possible edges.

(iii) Let u1u2 · · ·ugu1 be a cycle in G. Assume without loss of generality that t̃(u1) ≤ t̃(u2) · · · ≤ t̃(ug), then

t̃(u1) ≥
(n − g) + d(u1, u2) + d(u1, u3) · · · + d(u1, ug)

n − 1
= π(Tn,g)

with equality if and only if u1v ∈ E for all v ∈ V \ {u1, u2, · · ·ug}.

If u ∈ V \ {u1, u2, · · ·ug}, let p ∈ {1, 2, · · · g} such that ℓ = d(u, up) = min{d(u, ui); i = 1, 2, · · · g}. We

consider two cases according to the value of ℓ.

Case ℓ ≥ ⌈g/2⌉. The sum of distances from u to the vertices u1, · · ·ug is at least g2 and the sum of the

distances to the other vertices larger that n − g − 1 (the number of such vertices). Thus

t̃(u) >
(n − g − 1) + g2

2

n − 1
=

2n− 2g − 2 + g2

2(n − 1)
> π(Tn,g).

Case ℓ ≤ ⌊g/2⌋. It is easy to see that for all k ≤ ⌊g/2⌋ − ℓ,

d(u, up±k) = d(u, up) + d(up, up±k) = ℓ + k.
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Note that the sum and the difference in up±k are taken modulo g.

For all k > ⌊g/2⌋ − ℓ, we have

d(u, up±k) ≥ ℓ.

The sum of the distances from u to the vertices on a shortest path from u to up, including up, is

ℓ
∑

i=1

i =
ℓ(ℓ + 1)

2
.

The sum of the distances from u to all the remaining vertices is at least n − g − ℓ.

If g is even we have

t(u) ≥ 2

g

2
−ℓ

∑

i=1

(ℓ + i) + 2ℓ2 +

ℓ
∑

i=1

i + n − g − ℓ

= (g − 2ℓ)ℓ +
(g − 2ℓ)(g − 2ℓ + 2)

4
+ 2ℓ2 +

ℓ(ℓ + 1)

2
+ n − g − ℓ

=
g2 − 2g + 6ℓ2 − 6ℓ + 4n

4
≥ g2 − 2g + 4n

4
.

Thus t̃(u) > π(Tn,g).

If g is odd, we have

t(u) ≥ 2

g−1

2
−ℓ

∑

i=1

(ℓ + i) + ℓ(2ℓ + 1) +

ℓ
∑

i=1

i + n − g − ℓ

= (g − 1 − 2ℓ)ℓ +
(g − 1 − 2ℓ)(g + 1 − 2ℓ)

4
+ 2ℓ2 +

ℓ2 + ℓ

2
+ n − g

=
g2 − 4g + 6ℓ2 − 2ℓ + 4n − 1

4
≥ g2 − 4g + 4n + 3

4
.

In this case also t̃(u) > π(Tn,g).

In conclusion

π = t̃(u1) ≥ π(Tn,g)

with equality if and only if u1 is adjacent to all vertices in V \ {u1, u2, · · ·ug}, i.e., the turnip Tn,g is a

spanning subgraph of G; moreover adding any other edge would decrease the girth. Thus equality holds if

and only if G is the turnip Tn,g.

Theorem 1 For any connected graph G on n ≥ 3 vertices with a finite girth g and proximity π, we have

if n is odd, 1−3n
4

if n is even, 4n−3n2

4n−4

}

≤ π − g ≤
{ n−11

4 − 1
n−1 if n is odd,

n−11
4 − 3

4(n−1) if n is even;
(1)

4 ≤ π + g ≤
{

5n+1
4 if n is odd,

5n2−4n
4(n−1) if n is even;

(2)

1

2 ⌊√n⌋ + 1
+

⌊√n⌋ (⌊√n⌋ − 1)

(2 ⌊√n⌋ + 1)(n − 1)
≤ π

g
≤

{

n2−4
12n−12 if n is even,
n+1
12 − 1

3n−3 if n is odd;
(3)

3 ≤ π · g ≤
{

n2+n
4 if n is odd,
n3

4(n−1) if n is even;
(4)
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The lower bound in (1) and the upper bounds in (2) and (4) are reached if and only if G is the cycle Cn. The

upper bounds in (1) and (3) are reached if and only if G is the lollipop Ln,3. The lower bounds in (2) and

(4) are reached if and only if G contains a dominating vertex and at least n edges. The lower bound in (3)

is reached if and only if G is the turnip Tn,s, where s = 2 ⌊√n⌋ + 1 when
√

n is not an integer, and if and

only if G is any one of the turnips Tn,2
√

n−1, Tn,2
√

n or Tn,2
√

n+1 when
√

n is an integer.

Proof.

Lower bound on π − g.

It is easy to see that for the cycle Cn, equality holds. Since π ≥ 1, to reach the bound, we must have

g ≥ 3n/4. Therefore, G must be a unicyclic graph. Thus, the proof is restricted to unicyclic graphs. Let G

be a unicyclic graph. If G is the cycle Cn, we are done. Else, let C be the unique cycle in G and v a vertex

on C such that d(v) ≥ 3. Let v1 and v2 be two neighbors of v such that v1 ∈ C and v2 ∈ V \ C. Consider

the (unicyclic) graph G′ obtained from G by deleting the edge vv1 and adding the edge vv2, i.e., performing

a rotation of an edge incident with v. This operation increases the girth by exactly one, while the distance

between some, never all, pairs of vertices changes (decreases or increases) by one. In particular, the vertex

corresponding to π which cannot be a pending vertex, hase at least two neighbors, the distance to at least

one of which will not change. Thus the proximity changes by less then one, and the rotation decreases π− g.

Iterating this operation n − g times leads to a cycle.

Upper bound on π − g.

Since G contains at least a cycle, D ≤ n − 2. Let v be a central vertex on a diametric path. Thus

π ≤ t(v)

n − 1
≤







1
n−1

(

n−1
2 + n−3

2 + 2
∑

n−3

2

k=1 k
)

if n is odd,

1
n−1

(

n−2
2 + 2

∑

n−2

2

k=1 k
)

if n is even.

=







1
n−1

(

n − 2 + (n−3)(n−1)
4

)

if n is odd,

1
n−1

(

n−2
2 + n(n−2)

4

)

if n is even.

=

{ n+1
4 − 1

n−1 if n is odd,
n+1

4 − 3
4(n−1) if n is even.

Therefore the upper bound on π−g follows. Equality holds only if D = n−2, thus G contains an induced path

on n − 1 vertices. The nth vertex must be attached to an endpoint of the path and its neighbor, otherwise,

the proximity would decrease and G would contain no cycle.

The lower and upper bounds on π + g, as well as those on π · g, and the characterization of the corresponding

extremal graphs are immediate consequences of the respective bounds on π and g.

Lower bound on π/g.

If g = 3, using Lemma 1, we have

π

g
≥ 1

3
>

1

2 ⌊√n⌋ + 1
+

⌊√n⌋ (⌊√n⌋ − 1)

(2 ⌊√n⌋ + 1)(n − 1)

for all n ≥ 5.

If g = 4, again using Lemma 1, we have

π

g
≥ 1

4
+

1

2(n − 1)
>

1

2 ⌊√n⌋ + 1
+

⌊√n⌋ (⌊√n⌋ − 1)

(2 ⌊√n⌋ + 1)(n − 1)
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for all n ≥ 5.

If g ≥ 5, according to Lemma 1 the minimum of π/g is necessary reached for a turnip. So it remains to

compute the value of the girth g, in terms of n, for which the minimum is reached. For this purpose, we need

to minimize the following function.

f(g) =

{

g−4
4(n−1) + 4n−1

4(n−1)g if g is odd
g−4

4(n−1) + 1
(n−1) if g is even.

Using the derivative of f(g), if g is considered as a continuous variable, the minimum is reached at g =
√

4n − 1

for the expression corresponding to g odd, and at g = 2
√

n for the expression corresponding to g even.

If
√

n = k is an integer, then the minimum is reached for some g ∈ {2k − 1, 2k, 2k + 1}. However, we have

f(2k − 1) = f(2k) = f(2k + 1) =
1

k + 1
.

Thus, in this case the minimum is reached for Tn,2k−1, Tn,2k and Tn,2k+1.

If
√

n is not an integer, let n = k2 + l with k = ⌊√n⌋ and 1 ≤ l ≤ 2k. In this case the minimum is reached

for some g ∈ {2k − 1, 2k, 2k + 1, 2k + 2}, for which the values of f(g) are

f(2k − 1) =
k − 1

n − 1
+

l

(2k − 1)(n − 1)
;

f(2k) =
k − 1

n − 1
+

l

2k(n − 1)
;

f(2k + 1) =
k − 1

n − 1
+

l

(2k + 1)(n − 1)
;

f(2k + 2) =
k − 1

n − 1
+

l

(2k + 2)(n − 1)
.

It is easy to see that the minimum is reached for and only for g = 2k + 1, i.e., the graph G is the turnip

T
n,2⌊√n⌋+1.

The proof of the upper bound on π/g, as well as the characterization of the corresponding extremal graphs,

is similar to that on π − g and omitted here.

3 The remoteness and the girth

In this section, we prove the lower bounds on ρ − g, ρ + g and π · g, as well as the upper bounds on ρ − g,

ρ+ g, ρ/g and π · g. We also characterize the corresponding families of extremal graphs for these bounds. To

prove all the upper bounds, we need the following lemma.

Lemma 2 Let G be a connected graph on n ≥ 4 vertices with a girth g ≤ n − 1 and remoteness ρ. Then

ρ ≤ ρ(Ln,g)

with equality if and only if G is the lollipop Ln,g.

Proof. Let v be a vertex and C a cycle of length g in G.

If v ∈ C, we have

t(v) ≤
{

2
(

1 + · · · g−2
2

)

+ g
2 + (g

2 + 1) + · · · (g
2 + n − g) if g is even

2
(

1 + · · · g−1
2

)

+ (g−1
2 + 1) + · · · (g−1

2 + n − g) if g is odd
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=

{

n(n−1)
2 − n(g−2)

2 + g(2g−1)
2 if g is even

(g−1)(g+1)
4 + n(n−g)

2 if g is odd

Easy algebraic manipulations show that t̃(v) < ρ(Ln,g).

If v ∈ V \ C, we have

t(v) ≤ 1 + 2 + · · · (n − g) + (5)

+

{

(g − 1)(n − g) + 2
(

1 + · · · g−2
2

)

+ g

2 if g is even

(g − 1)(n − g) + 2
(

1 + · · · g−1
2

)

if g is odd

=

{

n(n−1)
2 − g(g−2)

4 if n is even
n(n−1)

2 − g(g−2)+1
4 if n is odd.

Therefore

t̃(v) ≤ ρ(Ln,g)

with equality if and only if G is Ln,g and v is its pending vertex.

Theorem 2 For any connected graph G on n ≥ 3 vertices with remoteness ρ and girth g, we have

if n is even, 4n−3n2

4n−4

if n is odd, 1−3n
4

}

≤ ρ − g ≤ (n + 1)(n − 2)

2n − 2
− 3; (6)

4 ≤ ρ + g ≤
{

5n2−4n
4n−4 if n is even,

5n+1
4 if n is odd;

(7)

ρ

g
≤ (n + 1)(n − 2)

6n − 6
; (8)

3 ≤ ρ · g ≤ ρ(Ln,g∗) · g∗ (9)

where g∗ is the girth for which ρ(Ln,gi
) · gi, i = 1, · · · 4, is maximum with g1 =

⌊

2+
√

6n2−6n+4
3

⌋

, g2 =
⌈

2+
√

6n2−6n+4
3

⌉

, g3 =
⌊

2+
√

6n2−6n+7
3

⌋

and g4 =
⌈

2+
√

6n2−6n+7
3

⌉

.

The lower bound in (6) and the upper bound in (7) are reached if and only if G is the cycle Cn. The upper

bounds in (6) and (8) are reached if and only if G is the lollipop Ln,3. The lower bounds in (7) and (4) are

reached if and only if G is the complete graph Kn. The upper bound in (9) is reached if and only if G is the

lollipop Ln,g∗ .

Proof.

The lower bound on ρ − g follows from the lower bound on π − g proved in Theorem 1 above.

The lower bound on ρ + g and ρ · g, as well as the characterizations of the corresponding extremal graphs,

are trivial.

Using Lemma 2, the proofs of the upper bounds may be restricted to the set of lollipops. Then it suffices to

maximize ρ−g, ρ/g, ρ+g and ρ ·g as functions of g on the set of lollipops Ln,g, considering n as a parameter.

Upper bound on ρ − g:

If g is even, we have

ρ(Ln,g) − g =
n

2
− g(g − 2)

4(n − 1)
− g,



Les Cahiers du GERAD G–2009–26 7

which is a decreasing function in g, and thus reaches its maximum for g = 4.

If g is odd, we have

ρ(Ln,g) − g =
n

2
− g(g − 2) + 1

4(n − 1)
− g,

which is a decreasing function in g, and thus reaches its maximum for g = 3.

In addition,

ρ(Ln,4) − 4 =
n

2
− 2

n − 1
− 4 <

n

2
− 1

n − 1
− 3 = ρ(Ln,3) − 3.

Then

ρ − g ≤ (n + 1)(n − 2)

2n− 2
− 3 and

ρ

g
≤ (n + 1)(n − 2)

6n − 6

with equality in both cases if and only if G is Ln,3.

The upper bound on ρ/g is proved as the previous bound.

Upper bound on ρ + g:

If g is even, we have

ρ(Ln,g) + g =
n

2
− g(g − 2)

4(n − 1)
+ g,

which is an increasing function in g, and thus reaches its maximum for g = n if n is even and for g = n − 1

if n odd.

If g is odd, we have

ρ(Ln,g) − g =
n

2
− g(g − 2) + 1

4(n − 1)
+ g,

which is an increasing function in g, and thus reaches its maximum for g = n − 1 if n is even and for g = n

if n odd.

A comparison between ρ(Ln,n) − n and ρ(Ln,n−1) − (n − 1) is both cases, n even and n odd, leads to the

result.

Upper bound on ρ · g:

If g is even, we have

ρ(Ln,g) · g =
ng

2
− g2(g − 2)

4(n − 1)
.

Using the derivative of this expression, it is easy to show that if g is considered as a continuous variable, the

maximum is reached for g = 2+
√

6n2−6n+4
3 . Thus the bound is ρ(Ln,g1

) · g1 or ρ(Ln,g2
) · g2.

If g is odd, we have

ρ(Ln,g) · g =
ng

2
− g2(g − 2)

4(n − 1)
+

g

4(n − 1)
.

Using the derivative of this expression, it is easy to show that if g is considered as a continuous variable, the

maximum is reached for g = 2+
√

6n2−6n+7
3 . Thus the bound is ρ(Ln,g3

) · g3 or ρ(Ln,g4
) · g4.

The lower bound on ρ/g remains an open conjecture. It is as follows.

Conjecture 1 For any connected graph G on n ≥ 3 vertices with remoteness ρ and girth g,

ρ

g
≥

{

n
4n−4 if n is even,
n+1
4n

if n is odd.

with equality if and only if G is a cycle Cn.
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[2] M. Aouchiche, J.-M. Bonnefoy, A. Fidahoussen, G. Caporossi, P. Hansen, L. Hiesse, J. Lacheré and

A. Monhait, Variable Neighborhood Search for Extremal Graphs. 14. The AutoGraphiX 2 System. In

L. Liberti and N. Maculan (editors), Global Optimization: From Theory to Implementation, Springer

(2006) 281–310.

[3] M. Aouchiche, G. Caporossi and P. Hansen, Variable Neighborhood Search for Extremal Graphs. 20.

Automated Comparison of Graph Invariants MATCH Commun. Math. Comput. Chem. 58 (2007) 365–

384.

[4] M. Aouchiche and P. Hansen, Nordhaus-Gaddum Relations for Proximity and Remoteness in Graphs.

Les Cahiers du GERAD, G–2008–36, May 2008. Submitted for publication.

[5] M. Aouchiche and P. Hansen, Proximity and Remoteness in Graphs: Results and Conjectures. Les

Cahiers du GERAD, G–2009–05, January 2009. Submitted for publication.

[6] G. Caporossi and P. Hansen, Variable Neighborhood Search for Extremal Graphs. 1. The AutoGraphiX

System. Discrete Math. 212 (2000) 29–44.

[7] G. Caporossi and P. Hansen. Variable Neighborhood Search for Extremal Graphs. V. Three Ways to

Automate Finding Conjectures. Disc. Math. 276 (2004) 81–94.


	Introduction
	The proximity and the girth
	The remoteness and the girth

