
Les Cahiers du GERAD ISSN: 0711–2440

Improved Primal Simplex Version 3:

Cold Start, Generalization for

Bounded Variable Problems and a

New Implementation

V. Raymond, F. Soumis,
A. Metrane

G–2009–15

February 2009

Les textes publiés dans la série des rapports de recherche HEC n’engagent que la responsabilité de leurs auteurs. La publication

de ces rapports de recherche bénéficie d’une subvention du Fonds québécois de la recherche sur la nature et les technologies.

Improved Primal Simplex Version 3:

Cold Start, Generalization for Bounded Variable

Problems and a New Implementation

Vincent Raymond

François Soumis

Abdelmoutalib Metrane

GERAD and École Polytechnique de Montréal
C.P. 6079, Succ. Centre-ville

Montréal (Québec) Canada, H3C 3A7

vincent.raymond@polymtl.ca

francois.soumis@gerad.ca

abdelmoutalib.metrane@gerad.ca

February 2009

Les Cahiers du GERAD

G–2009–15

Copyright c© 2009 GERAD

Abstract

The improved primal simplex (ips) method has been proposed by Elhallaoui et al. [9]. We rewrite the
theory of ips for a cold start with an initial feasible solution instead of an initial basic feasible solution.
This allows us to use an heuristic first - optimization second strategy. We generalize this algorithm so
that it can handle bounds on variables. We show that variables at upper bounds augment degeneracy,
and consequently, increase performance of ips compared to cplex. We simplify the implementation by
replacing the umfpack [5] procedure by certain modules of the cplex library. This allows the user to
work with only one commercial software package. We obtain a reduction factor of solution time of 20 on
fleet assignment instances with bounded variables.

Key Words: Linear programming, primal simplex, degeneracy.

Résumé

La méthode improved primal simplex (ips) a été proposée par Elhallaoui et al. [9]. Nous réécrivons
la théorie de manière à ce que l’algorithme débute avec une solution réalisable initiale plutôt qu’avec
une base réalisable initiale. Ceci permet d’utiliser la stratégie heuristic first - optimization second.
Nous généralisons ensuite la méthode pour qu’elle puisse résoudre des problèmes où les variables sont
bornées. Nous montrons que les variables qui sont à leur borne supérieure augmente la dégénérescence,
et conséquemment, la performance de ips. Enfin, nous simplifions l’implémentation en remplaçant les
procédures de umfpack par certains modules de la librairie de cplex. Nous obtenons un facteur de
réduction de plus de 20 comparativement à cplex sur des problèmes de répartition de flotte d’avions.

Les Cahiers du GERAD G–2009–15 1

1 Introduction

We consider the solution of linear programs in standard form

minimize
x∈Rn

cTx subject to Ax = b, x ≥ 0, (LP)

where c ∈ R
n is the cost-vector, A is the m × n constraint matrix and b ∈ R

m is the right-hand side. We
are particularly interested in so-called degenerate problems, on which the simplex algorithm [4] is likely to

encounter degenerate pivots.

Our paper is organized as follows. In §2 we present the Improved Primal Simplex (ips) proposed by
Elhallaoui et al. [9] and developed in [16] (ips-2) and we present the theory to handle bounds in the simplex

method. In §3, we describe the goals of this article, that is, we rewrite the theory so that the algorithm can

start with an initial feasible solution instead of an initial basic feasible solution. We generalize ips to problems

with bounded variables to take advantage of the degeneracy of variables that are at their upper bounds. We

simplify the implementation of ips by removing a procedure from umfpack [5]. This new version of ips is
called ips-3. Numerical results are given in §4 and in §5 we present the conclusions.

2 Background

In this section, we present the ips algorithm and some theoretical properties developed in [9]. A brief sub-

section on how to handle bounds in the simplex method is also given. We start with the presentation of ips

summarized in Algorithm 2.1.

Algorithm 2.1 The Improved Primal Simplex algorithm [9].

Step 0. Choose an initial basis B for (LP).

Step 1. Form and solve the reduced problem (RP).

Step 2. Form and solve the complementary problem (SD). Let y∗ be its optimal value.

Step 3. If y∗ ≥ 0, the current solution of (RP) is optimal for (LP).

Step 4. Otherwise, construct a new basis B′ using the solution of (SD) and return to Step 1.

At Step 0 of Algorithm 2.1, the method starts with a degenerate basic feasible solution. To obtain this

basis, the authors of [9] solve a phase I of the simplex algorithm on (LP). At Step 1 the reduced problem
RP is formed according to the theory of Pan [15]. Note that ips carries out the reduction by means of the

commercial software package umfpack. Then at Step 2, the complementary problem (CP) is formed and

its dual (SD) is solved. We recall from [9] in §3.2 the construction of this problem. Step 3 is the optimality

condition of ips. Elhallaoui et al. [9] prove that if the value of the objective function of (CP) is nonnegative,
then the optimal solution of RP is optimal for (LP). Finally, Step 4 constructs a new basis for the reduced

problem. We refer the reader to [9] for the technicalities of the last two steps. We note that ips solves

unbounded variable problems only.

In [9], the authors prove the following theorem.

Theorem 2.1 Let x be a (non-optimal) basic feasible solution of (LP) with corresponding basis B and with

p ≤ m positive components. Let S be the index set of the positive components in a solution v of (SD)

(|S| ≤ m − p + 1). Let w be the convex combination of columns of A whose coefficients are the vj, that is,
w =

∑

j∈S vjAj .

Then:

1. the variables in S can enter the basis B with positive values, decreasing the objective function value of

(LP);

2 G–2009–15 Les Cahiers du GERAD

2. w is linearly dependent on the columns corresponding to the p positive components of x.

The numerical results of ips show the efficiency of this method. More precisely, it obtains an objective

function reduction factor of less than 2 for vehicle crew scheduling problems and more than 3 for fleet

assignment problems. More recently, the improved version of ips, called ips-2 [16], obtains a reduction factor

of more than 3 and more than 12 respectively for the previous two problem types.

2.1 Bounded Variables in (LP)

We consider a linear program with bounded variables in standard form

minimize
x∈Rn

cTx subject to Ax = b, l ≤ x ≤ u, (BLP)

where l and u are the vectors of the lower and the upper bounds respectively.

When bounds on variables are present in (LP), the simplex algorithm handles them by using substitu-

tion. At a given iteration, the simplex algorithm identifies the variable xi to enter the basis by taking into
consideration the lower bound and the upper bound of this variable. If the value of the variable decreases to

its lower bound, the algorithm considers yi = xi − li. On the other hand, if the new value of xi reaches its

upper bound, the algorithm considers yi = ui − xi. The standard treatment of the yi ≥ 0 constraint allows

us to deal with lower and upper bounds on xi. Therefore, when xi = li or xi = ui, xi can be basic or non
basic.

2.2 Notation

If x ∈ R
n and I ⊆ {1, . . . , n} is an index set, we denote by xI the subvector of x indexed by I. Similarly, if A is

an m×n matrix, we denote by AI the m×|I| matrix whose columns are indexed by I. Let J = {1, . . . , n}\I,

we write x = (xI, xJ) even though the indices in I and J may not appear in order. Moreover, we denote with
upper indices the subset of rows associated with the indexed variables set.

The jth column of A is denote by Aj and we denote by A−T the inverse of the transpose of A.

3 Contributions

This article presents three improvements of ips. First, instead of using an initial basic feasible solution to

reduce the problem as in [9], we present in §3.1 a new reduction method using only a feasible degenerate

solution. This new reduction is well adapted to the heuristic first - optimization second approach [2] that
starts with an heuristic algorithm and finishes with a mathematical programming optimization.

Secondly, instead of using umfpack [5], we present in §3.3 the procedure using only cplex to obtain

the reduced and the complementary problems. Doing all the computation with the same programs avoids

possible numerical tolerance incompatibilities and allows the user to work with only one commercial software

package.

Finally, §3.4 presents the generalization to bounded variables. The algorithm also removes the basic

variables at their upper bounds from the reduced problem.

Numerical results of each of the improvements are given in §4.

3.1 Reduced Problem

Let x̄ be a feasible solution of (LP) and P be the index set of the p nonzero variables of x̄, i.e.,

P = {i ∈ {1, . . . , n} | x̄i > 0},

Les Cahiers du GERAD G–2009–15 3

where x̄i may be integer or not. We construct a basis AB of (LP) such that the first p variables are the
variables of P and the last m − p variables are artificial (denoted by the index set N). Without loss of

generality, we assume that the p rows associated with the variables of P are the first p rows of (LP). In the

same way, we assume that the m − p rows associated with the m − p artificial variables of N are the last

m − p rows of (LP). Thus, we can write

AB =

[

AP

P
0

AN

P
AN

N

]

.

Suppose that the AP

P
matrix is non singular. It is the case when the p variables of P are linearly independent.

If not, it is possible to find a new solution from x̄ such that the nonzero variables are linearly independent

by solving
minimize

x∈Rm

cT
P
x subject to ABx = b, x ≥ 0.

Note that this problem is solved anyway in the cplex reduction procedure (see 3.3). Thus, the reduced
problem is always created from a linearly independent solution. Denote by Q the inverse matrix of AB and

partition

Q =

[

QP

QZ

]

=

[

(AP

P
)−1 0

−AN

P
(AP

P
)−1 AN

N

]

= A−1

B
, (3.1)

where QZ is the compatibility matrix formed by the last m − p rows of Q. We have

x̄ =

[

QPb

QZb

]

, and therefore, QZb = 0. (3.2)

We begin with the following definition.

Definition 3.1 The jth variable of (LP), xj , is said to be compatible if and only if QZAj = 0.

From Definition 3.1, we let C ⊆ {1, . . . , n} denote the indices of variables that are compatible and

I = {1, . . . , n} \ C. Thus, xC and xI are the subvectors of x of compatible and incompatible variables,

respectively. We partition the cost vector c accordingly into cC and cI, and the columns of A into AC and AI.

The partitioning that we applied to AB can be generalized to AC and AI and yields

AI =

[

AP

I

AN

I

]

and AC =

[

AP

C

AN

C

]

. (3.3)

Upon premultiplying the equality constraints of (LP) by Q, we obtain QAx = Qb, which may be rewritten
[

QPAx

QZAx

]

=

[

((AP

P
)−1AP

C
)xC ((AP

P
)−1AP

I
)xI

(−AN

P
(AP

P
)−1AP

C
+ AN

C
)xC (−AN

P
(AP

P
)−1AP

I
+ AN

I
)xI

]

=

[

QPb

0

]

,

where we used (3.1) and (3.2). Since by definition xC is compatible, we have (−AN

P
(AP

P
)−1AP

C
+AN

C
)xC = 0.

Upon imposing xI = 0, we obtain the reduced problem

minimize
xC

cT
C
xC subject to ((AP

P
)−1AP

C
)xC = QPb, xC ≥ 0. (RP)

Problem (RP) is potentially much smaller than (LP) and is obtained from a degenerate primal basis. It only

depends on the compatible variables—those that can enter a basis for (RP) without violating the constraints

of (LP) that have been omitted. Note that by construction, if xC is feasible for (RP), then (xC, 0) is feasible

for (LP).

With this new theoretical presentation of the reduced problem, we show that we can use an initial feasible

solution of (LP) instead of using an initial basic feasible solution to reduce the problem. This particularity
allows the use of an heuristic method to obtain the values of the nonzero variables of a feasible solution.

Moreover, an heuristic feasible solution has more of a chance to be closer to the optimal solution than the

classical phase I solution. Furthermore, the computational time of finding an heuristic initial solution can be

much less than a phase I procedure. For example, the phase I on the vcs instances (see 4.1 for definition)

takes 55 seconds on average.

4 G–2009–15 Les Cahiers du GERAD

3.2 Complementary Problem

In this section, we present the construction of the complementary problem as explained in [9]. Note that a

complementary problem is created from a basic feasible solution of the reduced problem and contains only

incompatible variables. Let x̄C be the current feasible solution for (RP). Here, compatibility is understood
with respect to QZ that has been used to calculate the previous reduced problem.

Recall that P indexes the nonzero variables of the current solution of the reduced problem. Assume that

the reduced problem is not degenerate (if it is, then reduce it). P can be considered as the indices of the

compatible basic variables. Let V index the compatible nonbasic variables and I index the incompatible
variables, i.e.,

P = {i ∈ C | x̄i basic}, V = {i ∈ C | x̄i nonbasic}, and I = {1, . . . , n} \ C.

Then x̄C is also optimal for (LP) if and only if all reduced costs (i.e., corresponding to all variables, compatible

or not) are nonnegative. In other words, there must exist dual variables π such that

cj − AT
j π = 0 for all j ∈ P, (3.4a)

cj − AT
j π ≥ 0 for all j ∈ V, (3.4b)

cj − AT
j π ≥ 0 for all j ∈ I. (3.4c)

It is easy to see that the constraints 3.4b are satisfied when x̄C is optimal for (RP). In this case, constraints
3.4b are redundant and may be removed. In the other case, when x̄C is not optimal, we can handle them

subsequently in the next reduced problem.

To find a negative reduced cost set of incompatible variables, the authors of [9] propose to

maximize
π,y

y subject to cP − AT
P
π = 0, cI − AT

I
π ≥ y. (3.5)

By using the same partitioning as AP (see equation (3.3)), we partition the vector of dual variables

π =

[

πP

πN

]

.

Introducing this notation into the first set of constraints of (3.5), we obtain

cP − (AP

P
)T πP − (AN

P
)T πN = 0,

and we may thus express

πP = (AP

P
)−T cP − (AP

P
)−T AN

P
πN.

Substituting the latter into the second set of constraints, (3.5) may be rewritten as the complementary
problem

maximize
π∈Rp,y

y subject to y −
(

AN

P
(AP

P
)−1AP

I
− AN

I

)

πN ≤
(

cI − ((AP

P
)−1AP

I
)T cP

)

. (CP)

The following property [6, 9] justifies the use of (CP).

Proposition 3.1 Let x∗
C

be an optimal solution of (RP) and let y∗ be an optimal solution of (CP). Then

(x∗
C
, x∗

I
) = (x∗

C
, 0) is an optimal solution of (LP) if and only if y∗ ≥ 0.

It is informative to consider the dual of (CP), the simplified dual

minimize
v

(

cI − ((AP

P
)−1AP

I
)T cP

)T
v subject to

(

AN

P
(AP

P
)−1AP

I
− AN

I

)

v = 0, eTv = 1, v ≥ 0. (SD)

Note that (SD) possesses m−p+1 equality constraints. From now on, we refer to the complementary problem

as the pair (CP) and (SD). Theorem 2.1 links (SD) with (LP).

We mention that the matrix AN

P
(AP

P
)−1AP

I
− AN

I
of the complementary problem is the lower right-hand

matrix of QA obtained by the previous reduction. Thus, we do not need to compute this matrix at each

solution of (SD). We just have to update the matrix after each augmentation or each reduction of the reduced

problem.

Les Cahiers du GERAD G–2009–15 5

3.3 CPLEX Reduction

To avoid possible numerical tolerance incompatibilities between umfpack [5] and cplex, we use the latter

to execute the reduction.

Algorithm 3.1 cplex reduction of a problem that does not contain bounds on variables.

Step 0. Create a temporary cplex problem (LPtmp) that contains only the nonzero variables.

Step 1. Add to (LPtmp) an identity matrix that represents artificial variables.

Step 2. Solve (LPtmp).

Step 3. The rows associated with a basic artificial variable must be removed.

Step 4. Use the basis inverse of (LPtmp) to construct (RP) and (SD).

Algorithm 3.1 describes the method of reducing problems that do not contain bounds on variables. Step 0

and Step 1 are clear. At Step 2, we solve the temporary problem. The optimal basic feasible solution of

this problem contains the nonzero variables of the current solution of (LP), that is (AP), and the artificial

variables associated with the rows that are not associated with a nonzero basic variable, that is (AN). At

Step 3, we identify the subsets of rows: AN are the rows associated with artificial variables and AP are
the rows associated with nonzero basic variables. At Step 4, we construct the reduced and complementary

problems. Since the required Q matrix is given by the current inverse basis of the temporary problem, we

can compute QA to create both problems. We might add that the computational time to find Q is relatively

insignificant compared with that needed to calculate QA.

3.4 Bounds

We mentioned previously that we generalized our algorithm to handle problems with bounded variables. As

we explained in §2.1, variables that are at their upper bounds can be handled as zero variables. Thus, since

these problems may have more degeneracy, their reduced problems may be smaller. Our algorithm must be

modified in the reduction process and in the composition of (SD).

We define the index sets L and U :

L = {i ∈ C ∪ I | x̄i = li} and U = {i ∈ C ∪ I | x̄i = ui}.

where x̄i is the current value of xi.

To take into account the bounds of the variables, we must add some steps in Algorithm 3.1. The procedure

to reduce problems that contain bounds with cplex is summarized in Algorithm 3.2.

Step 0, Step 3, Step 4 and Step 5 of Algorithm 3.2 are the same as in Algorithm 3.1. Step 1 assures that

the optimal solution of (LPtmp) is the same as the feasible solution given. Step 2 allows maximizing the
number of artificial variables in the basis, that is, allows completing reduction of the problem.

Step 6 is executed as follows. If a variable xi with i ∈ L is incompatible, instead of deleting it from (RP),

we “remove” it by changing its bounds in (RP) such that li ≤ xi ≤ li. Thus, the values of these incompatible

variables cannot be changed in the reduced problem as null incompatible variables. Moreover, by changing

bounds, cplex will take into account the values of xi in the right-hand side of the reduced problem. The
complementary problem is constructed as usual for this type of variable.

In the same way, if a variable xi with i ∈ U is incompatible, instead of deleting it from (RP), we

“remove” it by changing its bounds in (RP) such that ui ≤ xi ≤ ui. However, these variables are modified

in the complementary problem. Since the theoretical substitution of this type of variable is yi = ui − xi, we

take into account the negative relation between yi and xi by multiplying the coefficient of this variable in

6 G–2009–15 Les Cahiers du GERAD

Algorithm 3.2 cplex reduction of problems that contain bounds on variables.

Step 0. Create a temporary cplex problem (LPtmp) that contains only the nonzero variables.

Step 1. Change the bounds of variables in (LPtmp):

li ≤ xi ≤ li for all i ∈ L.

ui ≤ xi ≤ ui for all i ∈ U .

Step 2. Make nonbasic the variables xi for all i ∈ L ∪ U in (LPtmp).

Step 3. Add to (LPtmp) an identity matrice that represents artificial variables.

Step 4. Solve (LPtmp).

Step 5. The rows associated with a basic artificial variable must be removed.

Step 6. Use the basis inverse of (LPtmp) to construct (RP) and (SD).

(SD) by −1. Note that ui or li in the substitution are present indirectly in (SD) by the modification of the

bounds in (RP).

We then obtain the bounded reduced problem (BRP)

minimize
x

∑

i∈C

cixi +
∑

j∈I∩L

cjxj +
∑

k∈I∩U

ckxk (BRP)

∑

i∈C

(AP

P
)−1AP

i xi +
∑

j∈I∩L

(AP

P
)−1AP

j xj +
∑

k∈I∩U

(AP

P
)−1AP

kxk =QPb

li ≤ xi ≤ ui for all i ∈ C

lj ≤ xj ≤ lj for all j ∈ I ∩ L

uk ≤ xk ≤ uk for all k ∈ I ∩ U

and the associated simplified problem (ASD)

minimize
v

∑

i∈I\U

(

ci − ((AP

P
)−1AP

i)T cP

)

vi −
∑

j∈I∩U

(

cj − ((AP

P
)−1AP

j)T cP

)

vj (ASD)

∑

i∈I\U

(

AN

P
(AP

P
)−1AP

i − AN

i

)

vi −
∑

j∈I∩U

(

AN

P
(AP

P
)−1AP

j − AN

j

)

vj = 0

∑

i∈I

vi = 1

vi∈I ≥0.

When a variable xi with i ∈ I ∩ (L∪U) is chosen to enter (RP), we enter the rows as usual and we enter

the variable by re-initializing the bounds of xi since the latter variable is already in (RP).

4 Numerical Results

This section presents numerical results that were obtained with ips-3. More precisely, we present a comparison

of reduction times obtained by cplex and umfpack. We compare solution time of cplex when starting

with an initial basic feasible solution and an initial feasible solution. Then, we present a sensitivity analysis

Les Cahiers du GERAD G–2009–15 7

as a function of the quality of the initial solution. Finally, we present numerical results on problems with
bounded variables. Characteristics of instances used are presented in §4.1 and §4.5.

Before the presentation of the results, we define the different versions of ips to avoid confusion. ips has

been proposed and developed by Elhallaoui et al. [9] and is the basic algorithm. ips-2 has been developed by

Raymond et al. [16] and contains different improvements. Here, we present ips-3, a version based on ips-2

which has the improvements that we mentioned in §3. All the results in this paper have been computed with
ips-3.

4.1 Vehicle and Crew Scheduling Data Set

We selected a number of instances of combined vehicle and crew scheduling problems in public transit (vcs)

which exhibit important degeneracy. These instances were generated by Elhallaoui et al. [9] using a random

generator of Haase [13] and was also used in [16].

Table 4.1 reports the number of constraints and variables of each instance as well as the average percentage
of degenerate basic variables in (RP) encountered in the course of the iterations of Algorithm 2.1.

Table 4.1: Characteristics of vcs instances.

instance constraints variables degeneracy instance constraints variables degeneracy

VCS1 2084 10343 44% VCS6 2084 8308 48%
VCS2 2084 6341 45% VCS7 2084 8795 47%
VCS3 2084 6766 45% VCS8 2084 9241 47%
VCS4 2084 7337 48% VCS9 2084 10150 50%
VCS5 2084 7837 48% VCS10 2084 6327 45%

4.2 CPLEX Reduction Instead of UMFPACK Reduction

When we compare a cplex reduction to the same umfpack reduction, the time reduction is significant.

Moreover, the implementation of ips-3 is simplified since it uses only one commercial software package.
However, the use of cplex instead of umfpack to create the reduced problem and the complementary

problem results in a relatively small gain in the total computing time.

We present in Table 4.2 the cplex and the umfpack reduction time of the first reduced problem for each

vcs instance. All the times are in seconds. We see that the cplex reduction is 1.48 times faster than the

umfpack reduction.

Table 4.2: Reduction times of umfpack and cplex for vcs instances.

instance umfpack cplex instance umfpack cplex

VCS1 6.58 3.87 VCS6 4.49 3.45
VCS2 3.53 2.34 VCS7 4.72 3.45
VCS3 3.69 2.54 VCS8 4.27 3.16
VCS4 3.83 2.64 VCS9 5.55 3.53
VCS5 4.60 2.84 VCS10 3.47 2.41

AVERAGE 4.47 3.02

8 G–2009–15 Les Cahiers du GERAD

4.3 Initial Feasible Solution Instead of Initial Basic Feasible Solution

Beginning with an initial feasible solution instead of an initial basic feasible solution increases the generality

of ips-3. Indeed, it can begin with an initial feasible solution obtained by an heuristic or begin with an initial

basic feasible solution.

We present in Table 4.3 the solution time of cplex and ips-3 when they start with initial solutions

obtained from the phase I basis. The times are again in seconds.

The average solution times of cplex and ips-3 are 177 and 42 seconds respectively. The reduction factor

is 4.17 on average. Note that the times of ips-3 are similar to those of ips-2 (see [16]) since the latter does

not include the phase I time used to find the initial basis.

In short, starting with an initial feasible solution increases the performance time of cplex while augment-

ing the generality of ips. The performance time of the latter is decreased when the initial feasible solution
is given since no computational time is needed to obtain an initial basic feasible solution (phase I) or to

complete it.

Table 4.3: cplex and ips-3 solution times when starting with an initial solution.

reduction reduction
instance cplex ips-3 factor instance cplex ips-3 factor

VCS1 252 58 4.34 VCS6 176 45 3.91
VCS2 105 33 3.18 VCS7 185 44 4.20
VCS3 135 35 3.85 VCS8 214 44 4.86
VCS4 163 35 4.65 VCS9 246 58 4.24
VCS5 171 39 4.38 VCS10 124 30 4.13

AVERAGE 177 42 4.17

4.4 Solution Time as a Function of the Quality of the Initial Solution

As we stated in §3.1, the theory allows us to begin with an initial feasible solution. This subsection presents

the results of ips-3 on vcs instances when our algorithm starts with different initial solutions. These initial

solutions have been generated by cplex and their costs are from 0.5 percent to 7 percent more than those
of the optimal solution. To generate these initial basic feasible solutions, we first find the optimal solution.

We then execute cplex from phase I and write the basis in a file when we reach a solution whose objective

value has the predetermined gap value compared to the optimal solution.

As we show in Figures 4.1 and 4.2, our method is more stable when compared to cplex. Indeed, we see

that the results of ips-3 are almost always better when the initial solution is better. We can surely say that
ips-3 takes advantage of a good initial solution. By contrast, the results with cplex on vcs instances show

that the initial solution can handicap the method.

4.5 Fleet Assignment With Bounded Variables Data Set

Fleet assignment (fa) problems consist in maximizing the profits of assigning a type of aircraft to each flight

segment over a horizon of one week. The paths of the aircrafts must respect maintenance conditions and

availability. Our problem instances are generated from real data with 2505 flight segments and four types of
aircraft. The variables are flight sequences between maintenance. Those problems have one set partitioning

constraint per flight segment, one availability constraint per aircraft type, and one flow conservation constraint

between flight sequences at the maintenance base. Some variables are also bounded above.

Les Cahiers du GERAD G–2009–15 9

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 1 2 3 4 5 6 7 8

S
ol

ut
io

n
tim

e
(s

ec
on

ds
)

Percentage of initial solution value compare to the optimal value

Figure 4.1: Results of cplex on vcs instances

 0

 10

 20

 30

 40

 50

 60

 0 1 2 3 4 5 6 7 8

S
ol

ut
io

n
tim

e
(s

ec
on

ds
)

Percentage of initial solution value compare to the optimal value

Figure 4.2: Results of ips-3 on vcs instances

Those problems are not so large but there are some typical real-life master problems that need to be

solved at each iteration of a column generation algorithm imbedded in a branch & bound procedure. These
instances were used in [16] and [10].

10 G–2009–15 Les Cahiers du GERAD

To test ips-3 on problems that contain bounds on variables, we modify our fa instances. We add upper
bounds of 1 on each variable, i.e., xi ≤ 1, i = {1, . . . , n}. The resulting instances are called ubfa. We

choose these instances instead of the vcs because there is a significant number of variables with value of 1

in optimal solutions of fa instances. Consequently, adding upper bounds of 1 on variables in fa instances

augments degeneracy.

Table 4.4 gives the number of constraints and variables of each instance along with the average percentage
of degenerate variables encountered with ips-3.

Table 4.4: Characteristics of ubfa instances .

degeneracy degeneracy

instance constraints variables xi = 0 xi = 1 instance constraints variables xi = 0 xi = 1

UBFA6 5067 17594 68% 12% UBFA13 5159 25746 65% 15%
UBFA7 5159 20434 59% 11% UBFA14 5159 22641 71% 15%
UBFA8 5159 21437 65% 14% UBFA15 5182 23650 63% 13%
UBFA9 5159 23258 66% 14% UBFA16 5182 23990 64% 13%
UBFA10 5159 24492 66% 14% UBFA17 5182 24282 65% 14%
UBFA11 5159 24812 66% 14% UBFA18 5182 24517 65% 14%
UBFA12 5159 24645 66% 14% UBFA19 5182 24875 65% 14%

4.6 Results for UBFA Data Set

We used ubfa instances to test ips-3. To start the algorithms, we find initial feasible solutions through the

phase I of cplex. These initial solutions are at 1.5 percent of the optimal solutions on average.

Table 4.5 presents the computational time in seconds for cplex and ips-3 for solving the instances. The

reduction factor is the cplex time divided by the ips-3 time. These factors show that on average ips-3 is

20 times faster than cplex for solving problems that contain bounds on variables. This reduction factor is

very significant when such problems need to be solved thousands of times in a column generation scheme

embedded in a branch & bound procedure.

These impressive performances of our algorithm can be explained as follow. First, we saw in §3.4 that

the variables whose values are equal to their upper bounds are handled like zero variables. In other words,

the addition of upper bounds in fa instances increases degeneracy. As a result, there are more degenerate

Table 4.5: Results on ubfa instances.

reduction reduction
instance cplex ips-3 factor instance cplex ips-3 factor

UBFA6 581 43 13.51 UBFA13 1362 62 21.97
UBFA7 643 40 16.08 UBFA14 1590 76 20.92
UBFA8 690 38 18.16 UBFA15 1242 45 27.60
UBFA9 1083 58 18.67 UBFA16 1340 57 23.51
UBFA10 948 69 13.74 UBFA17 924 60 15.40
UBFA11 1384 50 27.68 UBFA18 1049 56 18.73
UBFA12 1731 61 28.38 UBFA19 1169 62 18.85

AVERAGE 1124 55.5 20.23

Les Cahiers du GERAD G–2009–15 11

pivots in the cplex solution and greater computational time. Secondly, our algorithm takes advantage of
degeneracy. As result, we treat smaller reduced problems and faster solution time relative to cplex. Starting

with an initial feasible solution instead of an initial basic feasible solution also can be a part of the explanation

as well as the reduction now executed by cplex.

5 Conclusion

We proposed algorithm ips-3: a theoretical and implementational generalization of ips. First, we rewrote the
theory so that the algorithm can start with a feasible solution instead of a basic feasible solution. We can claim

that ips-3 takes advantage of initial solutions whereas cplex is less predictable. Moreover, we simplified

the implementation by using cplex instead of umfpack to create the reduced and the complementary

problems. Then, we added procedures to handle problems with bounded variables. The numerical results on
fleet assignment instances with bounded variables show the efficiency of ips-3. Indeed, we obtain on average

a reduction factor of 20 on the total computing time compared to cplex.

References

[1] Bland, R.G. (1977). New Finite Pivoting Rules for the Simplex Method. Mathematical of Operations Research,
2, 103–107.

[2] Boubaker, K., G. Desaulniers and I. Elhallaoui (2008). Bidline Scheduling with Equity by Heuristic Dynamic
Constraint Aggregation. Les Cahiers du GERAD, Montreal, Canada. G–2008–43.

[3] Charnes, A. (1952). Optimality and Degeneracy in Linear Programming. Econometrica, 20, 160–170.

[4] Dantzig, G.B. (1963). Linear Programming and Extensions. Princeton University Press, Princeton, NJ.

[5] Davis, T.A. and I.S. Duff (1997). An Unsymmetric-Pattern Multifontal Method for Sparse LU Factorization.
Siam Journal on Matrix Analysis and Applications, 18(01), 140–158.

[6] Elhallaoui, I., D. Villeneuve, F. Soumis and G. Desaulniers (2005). Dynamic Aggregation of Set Partitioning
Constraints in Column Generation. Operations Research 53, 632–645.

[7] Elhallaoui, I., A. Metrane, F. Soumis and G. Desaulniers (2008). Multi-phase Dynamic Constraint Aggregation
for Set Partitioning Type Problems. Mathematical Programming.

[8] Elhallaoui, I., G. Desaulniers, A. Metrane and F. Soumis (2006). Bi-dynamic Constraint Aggregation and Sub-
problem Reduction. Computers and Operations Research, doi:10.1016/j.cor.2006.10.007.

[9] Elhallaoui, I., A. Metrane, G. Desaulniers and F. Soumis (2008). An Improved Primal Simplex Algorithm for
Degenerate Linear Programs. Submitted to SIAM Journal of Optimization.

[10] Lacasse-Guay, E. Ph.D. Thesis, École Polytechnique Montreal, Canada.

[11] Filiz, B., Csizmadia, Z. and T. Illés (2001). Anstreicher-Terlaky Type Monotonic Simplex Algorithms for Linear
Feasibility Problems. Operations Research Report35, 286–303.

[12] Fukuda, K. (1982). Oriented Matroid Programming. Ph.D. Thesis, University of Waterloo, Canada.

[13] Haase, K., G. Desaulniers, and J. Desrosiers (2001). Simultaneous Vehicle and Crew Scheduling in Urban Mass
Transit Systems. Transportation Science 35, 286–303.

[14] Omer, J. (2006). Méthode de Réduction Dynamique de Contraintes pour un Programme Linéaire. Masters Thesis,
École Polytechnique de Montréal.

[15] Pan, P.-Q. (1998). A Basis Deficiency-Allowing Variation of the Simplex Method for Linear Programming.
Computers and Mathematics with Applications, 36(3), 33–53.

[16] Raymond, V., F. Soumis and D. Orban (2008). A New Version of the Improved Primal Simplex for Degenerate
Linear Programs. Submetted to Computer and Operational Research.

[17] Ryan, D. M. and Osborne, M. (1988). On the Solution of Highly Degenerate Linear Programmes. Mathematical

Programming, 41, 385–392.

[18] Terlaky, T. and Sushong, Z. (1993). Pivot Rules for Linear Programming : A Survey on Recent Theoretical
Developments. Annals of Operations Research, 46, 203–233.

[19] Wolfe, P. (1963). A Technique for Resolving Degeneracy in LP. SIAM Journal, 2, 205–211.

	Introduction
	Background
	Bounded Variables in (LP)
	Notation

	Contributions
	Reduced Problem
	Complementary Problem
	CPLEX Reduction
	Bounds

	Numerical Results
	Vehicle and Crew Scheduling Data Set
	CPLEX Reduction Instead of UMFPACK Reduction
	Initial Feasible Solution Instead of Initial Basic Feasible Solution
	Solution Time as a Function of the Quality of the Initial Solution
	Fleet Assignment With Bounded Variables Data Set
	Results for UBFA Data Set

	Conclusion

