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Abstract

The well-known method of stochastic programming in extensive form is used on the large scale, partial
equilibrium, technology rich global 15-region TIMES Integrated Assessment Model (ETSAP-TIAM), to
assess climate policies in a very uncertain world. The main uncertainties considered are those of the
Climate Sensitivity parameter, and of the rate of economic development. In this research, we argue
that the stochastic programming approach is well adapted to the treatment of major uncertainties, in
spite of the limitation inherent to this technique due to increased model size when many outcomes are
modeled. The main advantage of the approach is to obtain a single hedging strategy while uncertainty
prevails, contrary to classical scenario analysis. Furthermore, the hedging strategy has the very desirable
property of attenuating the (in)famous ‘razor edge’ effect of Linear Programming, and thus to propose
a more robust mix of technologies to attain the desired climate target. Although the example treated
uses the classical expected cost criterion, the paper also presents, and argues in favor of, altering this
criterion to introduce risk considerations, by means of a linearized semi-variance term, or by using the
Savage criterion. Risk considerations are arguably even more important in situations where the random
events are of a ‘one-shot’ nature and involve large costs or payoffs, as is the case in the modeling of
global climate strategies. The article presents methodological details of the modeling approach, and uses
realistic instances of the ETSAP-TIAM model to illustrate the technique and to analyze the resulting
hedging strategies. The instances modeled and analyzed assume several alternative global temperature
targets ranging from less than 2◦C to 3◦C. The 2.5◦C target is analyzed in some more details.

The paper makes a distinction between random events that induce anticipatory actions, and those
that do not. The first type of event deserves full treatment via stochastic programming, while the second
may be treated via ordinary sensitivity analysis. The distinction between the two types of event is not
always straightforward, and often requires experimentation via trial-and-error. Some examples of such
sensitivity analyses are provided as part of the TIAM application.

Key Words: Energy modeling; Uncertainty; Stochastic programming; Hedging strategies; Climate
policies; Technology.

Résumé

La technique de la programmation stochastique sous forme extensive est appliquée au modèle énergé-
tique mondial de grande taille, ETSAP-TIAM, pour l’analyse des politiques climatiques sous incerti-
tude. Les principaux aléas considérés sont ceux de la sensibilité du climat et du taux de développement
économique. Dans cet article, nous montrons que la programmation stochastique est bien adaptée au
traitement des principaux aléas en dépit des limites de traitement imposées par la taille des problèmes
qui en résulte. Le principal avantage de la technique est l’obtention d’une stratégie de sauvegarde (hedg-
ing strategy) unique durant la période d’incertitude, contrairement aux techniques classiques d’analyse
par scénarios indépendants. De plus, la stratégie de sauvegarde a l’avantage d’atténuer l’effet ’bang-bang’
de la programmation linéaire, et constitue donc un mixte technologique plus robuste pour l’atteinte d’une
cible climatique.

L’exemple traité utilise comme critère d’optimisation l’espérance mathématique du coût total, mais
l’article recommande l’introduction de deux concepts d’aversion au risque, l’un par l’adjonction d’un
terme de semi-variance, l’autre par l’utilisation du critère Minimax-Regret de Savage. L’article présente les
détails méthodologiques de ces approches et leur implantation dans un programme linéaire de grande taille,
et utilise des instances réalistes du modèle ETSAP-TIAM appliqué à la recherche de stratégies climatiques
robustes. Les cibles climatiques visées sont exprimées en termes de changement de la température globale
n’excédant pas 3◦C en 2100. La cible de 2.5◦C est étudiée en détail.

L’article distingue deux types d’aléas : ceux qui induisent des actions anticipées, et les autres. Le pre-
mier type mérite un traitement explicite de l’incertitude, alors que le second peut être traité par l’analyse
de sensibilité classique. La détection de ces deux types d’aléas n’est pas toujours facile, et nécessite
souvent une exploration empirique plus ou moins rigoureuse. Elle est cependant jugée importante. Des
exemples d’analyse de sensibilité sont montrés pour des paramètres jugés essentiels.

Acknowledgments: This work is the main contribution of the Energy Technology Systems Analysis
Programme (ETSAP) to Work Group 1 of the EMF-22 program of research. ETSAP is the principal
sponsor of the development of the TIMES Integrated Assessment Model (ETSAP-TIAM) used to conduct
our analysis.
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1 Introduction

The Stochastic Programming (S.P.) paradigm [2, 19] is now a fully mature one, and has been used in many

applications. It is recognized as a rigorous way to account for risky events while optimizing a particular

system. One of the well recognized computational drawbacks of S.P. (at least in its extensive form) is that

it quickly leads to large scale instance of the original problem, whenever the number of random events grows
and/or the number of outcomes of each event becomes too large. In this article, we argue for a reasoned

use of Stochastic Programming in large scale integrated Energy-Climate models such as the ETSAP-TIAM

model [10, 12], in which only the main uncertainties are modeled, while others are treated via sensitivity

analysis. More precisely, the paper makes a distinction between random events that induce anticipatory
actions, and those that do not. The first type of event deserves full treatment via stochastic programming,

while the second may be treated via ordinary sensitivity analysis. The distinction between the two types of

event is not always straightforward, and often requires experimentation via trial-and-error. Some examples

of such sensitivity analyses are provided as part of the TIAM application.

One of the main advantages of the S.P. approach is to obtain an explicit single hedging strategy while
uncertainty prevails, contrary to classical scenario analysis. Furthermore, the hedging strategy has the very

desirable property of attenuating the (in)famous ‘razor edge’ effect of Linear Programming, and thus to

propose a more robust mix of technologies to attain the desired climate target. In a nutshell, a good hedging

strategy takes into account the possible outcomes, and strikes an optimal compromise between the negative

effects of the many ways of “guessing wrong” [11].

Although the examples treated use the classical expected cost criterion, the paper also presents – and

argues in favor of, altering this criterion to introduce risk considerations, by means of a linearized semi-

variance term, or by using the Savage criterion. Risk considerations are arguably even more important in

situations where the random events are of a ‘one-shot’ nature and involve large costs or payoffs, as is the case

in the modeling of global climate strategies.

This article presents methodological details of the modeling approach, and uses realistic instances of

the ETSAP-TIAM model to illustrate the technique and to analyze the resulting hedging strategies. The

instances modeled and analyzed propose several alternative global temperature targets ranging from less than

2◦C to 3◦C. The 2.5◦C target is analyzed in some more details.

In brief, the main objectives of this work are:

a) to demonstrate the power of stochastic programming in calculating optimal hedging strategies using a
large scale, realistic energy-climate integrated model, in the presence major uncertainties on climate

policies (climate sensitivity and future economic growth),

b) to analyze hedging strategies, i.e. a set of early robust actions capable of maintaining the global
temperature within specified bounds, in spite of the uncertainty. Robust actions are those actions

chosen in the hedging strategy but not in the Base case. In fact, hedging is deemed relevant if decisions

made prior the resolution of uncertainty are different from those in the base case (otherwise, “wait and

see” is a good policy). Hedging is even more useful when it is not identical to any of the perfect forecast

strategies, since such a situation clearly shows that the optimal technology and energy decisions are
not easily predictable without an explicit treatment of uncertainty.

Among the results obtained, the fact that no perfect forecast is able to reproduce the hedging strategy

confirms the relevance of using stochastic programming in order to analyze preferred climate policies in an

uncertain world.

c) To formulate alternate criteria for use with the S.P. approach, such as the adjunction of a semi-variance
term or the use of the Savage criterion.

Section 2 contains a discussion of climate uncertainties. Section 3 describes the TIAM model and the

methodology used to represent the uncertainties and to compute hedging strategies with stochastic program-
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ming. Sections 4 and 5 present results, including several sensitivity analyses, Section 6 presents alternate
criteria, and Section 7 concludes the article.

2 Uncertainty in Energy-Climate Studies

The impacts of greenhouse gas (GHG) emissions on climate may be sketched as a chain of causal relationships,
where GHG emissions provoke an increase in the concentration of GHG’s in the atmosphere and in oceans;

the increased concentrations provoke an increase of the atmospheric radiative forcing (RF) by the various

gases, which in turn has an impact on the global temperature of the atmosphere and oceans. Nordhaus and

Boyer [15] proposed simple and well-documented linear recursive equations for calculating CO2 concentrations
and global temperature changes. The climate module of ETSAP-TIAM is based on these equations for the

carbon cycle and on two one-box models (simple exponential decay) for the CH4 and N2O cycles. The other

substances that induce radiative atmospheric forcing (other Kyoto gases, Montreal Protocol gases, aerosols,

etc.) are treated via an exogenous forcing trajectory.

In this article, two parameters of the climate equations are considered as highly uncertain: the climate

sensitivity (Cs), defined as the equilibrium response of global surface temperature to a doubling of the
equivalent CO2 concentration; and the inverse of the thermal capacity of the atmospheric layer and the

upper oceans, also called “lag parameter”, key determinant of transient temperature change. While Cs has

received a great deal of attention, its value is still highly uncertain [1, 3]. Until recently, a range between

1.5◦C and 4.5◦C was commonly quoted [6]. More recent studies have strongly argued for a wider range of
0.5◦C to 9◦C or even 10◦C [1, 8]. Regarding the lag parameter, its value may either be considered to be

approximately independent of Cs, or it may be assumed to vary inversely with Cs.
1 The latter case results

in higher transient temperature increases than with a fixed value of the lag parameter (for example, in our

results, we observed that, when using a fixed lag parameter, the smallest achievable temperature increase is

0.5◦C lower that when assuming a variable lag value). In the main analyses presented here, we make the
prudent assumption of a variable lag, and we adopt the values adopted by the EMF-22 group2 for the purpose

of conducting comparative analyses of climate stabilization strategies with different models (Table 1). It is

also assumed that the uncertainty on Cs and on the lag parameter will be fully resolved in 2040,3 and that no

significant additional knowledge will be obtained before that resolution date. In addition, sensitivity analysis
on the date of resolution is presented in Section 5.

Table 1: Uncertain values of the climate sensitivity and the lag parameter

Climate Sensitivity Likelihood Corresponding Lag Parameter

1.5◦C 0.25 0.065742
3◦C 0.45 0.014614
5◦C 0.15 0.010278
8◦C 0.15 0.008863

Another potential source of uncertainty besides Cs is the annual rate at which the World economy develops,

as this has a direct impact on economic demands and thus on GHG emissions. In this research, we also use
the EMF-22 assumption that the base case global annual GDP growth rate is known until 2040. At that

date, all future annual global growth rates until 2100 are assumed to be revealed and may have one of two

equally probable values: a high value (equal to 4/3 of the base case rate), and a Low value (equal to 2/3

of the base case rate). The same simple-to-double growth rate assumption is used for the GDP growth rate

1 By linking Cs and σ1, Yohe et al. [20] assume a deterministic relationship between the two parameters. Fussel [4] criticizes
this relationship, since it results in values for the thermal capacity of the atmosphere and the upper oceans that are outside
the physically plausible range. Moreover, the probabilistic relationship underestimates the true uncertainty about the transient
climate response.

2 The Energy Modelling Forum is an international forum on energy and environmental markets. The EMF-22 ongoing
study, “Climate Policy Scenarios for Stabilization and in Transition”, focuses on comprehensive analyses of long-run climate
stabilization policies under uncertainty as well as intermediate-term transition policies.

3 A recent paper by Weizmann [18] argues the case for the impossibility to fully resolve the uncertainty on Cs in finite time.
If this were the case, the Stochastic Programming approach would be much simplified.
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of each region of ETSAP-TIAM. Regional GDP growth rates affect the growth rates of each energy service
demand having GDP as a driver. World GDP starts from 32 trillion $ in 2000 and reaches 260 trillion $

(Base), 181 trillion $ (Low) or 385 trillion $ (High) in 2100.

Year 2040 corresponds to the beginning of the period 2040–2060 of the TIMES model. This period is

called “2050” in results provided by TIMES. Therefore, all the results presented for years 2050 and after

correspond to the part of the event tree after uncertainty is resolved, while results presented for years 2030
and before correspond to the part of the event tree before uncertainty is resolved.

3 Modeling Uncertainty in a Large Scale Integrated Energy-

Climate Model

3.1 The TIMES Integrated Assessment Model (ETSAP-TIAM)

ETSAP-TIAM (TIMES Integrated Assessment Model) is a detailed, technology-rich Global TIMES model. It
is a multi-region partial equilibrium model of the energy systems of 15 regions covering the entire World. The

15 regional models are: Africa, Australia-New Zealand, Canada, Central and South America, China, Eastern

Europe, Former Soviet Union, India, Japan, Mexico, Middle-East, Other Developing Asia, South Korea,

United States, and Western Europe. In addition, the upstream and energy trade sectors in each country are

split into OPEC/Non-OPEC. The regional modules are linked by trade variables of the main energy forms
(coal, oil, gas) and of emission permits. Thus, impacts on trade (terms of trade) of environmental policies are

taken into. ETSAP-TIAM’s planning horizon extends from 2000 to 2100, divided into 7 periods of varying

lengths, suitably chosen.

ETSAP-TIAM is a global instance of the TIMES model generator (full documentation is available from

www.etsap.org/documentation.asp), where a bottom-up, detailed technological representation of each eco-
nomic sector is combined with a key linkage to the rest of the economy via demands for energy services that

are elastic to their own prices.

TIMES computes an inter-temporal dynamic partial equilibrium on energy markets, where demands for

energy services are exogenously specified only in the reference case, and are sensitive to price changes (via

a set of own-price elasticities) in all alternate scenarios. The equilibrium is driven by the maximization, via
linear programming, of the total surplus (i.e. the sum of producers and suppliers surpluses), which acts as a

proxy for welfare in each region of the model. Although TIMES does not encompass macroeconomic variables

beyond the energy sector, accounting for price elasticity of demands captures a major element of feedback

effects between the energy system and the economy. The surplus maximization is subject to many constraints,
such as: supply bounds (in the form of detailed supply curves) for the primary resources, technical constraints

governing the creation, operation, and abandonment of each technology, balance constraints for all energy

forms and emissions, timing of investment payments and other cash flows, and the satisfaction of a set of

demands for energy services in all sectors of the economy.

The construction of the base case demands for energy services is done by using the global General Equi-
librium model GEM-E3 (http://www.gem-e3.net/), which provides a set of coherent drivers for each region

and for the World as a whole, such as population, households, GDP, sectors outputs, and technical progress.

These drivers are then transformed into growth rates for each of the 42 TIAM demands for energy services,

via the generic relationship:

demand rate = driver rate\times decoupling factor.

The decoupling factors account for phenomena such as saturation (factor is then less than 1) and suppressed

demands (factor is then larger than 1), and are in part empirically based. Most demands have economic

growth as their driver. As already mentioned, the demands of ETSAP-TIAM are user-specified only for the

reference scenario, and are prone to endogenous changes in all alternate scenarios, in response to endogenously

www.etsap.org/documentation.asp
http://www.gem-e3.net/
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changing demand prices. The elasticities of demands to their own price range from 0 to -0.6, with a majority
in the range -0.2 to -0.3.

ETSAP-TIAM comprises several thousand technologies in all sectors of the energy system (see sketch in

Figure 1). A technology may represent any process that produces, transforms, conveys, and/or consumes

energy and/or emissions (and some materials). It is characterized by several technical and economic param-

eters and by emission coefficients for the three main GHG’s: CO2, CH4, and N2O. Energy and industrial
emissions of these three gases are all modeled. In addition, net CO2 emissions from land use are represented,

and non-energy CH4 and N2O emissions are also modeled (e.g. CH4 and N2O from landfills, manure, en-

teric fermentation, rice paddies, etc.). The model constructs a coherent image of the future energy system by

choosing a mix of technologies to invest in and operate at each future period, with the objective of maximizing
total surplus, while respecting the many constraints of the model. A complete description of ETSAP-TIAM’s

technological database is not possible within the limits of an article, but we wish to mention some options for

GHG emission reductions available in the model: first, emission reductions may be done via the numerous fuel

and technology switching options that are available in each sector, and via specific CH4 and N2O abatement

options (e.g. suppression and/or combustion of fugitive methane from landfills, thermal destruction of N2O
in the adipic acid industry, etc.). CO2 emissions may in some cases be captured and stored (CCS options)

before their release into the atmosphere (e.g. CO2 capture from the flue gas of fossil fueled power plants,

from hydrogen production processes, and from oil extraction processes; storage in depleted oil fields, deep

saline aquifers, deep oceans, etc.). Finally, atmospheric CO2 may be partly absorbed and fixed by biological
sinks such as forests; the model has six options for forestation and avoided deforestation, as described in [17]

and adopted by the EMF-22 group. Note also that methane emissions from the agriculture sector are fully

accounted for, even if no abatement options are considered.

3.2 Using the Model

As noted before, most of climate equations from Nordhaus and Boyer [15] have been adapted and integrated

into the model. One difference with these authors, we have adopted a separate representation of the N2O
and CH4 atmospheric cycles, via simple one-box models where the concentration decays exponentially at

constant rate.

ETSAP-TIAM may be used to evaluate different kinds of climate targets: emission limits directly, con-

centration bounds, bounds on radiative forcing, and finally, limits on global temperature change. However,

the non-convexity of the radiative forcing expressions (see e.g. the forcing expression for CO2 as equation 1)
precludes using the temperature equations as regular constraints of the ETSAP-TIAM model. Therefore, we

have linearized the forcing expressions for CO2, CH4, and N2O, within the useful concentration ranges. The

result is an approximation that remains within 1% of the true forcing value within the range of interest for

forcing values (i.e. between 300 and 600 ppmv CO2-eq).

∆F (t) = γ∗ In(Matm(t)/M0

In2
+ FEX(T ) (1)

where:

• ∆F (t) is the increase of the radiative forcing at period t relative to pre-industrial level

• M0 is the pre-industrial (circa 1750) reference atmospheric concentration of CO2

• γ is the radiative forcing sensitivity to the doubling of atmospheric CO2 concentration (3.7 W/m2)

3.3 The Computation of Hedging Strategies

3.3.1 Stochastic Programming

The treatment of uncertainty is done via Stochastic Linear Programming in extensive form [2, 19]. In this
method, the model takes a single hedging strategy until resolution of uncertainty, so as to be best positioned
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Figure 1: ETSAP-TIAM Reference Energy System

to adapt to any of the possible long term futures (after the resolution date). In the application described in

Section 4, the optimization criterion is the expected value of the total surplus. Other optimizing criteria may

be preferred. Loulou and Kanudia [11] presents an application using the Minimax Regret criterion. Another
approach is available in TIMES, in which the criterion to maximize is a combination of the expected surplus

and of a risk term calculated as the linearized semi-variance. Section 6 discusses these alternate criteria.

A typical stochastic LP with the expected value criterion is written as follows, in the simpler two-stage

case where all uncertainties are resolved at a single date θ:

Maximize
∑

t

β(t)
∑

s=1,toS

C(t, s) · X(t, s) · p(s) (2)

Subject to:

A(t, s) × X(t, s) ≥ b(t, s) (3)

and X(t, 1) = X(t, 2) = . . . X(t, S), if t < resolution date θ

where

• s represent the possible states of the world (sow), s = 1, 2, . . . , S

• p(s) is the probability that sow s realizes

• C and b are respectively the surplus and the RHS vectors of the LP

• A is the matrix of LP coefficients
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• X(t, s) is the vector of decision variables at time t, under state-of-the-world s

• β(t) is the discounting factor that converts 1$ from time t to time O.

Remark : We insist on the fact that the main interest of a hedging strategy resides in its description of what

to do prior to the resolution date. In contrast, traditional deterministic scenario analysis computes multiple

strategies even prior to the resolution date, leaving the decision maker in a quandary as to which one should
be followed. Once uncertainty is resolved, the decision maker no longer faces uncertainty, and her decisions

result from optimizing a deterministic problem from θ onward. Nevertheless, the computation of the hedging

strategy must also take into account all possible outcomes after the resolution date. In other words, short term

hedging decisions are devised while taking the uncertain long term into consideration. This is the essence of

decision under risk, and in particular of stochastic programming.

The above discussion leads to an interesting classification of uncertain events that can be very useful in

deciding which event(s) to model explicitly via stochastic programming, and which not: suppose it may be

established that a certain event does NOT induce anticipatory actions. By this we mean that the hedging

strategy is insensitive to the various possible outcomes of the event. In such a case, it is clear that there is no

advantage in explicitly modeling the event as part of the S.P. event tree. Hence, only those events that are
likely (or proven) to influence the Hedging strategy should be an explicit part of the event tree. Of course,

the question now is how to detect such events, and the answer to that question is quite empirical. Some

experimentation, and some judgment is required in order to sort out the two types of event. We shall come

back to this question in the next paragraph and also in Section 5.

3.3.2 The Choice of the Two Uncertain Parameters

For a given temperature target, the two selected uncertain parameters are, as illustrated by Figure 2: i)

the climate sensitivity Cs (four possible values), and ii) the vector of energy service demands resulting from
the future economic growth (two possible values). The combination of these two uncertainties leads to 8

possible States of the World (SoW). However, after conducting stochastic optimizations with the 8 SoW’s,

it was observed that the impact of economic uncertainty on the hedging strategy before 2040 was quite

negligible. In other words, the hedging decisions taken before 2040 are quite insensitive to the values of
economic demands after 2040. In still other words, there is no anticipatory effect for the economic growth.

Therefore, we decided to eliminate economic growth as an explicit uncertainty in our main runs reported

in Section 4, and to assess the impact of uncertain economic growth on the hedging strategy as one kind

of sensitivity analysis in Section 5. The resulting event tree, with only Cs as the uncertain parameter, has

4 branches, as shown in Figure 3.4

4 A Treated Example: Hedging Strategy and Perfect Forecast
Strategies for a 2.5◦C Target on Global Temperature Change

4.1 Hedging and Perfect Forecast Strategies

Our initial objective was to calculate hedging strategies for two alternative scenarios, where the alternative

targets for temperature change5 are 2◦C and 3◦C. As it turned out, with the options present in the model,
the 3◦C target is achievable at very moderate cost, while the more severe 2◦C target is only achievable at

very high cost. Therefore, only the intermediate 2.5◦C scenario will be discussed in detail in this paper.

Moreover, additional model runs revealed that the smallest achievable temperature increase is close to 1.9◦C,

albeit at extremely large cost, given the options for GHG control present in the model and the GDP growth
assumptions. This means that more severe temperature targets would require additional CO2 abatement

4 Reducing the number of sow’s has a direct impact on the computational time to resolve the LP. Typical time for solving
the 8 sow problem was 440 minutes versus only 80 minutes for the 4 sow problem.

5 The targets actually set in the model are in year 2100. However, we are able to calculate the evolution of the global
temperature after 2100, by assuming that emissions decline linearly to 0 from 2100 to 2200.
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potential that is currently not yet seen as realistic.6 Figure 5 shows that in order to keep global temperature
change below the 1.9◦C upper bound, the trajectory of CO2-eq concentration must remain almost constant

throughout the 21st century.

In addition to the hedging strategy, we also computed four (deterministic) perfect forecast strategies

(noted PF), each assuming that the value of Cs is known as early as the first period. The theoretical

interpretation of the four PF strategies is that of an optimal strategy if one assumes that the uncertainty is
resolved at the beginning of the horizon. The PF’s may be used to compute the Expected Value of Perfect

6 No abatement options are available for rice production, enteric fermentation and biomass burning, whose CH4 emissions
are included in the model. This contributes to the infeasibility of any target smaller than 1.9◦C.
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Information (EVPI), which is the expected gain in welfare accrued if perfect information if available, i.e.:

EV PI =
∑

s=1toS

p(s) ·
[

OPF (s) − OHEDG

]

(4)

where

• OPF (s) is the surplus of the PFs strategy (s = 1 to S)

• OHEDG is the expected surplus of the hedging strategy.

Another finding of the research is that when Cs = 1.5◦C, the Base case satisfies the 2.5◦C tempera-
ture constraint at all times, (provided emissions after 2100 decline linearly to 0 by 2200 as assumed here).

Therefore, the PFCs=1.5◦C strategy is not different from the Base case.

4.2 Another Interpretation of the Perfect Forecast Strategies

In the detailed analysis of results for 2.5◦C, we compare the results of the hedging strategy with those of a

Base case where no climate target is imposed, but we also compare them with those of the Perfect Forecast
strategies defined above. The rationale for this comparison stems from the following important remark: apart

from its theoretical meaning as a perfect forecast strategy, any given PF strategy may be re-interpreted as a

heuristic strategy until the resolution date. Indeed, a policy maker may wish to calculate a heuristic strategy

that simply assumes a “guestimate” of Cs. This is easily done by optimizing a deterministic instance of the

problem. Such a PF strategy is perfectly feasible (albeit not optimal) until the resolution date. After that
date, decisions taken in the PF strategy are not realistic, since they ignore the fact that the value of Cs has

indeed been revealed.

In this light, we shall discuss PF results only before 2040.7 One finding is that PFCs=5◦C is the determinis-

tic strategy that is closest to the optimal hedging one, although some significant differences between PFCs=5◦C

and hedging exist in some areas, as we shall see. Therefore, when comparing Hedging with deterministic
strategies, we shall always use PFCs=5◦C (and then only before 2040).

4.3 Cost Analysis as a Proxy for the Target’s Attainability

We define the expected cost of a strategy as the Net Present value of the loss of expected surplus, relative to

that of the base case. This provides a convenient indicator of the overall difficulty of reaching a particular

target, and therefore a convenient way to compare various strategies. In addition to the NPV, we are
interested in the marginal cost of one tonne of GHG.

4.3.1 Loss of Surplus and Expected Value of Perfect Information

The global net present value of the surplus attached to a climate strategy represents a compact measure
of the social welfare associated with that strategy. Table 2 shows the expected loss of total surplus of the

hedging strategy and of the perfect forecast strategy, relative to that of Base taken as reference. The loss of

surplus when following Hedging is 35% higher than the expected loss for the perfect information strategy.8

This difference represents the expected value of perfect information (210 B$ in NPV).

7 With additional work, each PF strategy may also become a complete strategy as follows: freeze all PF decisions until 2040
at their observed values in the solution, and then re-optimize the system over periods post-2040 periods with each of the Cs
values. In this way, each PF strategy gives birth to four post-2040 trajectories, which, taken together, constitute a bona fide
complete strategy. This was not implemented in this research, but is illustrated [11].

8 The corresponding annuities represent less than 0.1% of the World GDP (33000 B$ in year 2000). However, the stream of
expenditures would clearly be lower in early years and higher in later years. Furthermore, equity issues might dictate an uneven
imputation of the overall cost among the regions.



Les Cahiers du GERAD G–2009–06 9

Table 2: Loss of surplus and expected value of perfect information

Loss of Expected loss EVPI

Strategy surplus Probability (NPV in B$ and (NPV in B$ and
(NPV5% in B$) annuity in B$/year) annuity in B$/year)

BASE 0 1 – –
PF Cs=1.5◦C 0 0.25 – –
PF Cs=3◦C 43 0.45 – –
PF Cs=5◦C 580 0.15 – –
PF Cs=8◦C 3353 0.15 – –
Total PF 610 (31) –
HEDGING 820 820 (41) 210 (11)

EPVI = Expected loss HEDGING − Expected loss PERFECT FORECAST

Table 3: Marginal cost of GHG ($/tCO2)

Year 2000 2005 2015 2030 2050 2070 2090
TIMES periods 1998–2002 2003–2008 2009–2020 2021–2039 2040–2060 2061–2080 2081–2100

HEDGING Cs=1.5◦C
9

>

=

>

;

8

>

<

>

:

0 0 0
HEDGING Cs=3◦C 1 2 4 10 0 2 3
HEDGING Cs=5◦C 11 40 80
HEDGING Cs=8◦C 176 620 1236
PF Cs=3◦C 0 0 0 1 2 7 14
PF Cs=5◦C 0 1 2 4 12 43 86
PF Cs=8◦C 3 7 12 28 84 296 589

4.3.2 Marginal Cost of GHG

We first recall that the environmental constraint is defined in terms of global atmospheric CO2-equivalent

concentration. Thus, CO2, CH4 and N2O have the same marginal cost in all regions and all sectors of the
model.

Before 2040, the marginal cost of GHG in the hedging strategy remains low (Table 3). The analysis
of hedging abatement options before 2040 shows that relatively inexpensive forestry measures contribute to

this low price. The fact that no abatement option is available for methane from rice production, enteric

fermentation and biomass burning, contributes to the observed high GHG price in the late horizon (up to

more than 1200$/tCO2), when methane represents the most important remaining GHG due to the lack of
reduction options for agricultural CH4 emissions.

We also observe that none of the perfect forecast strategies is able to provide a good approximation of
the expected GHG price under uncertainty, although PFCs=5◦C is the closest to hedging in that respect.

4.4 Global Emissions and Climate Results

4.4.1 Base Case Emissions

The base case GHG emission trajectory (Figure 4) as well as the atmospheric GHG concentration reached

in 2090 (Figure 5) are fairly close to the B2 Emission Scenario proposed by the Intergovernmental Panel on

Climate Change [6, 14]. CO2 remains the most important GHG (around 79%), followed by CH4 (around

19%) and N2O (less than 2%). As for sector emissions in the base case, the electricity and transportation

sectors are the highest GHG contributors in 2000 (more than 40% of total GHGs), and the electricity and
industry sectors become the highest contributors at the end of the horizon (more than 48% of total GHG).

4.4.2 Emissions in the Optimal Hedging Strategy with 2.5◦C Temperature Constraint

The situation is radically different under the 2.5◦C temperature constraint, since both the electricity and

industry sectors are able to reduce to almost zero (less than 3% of total GHG) their emissions in the most
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Figure 5: Atmospheric concentration (CO2-equiv) under hedging and perfect forecast strategies

stringent branch, mainly thanks to CCS in the electricity sector, and switching to electricity in the industrial

sector. In this most stringent branch, transport and agriculture are the highest remaining GHG contributors

(30% and 41% of total GHG). No such drastic decrease of CH4 emissions is possible because some non-energy

agriculture-related sources have no abatement options in the model. Based on emissions, the PFCs=5◦C

strategy is also the deterministic strategy that is closest to the optimal hedging strategy before 2040.

Atmospheric concentration obtained with the lowest value of Cs (Figure 5) is lower in Hedging than in

Base although no target was imposed on this branch of the Hedging. This is because hedging actions taken
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pre-2040 push concentration downward. Again, PFCs=5◦C is the PF strategy that is closest to Hedging before
2040.

In the base case, the temperature increase in 2090 is in the range from 1.4◦C to 2.4◦C, depending on Cs

(Figure 6). In all hedging branches, temperature peaks within he 22nd century, and then declines, so that

the equilibrium temperature is always lower than the maximum observed temperature from 2000 to 2200.

This might not necessarily be the case for other temperature scenarios, or if a slower emission decline was
assumed after 2100.

4.5 Robust (Hedging) Actions

4.5.1 CO2 Sequestration

Sequestration by forests appears to be a very robust abatement option, since it penetrates in the hedging
strategy as early as 2005 (Table 4) and uses its full potential. In fact, it plays a transitional role until less

expensive energy options become available. As regards CCS options (with sequestration in deep oceans,

saline aquifers, coal bed methane recovery, depleted oil and gas fields, enhanced oil recovery), they are much

less robust, as they penetrate only slightly in 2030 in the hedging strategy, while they are used much earlier

(in 2005) and at a higher level in PFCs=8◦C, and used only after 2040 in the other PF strategies. In other
words, no perfect forecast strategiy is able to reproduce the hedging strategy.

Table 4: Contribution of CCS and forestry to the total GHG reduction

Contribution of CCS to GHG (CO2 equiv) reduction
Year 2005 2015 2030 2050 2070 2090

TIMES periods 2003–2008 2009–2020 2021–2039 2040–2060 2061–2080 2081–2100

HEDGING Cs=1.5◦C
9

>

=

>

;

8

>

<

>

:

0.0% 0.0% 0.0%
HEDGING Cs=3◦C 0.0% 0.0% 0.0%
HEDGING Cs=5◦C 0.0% 0.0% 2.9% 1.0% 5.3% 10.8%
HEDGING Cs=8◦C 17.0% 10.6% 10.7%
PF Cs=1.5◦C 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
PF Cs=3◦C 0.0% 0.0% 0.0% 0.0% 1.9% 3.7%
PF Cs=5◦C 0.0% 0.0% 0.0% 1.1% 6.6% 10.9%
PF Cs=8◦C 7.3% 3.7% 5.6% 17.7% 13.3% 11.9%
Contribution of forestry sequestration to GHG (CO2 equiv) reduction

Year 2005 2015 2030 2050 2070 2090
TIMES periods 2003–2008 2009–2020 2021–2039 2040–2060 2061–2080 2081–2100

HEDGING Cs=1.5◦C
9

>

=

>

;

8

>

<

>

:

65% 99% 97%
HEDGING Cs=3◦C 61% 85% 78%
HEDGING Cs=5◦C 35% 53% 29% 31% 27% 21%
HEDGING Cs=8◦C 12% 18% 16%
PF Cs=1.5◦C 0% 0% 0% 0% 0% 0%
PF Cs=3◦C 85% 86% 77% 53% 61% 41%
PF Cs=5◦C 44% 65% 43% 29% 26% 20%
PF Cs=8◦C 25% 27% 16% 13% 19% 17%

4.5.2 Electricity Sector’s Actions

Electricity production is shown in Table 5. The first observation is that, as expected, electricity production

up to 2030 takes a middle-of-the-road course up to 2030, compared to the PF strategies.

In the pre-2040 periods, we note significant differences in the Hedging and PFCs=5◦C strategies mainly in
two categories: first, the PF strategy widely overestimates the amount of coal based electricity production

(with CCS) compared to Hedging. In contrast, it underestimates the optimal amount of biomass fueled

electricity and also the amount of hydroelectricity, compared to Hedging,. For other types of electricity

(from gas and nuclear), PFCs=5◦C production levels are quite close to the optimal hedging amounts over the
entire pre-2040 period.
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Table 5: Electricity production (EJ/year)

Plant Type 2000 2005 2015 2030 2050 2070 2090

COAL BASE, PF Cs=1.5◦C 18 17 17 15 28 22 24
FIRED PF Cs=3◦C 18 17 17 15 25 18 15

PF Cs=5◦C 17 17 17 9 5 3 8
PF Cs=8◦C 16 17 11 0 12 12 14
HEDGING Cs=1.5◦C

9

>

=

>

;

8

>

<

>

:

25 24 23
HEDGING Cs=3◦C 25 21 20
HEDGING Cs=5◦C 16 17 17 5 5 3 8
HEDGING Cs=8◦C 14 10 12

OIL + GAS BASE, PF Cs=1.5◦C 5 10 18 34 54 57 61
FIRED PF Cs=3◦C 5 10 18 34 52 56 54

PF Cs=5◦C 6 10 18 34 56 39 29
PF Cs=8◦C 8 10 20 29 34 27 30
HEDGING Cs=1.5◦C

9

>

=

>

;

8

>

<

>

:

51 58 61
HEDGING Cs=3◦C 51 56 62
HEDGING Cs=5◦C 7 10 18 36 59 38 29
HEDGING Cs=8◦C 29 23 25

NUCLEAR BASE, PF Cs=1.5◦C 9 8 10 11 20 59 109
PF Cs=3◦C 9 8 10 11 20 59 109
PF Cs=5◦C 9 8 10 11 20 73 128
PF Cs=8◦C 9 8 10 13 28 74 136
HEDGING Cs=1.5◦C

9

>

=

>

;

8

>

<

>

:

20 59 109
HEDGING Cs=3◦C 20 59 109
HEDGING Cs=5◦C 9 8 10 11 20 73 128
HEDGING Cs=8◦C 28 74 138

HYDRO BASE, PF Cs=1.5◦C 9 9 10 11 13 22 26
PF Cs=3◦C 9 9 10 11 19 26 38
PF Cs=5◦C 9 9 10 15 30 39 44
PF Cs=8◦C 9 9 12 25 35 42 49
HEDGING Cs=1.5◦C

9

>

=

>

;

8

>

<

>

:

19 19 27
HEDGING Cs=3◦C 19 24 28
HEDGING Cs=5◦C 9 9 10 17 28 39 44
HEDGING Cs=8◦C 35 44 53

BIOMASS BASE, PF Cs=1.5◦C 0 0 0 0 1 1 1
PF Cs=3◦C 0 0 0 0 1 1 1
PF Cs=5◦C 0 0 0 0 1 1 1
PF Cs=8◦C 0 0 0 1 6 4 3
HEDGING Cs=1.5◦C

9

>

=

>

;

8

>

<

>

:

1 1 1
HEDGING Cs=3◦C 1 1 1
HEDGING Cs=5◦C 0 0 0 0 1 1 1
HEDGING Cs=8◦C 8 7 7

OTHER BASE, PF Cs=1.5◦C 0 0 0 0 1 1 1
RENEWWABLES PF Cs=3◦C 0 0 0 0 1 1 1

PF Cs=5◦C 0 0 0 0 1 1 2
PF Cs=8◦C 0 0 0 1 1 3 7
HEDGING Cs=1.5◦C

9

>

=

>

;

8

>

<

>

:

1 1 1
HEDGING Cs=3◦C 1 1 1
HEDGING Cs=5◦C 0 0 0 0 1 1 2
HEDGING Cs=8◦C 3 7 22

TOTAL BASE, PF Cs=1.5◦C 41 45 56 72 118 162 222
PF Cs=3◦C 41 45 56 72 118 161 219
PF Cs=5◦C 42 45 56 70 114 155 214
PF Cs=8◦C 42 44 54 68 115 162 239
HEDGING Cs=1.5◦C

9

>

=

>

;

8

>

<

>

:

117 162 222
HEDGING Cs=3◦C 117 162 222
HEDGING Cs=5◦C 42 45 56 70 114 155 214
HEDGING Cs=8◦C 117 166 257
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Moreover, hydroelectricity (and, to a lesser extent, wind power too) and the shutdown of coal plants
without CCS might qualify as hedging actions, since they appear before 2040. This is not the case of either

power plants with CCS or nuclear plants.

In conclusion, the hedging strategy is significantly different from any of the PF strategies, which confirms

the relevance of using stochastic programming.

4.5.3 End-Use Sectors

In transportation, Hedging stays close to the PF strategies and even to the Base case before 2040. This

is due to two causes: first, vehicles have a rather limited technical life, so that pre-2040 decisions do not

have a lasting effect after resolution time. The other important cause of the observed insensitivity of this
sector is that the CO2 price signal is simply not strong enough before 2040 to warrant a large departure

from traditional fuels. After resolution time, of course, the strategies do differ, and they do so in a fairly

predictable way: the larger Cs values entail smaller market shares for RPP’s and larger for alcohols and

natural gas. Electricity keeps a very limited market share, and hydrogen (mainly produced by plants with
CCS) makes a belated and small appearance in 2090 only in the most extreme branch of the Hedging).

The hedging strategy in residential and commercial buildings is characterized by very few energy changes

compared to base case before 2040, and by an increase of electricity after 2040 (replacing natural gas and
RPPs) in the most severe branches of the Hedging, mainly for space heating purposes.

In industry, differences between Hedging and Base case actions are slight before 2040. The exception
being that N2O abatement options in adipic and nitric acid industries penetrate as early as 2005 in the

hedging strategy and thus are are robust decisions. After 2040, natural gas and, to a lesser extent, electricity,

replace coal after 2040 in the most stringent branches of the hedging, mainly in chemical and other industry

sub-sectors.

Demands (and thus economic activity) are affected by the introduction of the climate target, since the

rising GHG price induces a rise in demand prices, and thus a decrease in demand levels. Their reduction

starts as soon as 2005, remaining small until 2030 and reaching up to 5% in buildings and 6% in industry in
the longer term.

The reduction of upstream emissions until 2030 is the result of both changes in the primary energy
structure driven by final energy changes (for example, CO2 and CH4 reduction in coal extraction), and of

specific GHG abatement measures (for example, degasification and pipeline injection of CH4 in coal sector,

inspection and maintenance of gas distribution facilities, flaring instead of venting, etc.) In fact, a few CH4

reduction options appear to be non-regret measures and penetrate even in the base case.

Finally, CH4 capture options in landfill and, to a lesser extent, manure emission abatement measures

also appear to be either non-regret or robust (penetration before 2040 in the hedging strategy). In fact, we

observe that the relative CH4 reduction is more important than the CO2 reduction in the short term, due to
the availability of these low-cost CH4 capture options in upstream and landfills. This result is in line with

the literature (e.g. [7]).

4.6 Super-Hedging Actions

A “super-hedging” action is an action that penetrates more in the hedging strategy than in any of the
perfect forecast strategies. The existence of such an action seems counter-intuitive, since it lies outside

limits defined by the perfect forecast strategies, but such actions nevertheless do exist, which confirms that

stochastic analysis of future climate strategies may propose decisions that are beyond any combination of the

deterministic strategies [9].

Electricity production from renewables, fuel switches in industry (to biomass and gas), consumption of

ethanol in several subsectors, consumption of geothermal in commercial buildings and biomass in residential

buildings, and finally CH4 abatement actions are all super-hedging actions.
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5 Sensitivity Analyses

Sensitivity analyses were undertaken on: the exogenous radiative forcing, the very long term emission profile,

the date of resolution of uncertainties, the pace of development of nuclear power plants, and the own price

elasticities of demands.

In our main experiment, the assumed value of exogenous forcing in ETSAP-TIAM is 0.4 W/m2 indefinitely,
a fairly large value. Such forcing accounts for substances in the atmosphere that are not explicitly modeled

in TIAM, and also for a possible increase in solar activity. We conducted a simple calculation: keeping the

Hedging strategy calculated in Section 4, we simply varied the value of the residual exogenous forcing from

0 to 0.8 W/m2, and we re-calculated (outside the model) the resulting temperature changes. We found that

the resulting equilibrium temperature of the Hedging strategy remains less than 2.5◦C across most of the
range, reaching 2.8◦C for the highest value (0.8) of the exogenous forcing. Although these temperature shifts

are not negligible, they do not drastically depart from the temperature changes observed in the main hedging

strategy.

Changing the assumption about the post-2100 emission curve (for instance extending the period of emis-

sion decrease to 200 years instead of 100 years), has of course no impact on the equilibrium temperature,
but has an impact on the peak temperature. However, this impact remains very small. This analysis is

most reassuring, as it tends to confirm that emission policies beyond 2100 have a small impact on temper-

ature increase, as long as a policy of eradicating all emissions is followed, irrespective of the speed of that

eradication.

Advancing the date at which the climate uncertainty is resolved to 2020 (instead of 2040) results in welfare
savings of 159 B$, i.e. a full 3/4 of the EVPI. Such an analysis may provide a useful guide in deciding research

expenditures in the climate change domain.

There may be societal and political reasons that may warrant limiting the degree of penetration of nuclear

power. Therefore, we have undertaken sensitivity analyses on both the level of nuclear power in the base case

and on the maximum allowed level of nuclear energy. In both cases, other reduction options (wind, solar,
biomass etc.) penetrate to replace the nuclear loss, and the loss of surplus of the new hedging strategy is

moderately increased. This confirms that nuclear per se does not qualify as a robust abatement option but

also that the limitation of nuclear penetration does not seriously compromise the possibilities to satisfy a

2.5◦C target at an “acceptable” cost.

Finally, if demand elasticities are set to 0, the expected loss of total surplus of the hedging strategy
increases by almost 15%, and the marginal cost of GHG reduction is around 19% higher compared to the

hedging strategy with elastic demands (higher electricity consumption, higher penetration of hydrogen and

natural gas in the transportation sector, higher penetration of low emitting power plants etc.). Moreover, the

reduction of emissions starts earlier, so that emissions are smaller before 2040 and higher in the long term
compared to the hedging strategy with elastic demands.

6 Alternate Criteria for Stochastic Programming

The Expected Cost criterion, although widely used, is justified only if the policy maker is risk neutral. Risk

neutrality usually applies when the payoffs attached to each outcome stay within a reasonably narrow range,

and when they do not represent very large losses or gains as compared to the mean payoff. In all other cases,
considerations of risk aversion or risk preference should be introduced in the criterion to be optimized. In

the most general terms, the policy maker should choose a criterion that represents her utility function. We

review here two such utility functions, both well-known, although not often utilized in large scale models.
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6.1 Expected Cost Criterion with Risk Aversion

6.1.1 E-V Approach

The E-V model (an abbreviation for Expected Value-Variance) was pioneered by Harry Markowitz [13] for

applications in financial portfolios.

In the E-V approach, it is assumed that the variance of the cost is an acceptable measure of the risk

attached to a strategy in the presence of uncertainty. The variance of the cost CsCsCs of a given strategy sss is

computed as follows:

V ar(Cs) =
∑

j

pj · (Costj|s − ECs)
2

where Costj|sCostj|sCostj|s is the cost when strategy sss is followed and the jthjthjth state of nature prevails, and ECsECsECs is the

expected cost of strategy sss, defined as usual by:

ECs =
∑

j

pj · Costj|s

The E-V approach thus replaces the expected cost criterion by the following utility function to minimize:

U = EC + λ ·
√

V ar(C)

where λ > 0 is a measure of the risk aversion of the decision maker. For λ = 0, the usual expected cost

criterion is obtained. Larger values of λ indicate increasing risk aversion.

Taking risk aversion into account by this formulation would lead to a non-linear, non-convex model, with
all its ensuing computational restrictions. These would impose serious limitations on model size. We therefore

propose a linearized version that is more suitable for large scale applications.

6.1.2 Utility Function with Linearized Risk Aversion

This criterion mimics the E-V approach while eliminating two drawbacks. First, it eliminates the lower part

of the range of variation of the cost, which indeed should not be considered as a risk. Second, it is linear and

thus compatible with the overall LP model. To avoid non-linearity, it is possible to replace the semi-variance
by the Upper-absolute-deviation, defined by:

UpAbsDev (Costs) =
∑

j

pj ·
{

Costj|s − ECs

}+

where y = {x}+ is defined by the following two linear constraints:

y ≥ x, y ≥ 0

and the utility function is now written as the following linear expression:

U = EC + λ · UpsAbsDev (C)

This is the expected utility formulation implemented into the TIMES model generator.

6.2 The Savage Criterion (Minimax Regret)

The Minimax Regret Criterion, also known as Savage Criterion [16], is one of the more credible criteria for

selecting public policies when the likelihoods of the various possible outcomes are not known with sufficient

precision to use the classical expected value or expected utility criteria. In order to fix ideas, we shall assume

in what follows that a certain decision problem is couched in terms of a cost to minimize (a symmetric
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formulation is obtained in the case of a payoff to maximize). We may thus denote by C(z, s) the cost incurred
when strategy s is used, and outcome z occurs. The Regret R(z, s) is defined as the difference between the

cost incurred with the pair (z, s) and the least cost achievable under outcome perfect information on z, i.e.:

R(z, s) = C(z, s) − Min
t∈S

C(z, t), ∀z ∈ Z, s ∈ S

where Z is the set of possible outcomes and S is the set of feasible strategies. Note that, by construction, a

regret R(z, s) is always non negative, and that it has value 0 for one outcome at least. Note also that the

term ‘regret’ is particularly well chosen as it does quantify how much the policy maker would regret having

chosen strategy sss when outcome zzz occurs.

A Minimax Regret (MMR) strategy is any s∗ that minimizes the worst regret:

s∗ ∈ ArgMin
s∈S

{Max
z∈Z

R(z, s)}

and the corresponding Minimax Regret is equal to:

MMR = Min
s∈S

{Max
z∈Z

R(z, s)}

6.3 Application of Minimax Regret in Large Scale Linear Programs

We now turn to the application of the above definition to the case when the cost C(z, s) is not an explicit

expression. Rather, it is implicitly computed via an optimization program. This is the case in particular when
using a model such as TIMES, where the long term energy system least cost (i.e. max surplus) is computed

by solving a large scale linear program. The notation of Section 3 is used again, with appropriate changes.

In the formulation 5 below, the A matrix defines the very large number of techno-economic constraints of

the model, and the last group of constraints have some uncertain parameters as coefficients or as right hand

sides. We assume for simplicity of notation, that all uncertainties are in the RHS, D, and that they are all
resolved at the same date denoted by t∗. In the absence of uncertainty, the TIMES linear program has the

following structure:

Maximize C × X

Subject to:

A × X ≥ b

E × X ≤ D

(5)

Assuming now that the RHS, D, is uncertain, and that the uncertainty is resolved at time t∗, we observe

that prior to t∗, all decisions are taken under uncertainty, whereas at t∗ and later, decisions are taken under

perfect knowledge of the value of D. It is convenient to decompose the vector X of decision variables into

two vectors (X1 and X2), X1 representing the decisions to be taken prior to t∗, and X2 those decisions at t∗

and later. We shall assume that the uncertain vector D may take an arbitrary but finite number n of distinct

values: D1, D2, . . . , Dn.

We denote by M(D) the minimum value obtained from the minimization of the above LP when vector D

is known. This is the same as calculating the minimum cost under perfect information on D. We therefore

may now theoretically calculate the Regret of strategy X as follows:

R(X, Di) = CtX − M(Di)

And the maximum regret of strategy X as:

Maxi

{

CtX − M(Di)
}
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Finally, the Minimax Regret strategy is an optimal solution to the following optimization program:

MMR = Min
X1,X2

Max
i

[

C t
1 X1 + C t

2 X i
2 − M(Di)

]

s.t. A1X1 + A2X
i
2 ≥ b, i = 1, 2, . . . , n

E t
1 X1 + E t

2 X i
2 ≤ Di, i = 1, 2, . . . , n

(6)

The above program is not quite an L.P., but may be converted into one by introducing a new variable:

MMR = Min
X1,X2,φ

[φ]

s.t. φ ≥ C t
1 X1 + C t

2 X i
2 − M(Di), ∀i

A1X1 + A2X
i
2 ≥ b, ∀i

E1X1 + Ei
2 ≤ Di, ∀i

(7)

Note carefully that a bona fide strategy X is such that X1 is common to all outcomes D, whereas there is

a different vector X i
2 for each outcome Di. This is so because decisions made at t∗ and later take into account

the knowledge of the true value of D that realizes at t∗. Hence, the LP (8) has up to n replications of the

constraints, and of the X2 variables (to be more precise, all constraints which do not involve X2 variables

are not replicated, and therefore, the size of (7) may be significantly smaller than n times the size of LP (5).

Important remark : An unfortunate phenomenon occurs when (7) is solved: since all that matters when

computing the MMR strategy is indeed the value of the Minimax Regret, all other regrets are left free to take

any values, as long as these values remain below the MMR. This remark is equivalent to saying that (7) is

highly degenerate. For example, in one instance reported in [11], the MMR is equal to 3,311 M$, but when (7)

is solved, it turns out that each of the n regrets (i.e. each right-hand-side of the first constraints of (7)), is
found to be also equal to 3,311 M$. This is undesirable, as in practice, depending upon the actual value of z

which realizes, the regret can be quite much lower than MMR. In order to remove the dual degeneracy, it is

useful to proceed in two phases: first, consider (8) as essentially only a way of computing the partial strategy

up to the resolution date, i.e. X1. Next, when this is done, each X i
2 may be computed independently by (a)

fixing X1 at its optimal value (call it X∗
1 ), and (b) for each i, solving the following linear program:

Min
x2

[

c t
1X∗

1 + c t
2X2 − M(Di)

]

s.t. A1X
∗
1 + A2X2 ≥ b

E t
1 X∗

1 + E t
2 X2 ≤ Di

(8)

The largest LP to solve is clearly (7), which has the same approximate size as a classical stochastic LP
defined on the same problem instance, and using the expected value criterion. In addition, n − 1 smaller

problems (4) must be solved, in order to compute the n − 1 non degenerate strategies after date t.

7 Conclusion

In this article, the classical Stochastic Programming technique is presented and applied to large scale instances

of the Integrated Assessment Model (ETSAP-TIAM). The instances solved and discussed lead to the long
term analysis of climate stabilization strategies under high uncertainty of climate sensitivity Cs (in the range

1.5 to 8◦C) and of economic growth (simple-to-double GDP growth rates from 2040). Both uncertainties are

assumed to be resolved in 2040. The methodology relies on the computation of a hedging strategy based

on the maximization under uncertainty (via Stochastic Programming) of total World surplus over the 21st

century. The properties of the resulting strategies are stressed, and a class of hedging and super-hedging

actions is identified.

Amongst the most noticeable results, the model reveals that the smallest achievable temperature increase

is close to 1.9◦C, albeit at a very large cost, by a combination of energy switching, capture and storage of
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CO2, CO2 sequestration by forests and non-CO2 emission reduction options. This means that more severe
temperature targets would require additional GHG abatement potential that is currently not yet seen as

realistic. Moreover, the impact of uncertainty of the climate sensitivity parameter Cs is major, requiring

the implementation of early actions (before 2040) in order to reach the temperature target. In other words,

the “wait and see” approach is not recommended. Robust abatement options include: substitution of coal
power plants by hydroelectricity, sequestration by forests, CH4 and N2O reduction. Nuclear power plants,

electricity production with CCS, and end-use fuel substitution do not belong to early actions. Among them,

several options appear also to be super-hedging actions i.e. they penetrate more in the hedging strategy

than in any of the perfect forecast strategies (e.g. hydroelectricity, CH4 reduction), proving that stochastic

analyze of future climate strategies might give insights that are beyond any combination of the deterministic
strategies. In contrast, the uncertainty of the GDP growth rates has very little impact on pre-2040 decisions.

This insensitivity is a pleasant surprise, as it shows that the hedging strategy for only one random parameter

(Cs) is also a quasi-optimal strategy when the two types of uncertainty are present.

The comparison of hedging with perfect forecast strategies shows that a deterministic strategy with

Cs=5◦C is closest to the hedging strategy. However, the two differ in several key aspects, and this confirms
the relevance of using stochastic programming in order to analyze preferred climate policies in an uncertain

world where the correct climate response is known only far into the future. In particular, the perfect forecast

strategy provides a poor approximation of the optimal electricity production mix, of the price of carbon, and

of the penetration of several sequestration options.

Among the more sensitive parameters of the problem, resolving the uncertainties in 2020 rather than 2040
induces a 19% reduction in the loss of expected surplus, and keeping the same hedging strategy while assuming

a doubling of the exogenous forcing has a non negligible (although moderate) raises global temperature by

0.3◦C.

Two modifications of the criterion expected cost used in Stochastic Programming are explicited: the first

one is the Expected value-semi-variance criterion, linearized in order to be integrated into the ETSAP-TIAM
model. The second is the Savage criterion consisting in minimizing the maximum regret. This criterion

requires a major modification of the original LP underlying the TIAM model.

Future work will operationalize the Minimax Regret criterion as an integral option of the TIAM model.
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