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Abstract

Lasso, or ¢! regularized least squares has been explored extensively for its remarkable
sparsity properties. The first result of this paper, is that the solution to Lasso, in addition
to its sparsity, has robustness properties: it is the solution to a robust optimization prob-
lem. This has two important consequences. First, robustness provides a connection of the
regularizer to a physical property, namely, protection from noise. This allows principled
selection of the regularizer, and in particular, by considering different uncertainty sets, we
construct generalizations of Lasso that also yield convex optimization problems.

Secondly, robustness can itself be used as an avenue to exploring different properties
of the solution. In particular, we show that robustness of the solution itself explains why
the solution is sparse. The analysis as well as the specific results we obtain differ from
standard sparsity results, providing different geometric intuition. We next show that the
robust optimization formulation is related to kernel density estimation, and following this
approach, we use robustness directly to reprove that Lasso is consistent.

Résumé

L’algorithme Lasso, ou recherche de moindres carrés régularisés avec contraintes ¢!,
a été exploré intensivement vu le caractere minimaliste des solutions qu’il engendre.
Le premier résultat de cet article est que la solution Lasso non seulement minimise le
nombre de parametres, mais elle est également robuste; c’est en fait la solution & un
probleme d’optimisation robuste. Il en résulte deux conséquences importantes: d’abord,
vu la robustesse de la solution, ’estimateur hérite d’une propriété physique associée
a la régularisation, en l'occurrence la protection vis-a-vis du bruit. Ceci permet une
sélection éclairé du type de régularisation requis, et mene a partir d’une considération de
différents ensembles incertains, a des généralisations de Lasso correspondant a une classe
de problemes d’optimisation convexe.

Ensuite, différentes propriétés de la solution peuvent étre explorées sous I'angle de la
robustesse. Nous montrons notamment que la robustesse de la solution explique pourquoi
la solution est minimaliste. L’analyse ainsi que les résultats que nous obtenons se dis-
tinguent des raisonnements et résultats habituels concernant le caractere minimaliste des
solutions, et menent a des intuitions géométriques nouvelles. Nous démontrons enfin que
la formulation de l'optimisation robuste est reliée a I'estimation de la densité du noyau,
et ce point de vue est utilisé pour développer une démonstration nouvelle du caractere
convergent de Lasso.
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1 Introduction

In this paper we consider linear regression problems with least-square error. The problem is
to find a vector x so that the 5 norm of the residual b — Ax is minimized, for a given matrix
A € R™ and vector b € R™. From a learning/regression perspective, each row of A can be
regarded as a training sample, and the corresponding element of b as the target value of this
observed sample. Each column of A corresponds to a feature, and the objective is to find a
set of weights so that the weighted sum of the feature values approximates the target value.

It is well known that minimizing the least squared error can lead to sensitive solutions [1-4].
Many regularization methods have been proposed to decrease this sensitivity. Among them,
Tikhonov regularization [5] and Lasso [6,7] are two widely known and cited algorithms. These
methods minimize a weighted sum of the residual norm and a certain regularization term, ||x||2
for Tikhonov regularization and ||x||; for Lasso. In addition to providing regularity, Lasso
is also known for the tendency to select sparse solutions. Recently this has attracted much
attention for its ability to reconstruct sparse solutions when sampling occurs far below the
Nyquist rate, and also for its ability to recover the sparsity pattern exactly with probability
one, asymptotically as the number of observations increases (there is an extensive literature
on this subject, and we refer the reader to [8-12] and references therein).

The first result of this paper, is that the solution to Lasso, in addition to its sparsity,
has robustness properties: it is the solution to a robust optimization problem. In itself, this
interpretation of Lasso as the solution to a robust least squares problem is a development in
line with the results of [13]. There, the authors propose an alternative approach of reducing
sensitivity of linear regression by considering a robust version of the regression problem, i.e.,
minimizing the worst-case residual for the observations under some unknown but bounded
disturbance. Most of the research in this area considers either the case where the disturbance
is row-wise uncorrelated [14], or the Frobenius norm of the disturbance matrix is bounded [13].

None of these robust optimization approaches produces a solution that has sparsity prop-
erties (in particular, the solution to Lasso does not solve any of these previously formulated
robust optimization problems). In contrast, we investigate the robust regression problem
where the uncertainty set is defined by feature-wise constraints. Such a noise model is of
interest when values of features are obtained with some noisy pre-processing steps, and the
magnitudes of such noises are known or bounded. Another situation of interest is where
features are meaningfully correlated. We define correlated and uncorrelated disturbances and
uncertainty sets precisely in Section 2.1 below. Intuitively, a disturbance is feature-wise corre-
lated if the variation or disturbance across features satisfy joint constraints, and uncorrelated
otherwise.

Considering the solution to Lasso as the solution of a robust least squares problem has
two important consequences. First, robustness provides a connection of the regularizer to a
physical property, namely, protection from noise. This allows more principled selection of the
regularizer, and in particular, considering different uncertainty sets, we construct generaliza-
tions of Lasso that also yield convex optimization problems.

Secondly, and perhaps most significantly, robustness is a strong property that can itself
be used as an avenue to investigating different properties of the solution. We show that
robustness of the solution can explain why the solution is sparse. The analysis as well as the
specific results we obtain differ from standard sparsity results, providing different geometric
intuition, and extending beyond the least-squares setting. Sparsity results obtained for Lasso
ultimately depend on the fact that introducing additional features incurs larger ¢'-penalty
than the least squares error reduction. In contrast, we exploit the fact that a robust solution
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is, by definition, the optimal solution under a worst-case perturbation. Our results show that,
essentially, a coefficient of the solution is nonzero if the corresponding feature is relevant under
all allowable perturbations. In addition to sparsity, we also use robustness directly to prove
consistency of Lasso.

We briefly list the main contributions of this paper.

e We formulate the robust regression problem with feature-wise independent disturbances,
and show that this formulation is equivalent to a least-square problem with a weighted
¢1 norm regularization term. Hence, we provide an interpretation for Lasso from a
robustness perspective.

e We generalize the robust regression formulation to loss functions of arbitrary norm,
which we use below to extend our sparsity results to this domain as well. We also
consider uncertainty sets that require disturbances of different features to satisfy joint
conditions. This can be used to mitigate the conservativeness of the robust solution,
and also obtain solutions with additional properties. We call these features “corre-
lated”. We further consider uncertainty sets with both column-wise and feature-wise
disturbances. In particular, we formulate a class of robust-regression problems which
smoothly interpolate between Lasso and a (possibly non-sparse) {s-norm regularizer.

e We present new sparsity results for the robust regression problem with feature-wise
independent disturbances. This provides a new robustness-based explanation for why
Lasso produces sparse solutions. Our approach gives new analysis and also geometric
intuition, and furthermore allows one to obtain sparsity results for more general loss
functions, beyond the squared loss.

e Next, we relate Lasso to kernel density estimation. This allows us to re-prove consis-
tency in a statistical learning setup, using the new robustness tools and formulation we
introduce. Along with our results on sparsity, this illustrates the power of robustness in
explaining and also exploring different properties of the solution.

e Finally, we prove a “no-free-lunch” theorem, stating that an algorithm that encourages
sparsity fails to have a non-trivial stability bound.

This paper is organized as follows. In Section 2 we formulate and solve the robust regression
setup with uncorrelated disturbance, which we show to be equivalent to Lasso. The robust
regression for general uncertainty sets is considered in Section 3. We investigate the sparsity
of the robust regression in Section 4. In Section 5 we relate robust regression problems to
kernel density estimation. We provide the “no-free-lunch” result in Section 6.

Notation. We use capital letters to represent matrices, and boldface letters to represent
column vectors. Row vectors are represents as the transpose of column vectors. For a vector
z, 7z denotes its i"" element. Throughout the paper, a; and ro are used to denote the "
column and the j% row of the observation matrix A, respectively. We use a;; to denote the
ij element of A, hence it is the j™ element of r;, and i*" element of a;j. For a convex function
f(), 0f(z) represents any of its sub-gradients evaluated at z.

2 Robust Regression with Feature-wise Disturbance

In this section, we show that our robust regression formulation recovers Lasso as a special
case. We also derive probabilistic bounds that guide in the construction of the uncertainty
set.
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The regression formulation we consider differs from the standard Lasso formulation, as we
minimize the norm of the error, rather than the squared norm. It is known that these two
coincide up to a change of the regularization coefficient. Yet as we discuss above, our results
amount to more than a representation or equivalence theorem. In addition to more flexible
and potentially powerful robust formulations, we prove new results, and give new insight into
known results.

2.1 Formulation

Robust linear regression considers the case where the observed matrix is corrupted by some
potentially malicious disturbance. The objective is to find the optimal solution in the worst
case sense. This is usually formulated as the following min-max problem,

Robust Linear Regression:

min { max ||b— (A + AA)XHQ} , @)
xeR™ | AAeU

where U is called the uncertainty set, or the set of admissible disturbances of the matrix A. In
this section, we consider the class of uncertainty sets that bound the norm of the disturbance
to each feature, without placing any joint requirements across feature disturbances. That is,
we consider the class of uncertainty sets:

UL {61 00|10l < sy i =1+ m}, (2)

for given ¢; > 0. We call these uncertainty sets feature-wise uncorrelated, in contrast to
correlated uncertainty sets that require disturbances of different features to satisfy some joint
constraints (we discuss these extensively below, and their significance). While the inner
maximization problem of (1) is nonconvex, we show in the next theorem that uncorrelated
norm-bounded uncertainty sets lead to an easily solvable optimization problem.

Theorem 1 The robust regression problem (1) with uncertainty set of the form (2) is equiv-
alent to the following (' reqularized regression problem:

min {||b—AxH2+§:ci|xi|}. (3)

xeR™ ]
Proof. Fix x*. We prove that maxaacy |b — (A + AA)x*||2 = ||b — Ax*||2 + >0 cilxf].

The left hand side can be written as

b—(A+ AA)X*

Jnax [[b — (A -+ AA)X|2
= max b— (A+ (81, ,8p))x"
(81, ,0m)|[[6ill2<c;

2

m
= max b — Ax™ —Zazf&iﬂg
i=1

(81, ,0m)||18:]|2<¢;
m

< 2+ZH$?5:'H2
i=1

b — Ax*

max
(81, ,0m)||18:]|2<¢;

m
<[lb— Ax[lz + ) |afler.
i=1
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Now, let
b—Ax* .
w2 m if Ax* # b,
any vector with unit £2 norm otherwise;
and let

87 & —cisgn(x))u.
A

Observe that [|6] |2 < ¢;, hence AA* = (87,---,4;,) € U. Notice that

jmax [[b—(A+AA)x"|2

>|b — (A4 AA")X"||2

=|[b— (A+ (01, ,60,))x7| |

b ax) - 22 (- aicsgn(ei)u) 5
- <b—Ax*>+<§ci\xrr>uH

:Hb—Ax*Hg—i—ici\xﬂ.

The last equation holds from the definition of u.

Combining Inequalities (4) and (5), establishes the equality maxa acy [|[b—(A+AA)x* |2 =
[b—Ax*|l2+ >, ¢af| for any x*. Minimizing over x on both sides proves the theorem. [J

Taking ¢; = ¢ and normalizing a; for all 7, Problem (3) recovers the well-known Lasso [6,7].

2.2  Uncertainty Set Construction

The selection of an uncertainty set &/ in Robust Optimization is of fundamental importance.
One way this can be done is as an approximation of so-called chance constraints, where a
deterministic constraint is replaced by the requirement that a constraint is satisfied with at
least some probability. These can be formulated when we know the distribution exactly,
or when we have only partial information of the uncertainty, such as, e.g., first and second
moments. This chance-constraint formulation is particularly important when the distribution
has large support, rendering the naive robust optimization formulation overly pessimistic.

For confidence level 7, the chance constraint formulation becomes:
minimize: ¢
Subject to:  Pr(||b — (A+ AA)x|]s <t) >1—n.
Here, x and t are the decision variables.

Constructing the uncertainty set for feature ¢ can be done quickly via line search and
bisection, as long as we can evaluate Pr(||a;||2 > ¢). If we know the distribution exactly (i.e.,
if we have complete probabilistic information), this can be quickly done via sampling. Another
setting of interest is when we have access only to some moments of the distribution of the
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uncertainty, e.g., the mean and variance. In this setting, the uncertainty sets are constructed
via a bisection procedure which evaluates the worst-case probability over all distributions with
given mean and variance. We do this using a tight bound on the probability of an event, given
the first two moments.

In the scalar case, the Markov Inequality provides such a bound. The next theorem is
a generalization of the Markov inequality to R™, which bounds the probability where the
disturbance on a given feature is more than ¢;, if only the first and second moment of the
random variable are known. We postpone the proof to the Appendix, and refer the reader
to [15] for similar results using semi-definite optimization.

Theorem 2 Consider a random vector v € R", such that E(v) = a, and E(vv') =X, & > 0.
Then we have

minp g,y Trace(XP)+ 2q'a+r
. P ¢]

subject to: ( T > =0

mathbfq' r
>t <
Pr{”VHQ = CZ} = I(m) 0 ) P q (6)
o' —C? - q’ r—-1
A>0.

The optimization problem (13) is a semi-definite programming, which is known be solved
efficiently. Furthermore, if we replace E(vv') = ¥ by an inequality E(vv') < ¥, the uniform
bound still holds. Thus, even if our estimation to the variance is not precise, we are still able
to bound the probability of having “large” disturbance.

3 General Uncertainty Sets

One reason the robust optimization formulation is powerful, is that having provided the
connection to Lasso, it then allows the opportunity to generalize to efficient “Lasso-like”
regularization algorithms.

In this subsection, we make several generalizations of the robust formulation (1) and derive
counterparts of Theorem 1. We generalize the robust formulation in two ways: (a) to the
case of arbitrary norm; and (b) to the case of correlated uncertainty sets. In Section 3.2 we
investigate a class of uncertainty sets inspired by [16], that control the cardinality of perturbed
features. The uncertainty sets are non-convex, but nevertheless we show that the resulting
robust regression problem is still tractable. In the last subsection, we consider a disturbance
model where both column-wise disturbance and row-wise disturbance exist simultaneously.

3.1 Arbitrary norm and Correlated disturbance

We first consider the case of an arbitrary norm || - ||, of R" as a cost function rather than the
squared loss. Recall that a norm must satisfy

(1), [Ixlle >0, ¥x € R"; [|x]|s = 0 x = 0.
). flexla = clxlla, ¥e > 0, vx € R™.
). Ix+¥la < Ixlla + [yl Vx,y € R

The proof of the next theorem is identical to that of Theorem 1, with only the ¢?> norm
changed to || - ||4-
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Theorem 3 The robust regression problem

; _ . 4 N < d=1 ... .
xIélﬂngn {AHA}Eééaub (A+AA)X||a}a Z/{CL {(617 76m)‘”6l||a—clv ? 17 7m}a

s equivalent to the following reqularized regression problem

m
in {|b—A il }.
min {| o+ 3l

We next remove the assumption that the disturbances are feature-wise uncorrelated. Al-
lowing correlated uncertainty sets is useful when we have some additional information about
potential noise in the problem, and we want to limit the conservativeness of the worst-case
formulation. Consider the following uncertainty set:

ulé {(517 76m)‘fj(”51”a7 7||5mHa) < 07 ] = 17 7k}7

where f;(-) are convex functions. Notice that, both k and f; can be arbitrary, hence this is a
very general formulation, and provides us with significant flexibility in designing uncertainty
sets and equivalently new regression algorithms (see for example Corollary 1 and 2). The
following theorem converts this formulation to tractable optimization problems.

Theorem 4 Assume that the set
ZE2{zeR"fi(z) <0, j=1,--- ,k; z>0}

has non-empty relative interior. Then the robust regression problem

min { max ||b— (A+ AA)XHCL}
xeR™ | AAelU’

s equivalent to the following reqularized regression problem

min {Hb—AxHa—i-v()\,m,x)};
AERk ,KERT xER™
k (7)
. L Te _ f
where: V(A K, X) = max [(m +1x|) ¢ ;A]f](c)]

We postpone the proof to the Appendix.

Remark 1 Problem (14) is efficiently solvable. Denote z¢(X, k,x) = [(n + x))Te—

Z?Zl )\jfj(c)]. This is a convex function of (A, k,x), and the sub-gradient of z¢(:) can

be computed easily for any c. The function v(\, k,x) is the maximum of a set of convex
functions, z¢(-) , hence is convex, and satisfies

V(A" K", x") = 02°0(\", k", x7),

k

where ¢y maximizes {(/@* +1x]*) e - > -1 Ajfj(c)]. We can efficiently evaluate co due to

convexity of f;(-), and hence we can efficiently evaluate the sub-gradient of ().
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The next two corollaries are a direct application of Theorem 4.

Corollary 1 Suppose U' = {(51, e ,5m)‘HH61Ha, e ,H(5m||aHS <l } for a symmetric norm

Il - ||s, then the resulting regqularized regression problem is

min {[[b — Ax| 1]} where | - | is the dual norm of |- .
xeR™

This corollary interprets arbitrary norm-based regularizers from a robust regression per-
spective. For example, it is straightforward to show that if we take both || - ||, and || - ||s as
the Euclidean norm, then I’ is the set of matrices with their Frobenious norms bounded, and
Corollary 1 reduces to the robust formulation introduced by [13].

Corollary 2 Suppose U = {(61, o, 0p)|F3c>0:Te <s; |6]la < ¢j; }, then the resulting

reqularized regression problem is
Minimize: ||b — Ax|lq +s' A
Subject to: x < T
—-x< T
A>0.

Unlike previous results, this corollary considers general polytope uncertainty sets. Ad-
vantages of such sets include the linearity of the final formulation. Moreover, the modeling
power is considerable, as many interesting disturbances can be modeled in this way. One such
disturbance model is the so-called cardinality constrained uncertainty set, where a only a fixed
number of features are corrupted. We turn to this in the next section.

3.2 A class of non-convex uncertainty sets

Theorem 4 deals with convex uncertainty sets. Next we consider a class of non-convex but still
solvable uncertainty sets, which can be regarded as interpolations between the uncorrelated
case and the fully correlated case. To be specific, we consider the case that no more than a
given number of features are disturbed. This formulation is inspired by [16] in which a similar
uncertainty set for robust LP is considered. Let

Z 2 {z eRm‘as c{L,---,m}4|S| = |t],Vie S,0 < z < ¢
U 2 {81, ,0m) |32 € 24, ||i]|a = 2.}

Here, |t] stands for the largest integer not larger than t. U; represents an uncertainty set, such
that the deviation of each feature is bounded by ¢; and only ¢ features are allowed to deviate.
For t being a non-integer, it is interpreted as to allow |t| features to completely deviate,
and one other feature to partially deviate. Neither Z; nor U; is a convex set. Nevertheless,
the robust regression problem with U; as the uncertainty set is still tractable because it is
equivalent to a robust regression problem with the following polyhedral uncertainty set:

Z~té{z€Rm|O§2i§Ci; Zzi/ci St}§

i=1

Z;{t é {(61, T 76m)|E|Z € zta ”(sl”a - Zi‘} :
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Notice that, ; itself has an intuitive appealing interpretation as the set of disturbances such
that besides the norm bound for disturbance on each feature, there exists an extra constraint
which bounds the (weighted) total disturbance.

Proposition 1 For any x*, and 1 <t < m, the following holds

max ||b — (A+ AA)x*||, = max [|b— (A + AA)x"|,
AAeUy AAeUy

Combining Proposition 1 and Theorem 4 leads to the following corollary.

Corollary 3 The robust regression problem

min { max ||b— (A+ AA)XHa} ;
x€R™ | AAEU;

s equivalent to the following reqularized regression problem

m
Minimize: ||b — Ax||, + Z ciNi + t&€
i=1
Subject to: x; — N —&/ci <0, i=1,---,m
—zi =N —§/ci <0, i=1,---m
>0, i=1,---.,m
£>0.

If all the ¢; are same, the robust regression with U, (a non-correlated set) is Lasso, while
the robust regression with U; (a fully correlated set) leads to a £°° norm regularization, which
is known to be non-sparse.

3.3 Row and Column Uncertainty Case

Next we consider a case where we have both row-wise uncertainty and column-wise uncer-
tainty. One motivation to consider this is the well-known elastic net method ( [17]) known to
sometimes outperform Lasso, in addition to possessing other properties of interest.

Combing row-wise and column-wise uncertainty leads to the following robust optimization
problem

min max IIb—(A+ AA; + AA)x||2,
X AAeU;,AArells
where: U = {(11,--- ,ln)T|l;rEj_llj <1, i=1,--- ,n}; (8)

U = {(51,... ,6m)‘H6i”2 <e¢, i=1,--- ,m};
for positive definite matrices 3; and positive scalars c;.

Theorem 5 Denote the j** row of A as ro. Then given X, the following holds

n 2 m
Ib—(A+ AA; + AAy)x|2 = Z (]bj - roX\ + |]Z]1-/2XH2> + Zci\xi\,

max
AA1 GZ/ﬁ,AAQEUQ - -
]:1 =1
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and moreover, the robust regression problem (8) is equivalent to the following Second Order
Cone Program on (X,z,t,w):

m
Minimaze: w+§ CiZi
i=1

Subject to: x < z;

—x<1z

I %|ls < tj—bj+r]x; j=1,---,n.
“2;/2)(“2 <tj+b;— rox; j=1,-,n.
[t]l2 < w.

The proof is postponed to the Appendix.

4 Sparsity

In this section, we investigate the sparsity properties of robust regression (1), and equiv-
alently Lasso. Lasso’s ability to recover sparse solutions has been extensively studied and
discussed (cf. [8-11]), and this work generally takes one of two approaches. The first ap-
proach investigates the problem from a statistical perspective. That is, it assumes that the
observations are generated by a (sparse) linear combination of the features, and investigates
the asymptotic or probabilistic conditions required for Lasso to correctly recover the genera-
tive model. The second approach treats the problem from an optimization perspective, and
studies under what conditions a pair (A,b) defines a problem with sparse solutions (e.g., [18]).

We follow the second approach and do not assume a generative model. Instead, we consider
the conditions that lead to a feature receiving zero weight. Our first result paves the way for
the remainder of this section. We show in Theorem 6 that, essentially, a feature receives no
weight (namely, x} = 0) if there exists an allowable perturbation of that feature which makes
it irrelevant. This result holds for general norm loss functions, but in the ¢? case, we obtain
further geometric results. Using Theorem 6, we show, among other results, that (a) “nearly”
orthogonal features get zero weight (Theorem 7); and (b) “nearly” linearly dependent features
get zero weight (Theorem 9).

Substantial research regarding sparsity properties of Lasso can be found in the literature
(cf. [8-11,19-22] and many others). In particular, similar results as in point (a), that rely
on an incoherence property, have been established in, e.g., [18], and are used as standard
tools in investigating sparsity of Lasso from the statistical perspective. However, a proof
exploiting robustness and properties of the uncertainty is novel. Indeed, such a proof shows a
fundamental connection between robustness and sparsity, and implies that robustifying w.r.t.
a feature-wise independent uncertainty set might be a plausible way to achieve sparsity for
other problems.

To state the main theorem of this section, from which the other results derive, we introduce
some notation to facilitate the discussion. Given a feature-wise uncorrelated uncertainty set,
U, an index subset I C {1,...,n}, and any AA € U, let AA’ denote the element of U that
equals AA on each feature indexed by ¢ € I, and is zero elsewhere. Then, we can write any
element AA € U as AAT + AA’" (where I¢ = {1,...,n} \ I). Then we have the following
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theorem. We note that the result holds for any norm loss function, but we state and prove it
for the ¢? norm, since the proof for other norms is identical.

Theorem 6 The robust regression problem

min { max ||b — (A + AA)XHQ} ,
xeR™ | AAeU

has a solution supported on an index set I, if there exists some perturbation AA'° € U of the
features in I¢, such that the robust regression problem

min { max |b— (44 AAl + AAIC)X||2} ,
xeR™ | AAIcy!

has a solution supported on the set I.

Thus, a robust regression has an optimal solution supported on a set I, if any perturbation
of the features corresponding to the complement of I makes them irrelevant. An equivalent
statement of the theorem is:

Theorem 6’ Let x* be an optimal solution of the robust regression problem:
min { max ||b — (A + AA)XHQ} ,
xeR™ | AAeU
and let I C{1,--- ,m} be such that x5 =0Vj ¢ I. Let
U2 {6 oIl <ci i€l |8l <c;+1, j£1}.
Then, x* is an optimal solution of
min { max |[b — (A + AA)XHQ} ,
xeR™ (AAcu
for any A that satisfies la; —a;l| < for j &1, and a; = a; foriecl.

Proof. Notice that

max ||b — (A + AA)x™
AAel 2
= max ||b— (A+ AA)x"
AAeU 2
= max ||b — (A + AA)x*|| .
AAeU 2

These equalities hold because for j ¢ I, 27 = 0, hence the 4" column of both A and AA has
no effect on the residual.

For an arbitrary x’, we have
max Hb — (A+ AA)X
AAeU 2

> max Hb — (A+AAX

2
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This is because, ||a; — a;|| <[ for j ¢ I, and a; = a; for i € I. Hence, we have

{A+AA|AA €U} C {A+ AAJAA €U}
Finally, notice that

Joax, Hb — (A+ AA)X*

< max Hb — (A+AA)X
2 AAeU

Therefore we have

irzae}; Hb — (A+ AA)x*

< max Hb — (A+AAX
2 AAeu

Since this holds for arbitrary x’, we establish the theorem. O

We can understand the result of this theorem by considering a generative model® b =
Y icr wia; +& where I C {1--- ,m} and ¢ is a random variable, i.e., b is generated by features
belonging to I. In this case, for a feature j ¢ I, Lasso would assign zero weight as long as
there exists a perturbed value of this feature, such that the optimal regression assigned it zero
weight.

2

When we have £? loss, we can translate the condition of a feature being “irrelevant” into a
geometric condition, namely, orthogonality. We now use the result of Theorem 6 to show that
robust regression has a sparse solution as long as an incoherence-type property is satisfied.
This result is more in line with the traditional sparsity results, but we note that the geometric
reasoning is different, and ours is based on robustness. Indeed, we show that a feature receives
zero weight, if it is “nearly” (i.e., within an allowable perturbation) orthogonal to the signal,
and all relevant features.

Theorem 7 Let ¢; = ¢ for all i. If there exists I C {1,---,m} such that for all v €
span({a;,i € I}U{b}), [[v| = 1, we have v'a; < ¢ Vj & I, then any optimal solution x*
satisfies x5 =0, Vj & I.

Proof. For j ¢ I, let a; denote the projection of a; onto the span of {a;, i € I'}|J{b}, and
let aj £a;— a;. Thus, we have [[a|| < c. Let A be such that

5 — a; 1€l
Tl af igl

Now let .
UE{(81, - ,0m)||8ill2 <c, i€ ;|62 =0,5 &I}

Consider the robust regression problem ming { MAXp 47y Hb — (fl +AA)X 2}, which is equiv-

alent to ming {Hb — Ax o T D icr c[a?,]} Note that the &; are orthogonal to the span of

{a;, i € I} J{b}. Hence for any given x, by changing Z; to zero for all j ¢ I, the minimizing
objective does not increase.

Since |la — &;l| = [laj || < ¢ Vj ¢ I, (and recall that U = {(61, - ,0m)[[|dil2 < ¢, Vi})
applying Theorem 6 concludes the proof. O

"'While we are not assuming generative models to establish the results, it is still interesting to see how these
results can help in a generative model setup.
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The next theorem gives conditions for when an optimal solution may have support on
indices outside a given index subset I. Let x* be an optimal solution that puts weight on
features with indices in I U J (take I and J disjoint). Then the residual with respect to I,
(b — > e xja;), and the contribution of the elements in .J, namely, ) must subtend a
small angle.

1€’

Theorem 8 Given a candidate solution x*, if there exists I C {1,--- ,m} such that for j & I,
x;k are not all zero, and

b—>) . _,zfa; rxtas
(b_zx?ai)-r(zx;aj)< ” Zzel i ”2”2]¢I J J”2

icl jal maxeg (||a([2/ct)

)

then x* is not an optimal solution to the robust regression problem

min { max |b— (A + AA)XHQ} .
xe€R™ | AAelUd

We postpone the proof to the Appendix, but state two corollaries easily derived from the
theorem.

Corollary 4 Let ¢; = ¢ and ||a;||a = 1 for all i. If there exists I C {1,--- ,m} such that
alaj<c, Viel Vjgl;
bla;<¢; Vjigl;

then any optimal solution x* satisfies

=0, Vjé&l.

*
L

Corollary 5 Suppose there exists I C {1,--- ,m}, such that for all j € I, ||a;|| < ¢j. Then,

any optimal solution x* satisfies x5 =0, for j & I.

The next theorem shows that sparsity is achieved when a set of features are “almost”
linearly dependent. We postpone the proof to the Appendix.

Theorem 9 Given I C {1,--- ,m}, if there exists a non-zero vector (w;);cs satisfying
I Zwiaiﬂg m11n+1} ] Zazczwzl
el

then there exists an optimal solution x* such that 3i € I : x7 = 0.

We provide an example illustrating the usefulness of Theorem 9 in establishing sparsity
results.

Example 1 Let ¢; = ¢ for all i. Given any two-dimensional subspace H, we can decompose
each feature a; = aZ{ + ail where aZ{ € H and ailJ_H. If for some o > 0, k features (say,
ai,...,ay) satisfy the three properties below, then there exists an optimal solution that assigns
nonzero weight to at most 2 of the k features.
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(i) a < (@', alt) <m—o; i g, i,j=1,- k.
(iii) |lait|]2 < c(sec(a) —1)/3, i=1,--- k.
Proof. Consider an optimal solution which is sparsest. To derive a contradiction, assume

that no fewer than three features (say, {a;,as,as} w.o.l.g) are assigned non-zero weights.

Since al, a}f and a}’ belong to a 2-dimensional space H, there exists a non-zero w such that

3 wialt = 0. Without loss of generality we let ws|, |ws| < |wi| = 1. Thus, we have

3 3
min |Zaiciwi|:c min |Zaiwi|:c‘|w2|+|w3|—1‘.
oie{—1,+1} im1 oie{—-1,+1} =1

Next we bound |ws| + |ws|. We use superscript A to represent the projection of a vector on
the direction of a;. Since Z?:l w;a; = 0 we have (wpag + wpaz)”™ = —a;. This leads to

||(w2a2 + w2a3)AH2 =1.
Further notice that by assumption (i) and (ii) we have
I(wiag)®[l2 < [wi] cos(a), i=2,3.

Thus, we have
|wa| + |ws| > 1/ cos(a) = sec(a),

WhiCh leadS to 3
min E o;c;w;| > c(sec(ar) — 1).
oie{—1,+1} |z 1 v Z| - ( ( ) )

By (iii), we have

3 3 3 3
1Y S wiaills = 1) wiall + > wiaf|| = || > wiai|
i=1 i—1 i—1 i=1
<(Jwi| + |wa| + |ws|)e(sec(a) — 1)/3 < esec(a) — 1).

Hence the condition of Theorem 9 is satisfied, and we can construct a solution which is optimal
and more sparse. This leads to the desired contradiction. O

Notice that for linearly dependent features, there exists non-zero (w;);c; such that
| > icr wiag|l2 = 0, which leads to the following corollary.

Corollary 6 Consider the robust regression problem

min { max ||b— (A + AA)XHQ} .
xeR™ | AAcU

Given I C {1,--- ,m}, denote A 2 (ai>' v and let t & rank(Ar). There exists an optimal
1€

solution x* such that x; £ ($Z)zTeI has at most t non-zero coefficients.
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Setting I = {1,--- ,m}, we immediately get the following corollary.

Corollary 7 Consider the robust regression problem

min { max ||b— (A + AA)XHQ} .
xeR™ | AAeU

If n < m, then there exists an optimal solution with no more than n non-zero coefficients.

5 Density Estimation and Consistency

In this section, we investigate the robust linear regression formulation from a statistical per-
spective and rederive using only robustness properties that Lasso is asymptotically consistent.
We note that our result applies to a considerably more general framework than Lasso. In [23]
we use some intermediate results used to prove consistency to show that regularization can
be identified with the so-called maxmin expected utility (MMEU) framework, thus tying
regularization to a fundamental tenet of decision-theory.

We show that the robust optimization formulation can be seen to be the maximum error
w.r.t. a class of probability measures. This class includes a kernel density estimator, and
using this, we show that Lasso is consistent.

We restrict our discussion to the case where the magnitude of the allowable uncertainty
for all features equals ¢, (i.e., the standard Lasso) and establish the statistical consistency of
Lasso from a distributional robustness argument. Generalization to the non-uniform case is
straightforward. Throughout, we use ¢, to represent ¢ where there are n samples (we take ¢,
to zero).

Recall the standard generative model in statistical learning: let P be a probability measure
with bounded support that generates i.i.d samples (b;,r;), and has a density f*(-). Denote
the set of the first n samples by S,,. Define

x(P) £ arg min {\//br(b —r'x)2dP(b, r)}

In words, x(¢,, Sy,) is the solution to Lasso with the tradeoff parameter set to ¢,/n, and x(P)
is the “true” optimal solution. We have the following consistency result. The theorem itself
is a well-known result. However, the proof technique is novel. This technique is of interest
because the standard techniques to establish consistency in statistical learning including VC
dimension and algorithm stability often work for a limited range of algorithms, e.g., SVMs are
known to have infinite VC dimension, and we show in Section 6 that Lasso is not stable. In
contrast, a much wider range of algorithms have robustness interpretations, allowing a unified
approach to prove their consistency.
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Theorem 10 Let {c,} be such that ¢, | 0 and lim,, o n(c,)™! = co. Suppose there erists
a constant H such that ||x(cn, Sp)|l2 < H almost surely. Then,

lim (b —rTx(cn,Sp))2dP(b / —rx(P))2dP(b,r),
n—oo br b,r

almost surely.

We provide the main ideas and outline here, after which we give the proof. The proof of
intermediate results outlined in the steps below are postponed to the Appendix. The key to
the proof is establishing a connection between robustness and kernel density estimation.

Step 1: For a given x, we show that the robust regression loss over the training data
is equal to the worst-case expected generalization error. To show this we establish a more
general result:

Proposition 2 Given a function g : R™1 — R and Borel sets Z1,--- , Z, C R™t1 [et
Py & {pePVS C{1,--- .n}: u(lJ 2:) = |S|/n}.
€S
The following holds

1 n
_Z sup  h(ri, b;) = sup/ h(r,b)du(r,b).
Dl (ribi)ez; WEP, JRMA1

We also have the following corollary, which we use below to interpret Lasso from a density
estimation perspective, and to prove Theorem 10.

Corollary 8 Given b € R", A € R"*™ the following equation holds for any x € R™,

b — Ax||2 +\/_c+f2cz\xll = sup \/n/ (0 — r'Tx)2du(r, ). 9)
Rm+1

peP(n)
Here,?

P(n) £ U  Pu(4.Ab0);

AV, 62J—nc

Pu(A,Ab,c) £ {u € P|Zi = [b; — ¢, b; + ] x H[a,-j — 81, aij + 0ij);

<.

VS C{L,--- n} (] 20) > ISI/n),

€S

Remark 2 We briefly explain Corollary 8 to avoid possible confusions before we proceed
to the proof. Equation (9) is a non-probabilistic equality. That is, it holds without any
assumption (e.g., i.i.d. or generated by certain distributions) on b and A. And it does not

2Recall that a;j; is the jth element of r;.
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involve any probabilistic operation such as taking expectation on the left-hand-side, instead,
it is an equivalence relationship which hold for an arbitrary set of samples. Notice that, the
right-hand-side also depends on the samples since 75(71) is defined through A and b. Indeed,
75(n) represents the union of classes of distributions P(A, A, b, ¢) such that the norm of each
column of A is bounded, where P(A, A, b, c) is the set of distributions corresponds to (see
Proposition 2) disturbance in hyper-rectangle Borel sets Z1,--- , Z, centered at (b;, I'ZT) with
lengths (2¢, 20,1, , 20im).

Proof. The right-hand-side of Equation (8) equals to

sup { sup / vV —r'Tx)2du(r’ b’)}
A7, Z 62 —nc HEPR(A,Ab,c) Rm+1

Notice the left-hand-side equals to

max b+ db — (A+ AA)x|2
[6bl[<v/ne,[lajll<v/nc;

= sup sup Z(b, -/ x)2

AN, 6%=ncs | (by,i)€[bi—c,bitc] [T72 laij—dij,ai5+0i5] \ i=1

n
= sup Z sup (b — 1, x)?,
AWJij 5i2j=nC§ =1 (burz)e[bz c,b; +C]><Hm 1[“@] 6zj7aij+5ij}

furthermore, applying Proposition 2 yields

n
sup (bi — £ x)?
i=1 (bi,Fi)€[bi—c.bit+] X[ 72 [aij—dij,aij+0ij]

= sup n/ (b —r'Tx)2du(r’, V)
PEP(AAbyc) JRmAL

sup / —r'Tx)2du(r,b),
LEP(AA D) RWH

which proves the corollary. O

Step 2: Next we show that robust regression has a form like that in the left hand side
above. Also, the set of distributions we supremize over, in the right hand side above, includes
a kernel density estimator for the true (unknown) distribution.

The kernel density estimator for a density f in R?, originally proposed in [24,25], is defined

by ) )
09 = ) 3 (2

where {c,} is a sequence of positive numbers, X; are i.i.d. samples generated according to f ,
and K is a Borel measurable function (kernel) satisfying K > 0, [ K = 1. See [26,27] and
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samples kernel function estimated density
T T T 0.2 T T 0.1 T T T
0.18 1 0.091
0.16 1 0.08}
0.14 1 0.071
0.12 1 0.06
0.1 1 0.05¢
0.08 1 0.04
0.06 1 0.031
0.04 1 0.021
0.02 1 0.01r
0 5 1‘0 15 2‘0 25 —010 —é 0 5 10 —010 0 16 26 30

Figure 1: Illustration of Kernel Density Estimation

the reference therein for detailed discussions. Figure 1 illustrates a kernel density estimator
using Gaussian kernel for a randomly generated sample-set.

Now consider the following kernel estimator given samples (b;,r;)" ,

hn(b, I‘) m+1 IZK< bZ,I' r; ) 7

where: K(x) = I[_1,+1}7n+1(x)/2m+1.

(10)

Observe that the estimated distribution given by Equation (10) belongs to the set of
distributions

Pu(A,A,b,c) & {u € P|Z; = b — ¢, b + ] x [lag — bij, aij + 6ij];

J=1

VS C {1 nd sl 20) > 181/n},

€S
and hence belongs to P(n) = P(n) £ Uajvj,s, 52, 2ne2 Pn(A, A, b, c), which is precisely the set
1 Z2i %4 J

of distributions used in the representation from Proposition 2.

Step 3: Combining the last two steps, and using the fact that [, |hn(b,x) — h(b,x)|d(b, 1)

goes to zero almost surely when ¢, | 0 and nc™*! 1 oo since hy,(-) is a kernel density estimation
of f(-) (see e.g. Theorem 3.1 of [26]), we prove consistency of robust regression.

We can remove the assumption that ||x(cy,Sy)|l2 < H, and as in Theorem 10, the proof
technique rather than the result itself is of interest.

Theorem 11 Let {c,} converge to zero sufficiently slowly. Then

lim\/ (b—r"x(cn,Sp))2dP(b \// —rx(P))2dP(b, 1),
n—0oo br br

almost surely.
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Using the results above, we now prove Theorem 10, and then Theorem 11.

Proof. Let fi,, be the estimated distribution using Equation (10) given S,, and ¢,, and denote
its density function f,(-). Notice that, ||x(¢,,Sp)|l2 < H almost surely and P has a bounded
support implies that there exists a universal constant C such that

max(b —r' w(c,,S,))? < C,

b,r
almost surely.

By Corollary 8 and fi,, € P(n) we have

\/ /b (b — 7 x(ny S0))?dfin(b,7)

< su (b —rTx(cn,Sn))2du(b,r)

uéﬁl()n) \//br 8

= Z(bl — 1 x(¢n,8n))? + enl|x(cn, Sa)lli + cn
K \ i=1

g\ S (b~ 1] x(B)? + ealxB)ls +

i=1

the last inequality holds by definition of x(c,,Sy,).
Taking the square of both sides, we have

/b (b — 7 x(cn, S))2djin (b, )

n n

1
(b; — ¢! P)[l1)? + 2cn(1 = (bi—
; v/ x(P)? + (1 + [x(P)[[1)? + 2en (1 + [|x(P 1J”2 i x(P

<

3|>—‘

Notice that, the right-hand side converges to [, (b — r'x(P))?dP(b,r) as n 1 co and ¢, | 0
almost surely. Furthermore, we have

/ (b— 17 x(cn, S»))2dP(b, ¥)
b,r

< /b (b - I'TX(Cn, Sn))2dﬂn(bv I') + max(b - rTX(Cm Sn))2 X |fn(b7 I') - f(b’ I')|d(b, I')

b,r br

< [ b= r xS, dia05)+ C [ 1fa(bir) = FO0)ld(br),
b,r b,r
where the last inequality follows from the definition of C. Notice that [, [fn(b,x) — f(b,r)|

d(b,r) goes to zero almost surely when ¢, | 0 and nc*! 1 oo since f,(-) is a kernel density
estimation of f(-) (see e.g. Theorem 3.1 of [26]). Hence the theorem follows. O
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Next we prove Theorem 11.

Proof. To prove the theorem, we need to consider a set of distributions belonging to P(n).
Hence we establish the following lemma first.

Lemma 1 Partition the support of P as Vi, --- , Vi such the £*° radius of each set is less than
Cn. If a distribution u satisfies

then € P(n).

Proof. Let Z; = [b; — ¢, b + ¢u) X H;”:l[a,-j — Cn, Gij + ¢y); recall that a;; the 4t element of
r;. Notice V; has £°° norm less than ¢,, we have

(bi,ri € Vi) = Vi C Z;.
Therefore, for any S C {1,--- ,n}, the following holds

w(lJ 2) = uJVilFi € S < bixs € V)

€S
= Y wV)= > #(ir)eVi)/n=|S|/n.
t|FieS:b;,rieVy t|FieS:b;,rieVy
Hence pu € Pp(A, A, b, c,) where each element of A is ¢,, which leads to u € P(n). O

Now we proceed to prove the theorem. Partition the support of P into 1" subsets such
that £°° radius of each one is smaller than ¢,. Denote P(n) as the set of probability measures
satisfying Equation (11). Hence P(n) C P(n) by Lemma 1. Further notice that there exists
a universal constant K such that ||x(c,,Sy)|l2 < K/c, due to the fact that the square loss of
the solution x = 0 is bounded by a constant only depends on the support of P. Thus, there
exists a constant C such that max (b — 1 x(c,,S,))? < C/c2.

Follow a similar argument as the proof of Theorem 10, we have

sup / (b—rTx(cn,Sn))Qdun(b,r)
,Ufne'ﬁ(n) b,r

n

1 T 2, 2 1
<z — Z _
= ;Zl(bz v x(P))? + ¢ (1 + [[x(P)[[1)* + 2cn (1 + [[x(P J - ;:1 (bi — v x(P))?,

and

/ (b—r"x(cp,Sy))%dP(b,r)
b,r

< inf ){/br(b— " xX(¢n, Sn))2dpin (b, 1)

tn€P(n

+ max(b —r' x(cn, Sp))? | fun (b, 1) — f(b,1)|d(b,T)

b,r br

< swp [ (b Sl 120/ int { [ 1f (6 - f00) D)
un675(n) b,r uh€P(n) b,r
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here f, stands for the density function of a measure x. Notice that P, is the set of distributions
satisfying Equation (11), hence inf , .5, fbm | fur, (b,x) — f(b,r)|d(b,r) is upper-bounded by

z;[:l |P(V;) — #(b;,r; € Vi)|/n, which goes to zero as n increases for any fixed ¢, (see for
example Proposition A6.6 of [28]). Therefore,

20/ inf { [ 16— f00)d00) | 0

1, €P(n)

if ¢, | 0 sufficiently slow. Combining this with Inequality (12) proves the theorem. O

6 Stability

Knowing that the robust regression problem (1) and in particular Lasso encourage sparsity,
it is of interest to investigate another desirable characteristic of a learning algorithm, namely,
stability. We show in this section that Lasso is not stable. This is a special case of a more
general result we prove in [?], where we show that this is a common property for all algorithms
that encourage sparsity. That is, if a learning algorithm achieves certain sparsity condition,
then it cannot have a non-trivial stability bound.

We recall the definition of uniform stability bound [29] first. We let Z denote the space of
points and labels (typically this will be a compact subset of R"*1) so that S € Z™ denotes
a collection of m labelled training points. We let L denote a learning algorithm, and for
S € 2™ we let Lg denote the output of the learning algorithm (i.e., the regression function
it has learned from the training data). Then given a loss function [, and a labelled point
s = (z,b) € Z, I(Lg, s) denotes the loss of the algorithm that has been trained on the set S,
on the data point s. Thus for squared loss, we would have [(Lg, s) = ||[Lg(z) — b||2-

Definition 1 An algorithm IL has uniform stability 3,, with respect to the loss function | if
the following holds

VS e Z" Vie{l,--- ,m} |[l(Lg,-) = l(Lgi,)|loo < Bm-
Here LLg\i stands for the learned solution with the ith sample removed from S.

At first glance, this definition may seem too stringent for any reasonable algorithm to
exhibit good stability properties. However, as shown in [29], Tikhonov-regularized regression

has stability that scales as 1/m. Stability that scales at least as fast as o(—=) can be used to

vm
establish strong PAC bounds.

In this section we show that not only is the stability (in the sense defined above) of Lasso
much worse than the stability of ¢2-regularized regression, but in fact Lasso’s stability is, in
the following sense, as bad as it gets. To this end, we define the notion of the trivial bound,
which is the worst possible error a training algorithm can have for arbitrary training set and
testing sample labelled by zero.

Definition 2 Given a subset from which we can draw m labelled points, Z C R™*(m+1) gpd
a subset for one unlabelled point, X C R™, a trivial bound for a learning algorithm L w.r.t.
Z and X is
L,Z X)& I(L .
b( PR ) Sénzli)ék' ( S (Z,O))

As above, I(-,-) is a given loss function.
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Notice that the trivial bound does not diminish as the number of samples increases, since
by repeatedly choosing the worst sample, the algorithm will yield the same solution.

Now we show that the uniform stability bound of Lasso can be no better than its trivial
bound with the number of features halved.

Theorem 12 Given Z - R*@m+D) pe the domain of sample set and X C R?™ be the domain
of new observation, such that

(b,A) € Z= (b,A,A) € X
(z)eX = (z',2') e X,

we have the uniform stability bound ( of Lasso is lower bounded by b(Lasso, Z, X).

Proof. Let (b*, A*) and (0,z*") be the sample set and the new observation such that they
jointly achieve b(Lasso, Z,X), and let x* be the optimal solution to Lasso w.r.t (b*, A*).

Consider the following sample set
b* A" A*
0 OT Z*T .

Observe that (x',07)T is an optimal solution of Lasso w.r.t to this sample set. Now remove
the last sample from the sample set. Notice that (07,x7)" is an optimal solution for this new
sample set. Using the last sample as a testing observation, the solution w.r.t the full sample
set has zero cost, while the solution of the leave-one-out sample set has a cost b(Lasso, Z, X).
And hence we prove the theorem. O

7 Conclusion

In this paper, we considered robust regression with a least-square-error loss. In contrast to
previous work on robust regression, we considered the case where the perturbations of the
observations are in the features. We show that this formulation is equivalent to a weighted ¢!
norm regularized regression problem if no correlation of disturbances among different features
is allowed, and hence provide an interpretation of the widely used Lasso algorithm from a ro-
bustness perspective. We also formulated tractable robust regression problems for disturbance
correlated among different features, and investigated the empirical performance of a class of
such formulations which interpolate between Lasso and ¢°° norm regularized regression.

The sparsity of the resulting formulation is also investigated, and in particular we present a
“no-free-lunch” theorem saying that sparsity and algorithmic stability contradict each other.
This result shows, although sparsity and algorithmic stability are both regarded as desirable
properties of regression algorithms, it is not possible to achieve them simultaneously, and we
have to tradeoff these two properties in designing a regression algorithm.

The main thrust of this work is to treat the widely used regularized regression scheme
from a robust optimization perspective, and extend the result of [13] (i.e., Tikhonov regu-
larization is equivalent to a robust formulation for Frobenius norm bounded disturbance set)
to a broader range of disturbance set and hence regularization scheme. This provides us not
only with new insight of why regularization schemes work, but also offer solid motivations for
selecting regularization parameter for existing regularization scheme and facilitate designing
new regularizing schemes.
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A Proof of Theorem 2

Theorem 2 Consider a random vector v.€ R", such that E(v) = a, and E(vv') = %,
Y = 0. Then we have

minp g,y Trace(XP) + 2q'a+r

. P q
: >
subject to ( qT . > =0

I(m) O P q
(o 2 )= (a7 11)
A>0.

Pr{|[vllz > ¢;} < (13)

Proof. Consider a function f(-) parameterized by P, q,r defined as f(v) = v Pv+2q v+r.
Notice E(f(v)) = Trace(XP) + 2q'a+ r. Now we show that f(v) > Ljv|>¢, for all P,q,r
satisfying the constraints in (13).

To show f(v) > 1jy|,>c,; We need to establish (i) f(v) > 0 for all v, and (ii) f(v) > 1
when ||v]|2 > ¢;. Notice that

w=(7) (& (1)

P q
> 0.
<qT r>‘0

To establish condition (ii), it suffices to show v'v > ¢? implies v' Pv +2q'v + 7 > 1,
which is equivalent to show {V|VTPV + 2qTV +r—1< 0} - {V‘VTV < 622} Noticing this is
an ellipsoid-containment condition, by S-Procedure, we see that is equivalent to the condition
that there exists a A > 0 such that

(o 2 )=a(ar )

Hence we have f(v) > 1jy|,>c,, taking expectation over both side that notice that the
expectation of a indicator function is the probability, we establish the theorem. O

hence (i) holds because

B Proof of Theorem 4
Theorem 4 Assume that the set
Z2{zeR"fi(z) <0, j=1,--- ,k; z>0}

has non-empty relative interior. Then the robust regression problem

min { max ||b— (A+ AA)XHCL}
xe€R™ | AAelU’
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s equivalent to the following reqularized regression problem

min {”b_AX”a"i_U()‘aKHX)};
AeRY  keRT xeR™
k (14)
. A T F.
where: v(A, K, X) = Crélfa{ﬁ [(R +1x|) ¢~ 2:1 /\]f](c)]
]:

Proof. Fix a solution x*. Notice that,
U = {(517 76m)|c S Z; ||5ZHCL <c,i=1,-- 7m}'
Hence we have:

max |b— (A+ AA)x"|,
AAel’

b= (A+ (81, 8)x"la}

max{ max
c€Z |8;]la<ci,i=1,+,m
m
= max { I — Ax'll + ) eilat]
i=1
:Hb - AX*”a + max {’X*’TC},
ceZ

The second equation follows from Theorem 3.

Now we need to evaluate maxccz{|x*| "¢}, which equals to — minecz{—|x*|"c}. Hence we
are minimizing a linear function over a set of convex constraints. Furthermore, by assumption
the Slater’s condition holds. Hence the duality gap of minecz{—|x*|"c} is zero. A standard
duality analysis shows that

max{]x*[Tc} = min V(A K,X"). (16)
cez ARk ,keRT

We establish the theorem by substituting Equation (16) back into Equation (15) and taking
minimum over x on both sides. ]

C Proof of Theorem 5

Theorem 5 Denote the j* row of A as I'jT. The robust regression problem (8) is equivalent

to the following Second Order Cone Program on (x,z,t,w):

m
Minimize: w—i—E Ci%i
i=1

Subject to: x < z;

—x<1z

1/2 )
I %|ls < tj—bj+r]x; j=1,---,n.
“2;/2)(“2 Stj—i-bj—rox; j=1,-,n.

[tz < w.
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Proof. To prove the theorem, it suffices to show that for given x, the following holds

n

2 m
b— (A+AA +AA = Z( _ ny/2 2.
AAL €U AAsEUs ” (A+Ads+ Adg)x]l2 < |bj —x; Jx+ | X||2> + E cilx|

Notice that

AAell Asctds b —(A+Ad + Adz)x|
= yax { max [[b—(A+Adr+ Ady)x|lo}

= max {|[b— (A+Ad)x|s + ; cilas|}

= max (| = (A+Adu)x||>) + ;ci\xi\.

Furthermore, the following equation proves the theorem.

Agllaeﬁl(\\b — (A+AA)x|l2)

n

= max (bj —r]x —1]x)2
Ly < ! !
]:1 13 J—=

n

= [ (1 — =]l 123 2xe)

j=1
The last equality holds because
lgm;ll l x = —[|%; /2xH27 &ynzljxlj lTx = [|%; /2xH2
O
D Proof of Theorem 8
Theorem 8 Given a candidate solution x*, if there exists I C {1,---,m} such that for

jél, x; are not all zero, and

b—>) . _,zfa; rxtas
(b_zx?ai)-r(zx;aj)< ” Zzel i ”2”2]¢I J J”2

iel gl maxeg (||a(2/ct)

)

then x* is not an optimal solution to the robust regression problem

min { max |b— (A + AA)XHQ} .
xeR™ | AAelU
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Proof. Consider the following candidate solution x* defined as

TiT Vo, idl

Using the regularized form of the robust regression problem, we have

Ib— As [+ la
7
:Hb_zx*azHQ— HZQ%I i ]H? Z| szgla:ja]\\g
7

maxgr(||agll2/ct) mathZI(Hat\b/Ct)'

el el

Notice that,
max(arll2/cr) - 3 esla]
Il
>3 (lajlla/e; - esla3])
ua
=2 _(lalal3)
ua
2[5yl
el

which implies that

1> 1% a2
Jf <N gjlail. (18)

maxgr(||agl]2/c) 1

Furthermore, consider the vector ngl z7a;, denote (ngz ;%;a;)~ as the projection of this

vector on the direction of the vector b—3",; z7a;, and (3,4, #7a;)" the residual. Therefore,
the assumption that

b—)> . _;xfa, rata;
(b_zx?ai)-r(zx;aj)< H Zzel i 2”2HZ]¢I J J”Q’

iel gl maxeg (||al[2/ct)

implies

I3 )l < et L
J

= maxyg (|[agll2/ct)
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Hence we have

b — Ax™[|2

=|b = ajai— Y jall
iel gl

=Ib = ajai — (O _aja;)™ — O zja;) "l
iel J¢I JE1

>|b—> aia; — (O xja;) 7| (19)
iel idl

>|b = wiailla — IO 25a;) |2
iel idl

12 e 25a4l2
>||b — zia||ls — JE )
b= wiaills = Lo TarTaer)

el
where the first inequality holds because () el x;'faj)L is orthogonal to both b — ", ; zja;

and (.7 zja;)~. Substitute Inequality (18) and (19) into Equation (equ.sparsityanglemain)
implies that

b — AR*||2 + ) |#7] < b — Ax"l2 + ) |a].

Hence x* is not an optimal solution. O

E Proof of Theorem 9

Theorem 9 Given I C {1,---,m}, if there exists a non-zero vector (w;)icr satisfying
w;a;|l2 < min 0;Ci W
|| ; i z||2 >~ ri€{=1,41} | ; &1 2|7

then there exists an optimal solution x* such that 3i € I : x7 = 0.

Proof. Suppose there is an optimal solution x which puts non-zero weights on all ¢ € I, and
we show that there exists a solution x* which is at least as good as x and satisfies [[;; 27 = 0.

Since for all i € I, &; # 0, there exists AT > 0 such that for all i € I (2; +ATw;)z; > 0 with
at least one equality holds. That is, we push the solution until one of the elements reach zero.
Similarly, there exists A= > 0 such that for alli € I (#;—\"w;)Z; > 0 with at least one equality
holds. Notice, either . ; ¢;|Z; + AT w;| < 37, 23] holds or Y7, ; ¢l — A w;| < 3 |24
holds, since z; # 0 for all i € 1. Without loss of generality we assume that ), ; CilTi+ A Tw;| <

> icr |Zi]. Notice that
Zcz"@z + )\+w,\ — ZCz,jfz‘

el el
= E sign(w;2;) - ;A w;
el

§—/\+ min | E 0;CiW;
oie{—1,+1} el

<= AT wiago.

el
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Construct x* as
N T+ ANTw;, i€
¢ Ti, 1€ 1.

Using the regularized form, we have

Ib — Ax* |l + Y cila]]

K]
=[b— A% + AT wiailla + Y eildi] + Y ailai] =) cildl
7

el 7 %

<|b— Akl + > eilai| + (AT wialle + > eildi + Awi =Y el
7

el i€l i€l
<|b— A%y + > il

(2

Therefore, x* is at least as good as X and has zero elements for at least one i € I. O

Notice in the proof, x* has strictly fewer non-zero elements than x.

F Proof of Proposition 2

Proposition 2 Given a function g : R™T' — R and Borel sets Zy,--- , 2, C R™T! let

Po2{pePNVS C {1, n}:ullJ2)>18]/n}.
€S

The following holds

1 n
—Z sup  h(ri, b;) = sup/ h(r,b)du(r,b).
Rm+l

i=1 (ribi)€Z; HEPn

To prove Proposition 2, we first establish the following lemma.

Lemma 2 Given a function f : R™Tt = R, and a Borel set Z C R™*L, the following holds:

sup f(x') = sup /Rmﬂ f(x)dp(x).

x'eZ HEP|u(Z)=1

Proof. Let X be a e—optimal solution to the left hand side, consider the probability measure
p' that put mass 1 on X, which satisfy y/(Z) = 1. Hence, we have

sup (<) —e<swp [ fEdu(x)
x'€Z pEP|u(2)=1 JRM+1

since € can be arbitrarily small, this leads to

sup f(x) < sup / F)du(). (20)
x'€Z HEP|u(Z)=1 JRm+1



28 G-2008-77 Les Cahiers du GERAD

Next construct function f R S R as

f(x)é{ f(x) x€Zz;

| f(x) otherwise.

By definition of x we have f(x) < f (x) + € for all x € R™*!. Hence, for any probability
measure u such that u(Z) = 1, the following holds

[ 0@ < [ Feduta) + e = £+ e < sup <) e
Rm+1 Rm+1 x'€Z

This leads to

sup / F()du(z) < sup F(x) +e.
HEP|p(Z)=1 JR™+1 x'€Z

Notice € can be arbitrarily small, we have

sup [ FOdu(a) < sup f(x) (21)
HEP|u(Z)=1 JR™+1 x'€eZ
Combining (20) and (21), we prove the lemma. O

Now we proceed to prove the proposition. Let X; be an e-optimal solution to sup, ¢z, f(x;).
Observe that the empirical distribution for (x1,--- ,%;,) belongs to P, since € can be arbi-
trarily close to zero, we have

1 n
LS sup £(xi) < sup /R Fe0du(). (22)

n i=1 X, EZ; uE'Pn

Without loss of generality, assume
f&) < f(xa) <0 < f(%n). (23)

Now construct the following function

oy o mingyez f(X) x €U Zj;
f(x) _{ f(x) ) otherv&]fisé. J (24)

Observe that f(x) < f(x) + ¢ for all x.

Furthermore, given u € P,, we have
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Denote oy = | (UL 23) — n(ULZ, Zi)}, we have

t
En:ozkzl, Zakzt/n.
k=1 k=1

Hence by Equation (23) we have

Therefore,

1 n
sup fX)dp(x) —e < sup — > f(xx).

HEPn x;€2; TV~

Notice € can be arbitrarily close to 0, we proved the proposition by combining with (22).
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