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la nature et les technologies.





Edge Realizability of Connected

Simple Graphs

Gilles Caporossi

Pierre Hansen

GERAD and HEC Montréal
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Abstract

Necessary and sufficient conditions are provided for existence of a simple graph G, and
for a simple and connected graph G′ with given numbers mij of edges with end-degrees
i, j for i ≤ j ∈ {1, 2, . . . , ∆} where ∆ denotes the maximum degree of G or G′.

Résumé

On présente des conditions nécessaires et suffisantes pour l’existence d’un graphe sim-
ple G et d’un graphe simple et connexe G′ avec des nombres donnés mij d’arêtes dont les
degrés des sommets sont i et j pour i ≤ j ∈ 1, 2, . . . , ∆ où ∆ désigne le degré maximum
de G ou de G′.
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1 Introduction

Realizability problems in graph theory consist in finding necessary and/or sufficient conditions
for graphs with prescribed values of some invariants to exist, and to provide algorithms to
obtain such graphs. Since, the pioneering work of S. L. Hakimi [1, 2] they are mostly focused
on conditions related to the degrees of the graph under study. More recently conditions
involving the pairs of degrees of edges have been studied in mathematical chemistry. On the
one hand, such conditions have been used by Caporossi et al. [3] to determine trees with
minimum Randić index [4] using mixed integer programming. This approach was extended
by several authors [5, 6, 7]. On the other hand, such conditions have also been investigated by
Vukičević and Graovac [8, 9, 10] and Vukičević and Trinajstić [11, 12] to analyze discriminative
properties of molecular descriptors such as the Zagreb index [13], modified Zagreb index [14]
and Randic index. Several classes of graphs have been considered: chemical trees, i.e. trees
with maximal degree 4 [15], unicyclic chemical graphs [9], and general chemical graphs [12].

Given a class Γ of graphs G, the edge realizability problem can be defined as follows: find
necessary and sufficient conditions on the numbers mij of edges with vertex degrees i and j
for a graph G in that class Γ to exist.

In this note, we consider the edge realizability problem for the classes of simple graphs
and of connected simple graphs for which the maximum degree ∆ is given. Results obtained
generalize those of [9, 12, 15] for chemical graphs.

2 Edge Realizability of Simple Graphs

Let us introduce some notation. Let G = (V (G) , E (G)) denote an arbitrary graph with
vertex set V (G) and edge set E (G). Its order n (G) = |V (G)| and size m (G) = |E (G)|.
Moreover, let ni (G) denote the number of vertices of degree i in G and mij (G) the number of
edges with end-vertex degrees i and j in G (multiple edges contribute by their multiplicity to
both of their end-degrees and loops contribute by 2 to the degree of their unique end-vertex).

We next characterize the vectors of numbers mij for which exists a simple graph G, i.e. a
graph without loops or multiple edges.

Theorem 1 Let ∆ be an arbitrary integer and M = [mij] a symmetric matrix of non-negative
integers of order ∆. Then, there is a simple graph G with exactly mij edges connecting vertices
of degrees i and j if and only if the following conditions hold:

1) ni =

∆
P

j=1

mij+mii

i
is a non-negative integer for i = 1, . . . ,∆;

2) mii ≤
(

ni

2

)

, for all i = 1, . . . ,∆;

3) mij ≤ ni · nj, for all i 6= j ∈ {1, . . . ,∆}.

Proof. Necessity: let G be a graph that corresponds to matrix M . The number of vertices

of degree i in graph G is equal to

∆
P

j=1

mij+mii

i
, hence it is a non-negative integer. Since G

is a simple graph, there are at most
(

ni

2

)

edges that connect vertices of degree i, therefore

mii ≤
(

ni

2

)

, for all i. Similarly, mij ≤ ni · nj for all i 6= j.
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Sufficiency: first let us prove that there is a graph G1 (not necessarily simple or connected)
such that mij = mij (G) for all i and j. Let Γ1 be the family of graphs G′

1 that satisfy the
following conditions:

1) N (G′
1) =

⋃

i∈{1,...,∆}

Xi, |Xi| = ni where the sets Xi are pairwise disjoint;

2) for each vi ∈ Xi, the degree d (vi) ≤ i.

Note that Γ1 is a non-empty set as it contains an empty graph. Let G′′
1 be a graph with the

maximal number of edges in Γ1. If d (vi) = i for each vi ∈ Xi and i ∈ {1, . . . ,∆}, then it is
sufficient to take G1 = G′′

1 . Assume the contrary. From, the hand-shaking Lemma, it follows
that there are two cases:

CASE A1: There are vertices vi ∈ Xi and vj ∈ Xj such that d (vi) < i and d (vj) < j.
Then, the graph G′′ + vivj is also in Γ1, which is in contradiction with maximality of G′′

1 .

CASE A2: There is a vertex vi ∈ Xi such that d (vi) < i − 2. Then, the graph G′′ + vivi

(with a loop at vertex vi) is also in Γ1, which contradicts again the maximality of G′′
1 .

Let Γ2 be the set of graphs G′
2 such that exactly mij edges connect vertices of degrees i

and j in G′
2. Note that Γ2 is non-empty, because at least G1 ∈ Γ2. Let us prove that there

is a loopless graph G2 in Γ2. Let G′′
2 be a graph in Γ2 with the smallest number of loops. If

G′′
2 has no loops, it is sufficient to take G2 = G′′

2. Assume the contrary. Let vi be a vertex
of degree i with a loop. Since 1 ≤ mii ≤

(

n1

2

)

, it follows that ni ≥ 2, hence there is a vertex
wi 6= vi of degree i. Distinguish two cases:

CASE B1: wi is incident to a loop wiwi. In this case graph G′′
2 − vivi −wiwi +2 · viwi ∈ Γ2

and has a smaller number of loops than G′′
2 , which contradicts the minimality of G′′

2 .

CASE B2: wi is not incident with any loop. Then wi has a neighbor p 6= vi and the graph
G′′

2−vivi−wip+vip+viwi ∈ Γ2 and has a smaller number of loops than G′′
2 , which contradicts

the minimality of G′′
2 .

Let Γ3 be the set of all loopless graphs G′
3 such that exactly mij edges connect vertices of

degrees i and j in G′
3. Note that Γ3 is non-empty, because at least G2 ∈ Γ3. Let us prove

that there is a simple graph G3 ∈ Γ3. Let G′′
3 be a graph in Γ3 with the smallest number

of repetition of edges where double edge are counted for one repetition, triple edge for two,
quadruple for three and so forth. If G′′

3 has no multiple edges, it is sufficient to take G = G′′
3 .

Assume the contrary, i.e. that there is pair of vertices vi and vj that are connected by a
multiple edge. Then, at least one vertex wi (wi is not necessarily different from vi) of degree
i is not connected to the vertex wj (wj is not necessarily different from vj) of degree j. We
distinguish three case:

CASE C1: wi = vi and wj 6= vj .

If there is a vertex q connected with wj by a multiple edge, then the graph G′′
3 − vivj −

wjq + viwj + vjq ∈ Γ3 has at least one repetition of edge less then G′′
3 (because viwj is

not a multiple edge) which is a contradiction. Hence, suppose that all edges incident to wj

are single. It follows that wj has more neighbors than vj , because they are of the same
degree and wj has multiple edges. Let wjp ∈ E (G′′

3) and vjp /∈ E (G′′
3). Note that graph

G′′
3 − vivj − pwj + viwj + vjp ∈ Γ3 has at least one repetition of edges less then G′′

3 (because
viwj and vjp are not multiple edges) which is a contradiction.
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CASE C2: wi 6= vi and wj = vj .

By symmetry, a proof similar to that of CASE C1 holds.

CASE C3: wi 6= vi and wj 6= vj .

We may assume that viwj , wivj ∈ E (G′′
3), because otherwise we have the situation analyzed

in previous cases. Distinguish two subcases:

SUBCASE C3.1 At least one of the vertices wi and wj is incident to a multiple edge.
Without loss of generality (because of the symmetry) we may assume that wi is connected
with vertex p by a multiple edge. Than, graph G′′′

3 = G′′
3 − vivj − wip + wivj + vip has at

most as many repetitions of edges as G′′
3 , but vertices wi, vj and wj in G′′′

3 (with relabeling
wi ↔ vi) satisfy the conditions of Case C1, which is a contradiction.

SUBCASE C3.2 Vertices wi and wj are incident only to single edges. Since vi and wi

are of the same degree, but wi is incident only to single edges, it follows that there is a
vertex zi such that wizi ∈ E (G′′

3) and vizi /∈ E (G′′
3). Similarly, there is a vertex zj such that

wjzj ∈ E (G′′
3) and vjzj /∈ E (G′′

3) (vertices zi and zj are not necessarily distinct). Graph
G′′

3 − vivj −wizi −wjzj + vizi + vjzj +wiwj ∈ Γ3 has a smaller number of multiple edges than
G3, which is a contradiction.

3 Edge Realizability of Connected Simple Graphs

A supplementary family of constraints must be added to those of Theorem 1 in order to ensure
existence of a connected graph G associated with matrix M .

Theorem 2 Let ∆ be an arbitrary integer and M = [mij] a symmetric matrix of non-negative
integers of order ∆. Then, there is a simple connected graph G with exactly mij edges con-
necting vertices of degrees i and j if and only if the following conditions hold:

1) ni =

∆
P

j=1

mij+mii

i
is non-negative integer for each i = 1, . . . ,∆

2) mii ≤
(

ni

2

)

, for all i = 1, . . . ,∆

3) mij ≤ ni · nj, for all i and j, i 6= j ∈ {1, . . . ,∆}

4)
∑

1≤p<q≤k

∑

i∈Ap

j∈Aq

mij +
∑

1≤p≤k

∑

i∈Ap

j∈B

mij +
∑

i,j∈B

mij ≥
∑

i∈B

ni +k−1, where A1, . . . , Ak, B is any

partition of the set S∆ = {i ∈ {1, . . . ,∆} : ni ≥ 1} such that B contains 1 if 1 ∈ S∆.

Proof. Necessity: let G0 be a graph that corresponds to matrix M . From the proof of
Theorem 1, it follows that conditions 1)-3) hold and that ni is the number of vertices of
degree i. Let A1, . . . , Ak, B be any partition of S∆ such that B contains 1 if 1 ∈ S∆. Let G′

0

be a (multi)-graph obtained by contraction of all vertices with index in Ai to the single vertex
vi for all i = 1, . . . , k. Let G′′

0 be the (multi)-graph obtained from G′
0 by deletion of all loops.
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Note that.

n
(

G′′
0

)

=
∑

i∈B

ni + k;

m
(

G′′
0

)

=
∑

1≤p<q≤k

∑

i∈Ap

j∈Aq

mij +
∑

1≤p≤k

∑

i∈Ap

j∈B

mij +
∑

i,j∈B

mij.

Since, G′′
0 is connected, it follows that m (G′′

0) ≥ n (G′′
0) − 1, hence 4) holds.

Sufficiency: Let Γ be the set of all simple graphs G′ such that exactly mij edges connect
vertices of degrees i and j in G′. Theorem 1 implies that Γ is nonempty. Let us prove that
there is a connected graph G in Γ. Let G′′ be a graph with the smallest number of components
in Γ. If G′′ is connected, then it is sufficient to take G = G′′. Assume the contrary. First, let
us prove the following Claim:

Claim 1. Let C be a cycle in G′′ passing through some vertices of degrees i1, i2, . . . , it.
Then all vertices of degrees i1, i2, . . . , it are in the same component.

Proof (of Claim 1): Denote the component containing cycle C by K. Suppose to the
contrary that there is a vertex wj of degree j ∈ {i1, . . . , it}, that is not in K. Denote by
vj the vertex of degree j that is in C and by p one of its neighbors in C. Let q be any
neighbor of wj . Since wj is not in K, it follows that vjq, wjp /∈ E (G′′), but then the graph
G′′ − vjp−wjq + vjq + wjp ∈ Γ and has a smaller number of components than G′′ which is a
contradiction.

Let us introduce the relation ≃ on S∆ by

i ≃ j ⇔ there is a cycle C ′ in G′ that contains at least

one vertex of degree i and one vertex of degree j.

Now, let ∼ be the relation on S∆ defined by

i ∼ j ⇔ there are numbers i1, . . . , ir such that

i ≃ i1, i1 ≃ i2, . . . , ir ≃ j.

From Claim 1, it easily follows that

Claim 2. If i ∼ j, then all vertices of degrees i and j are in the same component in G′.

Let

S+
∆

=
{

i ∈ S∆ : there is a vertex of degree i contained in some cycle of G′′
}

;

B′ =
{

i ∈ S∆ : no vertex of degree i is contained in any cycle in G′′
}

.

It can easily be seen that ∼ is an equivalence relation on S+
∆

. Denote the classes of
equivalence on that set by A1, . . . , Al and by A′

i, . . . , A
′
l the corresponding set of vertices.

Note that:
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1) A′
1, . . . , A

′
l, B

′ is a partition of the vertices of G′′;

2) There is no cycle in G′ that contains vertices in more than one class of this partition;

3) Claim 2 implies that the subgraph G′′ [A′
i] of G′′ induced by A′

i is connected for all
i = 1, . . . , l;

4) There is no cycle in G′′[B′].

Let G′
1 be obtained by contraction of all vertices in A′

i to a single vertex vi and G′′
1 be the

(multi)-graph obtained from G′
1 by elimination of all loops. Since all G′′ [Ai] are connected

and G′′ is not connected, it follows that G′′
1 is also not connected. Note that

n
(

G′′
1

)

=
∑

i∈B

ni + k;

m
(

G′′
1

)

=
∑

1≤p<q≤k

∑

i∈Ap

j∈Aq

mij +
∑

1≤p≤k

∑

i∈Ap

j∈B

mij +
∑

i,j∈B

mij.

Since G′′
1 is not connected and

∑

1≤p<q≤k

∑

i∈Ap

j∈Aq

mij +
∑

1≤p≤k

∑

i∈Ap

j∈B

mij +
∑

i,j∈B

mij ≥
∑

i∈B

ni + k − 1,

it follows that G′′
1 contains a cycle C ′ or multiple edge(s). Distinguish three cases:

CASE 1: Vertices b ∈ B and vi are connected by a multiple edge. It follows that b has (in
G′′) two neighbors vi,1 and vi,2 in A′

i. Since A′
i is connected there is a path vi,1w1w2 . . . wsvi,2

in G′′ [A1] ,but then there is a cycle bvi,1w1w2 . . . wsvi,2b in G′′, which is a contradiction.

CASE 2: Vertices vi and vj are connected by a multiple edge. It follows that there are (not
necessarily distinct) vertices vi,1 and vi,2 in A′

i; and (not necessarily distinct, unless vi,1 = vi,2)
vertices vj,1 and vj,2 in A′

j such that vi,1vj,1, vi,2vj,2 ∈ E (G′′). Since A′
i is connected there is a

path vi,1w1w2 . . . wsvi,2 in G′′ [A′
1] and since A′

j is connected there is a path vj,1u1u2 . . . us′vj,2

in G′′ [A2], but then there is a cycle

vi,1w1w2 . . . wsvi,2vj,2us′ . . . u2u2v1vj,1vi,1,

which is a contradiction.

CASE 3: G′′
1 contains a cycle C ′ = w1w2 . . . wsw1. Note that vertices in C ′ can be associated

with ordered pairs of vertices in G′′ (w11w12) (w21w22) . . . (ws1ws2) in such way that:

1) If the original vertex w was in B then w is replaced by (w,w) ;

2) if the original vertex is some vj then it is replaced by a pair of, not necessarily adjacent
or distinct, vertices (w′w′′) both from A′

j;

3) the second vertex of each pair is adjacent to the first vertex of the next pair.

Now, replace all pairs of vertices that are in A′
i by the shortest path that connects them

and all pairs of vertices from B by a single vertex. In this way a cycle is obtained. From the
definition it can be seen that this cycle either contains a vertex from B or contains vertices
from two different classes A′

i and A′
j . In both cases, a contradiction is obtained, and the

theorem is proved.
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While conditions (4) of Theorem 2 are numerous, particularly for large ∆, they may prove
to be useful when ∆ is moderate, which is the case for chemical graphs.
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[9] D. Vukičević and A. Graovac, Which valence connectivities are realizing monocyclic
molecules: Generating algorithm and its application to test discriminative properties of
Zagreb and modified Zagreb index, Croatica Chemica Acta 77 481–490 (2004).
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Zagreb index: A linear algorithm to check discriminative properties of indices in acyclic
molecular graphs, Croatica Chemica Acta 77 501–508 (2004).
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